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INTRODUCTION

Chaque proposition dans Bezout a Pair d’un
grand secret appris d’une bonne femme voisine.
Stendhal, Vie de Henry Brulard.

The purpose of this paper is to study analogs of some basic concepts and
results of projective geometry in the context of Arakelov geometry [Ar2, G-S2].

As was first noticed by Faltings in his work on diophantine approximation
for abelian varieties [Fa2], higher dimensional arithmetic intersection theory
can be used to define the height of any (closed integral) projective subscheme
X cp” , where PV is the N-dimensional projective space over Z {(or more
generally over the integers in a number field). The Faltings height 4, (X), which
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HEIGHTS OF PROJECTIVE VARIETIES 905

is a nonnegative real number, is defined in a similar fashion to the degree of a
projective variety over a field. Thatis, h,(X) is the intersection, in the sense of
[G-S2], of the fundamental class of X with the first Chern class of the canonical
hermitian line bundle on P" | raised to the power d = dim(X) (see 3.1 below).

In this paper we propose a slightly different definition of the height of X .
Namely we denote by A(X) the intersection of the fundamental class of X with
the d-th Chern class of the canonical quotient hermitian bundle on il (see
Definition 4.1.1). We prove that 4(X) is nonnegative and smaller than A (X)
(except when d < 1 or when the generic fiber of X is empty, in which case
h(X) = h;(X)). Furthermore h(X) =0 if and only if X is a linear subspace

P! ¢ PV defined by the vanishing of N+1-d standard coordinates (Theorem
5.2.3).

We obtain several results on the heights of projective varieties, which are
inspired by the analogy between heights and degrees. For instance we compute
the height of the join of two varieties (Proposition 4.2.2) and the behavior
of the height under linear projection (3.3.2). We give several proofs of the
following arithmetic Bézout theorem. Assume X C PV and Y c PV are integral
projective varieties which meet properly on the generic fiber of PY. Their
intersection cycle X.Y can then be defined using Fulton’s method {Fu2]. It
is well defined up to the addition of a cycle linearly equivalent to zero in the
closed fibers of PY over Z , and its height A(X.Y) (defined by extending by
linearity the definition for integral subschemes) does not depend on the choice
of representative for X.Y . Denote by degy(X) and degy(Y) the degrees in

]P’g of the generic fibers of X and Y respectively. Then we have
h(X.Y) < h(X) degy(Y) + degy (X)A(Y) + cdegy(X) degy(Y),

where the constant ¢ depends only on N, dim(X), and dim(Y) (see also
[Fa2] in the case of complete intersections). We give three different proofs of
this inequality (Theorems 4.2.3, 5.4.4, and 6.1.1), the smallest value of ¢ being
the one in Theorem 5.4.4 (we believe that ¢ can be taken equal to zero, but we
cannot prove it except when X or Y is a linear subspace).

In transcendental number theory, especially in the work of Nesterenko [N1],
[N2] and Philippon [P1], another definition of height has been known for some
time, which does not use Arakelov theory, and cases of the Bézout theorem
have been proved in that context. Namely the height of X C PV is defined
to be the height of its Chow form, which is a point in a large projective space.
The comparison between this definition and A, (X) was made by Soulé {So2]
and Philippon [P1]. We extend their result to more general Chow forms and
not necessarily standard metrics (Theorem 4.3.2). As a byproduct we get the
following result. Let R be the resultant of N +1 homogeneous polynomials of

degrees d,, ... ,d, in N + 1 variables. This is a multihomogeneous polyno-
N

mial with integral coefficients of multidegree (d,, ... , dy), where J, =[] d Iz
j=0

J#i
Its variables are the coefficients of the “generic” homogeneous polynomials of
degrees d,, ... ,d, in N+1 variables. So R can be viewed as an element of
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\Y2

r
®S%($% c¥*')Y . Equip this vector space with the hermitian norm || - lterm
i=0
induced by the standard hermitian structure on cV . we prove in Lemma
4.3.4 that

1 (1 1 1

Og”Rllﬂenn:i gdt | (N+1) 1+§+"'+N - N

+e(dy, ... ,dy),

where

le(dy, --- » N)|<— (Hd)z log(d, + 1).

We also evaluate the size of R for other norms (Theorem 4.3.8).

Our main analytic tool is the existence of “positive Green forms” for effective
cycles Z on a complex manifbld X . By this we mean a positive C™ form #
on X —|Z| which is locally L' on X and such that the corresponding current

=[n] on X is a Green current for Z, i.e., such that ddcg+52 is C%

(where &, is the current given by 1ntegrat10n on Z). An example of such
a positive Green form is the Levine form, familiar to Nevanlinna theory [Lev}],
[St2], when X is a complex projective space and Z a linear subspace. The
positivity of these Levine forms has several interesting consequences (Propo-
sition 1.4.2, Proposition 4.1.3). More generally we give conditions for a given
effective cycle (resp. all effective cycles) on X to have a positive Green form
(Propositions 6.2.1, 6.2.2, and 6.2.3), and a counterexample showing that some
complex manifolds admit effective cycles with no positive Green forms (6.3).

The paper is organized as follows. In Section 1 we discuss Green forms “of
log type” for cycles on complex varieties. A general construction is given in 1.2,
together with examples. The star product of Green currents is described in 1.3.
These two sections (as well as the beginning of Section 2) cover material from
[G-S2], but they improve it in several ways. For instance the associativity of
the star product is shown in Theorem 1.3.2 without assuming that the ambient
variety is projective. In 1.4 we use the positivity of Levine forms to compare
several norms on polynomials, and in 1.5 we prove the continuity of some fiber
integrals. This last result is used in Section 5 to get arithmetic inequalities, but
it is probably of independent interest.

In 2.1 we discuss arithmetic intersection theory, and in 2.2 we explain why
the intersection product is invariant under linear equivalence. A pairing be-
tween algebraic and arithmetic cycles is discussed in 2.3, and Proposition 2.3.1
describes its basic properties. This pairing (which was independently considered
by Zhang [Zh2]) is the main tool to define heights.

Section 3 studies the height attached to an hermitian line bundle (see also
[Zh2] and [Gu]). A special case is the height introduced by Faltings in [Fa2].
We compute how this height varies with the data (3.2.2), we give conditions
for it to be nonnegative (3.2.3), and we prove the finiteness of any set of cycles
whose height and degree with respect to some ample hermitian line bundle are
bounded (3.2.4). In 3.2.5 we give a formula for this height analogous to the
Hilbert-Samuel formula for the degree. Section 3.3 is devoted to examples:
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heights of hypersurfaces (3.3.1), behavior of the height under linear projection
(3.3.2, see also [Fa2]), self-intersection of the dualizing sheaf on arithmetic
surfaces (3.3.3), heights of subvarieties of abelian varieties (3.3.4; we interpret
Philippon’s height [P2] as the height defined by some hermitian line bundle, see
also [Kr] and [Gu]).

In Section 4 we define the height A(X). Propositions 4.1.2 and 4.1.3 contain
some of its properties and the comparison with 4,(X). In Proposition 4.2.2
we compute A(X#Y), where X#Y is the join of two projective varieties X
and Y. This leads in Theorem 4.2.3 to a first proof of the arithmetic Bézout
theorem. In 4.3 we compute the height of generalized Chow forms (Theorems
4.3.2 and 4.3.8) and we deduce the estimates of resultants mentioned above.
Note that in many respects the height A(X) appears as the dual notion, for
projective duality, of the Faltings height A, (X).

In Section 5, we use the analytic result from 1.5 to prove that A(X) > 0
(Theorem 5.2.3; we also consider the case of nonstandard projective spaces)
and to get our best version of the arithmetic Bézout theorem (Theorem 5.4.4).
We also prove some Bézout theorems for cycles which do not meet properly on
the generic fiber (Theorem 5.5.1), and variants involving more than two cycles
or several projective spaces (5.6). It would be of interest to get precise analogs
of the Bézout theorem with excess of Vogel [V] and Fulton ([Fu2], Chapter
XII).

The last section is devoted to the study of positive Green forms. We get
from them a third proof of Bézout’s theorem (Theorem 6.1.1), we discuss cases
where they exist (6.2), and where they don’t (6.3).

Some of the results in this paper were announced in the note [BGS]. We
thank O. Gabber for helpful comments and for the proof of Proposition 6.2.3.

Conventions. The following notations are used throughout this paper.

When X is a scheme and E a vector bundle on X, we let & be the locally
free &,-module of sections of E, &' = Hom(&, &,) its dual, S*(&") its
symmetric powers, and

P(E) = Proj (& s"(gv)>

the associated projective scheme; i.e., P(E) = P(&") in Grothendieck’s nota-
tion. The canonical quotient line bundle on P(E) is denoted & (1). When
E is a holomorphic vector bundle on a complex space X we define similarly
P(E) and &(1).

When p > 0 is an integer and X a scheme of finite type over a Dedekind
ring we let Z (X) be the group of algebraic cycles of dimension p on X . If
X is equidimensional we let

Z2(X) = Zgimex)—pX)-

From the beginning of Section 2, we let K be a number field, &, be its ring
of integers, and S = Spec() be the associated affine scheme; all arithmetic
varieties are S-schemes, and their products are products over S.
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1. PRELIMINARIES: GREEN FORMS OF LOG TYPE
1.1. Forms and currents on complex varieties.

1.1.1. If X is a complex manifold, we shall denote by 47%(X) (resp. 2°Y(X))
the vector space of complex-valued C°° differential forms (resp., of complex-
valued currents, i.e., of differential forms with distribution coefficients) of type
(p, q). Thanks to the canonical orientation of X (defined by the volume form
dx, Ady, A---Adx,; Ady, for any choice of local holomorphic coordinates
z,=x,+1iy,, a=1,...,d), the space 4”/(X) may be identified with a
subspace of 2%(X). More generally, any locally L' form ¢ of type (p, q)
on X defines a current on X , that we shall sometimes denote by [¢] to avoid
ambiguity.

If Y c X isa closed irreducible analytic subset of codimension p, we denote
by d, the current of integration on Y ; it is the current in & P>P(X) which maps
any compactly supported smooth form n on X to its integral on the smooth
part of Y . For any desingularization v : Y — Y of Y, this integral coincides
with f5 v" 5. In other words

oy = v, [1]
By linearity, the definition of J, is extended to any analytic cycle on X .
A Green current for an analytic cycle Z of codimension p in X is an
element g € 27?71 (X) such that

dd‘ g +5, € A”(X).
Here d =0+, d° = (i/4n) (8 — 3), and therefore dd = (i/2n)80 .
A Green form for Z is a Green current which is locally L' on X and C*®
on X —|Z|.
1.1.2. Recall from [G-S2], 1.3.2, the following definition.

Definition 1.1.1. Let X be a smooth quasi-projective complex variety and Y
a proper closed algebraic subset of X. A C™ form n on X — Y is said to
be of log type along Y when there exist a smooth quasi-projective complex
variety M (nonnecessarily connected), a proper morphism #n : M — X, and a
C® form ¢ on M —n~'(Y) such that:

1) n_I(Y) is a divisor with normal crossings, and 7 is smooth over X —Y ;

(ii) n is the direct image by 7 of @ z—z"\(r)>

(iii) For any point x € M, there is an open neighborhood U of x and

a system of holomorphic coordinates (z,, ..., z,) of U centered at x such
that the set n*l(Y)n U has equation z,---z, = 0, for some k < n, and there
exist smooth 8- and 9-closed forms a,on U, i=1,..., k, and a smooth

form B on U with ¢IU=ZLC¥,~ 108|Z,-|2+ﬂ-

Such a form # on X — Y is locally L' on X and defines a current [n] on
X, which coincides with the direct image 7 _[¢] of the current [¢] defined by
o (cf. [G-S2], 1.1.5).
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Examples. (i) If L is an (algebraic) line bundle on X, endowed with a C*
hermitian metric || ||, and if s is a regular section of L on X which does
not vanish identically on any component of X, then loglis|| is a O-form of
log type along the divisor Y of s. This follows from Hironaka’s Theorem on
embedded resolution appliedto Y C X . _

(ii) Suppose Y is a smooth subvariety of X . Let v : X — X be the blow-up
of Y in X and E = V—I(Y) the exceptional divisor of v, s a regular section
of @(E) with divisor E. For any C® hermitian metric || | on E and any
C* forms a and g on X such that o is 8- and d-closed, the C* form
log|ls].a+ B on X — X ~ X —Y is of log type along Y. (Take M = X and
T=v.)

Forms on X of log type along Y are easily seen to form a vector space stable
under multiplication by 8- and d-closed C™ forms on X . The following is
proved in [G-S2], 1.3.3 and 2.1.4, by using resolution of singularities.

Lemma 1.1.2. Let X and X be smooth quasi-projective complex varieties,
and let n bea C™ formon X — Y of log type along a closed algebraic subset
YcX.

(i) For any morphism f: X' — X such that f ~YY) does not contain any
component of X', the form f*n on X' —f_l(Y) is of log type along f—l(Y).

Suppose moreover that Y is the support of a cycle Z of codimension p on
X and that {n) is a Green current for Z . Then, if f _I(Y) has codimension p
in X', [f*n] is a Green form for the cycle f*(Z) on X' that we shall denote
by f'[n]; more precisely, if we let

w=dd [n]+3, € A (X),

then
(1.1.1) ddUf N+ 8z = [ ().

(i) For any proper morphism f : X — X' which is smooth outside Y and
such that f(Y) does not contain any component of X " the C™ form f.n on

X' — f(Y) is of log type along f(Y).

Observe that, in (ii), the currents f,[n] and [f,#] coincide (cf. [G-82], 1.1.5).
If Z is any irreducible subvariety of X which is not contained in Y, any

C*™ form 5 on X —Y of log type along Y is locally L' with respect to the
current. of order zero J,, and the product 5 d, is a well-defined current of

o~rder 0. In fact, for any resolution v : Z-2Z , the form v*7 is locally L' in
Z and

(1.1.2) néd,=v, vyl

This extends by linearity to arbitrary algebraic cycles Z on X .
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1.1.3. We now recall a few basic facts concerning positive forms on complex
manifolds.’

Definition 1.1.3. A smooth form 7 of type (p, p) on a complex manifold
X is said to be a positive form if for any complex manifold ¥ of complex
dimension p and any holomorphic map ¢ : ¥ — X, the volume form ¢*n on
X is nonnegative.

Clearly, in this definition, we can restrict ¥ to be a polydisc in C°. The
positivity of # will be denoted: n > 0.

A real C* form w of type (1,1) on X may be written in terms of local
holomorphic coordinates (z,, ... , z,;) as

) =
k

w,, dz, NdZ,,
1

M=

where w,, +@,, = 0. It is positive iff the associated hermitian form 4 on T,
defined as

h=2 Y o, (dz, 0dz, +dz,0d37,),

1

K o
+

k

is nonnegative. If % is a positive definite hermitian form, then @ is said to be
strictly positive.
In the sequel, we shall just use the following properties of positive forms:

Proposition 1.1.4. Let M and N be complex manifolds, and let n be a C™
positive form of type (k, k) on M.

(i) For any holomorphic map f: N — M, the smooth form f"n is positive
on N.

(i) If g : M — N is a smooth holomorphic map whose restriction to the
support of n is proper, the smooth form g n is positive on N .

(iii) For any C™ positive form w of type (1, 1) on M, the form w.n is
positive.

(iv) Let w be a strictly positive C™ form of type (1, 1) on M. Forany C*
Jorm o of type (p, p) on M and any relatively compact open subset Q C M,
there exists a real number R such that for any t > R, the (p, p)-form a+t o’
is positive on Q.

Proof. Assertion (i) follows immediately from the definition.

To prove (ii), we may assume that k > d := dim; N — dim; M . For any
complex manifold ¥ of dimension k& —d and any holomorphic map ¢ : V' —
N, we can consider the following cartesian diagram of complex manifolds:

! The reader should be aware that, for forms of type (k, k) ona d-dimensional complex mani-
fold, there are (at least!) three natural notions of positivity, which are distinct when 2 < k <d - 2;
the definition which we use in this paper coincides with the one introduced by Lelong [Lel], and is
sometimes called “weak positivity” (see [Ha-K}J).
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Wi=Vx, MM

le e

Vv —N.
®

Then the identity
9 g n=G, ® 1
shows that ¢* g 7 is the direct image by a smooth map of a nonnegative
volume form, hence nonnegative (compare [St3], Theorem Al 5.4).
For a proof of (iii) see [Lel], IV, Proposition 3, or [Ha-K].
Assertion (iv) can be shown by a compactness argument. O

If X is a complex manifold and Z an analytic cycle on X, a Green form
g for Z whose restriction to X — |Z| is positive will be called a positive Green
form for Z . Suppose that X is quasi-projective and that Z is an algebraic
cycle. For any such form g of type (p, p) which is log type along |Z| and any
effective algebraic cycle Z' of dimension p on X, no component of which is
contained in |Z|, it follows from (1.1.2) and Proposition 1.1.4, (iv) that the
current g.d, is a positive measure on X . In particular, if X is projective,
we get:

(1.1.3) /gaz,zo.
X

1.2. Construction of Green forms.

1.2.1. Let X bea comp~lex manifold, ¥ € X a closed complex submanifold
of codimension p, v: X — X theblow-upof Y in X, and E = u_l(Y) its
exceptional divisor, so that we have a diagram:

j ~

EFE & X
lVy ) l”
Y < X

We shall also denote by N the normal bundle to Y in X, and by Q the
canonical quotient bundle vy N/@, (—1) on the projective bundle P(N), which

may be identified with E . Finally we choose a C°°~hermitian metric ||.] on
@%(E) , and a holomorphic section s of @3(E) on X with divisor E, and we
let

B=c (G%E), ).

It is a closed form in A' "(f ), which satisfies the following identities of cur-
rents:
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(1.2.1) dd log|s| > + 6, = B.

In this section, we shall denote by [c] the cohomology class of a closed current
c.

Lemma 1.2.1. Let a € 427?71 (X) be a closed form such that the cohomology
class of j() is the (p — 1)-th Chern class c,_,(Q) € H¥YE;C).
(i) The following equalities hold:

(1.2.2) v(ad,)=6,€ D77 (X)
and
(1.2.3) V6,1 =[aABle HP(X).

(ii) Suppose moreover that w € A”°"(X) is a closed form such that [w] = [6,]
in H¥(X; C) and that y € A*~""""Y(X) is such that

(1.2.4) ddy=v'(w)-anp.

Then the current

(1.2.5) g=v, [logllsl.a+y] €27 (x)
satisfies the following identity:
(1.2.6) dd‘g + 6, = w.

In particular, g is a Green current for Y . Observe that g is locally L' on
X and C*™ on X -Y, and that, if X is a quasi-projective variety and Y an
algebraic subvariety, g is log type along Y (cf. 1.1.2, Example (ii)).

Proof (Compare [G-S2], 1.3.6 and 1.3.7). (i) We have

vady) =v (i) =1, J" o) =iy ja.

As v, is proper and smooth, the current v, j*a belongs to AOO(Y) and is
defined by the function whose value at y € Y is

/uy-x(y)f a= [, @= @O @) =1

Therefore
v(adg)=1,(1)=4,.

By the “key formula” ([Fu2}, Proposition 6.7. (a)), we get the equality of
cohomology classes

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



HEIGHTS OF PROJECTIVE VARIETIES 913

V*[ay] = j* cp._l(Q)-
According to (1.2.1) and the hypothesis made in «, we have

[6x]1=1[8] and ¢, ,(Q) = j[a].

Therefore

VI8 1=J, j" el =[al j, [1] = [a] [65] = [« A BI.
(i) Since o is - and O-closed, we have

dd'g=v, (ddc(log||s|r2). a+dd y) .
Equation (1.2.6) now follows immediately from (1.2.1), (1.2.2), and (1.2.4). O

Lemma 1.2.1 is the basic tool for constructing Green forms, as will be shown
in the next two subsections.

1.2.2. Suppose moreover that X is a compact Kdhler manifold. Then so is X
[B1] and the conditions in Lemma 1.2.1, (ii) are always satisfied: the existence
of w follows from Hodge theory and that of y from the 88-lemma ([G-S2],
1.2.1). Therefore, if there is a closed form a € 4°~""?7'(X) satisfying the
hypothesis of Lemma 1.2.1, there exists a Green form for Y (of log type along
Y in the quasi-projective case). By Hodge theory again, this condition amounts
to:

¢, ,(Q) € STH"*(X; C).

Since

p-1 .
¢, (@) =Y vy ¢, {(N) ¢ (By(D)",
i=0

this happens when the total Chern class ¢(N) lies in the image of the restriction
map

* * *

(1.2.7) " H'(X:;C)— H*(Y; Q).

Consider now a smooth projective variety M. Both M and M x M are
Kaihler, and the map (1.2.7) is surjective when Y = A is the diagonal in X =
M x M . Therefore there exists a Green form g, for A in M x M, of log type
along A. Starting from g, , one easily gets Green forms for any cycle in M .
Indeed, if we denote pr,: M x M — M (i=1, 2) as the two projections, we
have (compare {B1], Theorem 2.1):

Lemma 1.2.2. For any cycle Z € z,M ), the current

(1.2.8) g =pr,(8,-pr; 37)
is a Green form for Z , of log type along |Z|.
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In (1.2.8), the current g,.pr, J, is well defined as the product of g, and
pr; 0, =0,,.7,5nce A and M x Z meet properly (cf. 1.1).

Proof. We may assume that 7 is an irreducible subvariety, and consider a
resolution v :Z — Z . Let
u:(idM,u):MxZ—aMxZ,
andlet p: M x Z — M be the ﬁrs_t projection. By definition
801, 0, =, (1" g,

Therefore
g=pr, un lu'gl=np, 1 gl

This shows that the current g is L' on M (cf. [G-S2], 1.1.5) and C* on
M —|Z|. Moreover it follows from Lemma 1.1.2 that it is log type along |Z].
Finally, if we let

w,=dd" g, +96,
(e ™" Mx M), d=dimM),

we get from Lemma 1.1.2, (i):

(1.2.9) dd’ (1" gyl = 1 @y — 6,0y
on the other hand, we have the equality of cycles

P, A=Z,
hence the equality of currents (cf. [G-S2], p.136)

(1.2.10) P, 0,5 =07
From (1.2.9) and (1.2.10), we obtain

dd'g+6,=p, 1" w,.

As p is a smooth map, this currentis C>. O

Observe that, as a corollary of the previous discussion, we recover the fact
that, for any cycle Z on a smooth projective variety M , there exists a Green
form for Z of log type along |Z]| ([G-S2], 1.3.8-1.3.9). Using the existence of
a smooth projective compactification for any smooth quasi-projective complex
variety, one sees that this still holds when M is only assumed to be quasi-
projective.
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1.2.3. Suppose now that there exists a holomorphic vector bundle F of rank
p on the complex manifold X such that Y is the set of zeros of some global
holomorphic section ¢ of F on X which is transverse to the zero section. If
we write . for the sheaf of ideals in &, of functions vanishing on Y, we
have an epimorphism:

* V
6 ¥ —F COy,

where F is the sheaf of holomorphic sections of F and F " is its dual. If i
is the inclusion of Y into X, this induces an isomorphism

I ANSE I

and hence

N.

Y/Xzi F.

The homomorphism ¢* also induces an epimorphism of graded algebras of
&,-modules

® Sym"(F") - @ FF
k>0 k>0
and hence a closed immersion:
X — P(F)

Proj (kezBo S k) Proj (kezao Sym*(# V)) )

for which

f@ (1) =O4(1) = F Gy =G3(-E).

The map [ fits into the following commutative diagram:

E = P(Ny, )2 X Lop(F)
L
y <Lx

The composition, where s : @3 < O3(E) is the canonical section,

*

V'F" — [ Gy (1) = Oy(—E) — O
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is v*(¢"). In the dual sequence
Oy —OE) — V' F

the composite map is v*(o). On the open set X — E = X — Y, where v is the
identity, it coincides with o .

Suppose now that F is endowed with a C° hermitian metric. This metric
determines hermitian metrics on p*F, on its quotient bundle Q ¢ » On its sub-

bundle & (—1), and therefore on F3(E). Let ¢, (F), ¢, (@F) , ... denote

the Chern forms associated with these metrics. These are closed C™ forms
of type (k, k), whose cohomology classes are the usual Chern classes ¢, (F),
¢(QF), ... . Moreover the closed form

P ¢, (F)—¢, (G-(-D) ¢, (Qr) € 4”7 (B(F)),

whose cohomology class vanishes, may be written dd n, where 5 lies in

AP~HP=1(p(F)) . This follows from the results of Bott and Chern [B-C], §5,
applied to the following exact sequence of hermitian vector bundles:

g:O—»@},(——l)—»p* F—-Qp—0.
Also observe that

B=c (FE) =1 e, (@(-D) and |isl* = v"llo”.

We conclude that the various conditions in Lemma 1.2.1 are satisfied by

a=fc,_, (EF) , w=¢,(F) , andy= [Ty,
and finally, we get that

(1.2.11) g=v, (v 1oglloll . e, (Qp) + £'(m)
is a Green form for Y in X, such that
dd‘g + dy =¢, (F).

It is of log type along Y when X is quasi-projective, and F and o are alge-
braic.

Examples. (i) Suppose X is the total space of a holomorphic vector bundle
n:&— Y over Y. Then Y may be defined by the vanishing of the tautological
section g of F := n*¢, and the previous construction defines, for any choice
of an hermitian metric on ¢ and of the form 7, a Green current for Y. As
a matter of fact, the general construction may be recovered from this special
case: the Green form (1.2.11) coincides with the pull-back by ¢ : X — F of the
Green form of X in the total space of F obtained from the tautological section
of the pull-back of F. This remark allows one to extend formula (1.2.11) to
the case where o is only supposed to meet properly the zero section of F and
Y is the cycle attached to the l.c.i. subscheme defined by the vanishing of o.
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(ii) Consider the special case of (i) where Y is a point and & = Cf
equipped with the standard metric

y4
Iz =1z,
i=1

Then P(F) = C” x P*"(C) and the exact sequence of hermitian vector bundles
& on P(F) is the pull back of the analogous exact sequence on P! (C). Thus

is

¢ (m) ey (@F) ~f ¢, (F)=0

and we may choose 7 = 0. Therefore

g=v, (logllsI . /" ¢,_, (Cr))

is a Green form of log type for the origin in C”. In terms of coordinates

—1
g =—log||z|]. (dd’1og]z’)"  on € {0},
and the identity

¢
dd g = —(3{0}

is essentially the Bochner-Martinelli formula.

(iii) Suppose X is a Stein manifold. Then there exists a Stein neighborhood
Q of Y inits normal bundle N and a “tubular neighborhood” map ¢ : Q — X,
i.e., an open holomorphic immersion such that Py = idlY . According to (i),

there exists a Green form g for Y in N. Forany p € AOO(X ) such that

p=1 near Y and supp p C ¢(Q),

the current p ¢ _(g) on X is a Green form for Y in X . This shows that any
smooth cycle on X has a Green form.
A reduction to the diagonal analogous to Lemma 1.2.2, the details of which
we leave to the reader, shows that the same is true for any analytic cycle on X .
(iv) Formula (1.2.11) gives in particular a Green form for any smooth com-

P
plete intersection Y. Indeed, if ¥ =() H,, where H, are (closed) complex
i=1
hypersurfaces in X which are smooth and meet transversally along Y, and if
s; is a section @ (H,) with divisor H,, we may apply the construction above to

p
the section s = (s,),;c, of F = @(H,). Using the last observation in (i),
<ig ~

1
this may be extended to any complete intersection.

(v) Let ¥V be a complex vector space, equipped with an hermitian scalar
product with associated norm || ||, and P(V) the complex projective space of
lines in V. For any linear subspace W C V of codimension p > 0, consider
the subvariety P(W) C P(V), and the vector bundle F = &g,(1) ® V/W on
P(V). For any line L € P(V), the fiber F, may be identified with the vector
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space Hom(L, V/W), and the section ¢ of F which takes as value at L the
composition of the tautological linear maps

LV VW

is a regular section of F, which meets transversally the zero section of F
exactly along P(W). Therefore the construction above applies to X = P(V)
and Y =P(W).

The projective bundle P(F) may be identified with P(V)xP(V /W), the map
p with the first projection (onto P(¥) ), and Q. with p*é’V(l)@)q*QV/W , where
q is the second projection onto P(V/W) and QV/W the canonical quotient

bundle on P(V/W); then the exact sequence & coincides with the pull-back
by g of the canonical exact sequence

0— (?’V/W(—l) — V/W — QV/W -0
twisted by p*@,,(1). The hermitian scalar product on ¥ determines hermitian

\2
structures on V/W , on &,(1) (which is a subbundle of ﬁP(V)@) V),on F (by

tensor product), on ﬁV/W(—l) ,on Q, W and on Q. These are compatible
with the isomorphisms mentioned above. It follows that

¢ (F) =<, (&)’

¢ (FrCD) =p"¢, (F,(D) - a"¢, (7, (D) ,

61 ()= T e (Fm) aa (FwD)

i+j=p—1
Therefore -
pc,(F)—¢ (é’p(——l)) €y (QF) =0,

and the construction above applies with # = 0. Therefore the current

(1.2.12)
Amm:m(fbﬂﬂd.Z:V%&%UWJ%YA@Wﬂ»j
i+j=p—1

is a Green form for P(W), of log type along P(W), which satisfies

—\P

dd" Ay + Sy = ¢, (D) -
This current is called the Levine form of P(W) ([Lev], [G-S3], §5), and
may be rewritten in a slightly more explicit way as follows. Let W be the

orthogonal complement to W in V,andlet n:V — W™ be the orthogonal
projection. On V — {0} (resp. ¥V — W) consider the smooth function p(x) =

log||x|{2 (resp. 1(x) = 10g||7z(x)|]2 ); these functions define (1, 1) forms u =
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dd‘p on P(V) and A = dd°t on P(V) —P(W), and a function p — 1 on
P(V) — P(W). Then we have:

(1.2.13) Mgy =(p—1) > WA (onP(V)-P(W)).
i+j=p—1

Indeed

(12.14)  p-t=logllol|, u=¢, (&) , 4= f'qcl(m)

1.3. Operations on Green currents. Let X be a smooth quasi-projective com-
plex variety. Given two currents S§ and 7 on X, we shall write S =T to
mean that there exist currents ¥ and v on X with S —7 = 0u+ 08v, and we

shall denote by @7”(X) the quotient space Z*P(X)/ = and by T the class in

2%7(X) of acurrent T € 27°(X).

Let Y C X be a closed irreducible subvariety, 7, a Green form for ¥ of
log type along Y, and Z an algebraic cycle on X which meets Y properly.
Using Lemma 1.1.2, (i), one sees that the current #,d, (defined by (1.1.2))
satisfies the following equation:

(1.3.1) dd‘(ny6,) + 0y, = w0,

where w, is the form ddn, + 0y and Y.Z the usual intersection cycle of Y
and Z (compare [G-S2], proof of Theorem 2.1.4). If g, is any Green current
of Z, we define following [GS2], 2.1, the star product of 1, and g, to be

(1.3.2) Ny * 8 = MNyb, + Wy &,.
It follows from (1.3.1) that it is a Green current for Y.Z .

Proposition-Definition 1.3.1. Ler Y, ..., Y, be irreducible subvarieties of
codimension p > 0 in X , n,,...,n, some integers, and Z the cycle

k
Yn Y, eZ(X) .
i=1

(1) For any Green current g, for Z in X, there exist Green forms n, for
Y;, of log type along Y,, such that

k
(1.3.3) g,=>.n, My -

(ii) For any algebraic cycle Z' on X which meets Z properly and any Green

—_ k
current g, for Z', the class in D (X) of the current Y n;ny 6, (resp. of the
i=1 i

Green current Z n My * &z for Z.Z') depends only on g, and o, (resp.
on g, and gZ) and will be denoted g,0, (resp. g, x8,).
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(iii) Let X' be another smooth quasi-projective complex variety and f :
X' — X a morphism such that f ~Y(Z|) has codimension p in X'. The class

in Q(X) of the Green form T n. [fny] for £°Z (¢f Lemma 1.1.2, (i)

depends only on g, and will be denoted g,
Proof. The existence of the fy ’s satisfying (1.3.3) follows from the existence

of Green forms of log type for any subvariety of a quasi-projective variety and

- from the fact that, if g and g’ are any two Green currents for Z , there exists
a C* form o on X suchthat g — g =a (cf. [G-S2], Theorem 1.2.2 @i)).
The second assertion follows from [G-S2], Corollary 2.2.11. The third follows
from the second applied to X' x X, pr; Z, pr; gz » and the graph of f in
place of X, Z, g,,and Z' respectively. O

The main properties of the star product on classes of Green currents may be
summarized as follows:

Theorem 1.3.2. (i) (Commutativity) Let Z, and Z, be two cycles on X which
intersect properly. If 8z, and 8z, are Green currents for Z, and Z,, then

ng *gzz =§Zz*§zl in Q(X)
(ii) (4ssociativity) Let Z,, Z,, Z, be three cycles on X which intersect prop-
erly in the following sense: if p, denotes the codimension of Z;, we have

codim (|Zi| N |Zj|) =p,+p; fori#j
and

codimy (|Z,|N|Z,| N |Z,) = p, + p, + ;.
If 8, . 8, &, are Green currents for Z,, Z,, Zy, then

ng * (gZZ * gZJ) = (gzl * gZZ) * §Z3 ln Q(X).
(iii) (Compatibility of star product and pull-back) Let f : X' — X be a

morphism of smooth quasi-projective complex varieties, and let Z, € ZP(Xx)
and Z, € ZP(X) be cycles on X, which intersect properly on X, such that

! (1Z,1), ! (1Z,1), and 7! (12,1 |Z,]) have codimensions p,, p,, and
p, +p, respectively. If 8z, and 8z, are Green currents for Z, and Z,, then

(1.3.4) S (8, %8,) =1 8 S &,
and
(1.3.5) v (gz ) f §Z £z,

Proof. The commutativity is Corollary 2.2.9 in [G-S2]. Identity (1.3.4) follows

from the associativity by working on X’ x X and considering X' x Z,,X "x z,,
and the graph of f as in [G-S2], 4.4.3, Lemma. Identity (1.3.5) follows easily
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from (1.3.4), the definition of f~ §ZZ , and (1.1.1). Associativity is proved in

[G-82], 2.2.14, when X is projective. The following shorter argument avoids
this extra hypothesis: let w, = dd‘g, +J, ; these are 9- and 9-closed forms,

and therefore they act upon 9 (X) by multiplication. By commutativity of the
star product, we get:

%, (8,7 %,,) = %, (8,7 %)
(1.3.6) = 8,0, 7 +0, (§23 * gzz)
= §Zl.(523.22 + w1.§23522 + W, w, §ZZ.
On the other hand, using again commutativity, we have
(32,8,,) 8, = 2, (8, %,)
= §23'521.22 + w,. §21622 + w; 0, §Zz.

The equality of (1.3.6) and (1.3.7) follows from [G-S2], Theorem 2.2.2, applied
toY=2Z2, g = 8z, Z=27Z, g, = &z, and W = Z, (hence 0 = 522_23
and t=0). O

(1.3.7)

Remark. Let us go back to the notation of Proposition 1.3.1. If n is any Green
form for Z of log type along |Z| such that g, = 7, the class in Z(X) (resp. in
Q(X'))of nd, and nxg, (resp. of f*n) coincide with §Z.52, and §Z*§Z,
(resp. of f* &, ). This follows from the same argument as for Proposition 1.3.1,
once we observe that Theorem 2.2.2 in [G-S2] and its corollaries still hold when
the cycles Y, Z, and W are not supposed irreducible (with the notations of
[loc.cit.], one needs only to assume that |Y|N|Z|, |Y|n|W], and |Y|N|Z|Nn|W]|
have codimensions p+q, p+r,and p+ g +r respectively, and that g, and
g, are Green forms for Y and Z of log type along |Y| and |Z|; with trivial
modifications, the proof in 2.2.4-2.2.8 still applies under these hypotheses).
Using this more flexible definition, one gets that if

f:X'5X and f:X X
are morphisms of smooth quasi-projective complex varieties such that f -1 {r4))
and (fof )_1 (Z]) have codimension p in X' and X" respectively, then

fl f* §Z=(fofJ)* gz-
1.4. An application: Levine forms and comparison of norms on polynomials. As
an illustration of the constructions presented above, we shall use the Levine
forms (1.2.3, Example (v)) to compare several notions of size for homogeneous
polynomials.

1.4.1. Let V be a complex vector space of dimension N + 1 equipped with an
hermitian scalar product. Then to any linear subspace W C I of codimension
p > 0 is associated the Levine form AP(W) , which is a Green form on P(V)
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for the subspace P(W) (see 1.2.3, Example (v)). Its main properties may be
summarized as follows:

Proposition 1.4.1. (i) The Levine form Apwy Is a positive Green Jorm for BP(W)
of log type along B(W).

(ii) If u denotes the Fubini-Study (1, 1) form on P(V) defined by the her-
mitian structure on V > the Jollowing equation of currents holds:

4 p
dd Ay + Opy = 1 -

(i) When P(V) is equipped with the Kdhler structure defined by u, the
harmonic projection of AP(W) is given by

p N-p 1 -1
(1.4.1) Apwy) =2 prarard
n=1 m=0
In other words
(1.4.2) / Agy ™ 2! iNZp
- P(W) n=1 m=0 m +n

Assertions (i) and (ii) have been proved in 1.2.3, Example (v), except the pos-
itivity, which follows from the expression (1.2.13) and Proposition 1.1.4, (iii).
For a proof of (iii), see [G-S3], Propositions 5.1 and 5.4. Assertions (i) and (ii)
go back to Levine ([Lev]), while formula (1.4.1) was first shown by Stoll [St2].
It may also be written as follows. Let

h—‘.—n

(1.4.3)

[T}

ifp>1,

N|»-

AL p+1) & 1
SEPDPT R S
=1 m=1 m=1

and g, = 0 if p < 0. Then a simple computation using (1.4.1) shows that

(1.4.4) H(IA]) = 2(ay —0,_, —oy_)0" .

1.4.2. Suppose now, to make notation simpler, that V" is ch+! equipped with
the standard metric || || such that

N

2 2

”(Zo’ SRR ZN)” :Z |Zi|
i=0

Let s be a regular section of the line bundle #(d) on i (C) = P(V), ie,
a nonzero homogeneous polynomial P(z,, ... , z)). The standard metric on

c™*! defines a metric on & (=1) (asin 1.2.3, Example (v)), hence on its tensor
powers. When @(d) is equipped with this metric, the section s has norm

2 Le., p is the first Chern form of &) (1) equipped with the metric defined by the scalar product
on V,cf. 1.2.3, Example (v).
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N —d/2
ls(x)]| = <Z|zi|2> |P(zg, ... » zy)|

i=0
at the point x € PN(C) of homogeneous coordinates (z,,... , z,). Let
0 N

Isllo = sup {ls(x)]|
xeP¥(C)

and denote by g the Fubini-Study (1, 1) form on ]P’N((C) attached to the

standard scalar product on CV*!.

Proposition 1.4.2. For any nonzero regular section s of @(d) over ]P’N(C) , we
have:

d 1
1.4.5 log||s 5/ log|}s ,uN+— —.
(1.4.5) Bl < J, o, 108 ls] 2; —

(Compare with [Fa2}, Lemma 2.9; see also [P1], [P2], and [Le2] for related
results involving the Mahler measure of polynomials.)

Proof. Let D = div (s) be the divisorof s, P € pY (C) apoint outside D, and
A, the Levine form of P in ]PN((C) . Consider the Green current

2
gp = —log|is||
for D. We have

wy=dd’g,+3d,=c, (@) =du.
From the relation

& *Np=Ap* g,

(cf. Theorem 1.3.2, (i)) integrated on IP’N(C) , or more directly from Stokes
formula, we get:

N
gD(P)+d/ UA, = AP§D+/ Hgp.
PY(C) BV (C) PY(C)

Using (1.4.2) with p = N, the positivity of A, , and (1.1.3), this implies:
2 N 1 2 N
—logls|"(P) +4d > Zz—/?” log|s|*4”. O
m=1 ©

1.4.3. Remarks. (i) Let S™™*! be the unit sphere in C¥*', defined by

N 2
leil =1,
i=0
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and let dv be the unique U(N + 1)-invariant probability measure on s

The two sides of (1.4.5) may be expressed more concretely in terms of P,

namely:

(1.4.6) lIsll, = sup [P(z)]
26S2N+1

and

1.4.7 / log ||s N:/ log |P|dv.

(14.7) g el = [ toglP

(i1) As any hermitian vector space V of dimension N + 1 is isomorphic
to cV*! equipped with the standard metric, Proposition 1.4.2 immediately
extends to the situation where PN(C) is replaced by P(V), etc.

More generally, let ¥V, ..., V, be hermitian vector spaces of dimensions
N +1,..., N and let

> k410
X =P(V)) x--- xP(V)).

The line bundles #(d,, ... ,d,) on X, d, € Z, are canonically endowed with
hermitian metrics (deduced by tensor products and pull back from the metrics
on the line bundles &, (—1) defined by their injection in the trivial bundle

with fiber V; on P(V)) ): and there exists a unique probability measure dv on
X invariant under the action of U(V}) x --- x U(V}). Define, for any regular

section s of &(d,,--- ,d,),

lIsllo, =sup [lsCo)ll,
xeX

(1.4.8) Isly = exo ( [ tog (o)l du))
and, for any positive real number p,

1/p
(1.4.9) ‘ lIsll, = (/X lls()1” dU(X)) .

We know from standard facts on probability spaces that

(1.4.10) Islloo 2 flsl, 2 isllp = lim s,

(beware that in general || ||, is not a norm if p < 1). By induction on k, we
get from Proposition 1.4.2:

Corollary 1.4.3. Forany (d,,... ,d,) € N* and any regular section s of

ad,, ..., d,), the following inequality holds:

N, d

lIsll,, < exp (Z 2—') l15llo-

i=1 m=1
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(ii1) The inequality (1.4.5) is optimal: it becomes an equality when P is the

d-th power of a linear form. Indeed, if P = Xg , then the sup norm (1.4.6) is
1, while the integral (1.4.7) is 4 times the integral

/SZN+l log | X,|dv,,

1

N
which is easily shown to be -1 3> L.

m=1
(iv) Let us go back to the notation of 1.4.1. From the proof of Proposition
1.4.2 and the preceding remark, we obtain the following extremal property of
Levine forms in the case p = | : the infimum of the integrals

N-p+1
[, o
PY(C)

where g runs over the positive Green forms for P(W) in P(}) of log type
along P(W) such that

dd g + Sy, = 17,

is 2(gy —0,_; —0y_,) and is attained when g = AP(W) . The general case of
this assertlon will be proved in 5.1, Remarks, (iii).

1.5. The continuity of some fiber integrals. In this section, we establish the con-
tinuity of some integrals associated to families of cycles, which will be used to
derive the “basic inequality” in 5.1. The proof will provide another application
of the formalism of Green forms of log type.

1.5.1. Let M be a smooth projective complex variety of dimension 4, and let
T be a smooth quasi-projective curve. Let p : M x T — T be the projection
onto the second factor, and for any (closed) point ¢ in T, let

it TM->MxT

— (X, t).
If Z € Z%(M x T) is a cycle which meets properly every fiber M x {t} of p,
then, for any ¢ € T, the cycle i;Z is well defined (in Z%(M)) and will be
denoted Z,. Moreover, if g is a Green form for Z of log type along |Z],
then i:g is a well-defined Green form of log type for Z,, which we shall denote

g, - Similarly, if « is a continuous differential form on M x T, the differential
form 7o on M will be denoted «, .

Proposition 1.5.1. Let Z, and Z, be two cycles on M x T, of respective
codimensions p, and p,, p, > 0. Let g be a Green form for Z, of log type

along |Z,| and let o € Ak’k(M x T) be a closed form, k =d + 1 —~p, —
Suppose that Z, and Z, meet properly and that, forany te T, Z,, Z,, and
1Z,|N|Z,| meet M x {t} properly, and consider the current a.g. 52 on M x T

and the currents a;-gt-522 on M (these are well defined accora’mg to 1.1.2,
since Z, and Z, meet properly, as well as |Z,|, and |Z,|,). Then the integral
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¢(t) = /M at.gtﬁzm

depends continuously on t € T, and the distribution {¢] on T coincides with
the direct image current p*(a.g.ézz) .

A related result was proved by Stoll [St1], in the case p, = 1. Applied to
a=1 and Z, =0, Proposition 1.5.1 becomes the following classical result of
Federer, Stoll, and King (see [K], 3.3 and 4.1, for a more general statement and
references to earlier authors):

Corollary 1.5.2. Let Z € Z'(M x T) be a cycle which meets properly the fibers
of p. Forany we A° "M x T), the integral

o(t) = /M ©,.8,

depends continuously on t € T . Moreover, we have the equality of currents

[¢l=Dp,(w.d,).
The end of this section is devoted to the proof of Proposition 1.5.1.

1.5.2. Let us begin by proving Proposition 1.5.1 when Z, = M x T'. Then it
amounts to proving that the integral ¢(f) = [,, o,.g, depends continuously on
t € T. Indeed, in that case the equality of p, (a.g) with the distribution [¢]
follows from the definition of the direct image of a current and from Fubini’s
theorem. To simplify notations, we shall write Z instead of Z, .

Also observe that it is enough to prove the continuity of ¢ for some Green
form g for Z of log type along |Z|. Indeed, if g’ is another such Green

form, there exists u € A2~ "P"' (M x T) such that

¢ —g-ucdd PN M x T)+89" T M x T)
([G-S2], Theorem 1.2.2, (i)). Then according to Proposition 1.3.1, (iii) for any
t € T we have:
g —g —u €d" P M)+ 39N TR (M.

Since « is a 8- and d-closed form this implies, by Stokes formula,

!
/ at.gt=/ at.gt+/ o U,
M M M

and the last integral defines a continuous (indeed C®) function of teT.
Let T be the smooth projective compactification of T, and Z the closure
of Z in M x T. We shall prove the continuity of [, a,.g when g is (the

restriction to M x T of) a Green form for Z in M x T, of log type along |Z]| .
We shall use the following notation: let

p:MxT—->T and g MxT > M
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be the two projections, let
w=dd'g+3d, (e A" (M xT)),

and choose h € Z%(T x T) a Green current for the diagonal A in TxT.
Such a Green current is indeed a Green form of log type along the diagonal,;
namely, if z is a local holomorphic coordinate, we can write locally

-2
(1.5.1) h(t,, t,) =log|z(t)) — z(t,))| " + o(1,, 1,),
where ¢ is smooth. For any ¢ € T the function
h,=h(t,.)
is a Green form for the point ¢ in 7, and we let

p,=ddh +6,e€4"\(T).
For any ¢ € T we have, by definition of g, and g.d,,, 0"

(15.2) / at'gt = / _q*at'g'aMX{t}'
M MxT
On the other hand:

(1.5.3) 804y =8P Oy =8xP h,—wp’h
and, according to Theorem 1.3.2, (i):
(1.5.4) g *p*ht = p*ht *g = p*ht.(sz +p*,ut.g.

From (1.5.2), (1.5.3), (1.5.4), and the fact that o, is 8- and J-closed, we get:

t

(1.5.5) / at.gt=/ _q*a,.p*ht.62+/ _q*at.p*ut.g—/ _q*at.w.p*ht.
M MxT MxT MxT

The last two integrals on the right-hand side of (1.5.5) are easily seen to be
C functions of ¢ € T. To prove the continuity of the first one, we may clearly
suppose that Z is irreducible. Let then v : Z — Z ¢ M x T be a resolution
of Z . According to (1.1.2), we get

(1.5.6) / qap'hs, .—./~(qou)*a,.(pou)*h,.
MxT zZ

In terms of local holomorphic coordinates x,,... , x, on Z and z on T,
the differential form under the sign f> may be written as

a(xy, ..., Xy, z(1))

N
x [log|f(x1, s X)) = 2O+ (s e s Xy, z(t))]dei ANdx,,
i=1
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for some C™ functions ¢ and p and some nonconstant holomorphic func-
tion f (use (1.5.1)). According to the Weierstrass preparation theorem, after

a possible linear change in the local coordinates (x,, ..., xy), we may write,
for x,,... , xy and z in some neighborhood of 0:
Sy, oo, xy)—z2
i & d—j
= | x; +ij(x2, cee s Xy Z)X / q(x;, ..., Xy, Z),
Jj=1
where d € N, and b,,... ,b, and g are holomorphic functions such that
b(0,...,0)=---=by0,...,0)=0 and ¢(0, ... , 0) #0. Using partitions

of unity, this shows that the continuity of (1.5.6) is a consequence of the second
assertion of the following

Lemma 153. Let Uc C, Vc "' and W c C be open subsets. Let
by, ..., b; be holomorphic functions on V x W and p a compactly supported
continuous functionon U xV x W .

(i) The integral

d .
(1.5.7) / p(x,, ..., Xy, z)log x;i + ij(xz, B z)xf—j dx, Ndx,
U 3
j=1
defines a continuous function ¥ of (x,,... , Xy, z) €V xW.
(ii) The integral
(1.5.8)
PR il Ty
/ p(Xy, ..., Xy, z)log|x; +ij(x2, s Xy, 2)X) H dx; NdXx,
UxV j=1 i=1
defines a continuous function ¢ of ze W.
Proof of Lemma 1.5.3. (i) If 4,, ... , A4, denote the roots of the polynomial
i < d—j
X +ij(x2, v Xy, D)X
Jj=1

the integral (1.5.7) may be written

dx, Ndx,.

d
[I0x, -2,
Jj=1

/Up(xl, cee > Xy, Z) log

This is clearly equal to

d
Z/p(u+/lj,x2, cee s Xps z)log|u|du A du.
j=1"¢
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This expression depends continuouslyon (4,, ... , 4;, X,, ... , Xy, z). There-
fore the continuity of (1.5.7) as a function of (x,, ..., x,, z) follows from
the continuity of the roots of a polynomial.

(i) By Fubini’s theorem, we have

N
(1.5.9) ¢(z)=/Vv,u(x2,... ,xN,z)dej/\d)‘cj.
j=2

The function p is compactly supported, and so is ¥ . Therefore the continuity
of ¢ follows from (1.5.9) and the continuity of . O

1.5.3. Let us finally prove Proposition 1.5.1 in complete generality. Let g, be
a Green form of log type for Z,. Then g x g, is a Green current for the
intersection cycle I = Z,.Z,, and there is a Green form of log type 4 such
that

h=gxg,.
Let w:=dd‘g+ (SZ1 . It is a smooth closed form of type (p,, p,), and we have

(1.5.10) g.522=g*g2—a)g25h—wg2.

This implies

(1.5.11) p*(a.g.ézz) =p,(a.h)—p (a.0.g,);

indeed, as o is O- and d-closed, (1.5.10) implies that the two sides of this
equality differ by a current of the form p du+ p 0v; since p, commutes with
0 and 8, they must be equal in Z/(T), hence in Z(T), since they are currents
of degree zero. On the other hand, according to Proposition 1.3.1, (ii), Theorem
1.3.2, (iii) and 1.3, Remark, we know that, forany t € T':

gt.JZZ’ =h - ©,.8;

Since a, is 9- and d-closed, it follows that

t

(1.5.12) /M o885 = /M a.h — /M 0.8 .

Taken together, (1.5.11) and (1.5.12) show that to prove Proposition 1.5.1,
it is enough to prove it with (Z,, Z,, «, g) replacedby (I, M x T, a, h) or
by (Z,, M xT, aw, g,). As we already established Proposition 1.5.1 when
Z, = M x T, this completes the proof. O
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2. PRELIMINARIES: ARITHMETIC INTERSECTION THEORY
2.1. Arithmetic Chow groups and Chern classes.

2.1.1. Arithmetic Chow groups. Let K be a number field of degree [K : Q}],
O, its ring of integers, and S = Spec(&) the associated scheme. For any
imbedding ¢ : K — C and any K-scheme or S-scheme X , we shall denote by
X, the C-scheme deduced from X by the base change ¢ : Spec(C) — Spec(K)
(€ S). Similarly, if f: X — Y is a morphism of K-schemes we shall denote
by f,: X, — Y, the morphism of C-schemes it induces by base change. These
notations will be used throughout this paper.

An arithmetic variety is, by definition, a scheme X which is flat and quasi-
projective over S and whose generic fiber X, = X x¢ Spec(K) is regular. A
projective arithmetic variety is an arithmetic variety which is projective over
S. Observe that any (projective) arithmetic variety over S may be seen as a
(projective) arithmetic variety over Spec(Z). A morphism between two arith-
metic varieties X and Y will be any morphism of schemes from X to Y, not
necessarily an S-morphism.

For any arithmetic variety X and any integer p > 0 we let Zp(X ) (resp.
Z?(X)) be the group of cycles of dimension p (resp. codimension p) over
X, ie. the free abelian group on the set of points of dimension p (resp.
codimension p) of X. For any such cycle Z we denote by |[Z| C X its
support.

The set X(C) of complex points of the scheme X may be identified with the

disjoint union J] X _(C). Let F_ : X(C) — X(C) be the antiholomorphic
o:K—-C
involution coming from complex conjugation of the coordinates of complex

points in X . We denote by 47" (Xg) (resp. D’”(Xyg)) the set of real forms a €
A"P(X(C)) (resp. real currents a € D"”(X(C))) such that F(a) = (-1)" a.
The image of 477(X,) (resp. D™ (Xp))in A’(X(C)) (resp. D (Xg)) will
be denoted A7”(X,) (resp. D™ (Xyp)).

Any cycle Z in Z”(X) defines a current 6, € D’”(X;) by integration on
its set of complex points: if Z =3n Z , 6, = Enaézu(cy A Green current

for Z is any current g € Dp_l’”_l(XR) such that dd‘g + 6, is smooth (i.e.,
a Green current for Z(C), in.the sense of 1.1.1, which lies in Qp_l’p_l(XR) ).

Let X be a regular arithmetic variety. We let Al (X) be the group of pairs
(Z,g) where Z € Z”(X) and g is a Green current for Z , with addition
defined componentwise. Let R’ (X) ¢ z° (X) be the subgroup generated by
pairs of the form (0, du + dv) or (div(f), —log(f|2), where f € k(Y)" isa
nontrivial rational function on an integral subscheme Y C X of codimension
p—1,and —log|f ]2 is the current on X (C) obtained by restricting forms to

the smooth part of Y(C) and integrating against the L' function —log \f |2.
The arithmetic Chow group of codimension p of X is

CH (x) = Z°(x)/ R (X).
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We refer the reader to [G-S2] for more details on this definition, as well as for the

properties of this group, some of which we shall now recall (see also [Gi], [B2],

and [So-A-B-K] for expository presentations of arithmetic intersection theory).
There exist group morphisms

2:CH (X) - CH'(X), @:CH (X)— A"(Xg),
—1,p—1 o
a: AN x,) - CH (X)
defined as follows: the map z sends the class of (Z, g) to the class of Z in

the usual (algebraic) Chow group of X ; the map w sends (Z, g) to ddcg+6z
(which is smooth by the definition of Green currents); and a sends the class
i of ne A PN (Xy) c DP71P7(Xg) to the class of (0, n). Notice that
woa=dd°".

The following statement is a consequence of Hodge Theory (cf. [G-S2], 1.2.3
and 3.3.5, p.130):

Lemma 2.1.1. Let X be a regular arithmetic variety such that X is pro-
Jective. Assume X(C) is endowed with an F_-invariant Kdhler structure. If

xeCH (X) is such that z(x) = 0 and w(x) = 0, there exists a harmonic
form n in A”*I’p_l(XR) such that x = a(#).

Any morphism f : X — Y of regular arithmetic varieties induces a group
morphism

CH (Y) - CH (X).
When X and Y are equidimensional, f is proper, and its restriction to X is

—~ - p—6
smooth, there exists also a push-forward morphism f, : CH (X)—-C i (Y),
where 6 = dim(X) —dim(Y). The push-forward f, is defined by the following
formula:

LUZ, 1=1£,Z, fc.8)]
and the pull-back f* is defined “formally” by

Uz, 91=UZ, fg ),
when f meets Z properly in the generic fiber and g is a Green form of log
type along |Z|(C).
Furthermore, there is a cup-product

@.1.1) CH' (X)® CH'(X) — T (X)q,

“formally” defined by the formula:

[(Zl s gl)] [(Zz s gz)] = [(Zl-Zz’ & * gz)]s

when Z, and Z, meet properly in the generic fiber, and g, and g, are Green
forms of log type along |Z,|(C) and |Z,|(C) (see [G-S2], 4.1-4.2, and 2.2 below
for more details).
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When X is smooth over S, the cup-product lies in CH +q(X ) itself
(IG-S2], 4.5). Both z and @ are ring morphisms. Given f as above, one
has f*(xy) = f*(x)f"(p), the construction of f, and f~ are functorial, and,
if f is proper on X and is smooth on its generic fiber, f.(xf () = f.(x)y
(projection formula). Note also the following useful formula:

(2.1.2) a(ny = a(n w(y)).

2.1.2. Arithmetic Chern classes. An hermitian vector bundle on the arithmetic
variety X is a pair E = (E, h), where E is a locally free coherent &, -module
and h isa C* hermitian scalar product on the holomorphic vector bundle E.
on X(C); it is also assumed that /4 is invariant under F_ . If X is regular,
for any p > 0, one can define a Chern class

¢,(E) e CH' (X)

(see [G-S3], §4). By definition, ?0(f) =1 in E?IO(X) = Z (when X is
irreducible) and ¢,(E) = ¢ (detE), where detE is the maximal exterior
power of E. If L is an hermitian line bundle, ¢,(L) is the class of the pair
(div(s), —log || s ”2) for any rational section s of L over X of norm || s || on
X(C) (so that —log || s ||2 is a distribution on X(C)). Forany E and p >0,
the form

¢,() = 0(¢,(E)) € 47 (Xy)

is the usual p-th Chern form of the hermitian vector bundle FC over X(C).
As for usual Chern classes, if r denotes the rank of E, Ep (Ey=0if p>r.
Given an exact sequence

&:0-E SE—E'>0
of vector bundles on X and any choice A, h, h” of metrics on E', E, E”
respectively, the following formula holds in CH (X Jo:

(2.1.3) ¢ (E)= Y G(E").¢(E") - a(c,(&)),
r+s=p
where ¢,(¥) € AP~1P7Y(X,) is the Bott-Chern secondary characteristic class

attached to (£, &', h, h") [B-C], [G-S3]. It is convenient to introduce the total
Chern class

¢(E)=Y¢ (E)yeCH (X)
p20
and the total Bott-Chern secondary class
&)=Y ¢ (E)e A X).

p>0
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Then (2.1.3) may be written as
(2.1.4) ¢(E)=¢(E]).¢(E") -a@®)).

In particular, if E'® E" denotes the direct sum of E' and E” endowed with
the orthogonal sum of their metrics,

(2.1.5) SE ©E")=¢(E).¢E") in CH (X)q,

where 51\1*(X) = e]>90 (j’?IP(X) . When X is smooth over S, (2.1.4) and (2.1.5)
>
hold in CH (X). See [G-S3] for more details.

These constructions extend to an arbitrary arithmetic variety X (so there
might exist singularities on closed fibers) [G-S6]. One then defines arithmetic
Chow homology groups CH p(X }, generated by pairs (Z, g) where Z € Zp(X )
and g is a Green current for Z . These are covariant for proper maps which
are smooth on the generic fiber, and contravariant for flat maps with constant
relative dimension. Given any map f: X — Y, where X and Y are as above
and Y is regular, there exists a cap-product

(2.1.6) CH' (Y)® CH,(X) % CH,_,(X),
which generalizes the pairing (2.1.1). An hermitian vector bundle £ on X
defines “operational” Chern classes, i.e., morphisms
(2.1.7) ¢,(E)n.: CH,(X) » CH,_ (X),
for all p > 0 which is compatible with the cap-product (2.1.6): if F is an her-
mitian vector bundle over Y such that E ~ f"F, then for any x € CH (X),
we have

xN¢, (E) =X C, (F).
We refer to [G-S6], §2.3, for these notions and their properties.
2.1.3. The degree maps on a{*(Spec(ﬁK)). In the case of

X = § = Spec(&),

the group C/'?Ip (X) vanishes when p > 1. We shall denote by

deg, : CH (S) —» Z
and .
deg: CH (S)— R
the following morphisms. The map deg, (the algebraic degree map) is just the
projection
CH'(S) - CH(S) > CHY(S) =2,
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while (Te\g (the arithmetic degree map) is the composition of the projection
CH (S) = CH'(S) of the push-forward morphism

1 1
CH (S)— CH (Spec(Z))
attached to the unique morphism S — Spec(Z), and of the isomorphism

1 -
CH (Spec(Z)) = R,
the inverse of which maps the class of (0, 24) to the real number A € R.
An element of Z 1(S) isacouple (> n o P> A, where p runs over the
o

prime ideals in &, , the n, are integers, almost all zero, and 4 is an F_-

invariant function from S(C) to R, i.e., amap 4 : 0 — A(g) on the set of
[K : Q] imbeddings ¢ : K — C such that 1(7) = A(g). One easily sees that

(2.1.8) E\egKanp,z)l:an.Nm% > Ao,
© ©

c:K—-C

where Ngp denotes the norm of p.
It follows from [G-S2], 3.4.1 and 3.4.3, that

0
deg, :CH (S)— Z
is an isomorphism and that the map
deg: CH (S) - R

is onto, with kernel a compact group {namely an extension of the ideal class

group of K by the compact torus, quotient of R"*"2™! by the image of Dirich-
let’s regulator map).

e 0

The multiplicative structure of CH (S) is just given by its (Z = CH (S))-
Py |

module structure (the product of two elements in CH (S) vanishes). It follows

that

(2.1.9) degy (xy) = degy (x) degy(»),

and

(2.1.10) deg(xy) = deg(x) degy(y) + degy (x) deg(y).

An hermitian vector bundle E on S is the same as the data consisting of a
finitely generated projective &-module E, and of hermitian scalar products on
the [K : Q] complex vector spaces E_ associated to the imbeddings ¢ : K — C,
which are invariant under the involution F_ . The real vector space E®, R is
then naturally endowed with a euclidean scalar product, namely the restriction
of the hermitian scalar product on
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(2.1.11) E®,C~ (P E,
o:K—Q

defined as the direct sum of the given scalar products on the E_’s.

The arithmetic degree of the hermitian vector bundle E on S is defined as
the real number

(2.1.12) deg (E) = deg (¢, (E)).

If V' is the covolume of the lattice E in the euclidean vector space E ®, R
and A the discriminant of the number field K, we have

(2.1.13) deg (E) =—logV+%rk E.log|Ag].
Note also that

(2.1.14) deg(E) = deg(det E)

and, when L is an hermitian line bundle over S,

(2.1.15) deg(L) = log #(L/F,s) Zlog Isl,

where # stands for the cardinality of a finite set, s is any nonzero element in L,
o : K — C runs over the [K : Q] imbeddings of K in C,and || s ||, is the norm
of s in L, . Formula (2.1.15) is a consequence of (2.1.8) and the definitions
of ¢, (L); when E is trivial, (2.1.13) follows after a short computation from
(2.1.14), (2.1.15) applied to a trivializing section of det E, and the definition
of A ; one reduces to this case by considering E® , where £ is the order of
the ideal class group of K.
For more details on these notions, we refer to [Sz], [La], and [G-S7].

2.2. The intersection product. Before going on, we shall describe more precisely
the intersection pairing (2.1.1) on a regular arithmetic variety X (see [G-S2],

4.2.3).

First recall that if 4 and B are Zariski closed subsets in X, there exists a
pairing
(2.2.1) CH(X) ® CHp(X) - CH L(X)qg

on Chow groups with supports. This product is associative and compatible with
restriction to open subsets in X and with enlargement of supports. It can be
defined by means of the isomorphism between CHf; (X )Q and the weight p

part of the K-theory with supports KA (X )Q [So3], [G-S1]. When X is smooth

over S, this pairing takes values in C H/’;:%(X ) and can be defined as in Fulton
[Fu2] (the results in that book extend to that case, see [Fu2], 20.2).

Assume now that ¥ € Z?(X) and Z € Z9%(X ) are algebraic cycles on X,
and consider their fundamental classes [Y] € CH, Yl(X ) and [Z]e C lZl( ).

We may then look at their product
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[YNZ] € CHY /(X

1YIniZz|

If U C X is an open subset where Y and Z meet properly, the restriction of
{(Y[Z] to

(2.2.2) CHY A 200D =Z7 (YN 1ZIn V),

is the usual intersection cycle ) m W, , where W_ are the irreducible compo-

nents of |Y|N|Z|NU and maaare the Serre intersection multiplicities [G-S1].
When p = 1, the image of [Y][Z] in CHH"(X ) asrees with the class
considered in [Fu2], 2.3. When Z is contained in |Y| this follows from the
fact that Pic(X)q is the weight 1 part of K,(X),, . In particular, when Y isa
principal Cartier divisor, [Y][Z] maps to zero in CHlpz"qu(X )o -
We shall denote by Rf7(X )g the space of Q-cycles of the form 3 ¢, div(f}),
I

where ¢; € Q and f; € k(Yi)* is a nontrivial rational function on an integral

subscheme Y, contained in some closed fiber of 7 : X — S, of codimension

p+g—1in X . Observe that, for any cycle R € Rf:?(X)g, , the class of (R, 0)
in CH""*(X) vanishes.

Now let a € C/'ﬁp(X) and B € C/”I\IQ(X). By the moving lemma on X,
we may represent « and f by pairs (Y, g,) € Z°(X) and (Z, g,) € Z%(X)
respectively, where Y and Z meet properly on X, .

Let Y.Z be any representative in Z° (Y| N |Z|)q of the product [Y].[Z]
in C H|p;|2| z1 (X). As Y and Z meet properly in X, , it is a Q-cycle well
defined up to the addition of a Q-cycle in Rf;*(X)g .

Let us write g, = n+0u+8v, where 5 is a Green form for Y, in Z(Xg)
of log type along |Y|(C). We then define off € CH +q(X )Q to be the class of
(Y.Z,n+xg,).

One has to show that this definition does not depend on choices. That it is

so when Y and Z are fixed follows easily from the definition of CH +q (X),
from Proposition 1.3.1 and 1.3, Remark. To prove in general that it does
not depend on the choices of representatives (Y, g,) and (Z, g,), we can
use the commutativity of the product in the Chow groups with supports, the
commutativity of the *-product, the “moving lemma for K, -chains” ([G-S2],
Lemma 4.2.6), and we are reduced to the following assertion (see [G-S2], top
of page 144): let W C X be an integral subscheme of codimension p — 1 in
X, f € k(W)" a nonzero rational function on W, Y = div(f) € ZP(X) its
divisor, and g, = —log{f |2 the canonical Green current for Y ; assume that
Z € Z%(X) meets Y properly on X, , and let g, be a Green current for Z;

then the class of (Y.Z, g, * g,) in cH +q(X ) vanishes.

To prove this, let us represent the element [W][Z] € CHlp;lqn_lél(X )o by a
Q-cycle 3 .., n; S;+ T on |W|N|Z|, where the S,’s are irreducible and meet
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X, while T is supported on closed fibers. Since Y and Z meet properly on
Xy , the function f is regular at the generic point of S;, i € I. By [G-S2]
Lemma 4.2.5, there exist ¥ and v in & (X(C)) such that

(2.2.3) log| /" + g, =log| /" 8, = Y n,log|fis " + Ou + Bv.
iel

Let us choose a rational function f on X which is regular at the generic point

of W and restricts to / on W . Let ¥ = div( f }. By the associativity of
the intersection products for Chow groups with supports, we get the following
equality in C Hﬁf’lfﬂ 2/(X)g:

(2.2.4)  [Y)[Z]=((YUWDIZ] = [YIAWUZ]) = D_ n; [Y][S]+ [YNT).
iel

Since f is regular at the generic point of §;, we have

(2.2.5) [Y][S,] = [div( flsl_)] .

On the other hand, since Y is principal and T is supported by closed fibers, the
image of [Y][T] in CH"’TT’(X ) Vanishes and any representative of [Y][T] in
Z"" (JY|n|Z|), belongs to REI(X),. As Y and Z meet properly on X,
(2.2.4) and (2.2. 5) therefore imply

(2.2.6) Y.Z =) n; div( fs) ~ mod R (X)g.
iel

Finally, from (2.2.3), (2.2.6), we get the following equalities in cH +q(X )Q

[(Y-Z > 8y * gz)]

B [(Z n, div fis -y loglf,sl_lz)

iel iel

+ [(0, 0u+53v)] = o.

2.3. The pairing CH (X) x Z,(X) — CH (Spec(®))q -

2.3.1. Definition and basic properties. Let X be a regular equidimensional
projective arithmetic variety, d its Krull dimension, p and g nonnegative

integers, Y € Z »(X),and x € 5}\1"()( ). We shall define an element (x|Y) in
=~ g—p+li

CH, (S)q:=CH (S)q-

When p is different from ¢ and g + 1, then we let (x]Y) =

When p = g, choose a representative (Z, g) of x such that Z meets
Y properly on X, ie., |Z|, N|Y]|, 1s empty, and g is smooth in some
open neighborhood of |Y|(C). The product [Z].[Y] in CH|dZ|r11Y| has a
representative in Z,(|Z| N |Y|)q, , supported on the closed fibers of x : X -8,
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and the product of currents gd, makes sense since their singular supports do
not meet. Furthermore gd, is closed for degree reasons. Therefore the pair

—~d
(Z.Y, gby) defines a class in CH (X)Q and we let

(23.1) (x|IV)==r[(Z.Y, gd,)] = [(n,(2.Y), = (gdy))] € 61\{1(5)@.

When p=qg+1 welet z(Y) € CHd_”(X) be the class of Y and z(x) €
CH?(X) be as in 2.1.1. Then we define

0
(2.3.2) (x|Y)=mn_(z(x)z(Y)) € CHO(S) =CH (S) =Z.
In other words, (x|Y) is the intersection number of the elements z(x), and

[Yg] in CH"(X,), which have complementary dimensions.
Another definition of (x|Y) is as follows. Let g, be a Green current for

e~ d—
Y and y e CH "(X) the class of (Y, gy). Then, if w(x) € 4% (Xy) is the
form attached to x (see 2.1.1):

(2.3.3) (x|Y) = 7,(xy ~ a(w(x)gy)) € CH (S)y

Finally, we may give a third definition of (x | Y). Assume that Y is irre-
ducible and let ¢ : Y- Y bea projective birational morphism such that )N’K is
smooth (which exists by resolution of singularities). Denote by 7 : Y - S and
w:Y — X the composite of ¢ with 7 and the inclusion Y — X respectively.
Consider the cap-product x N [)7] e CH e q(?)Q of x with the fundamental

class of ¥ in CH,(Y) = CH,(Y). Then

(2.3.4) (x|Y) =7, (x N [f’])

in CH,_(S)g=CH' """ (S)q (compare [Zh2]).

Proposition 2.3.1. (i) Definitions (2.3.1), (2.3.2), (2.3.3), and (2.3.4) agree and
do not depend on choices. They define a biadditive pairing

——~g—p+l

CH'(X)® Z,(X) » CH" """ (S)q.

(it) When Y = div(f), where [ is a nontrivial rational function on an
integral subscheme contained in a closed fiber of X, then (x|Y) = 0 for any
x e CH (X).

(iit) For any x € ﬁl‘(X), any n € EITI*(S), and any Y € Z (X), we have

(2.3.5) (x.°(M|Y) = (x|Y)n in @*(S)Q.

(iv) Let f: X — X' be an S-morphism of regular projective arithmetic
varieties, x' € ﬁ{q(X'), YeZ/(X), and f(Y) € Zp(X') its direct image by
f ([Ful] and [Fu2l, 1.4 and Example 20.1.3). Then we have:
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(2.3.6) ( f'(x’)|Y) - (x’| f;(Y)) in CH (8)q-

v) Let f: X —> X bea flat S-morphism of regular projective arithmetic
varieties, which has constant relative dimension Jd and whose restriction to Xy
is smooth. Given x € CH'(X), Y e Z,(X'), and f7(Y) € Z,,5(X) its inverse
image by f ([Ful] and [Fu2], 1.7 and 20.1), we have:

(2.3.7) (xr°®) = (£@NY) in CH'(S)g.

(vi) Assume Y € Z (X) is irreducible. Let L be an hermitian line bundle

. . ¢
on X and s any nonzero rational section of L over Y. Forany x € CH (X),
we have:

(2.3.8) (x &,(D)|Y) = (x|div(s)) — 7, a(w(x)log s | 5Y) in CH (S)q-

Proof. To compare (2.3.1), (2.3.2), (2.3.3), and (2.3.4) we may assume that ¥
is irreducible and that p = g (when p ¢ {gq, g+ 1}, the comparison is trivial;
when p = g + 1, it easily follows from classical intersection theory for varieties
over K ). By the projection formula for Chow groups with supports (cf. [G-
S2], end of 4.4.3), [Z][Y] coincides with ¢ _([Z]N [17]) in CHlYlle(X) =
CHy(|Y|N|Z])g- Furthermore we may find a Green form of log type n for
Z and some currents ¥ and v which are smooth in a neighborhood of Y (C)
such that g = #+ du + dv . It follows that

g0y = ndy, +8(udy) + 8(vdy) = w,[p" ()] + 8(udy) + d(vd,,).

Therefore the class of ([Z][Y], gd,) coincides with y, (xn[f’]). Applying &,
we conclude that (2.3.1) and (2.3.4) coincide. Furthermore xy is by definition
the class of ([Z][Y], n* g,) and

nxgy =Ny + 0(x)gy = g0y + W(x)gy — 8 (udy) — (vdy),

so that (2.3.3) and (2.3.1) are compatible. The rest of (i) is a consequence of
these facts.

The statement (ii) is clear since d, = 0 and the class of Z.Y is zero in
CHIPZ+|?1|Y1(X)Q, hence Z.Y belongs to Rp+"(X)

Assertior. (iii) follows from (2.3.3) together w1th the projection formula ([G-
S2], Theorem 4.4.3, 7)); indeed

(x.n'n|Y)=m, (x. TNy — a(w(x.n*n)gy))
=7, (x.n*n.y - a(w(x).gy)n*n) by (2.1.2)

=n, (x.y—a(w(x)gy)).n'n by the projection formula.

*
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To prove (iv), we may again only consider the case p = g. Moreover, we
may assume that Y is irreducible. By the Moving Lemma for cycles in varieties
over K, we may choose a representative (Z " g') of x', where Z' is a cycle
in Z?(X") such that f_1(|Z'|)K has codimension ¢ in X, and |Z'| does
not meet f(Y) in X;(. Moreover g’ may be chosen to be a Green form of
log type for Z'. Let Z be a representative in Z%( f_1(|Z'|)) of the cycle
class f*([Z']) € CH}’_',(IZ,I)(X). Then f*(x) is the class of (Z, f*(g')) in

CH'(X). As |Z[,N|Y|, and |Z'|,.N|f(Y)|, are empty, we can use definition
(2.3.1) and we get
(reny) ==y, r'@)é)
and )
(x |f*(Y)) = ”I* [(Zl-f*(Y) ; gl'af'(Y))] )

where 7’ is the structural morphism X' — S, and where Z.Y and Z'. f,(Y)

denote representatives in Z,(|Z|NY) and Z,(|Z Inf(Y)) of products in Chow
groups with support. The projection formula for rational Chow groups with
supports (see [G-S2], end of 4.4.3) shows that

(2.3.9) 1Z.Y)=Z' £,(Y) € Ryp(X)g
Moreover, as g’ is smooth on a neighborhood of Y (C), we have
ﬁ(ﬁ(gl)-ay) = g,-f. (6}') = gl~5f'(y)-
From this equality and from (2.3.9), it follows that
L@y, reEhe)) =@ 1. g6,

This implies (2.3.7), since n, = nif* .

To prove (v) choose a Green current g, for Y. Let y be the class of
(Y, gy) and = : X' — § the projection. Notice that w(f,(x)) = f.(w(x))
([G-S2], 3.6). From (2.3.3) we get

(LLONY) ==, [f.(x)y — a(f,(w(x))gy)] ,

and, by the projection formula
(AONY) = 7, [£xf' ) - af(@(x) S ()]
= (x1° (1))

since [(y) = (f"(Y), f"(gy)) by [G-S2], 3.6.1 and Theorem 4.4.3, 2).

To prove (vi) choose a rational section § of L over X whose restriction to
Y coincides with s, let g, be a Green current for Y, and y be the class of
(Y, gy). From (2.3.3) we get

(X Z’\1(-L_)|Y) =7, ((x 2:\1(z))y - a(w(x Z‘}(Z))gy)) .
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By the associativity of the intersection product, we have
~ = ~ . ~ 2
(xcL)y=x (cl(L)y)>= x [(le(S) , —log || 5 *gy)] )

By definition, —log || § ||2* gy isequalto —log | s ||25Y +¢ (L)gy , and since
o (x ¢,(L)) = w(x)c,(L) we conclude from (2.3.3) that

(x &DIY) = (x|div(s)) ~ 7, a (0(x)log [l s |* dy). O

Remarks. (i) If in definition (2.3.3) we use the pairing defined in [G-S2], 4.3.2,
instead of the more general product of [G-S2], 4.2.3, we get an element (x|Y)
in CH (S), i.e., we do not need to neglect torsion.

(i) Suppose more generally that X is a projective arithmetic variety
which we allow to be singular away from the generic fiber X, . Let Fl y e s Fn
be hermitian vector bundles over X . For any sequence g¢,,...,q, of
positive integers, and any cycle X € z, (X), we can define an element

(Eq‘(Fl)..fq (E,) | Y) in CHq_p“(S)Q, where ¢ = ¢, + -+ g,, by the
following variant of (2.3.3): for any Green current g, for Y, we let y =
(Y, gy)] € CH,(X) and

(6, B2, E) 1Y)
=n, (qu(fl) n ( N (Eq"(Fn) ny)) —-a (cql (E,)- "an(_n)gy)) .

One easily checks that it does not depend on g, , and that when p =g +1 it
coincides with the intersection number of S, (Eig)- <, (E,x) and of [Y], in
CH* (X x) -

Since X is quasi-projective over S, one may find vector bundles F,, ... , F,
over a projective arithmetic variety X' smooth over S, an S-morphism f :
X — X', and isomorphisms E, ~ r F, (see [Ful], §3-2). We can assume that
f is a closed imbedding by replacing X' by X' x s ]P’év , f by (f, i), where
it X o ]P’fqv is an imbedding, and F; by prr F,. Then the vector bundles F; may
be endowed with hermitian metrics which make the isomorphisms f~ F,~E,
isometric. By using variants of the arguments in the proof of Proposition 2.3.1
and in [G-S6], 2.3 and 2.4.2, one can prove the following formula:

(6, E)-2, E)Y) = (6, F)--8, F) I LD).
This is easily seen to imply that assertions (ii), (iii), (iv), and (vi) of Propo-
sition 2.3.1 still hold in this more general situation (more precisely, X and
X' are only supposed to be projective arithmetic varieties; x is replaced by
qu(El)---Eq"(Eﬁ)_, w(x) by qu_(E1)"'an(En)’ x' by qu(Ell)_'"Eq,,(E,ﬁ’ and
x' by ?ql (f*E’l) "'Eq,, (f‘E’n) ,where E,... ,E and E'|, ... , E', are

hermitian vector bundles on X and X’ respectively).
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It is also possible to prove a formula analogous to (2.3.4). This allows one

to make sense of (x| Y) € CH (S)g when x is a product of arithmetic Chern
classes of hermitian vector bundles over an arbitrary arithmetic variety X , and
when Y is any cycle on X such that |Y| maps properly to S.

2.3.2. Arakelov varieties and arithmetic fundamental classes. Suppose now that

X = (X, p) is an Arakelov variety, i.e., that X is a projective arithmetic variety
and that u € 4"°'(X,) is a Kihler form (cf. [G-S2], 5.1). Let #7"(X,) be
the space of forms in A””(Xg) which are harmonic with respect to x and
H:9""(Xg) — #Z""(Xg) the harmonic projection. Given a cycle Y € Z”(X)
we may choose a Green current g, such that dd’ gy +6y = H(6,) and
H(g,) = 0. These two conditions determine g, uniquely, up to the addition
of a current of the form du+dv ([G-S2], 5.1) and any such g, will be called
a p-normalized Green current for Y. We let

——~d-p
(2.3.10) [Yl,=(,g)eCH (X)
(see also [Fa2], where [Y] u is denoted Y, and [B2], 2.6). Theclass [Y], will be

called the arithmetic fundamental class of the cycle Y on the Arakelov variety

(X, u).
Notice that the normalization conditions on g, may be written as:

dd‘g, + 6, € 77 (Xy)
and

.8y =0
X(©)

for any w € Z d=p,d=p (Xg). Therefore g, and [Y]” depend only on the
space of harmonic forms associated to the Kahler structure defined by g. In
particular they are unchanged if u is replaced by Au, A € R: . Furthermore
[Y] L= 0 if Y is the divisor of a rational function on a subvariety contained

in a closed fiber of X over S. Finally, from definition (2.3.3) we get:

Lemma 2.3.2. Forany x € C/'?Iq(X ) such that w(x) is harmonic with respect
to u,
e gD

(2.3.11) (x|¥) ==, (x.[v],) in CH' " (8)e
2.3.3. External products. Let X, and X, be two arithmetic varieties which
are smooth over S, and X = X, x¢ X, their product. Given Y, € Zpl (X) and
Y, e sz(X ), their external product ¥ =Y, x Y, € Zp‘ + pz—l(X ) may be defined
as in [Fu2], 20.2. Namely, Y, x Y, is zero when both cycles are supported
in a closed fiber. If Y, say is integral and flat over S, then the morphism
|Y,| x¢ X, — X, is flat, and Y, x Y, is obtained as the direct image by the
inclusion |Y,| x¢ X, — X x¢ X, of the pull-back of Y, € sz(Xz) by this flat
morphism.
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Let f,: X — X, and f, : X — X, be the two projections. When x, €
ﬁ[q‘(Xl) and x, € ETI‘IZ(XZ) we let

e — ql +q2

X, XX, = f(x)f, (x,) € CH" (X).
Propesition 2.3.3. Under the above hypotheses

(2.3.12) (x, x X, | ¥, x Y,) = (x, | Y,)(x, | ¥;) in CH (S).

Proof. Since X, and X, are smooth over S, we need not tensor (f‘-fl*(S)
by Q (see 2.1.1). Let n, : X, - S, n, : X, = §, n: X — § be the
obvious projections. Both sides of (2.3.12) vanish unless (p,, p,) is equal to

(¢, +1,q,+1), (¢, +1,4q,),0r (¢,,9,+1).
In the first case we have

(x, xx, | Y, xY,) =7, (2(x; x x,)2(Y; x 1,)).
Notice that
z(x, X xy) = fi (2(x ) f; (2(x,))
and
2(Y, x Y,) = £ (z(Y) 15 (2(Yy)).

From the projection formula it follows that
(x, xx, | Y, x Yy) =7y, (2(x))2(Y))) 7y, (2(x,)2(Yy)) = (¢, | Y)(x, | Ty).

Assume now that (p,, p,) = (¢, + 1, g,) (the case (p,, p,) = (¢;, ¢, + 1)
follows by symmetry). Let

n=(x|Y,)=m,(z2(x,)z(Y,) € CH(S) = Z.

Choose a representative (Z,, g,) for x; such that Z, meets Y, properly on
X,k and g, = [n,], where 7, is a Green form of log type for Y,. Choose
similarly a representative (Z,, g,) for x,. The external product x, x x, is
then represented by (Z, x Z,, g, A 522 + w, A g,), where @, = dd’ g + 521
and A is the external product of currents.

Since, by hypothesis, Z,(C) and Y,(C) do not meet, the current g, A (SZZ

vanishes in a neighborhood of Y, x Y,|(C) . Therefore g = g, /\622 +w, Ag, isa
Green current for Z, x Z, which is smooth on Y, x Y,|(C). By (2.3.1) we know

that (x, x x,|Y, x Y,) is the class of (n*((Zl x Z,).(Y, x Y,)), n*(galeYz)) .
From the projection formula for Chow groups with supports we get the following
equality in Z,(S):

m, (Z, x Z,)(Y, x V) =7, (Z,.Y}) 7y, (Z,.1,) = nmy, (IZ,][T5)) -

On the other hand we have

. (g 5Y1XY2) =7, <(w1 A g2) aY,sz) = nnz*(gz 51/2) >
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because n = n, (w, 6),1) , since the cohomology class of w, (resp. 5,,1 ) is the
fundamental class of Z, (resp. Y, ). From this we conclude that

(x; xx, | Y, xY,)=n(x, | Y,)=(x|¥)x|Y,). O

Remark. Let X, X,, X ; , and X; be arithmetic varieties which are smooth
over S, let f, : X, —» X,, f, : X, » X, be S-morphisms, and let f, x
L X xg X, - X{ X X; be their product. Then for for any (x,, x,) in
CH (X]) x CH (X,) the identity

(2.3.13) (f] % fz)*(x1 X X,) = jf(xl) X fz*(xz)

holds in CH *(X  Xg X,). If moreover f; and f, are smooth over the generic
fibers and proper, for any (x,, x,) in CH (X;) x CH *(XZ) , the identity

(2314) (-f] x f‘Z)*(‘xl x x2) = -fl*('xl) X ~f2*(‘x2)

holds in CH *(X { X g X;) . This follows from the functoriality of the pull-back
and from the projection formula.

2.3.4. Degrees. Let X be a regular projective arithmetic variety, Y € Zp(X ),

and x € C/'T-Iq(X) . To the element (x| Y) in 57—1*(S)Q we can attach both an
integer and a real number. Namely, with the notations of 2.1.3, we define

deg, (x | Y) = degy (x| V) € 2
and . .
deg(x | Y)=deg((x|Y)) €R.

Let z(x), € CHY(Xy) and z(Y), € CHd_”(XK) be the images of x and
Y in the algebraic Chow groups of X, . Then

degy(x | Y) == (z(x).[Y])
= 7. (2(x)-[Y¢]) € CH (Spec(K)) = Z = CH'(S)

is the usual intersection number of the cycle classes on X, attached to x and
Y. If x isaclassin CH*(X) orin CH"(X,), we will still use the notation
deg, (x| Y) for this intersection number.

We can give “explicit” formulae for cTe\g(x | Y) as follows. Let (Z, g) be
a representative of x in Z%(X ) such that |Z|, N|Y|, =@ and g is smooth
near |Y|(C). If }_ m_W_is a cycle (with rational coefficients) supported in

| Z|N1Y| represen(;ing [Z][Y], and if k(W) is the residue field of the closed
point W _, we have from formulae (2.1.8) and (2.3.1):

(2.3.15)

(2.3.16) deg(x | Y) =Y m, log(# k(W) + % g0y
a X(C)
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In particular (Te\g(le) depends only on X as an arithmetic variety over
Spec(Z), and notonthemap n: X — §.

Assume moreover that Y and Z are irreducible (by bilinearity of (x]Y),
one easily reduces to this case). As Z and Y do not meet on X, , the coherent

sheaves Tor?" (@, , O,) are supported by closed fibers of X', hence have finite
cohomology groups. It follows from [G-S2], 4.3.8 iv)-v), (2.1.8), and (2.3.1)
that

(2.3.17)

deg(x | Y)= 3 (-1)" log # H' (X, Tor‘fX(ﬁZ,ﬁy)) + %/X(C) g0y

i,j>0
Properties of the pairing (x]|Y) imply properties of deg,(x|Y) and ae\g(x| Y).
For instance Proposition 2.3.3, (2.1.9), and (2.1.10) give

(2.3.18) degy(x, x x, | Y; x ;) = degg(x, | ¥;) degg(x, | Y,)
and
deg(x, x x, | Y, x Y,) = deg(x, | ;) degy(x, | Y,)

(2.3.19) i
+deg, (x, | Y)) deg(x, | Y,),

and Proposition 2.3.1, (iii) implies, for any x € E’TTD—I(X) , N E 6‘7—11(5) , and
ZeZ,/(X),

(2.3.20) deg(x. 7" ()| Z) = degy (x|Z). deg(n).

3. THE HEIGHT OF CYCLES DEFINED BY AN HERMITIAN LINE BUNDLE
3.1. Definition and examples.

3.1.1. The height hy. Let X be a regular projective arithmetic variety and
L = (L, k) an hermitian line bundle on X . For any cycle Z € Z,(X) we
define the height of Z with respect to L to be the real number

(3.1.1) hZ(Z)=EeTg(EI(Z)";z) €R,
where ¢,(L) € CH' (X) is the first Chern class of T (1.2.2) and deg is defined

as in 2.3.4 (this extends the definition in [B2], §§2.4-2.5). This is the arithmetic

counterpart of the degree
_ p—1 _ o]
(3.1.2) deg,, (2) = 7y, (CI(LK) [ZK]) = degy (cl(L) | z)
e CH(Spec(K)) ~ Z,

where 7, is the structural morphism X, — Spec(K), ¢,(Ly) € CH l(X x) 18
the first Chern class of the restriction of L to X, [Zx]€ CH,_ (Xy) is the
class of the restriction of Z to X, , and deg, is defined as in 2.3.4.
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Notice that these definitions extend to the case where " X is an arbitrary
arithmetic variety and |Z| is proper over S (use 2.3.1, Remark (ii); see also
[Zh2] and infra 3.2.1, Remark).

Finally, when Z is a cycle of dimension ¢ on X, we will denote by #;(Z)
and degLK(Z ) the height and the degree of its Zariski closure Z in X ; and
if M, is a line bundle over X, , we will denote by deg M, Z the intersection
number of ¢, (My)? and [Z] in CH™(X,).

3.1.2. Examples.
3.1.2.1. When X = S we have hz(S) = deg(L) (see 2.1.3). If X is any
projective arithmetic variety and P € X(K) is a rational point on X, and if

gp 1§ — X denotes the section of n attached to P, we have by (2.1.12) and
(2.3.6):

hi(P) = deg (¢,(L) | £5(S)) = deg e5(ID).

3.1.2.2. Consider a closed point of §, i.e., a nonzero prime ideal p in G .
Let F, = Oy /p be its residue field and let Np = #F_ be its norm. Let Z €
Z,(X) be acycle on X the support of which is contained in the closed subset

Xy =7n"'({p}) € X. Let [Z]; € CH/(X;) be the class of Z, and 7 :
14 |4 [ 14
Xp — Spec(]Fp) the projection. Then
P

(3.1.3) hi(Z) =mg (c,(LFﬁ)” n [Z]Fp) logNp € R,

where 7 (cl(LF ¥n (Z]g ) (e CHO(Spec(]Fp)) = Z) is the usual degree of

Z with respect to L, on Xy . To check this, notice that the composite map
14

F 3

CH,(Spec(F,)) — CHy(S) <% R

is just multiplication by log Np.
In particular, when Z =} n; P, € Z,(X), where n, € Z and P, are closed

i
points of X, the residue fields k(P,) are finite and

]
(3.1.4) hr(Z) = n;log (# k(P,)).
i
In fact hz(Z) equals by definition cTe\g(1|Z) , and (3.1.4) follows immediately
from (2.3.16).
3.1.2.3. Assume E is an hermitian vector bundle on §. Let
P(E) = Proj(Sym(E"))

be the projective space of £ and &(1) the canonical quotient line bundle on
P(E). We endow Z(1) with the quotient metric, which is such that the projec-
tion n*Eg — (1) induces an isometry between the orthogonal complement
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to its kernel and & (1), . For any cycle Z € Z,(P(E)) we may then consider
the height

(3.1.5) hp(Z) = b5 (Z).

When E = ?g“ is the trivial hermitian vector bundle of rank N+1 on §,
this height coincides with the height introduced by Faltings in [Fa2], as follows
from (2.3.11) with u =c, (cﬁ(l)) .

In particular, when Z is the cycle attached as above to a rational point P €
]P’N(K } , one recovers the classical height of P ([Si], Zweiter Teil, §2; [No]; [We2]
pp. 425-426; these authors use the ¢! or the £*°-norm instead of the ¢-norm
on CN*! ). Namely, if (x,,... ,xy) €K N+l are homogeneous coordinates of
P, we get

— 2
(3.1.6) h.(P) = Zp:log (02% |xi|p> + za:log /0§<:N|a(xi)| )

where g runs over all nonzero prime ideals of &, |a| p =N p)_”f'(a) , where

v, is the gp-adic valuation, and ¢ runs over all imbeddings of K in C.

Let F be a subbundle® of E , endowed with the induced hermitian metric. It
follows from (3.2.1) below that, for any cycle Z on P(F), the Faltings heights
of Z considered as a cycle in P(F) and as a cycle in P(E) coincide.

3.1.3.  Multiheights. More generally, a finite sequence L = (L,, ... , L,) of
hermitian line bundles on a projective arithmetic variety ¥ allows one to
define multiheights of the cycles on X. Namely, for any p € N and any

I=(i,..., Q)€ N* such that [I} := i, +---+ i, = p, we define the I-th
multiheight of Z € Z »(X) with respect to L to be the real number

; —
hi(Z) = deg (&,(L))" -+ &,(L)"* | Z) .
We can also define, for any Z € Z | (X), the I-th multidegree

degy, (Z) = degy (cl(Ll)i‘ ceee (L) | Z) .

The various properties of heights which are proved in the next sections have
generalizations involving multiheights and multidegrees, which we leave to the
reader (see also [Gu]).

3.1.4. Change of ground ring. Let K' be a number field containing K , and
S = Spec(&y+) . For any projective arithmetic variety X over S and any
hermitian line bundle L on X, using the base change $' — S we get an
arithmetic variety X' = X x s S over §', and, if f: X' — X is the projection

3I.e., F is a subsheaf of E such that E/F is locally free; any such F is determined by the
K-vector space Fy C Eg .
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onto the first factor, we may consider the hermitian line bundle L’ := f*L over
1

X

From formula (2.3.6) and 2.3.1, Remark (ii), it follows that for any Z' ¢
Z,(X'):
(3.1.7) hA(Z') = h(£,(2).

This reduces the computation of heights of cycles on X’ to the computation of
heights of cycles on X . As f is a finite and flat morphism of degree [K': K],
for any Z € Z (X), the pull-back f7(Z) € Z*(X') is well defined and the
following identity holds in Z _(X):

LI(Z)=1K":KIZ.
Therefore, we get from (3.1.7):

(3.1.8) hi(f(Z)) =K' : K] h(Z).

Identities (3.1.7) and (3.1.8) still hold when Z and Z' are cycleson X x and
Xy (= X @ K'). This allows one to define a normalized height hy . on
Z,(Xg) in the following way: for any cycle Z € Z (Xg), there exists a number
field K’ such that K C K' C Q and such that Z is defined over K, i.e., Z
is deduced through the scalar extension K’ — Q from a cycle Z' € Z (Xygr).
Then we let

1 JR—
h+ Z) = ——— h+(f.(Z")).
L,norm( ) [KI :Q] L(f;:( ))
By (3.1.7), this is also equal to [K': Q]_1 hi+Z '), and it easily follows from
(3.1.8) that this number does not depend on the choice of K’ .
Observe finally that deg,, and degLK satisfy the following compatibility
K

formulae:

(3.1.9) deg; f.(Z')=IK':Kldeg; (Z)
and

(3.1.10) deg;., f*(Z) = deg, (Z).

3.2. Properties of A . This section is devoted to the proof of various prop-
erties of heights of cycles which are classical in the case of cycles defined by
rational points ([No}; [We2]; [Sz}, 3.1).

3.2.1. Basic identities. Proposition 2.3.1 implies the following properties of
the height of cycles:

Proposition 3.2.1. Let L be a hermitian line bundle over a regular projective
arithmetic variety X .
(i) The height hi{(Z) is additive in Z . For any integer n € Z and Z €

Z,(X), one has
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deg; - (Z) = P! deg, (Z) and hp(Z) = n’ he(Z),

where L" is the n-th tensor power of L.

(ii) When Z is the divisor of a rational function on an integral variety con-
tained in a closed fiber of X, hy(Z) =0.

(iii) For any morphism f:X - X " of regular arithmetic projective varieties
and any cycle Z on X,

(3.2.1) hp)(Z) = e (£(2)).

(iv) Assume that Z € Z (X) is irreducible, and let s be a nonzero rational

section of a power L" of L over Z, n€Z, and | || the norm on L" deduced
from h by tensor power. Then

(3.22) hp(div(s)) = n hg(Z) + /x«:) log || s | ¢,(T)" 4.

Remark. By appealing to 2.3.1, Remark (ii), we may extend Proposition 3.2.1 to
the case where X is a not necessarily regular arithmetic projective variety. This
can also be done as follows, without any explicit reference to the operational
Chern classes (2.1.7).

Let L be an hermitian line bundle over a projective arithmetic variety X .
There exists an hermitian line bundle L’ over an arithmetic variety X' smooth
over S and an S-morphism f:X — X', which is a closed imbedding such

that L ~ f*L’ (cf. 2.3.1, Remark (ii)). So we can define the height A;(Z) of
acycle Z on X by

ho(Z) = hp(£.(2).

To make this definition meaningful, we have to show that hF( f.(Z)) does not

depend on the choice of X', r ,and f. Then it is easily seen that Proposition
3.2.1 still holds in the general case.
Let, for i=1,2, L' ; be an hermitian line bundle over a smooth projective

arithmetic variety X; and f;: X — X an S-morphism such that f fi ~T.

We must show that, for any Z € ZP(X ),

ho: (/1.(Z)) = b (/,,(Z)).
1 2
Let X' := X; xsXé, f:=_£f1,f2) X - X', pr; X{ xSX; — X; be the

projections, and M, =pr; L',.
Using (3.2.1), we get:
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hir (1ou(2)) = b (f1,(2)) = hyg (F(2)) =~ by (£.(2))
= deg (&,(3,)" | £,(2)) - deg (¢,(M,) | £.(2))
= Y deg(e,(81) &M, &,(M,0M))| £,(2)).
i+j=p—1
The isomorphisms of hermitian line bundles
fM=f ?1 :szgfzzf* M,

show that there exists a nonvanishing regular section of (M, ® Mlv )I 12D

of norm 1 on f(|Z|)(C). Therefore, by (2.3.8), for any x € 671”‘1(1),

— . v
deg (x (M, M))| f*(Z)) = 0. This proves the required equality.

3.2.2. Dependence on metrics and integral structures.

Proposition 3.2.2. Let L = (L, h) be an hermitian line bundle on a projective
arithmetic variety X , and let My be an ample line bundle on X .

(i) Assume that h' = e®h is another hermitian scalar product on L. Then,
for any cycle Z € ZP(X) :

1 i INV]
(323)  hy w(Z)=hy p)(Z)=5 > /X(C) pc (L, h) ¢ (L, h") o,.
i+j=p—1

In particular, when the smooth function ¢ is constant,
(3.2.4) hy () =hy y(Z) = % ¢ [K : Qldeg; (2).

Moreover, there exists C € R, depending only on L., h, K, and M, ,
such that, if Z is effective,

(3.2.5) by w(Z) = by (Z)] < Cdegy, Zy.

(ii) For any choice of a projective arithmetic variety X " and of an hermitian
line bundle L' on X' such that (X}< , L'K) is isomorphic to (X, L) (i.e., such
that there exists an isomorphism of schemes f : X, ~ Xy for which f"Ly =~
Ly), there exists C € R, such that, for any effective cycle Z, on X,

(3.2.6) ho(f(Zi) = hp(Zy)| < C degy, Z,.

Observe that the inequalities (3.2.5) and (3.2.6) do not really depend on the
choice of the ample line bundle A, since, for any two ample line bundles M,

and M1[< on X, , there exist C; and C, in R: such that, for any effective
cycle Z, on X, , the following inequalities hold:
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(3.2.7) C, degMK Z, < degM;( Z, <G, degMK Zy.

Proof. Using the construction of 3.2.1, Remark, one easily sees that to prove
(i), one may assume X regular. Note that, by the definition of ¢, in 2.1.2,

&L, h)y—¢ (L, k) =a(p).
Together with (2.1.2), this implies:

G(L, Y —E(L, KV =alp Y o,k (L, HY],
i+j=p—1
where ¢,(L, h) = w (¢,(L, h)) is the first Chern form of (L., ). Formula
(3.2.3) then follows, according to the expression (2.3.16) for deg(.|.).
To prove (3.2.5), observe that there exists a C™° hermitian metric on the

ample line bundle M, whose first Chern form « is strictly positive on X(C).
According to Proposition 1.1.4, (iv), there exists C € R, such that

—C.ap_IS% S (L, kY oL, KY <C.a”

i+j=p—1

Then (3.2.5) follows from (3.2.3), since

/ o’ 8, =K : Q] degy, (Zy).
X(C)

Under the hypotheses of (ii), the closure in X x ¢ X " of the graph of f isa
projective arithmetic variety X , and the two projections from X to X and X’
are isomorphisms over Spec(K). Therefore, to prove (ii), we may assume that
the isomorphism f: X ~ X,'( extends to a morphism f: X — X' . Moreover,
it follows from inequalities (3.2.7) that the line bundle M, over X, may be
assumed to be the restriction of an ample line bundle M over X . Finally,
using (3.2.5), we may assume that the isomorphism f~ L}< ~ L, is isometric.
Then this isomorphism defines a rational section ¢ of the hermitian line bundle
F*LT'®L"" over X such that |o | =1 and the divisor div(cg) is supported
by closed fibers of X .

Let Z, be any effective cycle in Zp_l(X x),andlet Z € ZP(X ) be its Zariski
closure. Then f,(Z) is the Zariski closure of f,(Z,). Therefore

hi(Zy) = he(Z) and h7(f(Zy)) = hi7(f,(Z)).
Applying Proposition 3.2.1, (iii), we now get:

hir(f(Zg)) — hp(Zg) = h . 7(Z) = h(2Z)

(3.2.8) = deg (?1 f @y - i (ﬁ)” | z) -
= Y de(8(/ @) &@ &(F 9L )12).
i+j=p—1
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According to Proposition 2.3.1, (vi) and 2.3.1, Remark (ii) (applied to each
component Y of Z, which meets div(g) properly), we have

1

deg (&,(/" @) 6@ (S oL )| 2)
— deg (El(f'(L ) &Ly |div(a).z).

The intersection cycle div(c).Z is supported on some closed fibers of X, and
we shall estimate the right-hand side of (3.2.9) by applying in these closed fibers
the following standard result:

(3.2.9)

Lemma 3.2.3. Let V be a projective scheme over a field k, let # be an ample
line bundle on V , and let

deg, : CHy(V) — Z

be the composition CHy(V') % CH,(Spec(k)) ~ Z, where p denotes the struc-

tural morphism V — Spec(k). For any finite family (<, ... ,.Z,) of line
bundles over V', there exists C € R, such that the following equality holds for
any effective cycle T € Z, (V')

|deg, (¢,(-Z]) -+ ¢;(Z,).[T])] < C deg, (Cl(/[)"-[ﬂ) :
Indeed, we can write

div(e) =) _D,,

pel
where I is a finite set of nonzero prime ideals in & , and where D o is a Cartier
divisor supported on X, . We have
e

div(e).Z=)_D,.Z,
pel
and the cycle Dp. Z may be seen as a cycle on X , and, by the same argument
14

asin 3.1.2.2, we have

deg (c,(/* (L)) &) | D, Z)
= degy (c,(/" (L))" ¢,(Lg )’ ND,. Z1) log No.

Forany p € I, we can find k € N such that the Cartier divisors kXg +D and
k X - D, are effective. Then the cycles (kX +D,).Z and (kX - Dp) Z
are eﬁ'ectlve and Lemma 3.2.3, applied to v < X , A = Mg, n =p-1,

(3.2.10)

LH==L=(L)y,L,="=%_, =L, andT (kX +D,)).Z
P
r (kX ) Z, shows the existence of a constant C(i, j, p) such that, for

any flat cp:tfectlve ZeZ,(X),
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[dege (e (/" (L)g) (L ). 1D,,. 21))|
., p—1
< Cli, j, p) dogg (o,(My )" Xy . 21).

The compatibility of intersection operations and specialization ([Fu2], 20.3 and
Example 20.3.3) shows that, for any p:

(3.2.11)

(3.2.12) degy (c(My )™ Xy . 2]) = deg,, Zy.

Finally, we get from (3.2.8)-(3.2.12):

e f(Z) = he(Zp)| € 32 CULJ, o) degy, Zy. O
1+_L=Epl—l

Remark. Let V be a smooth projective variety over Q, and let L, M be two
line bundles on V', with M ample. Let K be a number field such that V'
and L can be defined over K, let 77 be a projective arithmetic variety over
Spec(@y) , and let Z be an hermitian line bundle over 7 such that 7@ ~V
and ,5% ~ L. It follows from Proposition 3.2.2 that the function on the set of
nonzero effective cycles on X5 which sends a cycle Z to

(deg,,(Z)) ' . h+(Z) €R

does not depend on the choices of K, 77, and Z, up to an error term which
is uniformly bounded when Z wvaries. See also [Gu], §6 and §7, for similar
considerations.

3.2.3. Positivity. The following statement extends Proposition 2.6 in [Fa2] to
the heights hy .

Proposition 3.2.4. Let L be an hermitian line bundle on a projective arithmetic
variety X . Assume that c, (L) is positive and that some positive power L" of
L is generated by global sections of sup norm less than or equal to one. Then,
Jor any effective cycle Z on X,

h(Z) > 0.

Proof. We prove this by induction on the dimension of Z. When dim(Z) =
0 this follows from (3.1.4). When dim(Z) > 0, we may assume that Z is
irreducible and we can choose a rational section of L” of sup norm < 1 which
does not vanish identically on Z (otherwise the fiber of L” at the generic point
of Z would not be generated by global sections of L" ). Calling s its restriction
to Z we deduce from (3.2.2) that

nhp(Z) > hg(div(s)),

and the result follows since dim(div(s)) =dim(Z)—-1. O
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Remarks. (i) Let us use the notations of 3.1.2.3. If E is the trivial hermitian
vector bundle of rank N + 1 (i.e., the direct sum of N + 1 copies of & =
@, 1), || 1] =1), the hermitian line bundle #(1) on P(E) satisfies the hy-
potheses of Proposition 3.2.4. Therefore, we recover Proposition 2.6 in [Fa2],
which asserts that 4.(Z) > 0 for any effective cycle Z on P(E) (see Proposi-
tion 4.1.3 and Theorem 5.2.3 for a better estimate).

(ii) The relation between the positivity of the height A; and the existence of
“small” sections for some power of L" has been thoroughly studied by Zhang
in [Zh1), [Zh2)].

(iii) It follows from (3.2.4) and Proposition 3.2.4 that if we only assume that
o (L) is positive and that some positive power L" is generated by its global
sections over X , then there exists a constant C € R, such that, for any effective
cycle Z on X,

hp(Z) > ~Cdeg; (Z).

Using Proposition 3.2.2, we also get that, if some positive power L;’( is
generated by its global sections over X, and if M, is an ample line bundle
over X, , there exists C € R, such that for any effective cycle Z on X,

hi(Z)> -C degMK(Z).

(iv) Proposition 3.2.4 and the preceding remark extend to multiheights. For
instance, if L ,... , L , are hermitian line bundles on a projective arithmetic

variety such that ¢,(L,), ..., cl(fp) are positive and some positive powers

L;" y ee s LZP are generated by global sections, then there exist constants
C,- Cp € R_ such that for any effective cycle Z € Zp(X)

14 14
deg (EI(LI)---EI(LP) | z) > -3¢, deg | [[e/(L) 12
=1 e
3.2.4. Finiteness.

Theorem 3.2.5. Let L be an hermitian line bundle on a projective arithmetic
variety X . If L is ample on X, then for any real number A > 0, there exists
only finitely many effective cycles Z € Zp(X ) such that degLK(Z) < A and
hi(Z)< A4.

Proof. First, by Proposition 3.2.1, (i), we may replace L by a positive power,
and therefore assume that L is very ample. Then there exists a closed immer-
sion i : X — Pg = ]P’(ﬁf(m”) such that L ~ [*@(1). We shall equip Z(1)

with the hermitian metric defined by the trivial hermitian metric on @’s@ (N+1) ;

then Proposition 3.2.2, (i) shows that we may assume that L = {"@(1), and
Proposition 3.2.1, (iii) reduces the proof of Theorem 3.2.5 to the case where

X =Py and L=2(1).
Any effective cycle Z € Zp(ng) may be decomposed as
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(3.2.13) Z=Z,+) Z,
14

where Z, is effective and flat over S, where p runs over the nonzero prime
ideals of &, , and where Z o is an effective cycle on ]P’:f; which vanishes for al-
most every g . Let us denote by degmp Y the degree of acycle Y € Zp(]P’]?L ) (Le.,
with the same notation as in Lemma 3.2.3, degFp Y = deng (c,(@(1)).1Y])).
The positivity of the height A, = Ay (3.2.3, Remark (i)) and formula (3.1.3)

show that

(3.2.14) he(Z,) < hp(Z)
and

(3.2.15) degy Z .logNp < hZ).

Since Z, is effective, deg, Z > 1 if Z # 0. Therefore (3.2.15) implies
14
that, if A(Z) < A, we have Z(p =0 unless

(3.2.16) log Np < A.

There is only a finite set of p satisfying (3.2.16). Moreover, for any given
©, the set of effective cycles on ]P’fFV of degree less that (log NV p)'l. A is finite
(this follows for instance from the Classical theory of Chow forms, cf. [C-Wa],
[Sa], 1.9). Therefore there is only a finite set of possibilities for the “vertical
parts” > Z o in the decomposition (3.2.13) of the effective cycles Z such that

P
h(Z)< A.

Together with (3.2.14), this shows that, to prove Theorem 3.2.5, it is enough
to prove that a set of flat effective cycles of bounded degrees and heights is finite.
As hinted in [So2], this follows from the computation of the height of Chow
forms (see 4.3.4 below). One can also deduce it from the previous statements
in this section together with the following geometrical fact (which is another
consequence of the classical theory of Chow forms):

Lemma 3.2.6. Forany pe{l,..., N} and any integer D, there exists a finite
set H, ..., H,, of hyperplanes in ]P’% which satisfies the following condition:
for any two distinct effective cycles Z,, and Z;{ in Zp(]P’z ) of degrees at most
D, there exists i € {1, ... , M} such that H, meets Z, and ZI'< properly and
the cycles H,.Z, and H,.Z, are distinct.

Indeed, let p € {1,... , N}, and let Z € Zp +1(]P’gv) be a flat effective cycle
on X whose height and degree are bounded by 4. We apply Lemma 3.2.6

with some D> A. Forany i € {1,... , M}, let s; be a section of (1) over

IP’g such that # := div(s;) restricts to H;, on Pﬁ. If H, meets Z properly,
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then # meets Z properly, and #.Z is an effective cycle in Zp(IP’;V) which
restricts to H,. Z, in the generic fiber, therefore

he(H.Zy) < hp(#.Z).
Moreover, we get from (3.2.2):

(3217)  hp(#.2) <hg(Z) +[K : Q] ¢, degy;, (Z) < A(1+[K:Qlc,),

where ¢; is the sup norm of log|is;|| . Furthermore

(3.2.18) degﬁ(l)K(Hi. Z,)= degﬁ(l)K(ZK) < A.

Lemma 3.2.6 together with (3.2.17) and (3.2.18) reduces the proof of Theorem
3.2.5 for flat cycles of relative dimension p € {1, ... , N} in ]P’fgv to the proof

for flat cycles of relative dimension p — 1. As it is true when p = 0 by the
classical theory of heights ([No], [We2]) Theorem 3.2.5 follows. O

If we combine Theorem 3.2.5 with Proposition 3.2.2, (ii) and formulae (3.1.9)
and (3.1.10), we get:

Corollary 3.2.7. Let L be an hermitian line bundle on a projective arithmetic
variety X . If L, is ample on X, , then for any real number A > 0, there exist
only finitely many effective cycles Z € Z (X@) defined over a number field K' >
K of degree [K' : K] < A and such that deg, (Z)< 4 and hy (Z)< A.

Q

L ,norm

3.2.5. Hilbert-Samuel formula. Let L be an hermitian line bundle over a pro-
jective arithmetic variety X, and Z an integral subscheme of dimension p in
X, flatover S. When L, is ample, the degree deg LK(Z x) is given by the lead-
ing term of the Hilbert polynomial of LKI P Namely, we have the following
“Hilbert-Samuel formula”, as n goes to infinity:

p—1
. 0 Ly h p—2
dlmKH (ZK’LK) —degLK(ZK) '(—p_—l)"*'O(n )
We now want to describe an arithmetic counterpart to this formula, which again
illustrates the analogy between the degree of varieties over a field and the height
of arithmetic varieties.
Let HO(Z , L") be the set of sections of L” over Z, n > 0. This is a torsion

free Z-module. We endow it with the sup norm || - || of sections of L" over
X(C). Let V__ be the covolume of HZ,L" in HYZ, L") ® R for the Haar

measure which gives volume one to the unit ball, and &:\g (H 0(Z LM - ||oo)
=—log(V ).

Theorem 3.2.8. Assume that L is ample and that ¢ (L) is positive. As n goes
to infinity, the following asymptotic formula holds:
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e y4
(3.2.19) deg (HO(Z, L™, |l - |1oo) - hZ(Z)% +0(n” " logn).

This formula is shown in [G-84], [B2], 4.3, and [G-S6], 5.1.2 when Z, is
smooth and ¢ (L) is strictly positive, and by Zhang [Zh2] in general.

Observe that when X = Pg and L = @(1), Theorem 3.2.8 provides a very
concrete interpretation of the Faltings height of an irreducible subscheme Z C
]P’fZv in terms of the homogeneous ideal / C Z[X, ... , X] which defines it:
indeed, for n large enough, the left-hand side of (3.2.19) is then the covolume
of Z[X,, ... , Xy],/I, equipped with the norm | || defined by

P
“ [P] “oo= sup I (ZO’ ’ ZN)l

(g1 .t Zy)EZ(C) N ) n2 -
O (S 1)

i=0

I

3.3. More examples.

3.3.1. Faltings heights of hypersurfaces and of projective spaces. Let E be an
hermitian vector bundle of rank N + 1 over S, P(F) the projective bundle of
E, &(1) the standard hermitian line bundle on P(E), and s a global section
of @(d) on P(E). For any complex imbedding ¢ : K — C, we may identify
P(E),(C) with ]PN(C) by choosing an orthonormal basis for E_. The section
s then defines an homogeneous polynomial P, € C[X, ... , X,;] of degree d .
Let D = div(s), and let dv be the U(N + 1)-invariant probability measure on
the unit sphere Mt in M,

Applying formula (3.2.2) to Z = P(E) and L = #(1) and then formula
(1.4.7), we find:

—_\N
1 (D) = dhy(P(E)) + [P 01511 (FTD)
(33.1)
= dh(P(E) + ¥ /S _log|P, (x)|dv.
o:K-C

Assume now that £ = ?gH is trivial and let ng = P(é’;’ +1). Using the
preceding formula for the height of hypersurfaces, we can easily compute the
Faltings height of ]P’év in terms of the Stoll number o, defined in (1.4.3).

Lemma 3.3.1. The Faltings height of ]P’f‘;v is

(3.3.2) he(PY) = [K : Q] 0.
Proof (see also [G-S3], p. 212). Let s be the section of & (1) defined by the ho-

mogeneous coordinate X, ; then D = ]P’g—l . Applying (3.3.1) and the identity
(see 1.4.3, Remark (ii1))

1. 1
Jonn Tor Xy = =3 3 2

N9
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we get
e (YY) = hy(PY) + K - Q) /S log|Xyldw
N 1 ({1
=hF(Ps)—[K:Q] 0 ZE -
m=1

Since A F(Pg) = 0, the result follows by inductionon N. 0O

3.3.2. Heights of linear projections. Let E be an hermitian vector bundle on
S, let F be a subbundle of E, and let W be the quotient bundle, equipped
with the quotient metric. Let Z be an effective cycle in Z,(P(E)g), no com-
ponent of which is contained in P(F), . We shall compare the Faltings height
of Z, defined by means of the hermitian vector bundle E, with the Faltings
height of its linear projection p,(Z) in P(E/F)., defined by means of the
hermitian vector bundle E/F . This will extend Proposition 2.10 in [Fa2].

First recall how p (Z) is defined. Let v : B — P(E) be the blow-up of
P(E) along P(F) and D C B the exceptional divisor. Denote by Q the
canonical quotient bundle on P(E/F), and by pr, (resp. pr,) the projection of
P(E) xP(E/F) onto the first (resp. second) factor. The projective arithmetic
variety B may be identified with the subscheme of P(E) x¢ P(E/F) defined
by the vanishing of the regular section ¢ of pr; O(1)® pr;Q attached to the
composite of the following tautological maps:

priOg(-1) — pr, Ty E = n]l”(E)xs]P(E/F)E - ”P(E)xSP(E/F)E/F
= pry g g EIF — p1, 0.
Then the restriction of pr, to B is equal to v, and the restriction of pr, to B

is a smooth morphism such that, on P(E)} —P(F), fo v~' coincides with the
linear projection onto P(E/F). The cycle p (Z) € Z,(P(E/F)y) is defined as

the image f*Z of the proper transform Z of Z in B, .
By definition of Faltings heights,

he(2) =y (2) = 38 (5 (Fm) " 1Z)

where Z is the Zariski closure of Z , and

hel0.(2)) =y (2.020) = 3oz (&, (7, )" 1722

On the other hand, we have the equalities of cycles

7-1.(7)

P2 =1.(2).

and
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Therefore, by (2.3.6), we get:

(3.3.3) h(Z) = deg (u* e, (ﬁE(l))pH | 7)
and
(3.3.4) hy(p,(2)) = deg (f‘ &, (@) | ?)

Consider the hermitian line bundle

Li=v' 6()® f Gy p(-1)
over B. According to the definition of B by the vanishing of ¢, the canonical
map

pri@.(-1) > pr;n;(E/F)E/F

introduced above takes values in the subbundle pr,d@, / p(—1) when restricted

to B, hence defines a regular section s of L over B, which is easily seen to
be # 0, to have D as divisor, and to have norm < 1. Using (3.3.3), (3.3.4),
and Proposition 2.3.1, (vi), we get:

(3.3.5)
he(2) ~ by 0.(2) = 38 (v & (F0)"" - 17 (Fr ) 12)

— deg (EI(Z). S e (é’E(l))i.f' g, (é’E/F(l))j 1?)

:a;g(g v & () 1 (m)’wé)
Lo (o ) e ) s

i+j=p
As this last integral is nonnegative (since c, (ﬁ (1)) and ¢, ( o /F(l))

positive (1, 1) forms, || s ||< 1, and Z is effective) the difference A (Z
hg(p,(Z)) is bounded below by the sum of the real numbers

(3.3.6) (Te\g(l/* ¢, (?;m)i.f g (m)j|p.§) ,i+tj=p,

which are nothing else than the biheights of the effective cycle D.Z on
= P(F) xg P(E/F) attached to the hermitian line bundles v*@,(1) and
f E/F( ). It then follows from 3.2.3, Remark (iii) that h.(Z) — hp(p,(Z))
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is bounded below by a linear expression in the bidegrees of D.Z in P(F) x Xk
P(E/F)y , whose coefficients depend only on E and F .

In particular, when |Z|, does not meet P(F). , the cycle D.Z is effective
and supported on closed fibers of B, so we get the inequality:

(3.3.7) he(Z) > hp(p,(2)).
In other words, the height of an effective cycle decreases by linear projection from
a center that it does not meet in the generic fiber.

Suppose moreover that Z is irreducible and that F is a line bundle. Then
P(F) defines a point P € P(E)(S), the support of the subscheme PNZ isa
finite set of closed points {Q,, ... , Q,}, and the Segre class of PNZ in Z
takes the form

NZ,Z)= Zm Q;,

where m; is the multiplicity of 4 along PnZ at Q, (cf. [Fu2], §§4.2 and
4.3). In that case, the expression (3.3.6) vanishes if / > 1, and, for i =0,
easily seen to be

n
Zmi log #k(Q,).
i=1
Therefore, h(Z)~h(p,(Z)) is the sum of this weighted sum of multiplicities
and of the integral in (3.3.5), which may be interpreted as the “archimedean
multiplicity of Z at PNZ ™.

3.3.3. The Arakelov-Faltings invariant (EX/S.EX/S) . We now indicate how

invariants of arithmetic surfaces introduced by Arakelov and Faltings fit into
our framework.

Suppose that X is a semi-stable regular arithmetic surface over S (i.e., X
is a regular projective arithmetic variety of dimension 2, X, is geometrically
irreducible of genus > 1, and the closed fibers of 7 : X — § are semi-stable
curves). When L is the hermitian line bundle Dy s defined as the relative

dualizing sheaf w, /s equipped with the Arakelov metric || ||, at infinite places

(cf. [Arl], [Fal]), the height A;(X) is the real number (EX/S.E)‘X/S) attached

to X considered by Arakelov [Ar2] and Faltings [Fal].
More generally, if X' is any semi-stable model of X x over S (not necessarily
regular), the relative dualizing sheaf w . /s is still a well-defined line bundle on

X', which may be equipped with the Arakelov metric || || 4 » and we can consider
: ! J— . .

the height hEX,/S(X ) defined by Wyr)g = (wx'/s’ I ||A> . This height does not

in fact depend on the semi-stable model X' of X x - Indeed, there exists a

unique morphism f: X — X' which extends the identity on the generic fiber
( f is the contraction of some rational curves of self-intersection —2 in the
closed fibers of X ) and the identification
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Dyisix, = Px, = (fwx’/s)|xx
extends to an isomorphism of hermitian line bundles
EX/S ~ f EX'/S'

Therefore, we get from (3.2.1) and 3.2.1, Remark:

!

(3.3.8) b s X) = b, (fX)) = hg , (X)),

x'/s

since f is birational.

In particular, we can take as X' the stable model of X x - As the formation
of this stable model and of its relative dualizing sheaf w X'/s is compatible
with the base changes §' = Spec(@y) — S = Spec(y) defined by extensions
K < K’ of number fields, we recover from 3.1.4 the fact that the real number

eX)=[K: Q" hy (X)

is an invariant of Xg. This fact, as well as (3.3.8), was originally due to Moret-

Bailly ([MB3], 3.3 and 5.4; the coincidence of A y (X') and of (wx’/s , &)‘X,/S)
X' /s

as defined by Moret-Bailly, using Deligne’s pairing, follows from (2.3.11),

(3.2.2), and [MB2], 6.7-8; see also [G-S3], Theorem 4.10.1, (i) when X' is
smooth over S ).

3.3.4. Heights on abelian varieties. Let A be an abelian variety over K, and
L be a line bundle on 4. Given any nonempty subset I C {1, 2, 3}, let

D A4
be the morphism sending a geometric point (x,, X,, x;) to Y, X, where A4°
Jjel
is the product over K of three copies of 4. According to the theorem of the
cube, the line bundle

C(L): =

It

*

L

I1c{1,2,3} pl( )
1#2

i) epy (L) @py(L)”
® P1o(L) ® pyy(L) ® P 4(L) @ pypy(L)

(3.3.9) i

Il

-1

may be trivialized on A . The choice of an isomorphism

c:C(L)y> 0O,

is equivalent to the choice of the nonzero element c_l(l)(O) in the fiber of
C(L) at the origin of A i.e., to the choice of a nonzero element in the fiber

of L' at the origin of 4.
To simplify the discussion, assume that 4 has good reduction over S, i.e.,
there exists an abelian scheme & over S with generic fiber 4. The projections
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p; extend in the obvious way to morphisms from & Y= x s X A to A,
and for any hermitian line bundle . on &% we define C(Z) as an hermitian

line bundle on &> by the same formula as (3.3.9). According to Faltings [Fa-
W], 11.2, and Moret-Bailly [MB1], Chapter II, given any pair (L, ¢) of a line

bundle L with an isomorphism ¢ : C(L) = '3 » there exists a unique (up to

unique isomorphism) pair (:i’7 , ¢) formed by an hermitian line bundle Z on
& and an isometric isomorphism

(3.3.10) c:C(F) SO,

where & 3 denotes @ s equipped with the trivial metric (defined by || 1 || =
1), such that .|, = L and ¢| s = c¢. Moreover, the class of Z in lgi\c(M )
depends only on the class of L in Pic(A4).

The height 4~ will then be denoted h; - The isometric isomorphism ¢
implies that given three points P, P,, P, in A(K) the following holds:

> DY by a(3oP)=0.

1c{1,2,3} JEI
140

Therefore, on rational points, the height A L.cup COiNCides with the Néron-Tate
height defined by L ; see [Fa-W], 1.2, and [MB1], Chapter III.

For any integer n € Z let [n] be the endomorphism of 4 or .%/ mapping
X to nx. Assume that L is symmetric, i.e., [-1]'"L ~ L. Then we get
[-11'¢,(%) = ¢,(Z) and, by the cubical property (3.3.10) of Z, [n]"¢,(F) =
nzfl (). Therefore, given any cycle Z € Z,(#), we have

(3.3.11) hy (M, Z) =" by W (Z)

and

deg,([n],2) = n?2 deg, (Z).

If, in addition, L is very ample and such that A4 is projectively normal
when imbedded using sections of L, Philippon defines a height 4,(Z) for any
effective cycle Z on A (cf. [P2], Proposition 9, p. 281; note however that
in [loc.cit.] A need not have good reduction over S). Philippon’s height is
characterized by the following two properties:

(i) for any effective cycle Z on A of dimension p — 1 and for any » €
N-{0},

hp([n],Z) = n™ hy(2Z);

(ii) there exists a constant C € R + such that, for any effective cycle Z on
4,

|hp(Z) - hp(Z)| < C deg,(2)
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(in [P2] one considers instead of Ay the height of the Chow form of Z for
the projective imbedding given by sections of L, but these are known to be
equivalent; see 4.3.4 below).

When A4 has good reduction, these properties are satisfied by 4 I.cub €
cording to (3.3.11) and Proposition 3.2.2(ii); therefore Philippon’s height 4,
coincides with the cubical height A L.cub ON effective cycles on A. The equality
of cubical and Philippon’s heights allows one to recover various properties of
the latter. For instance, let P € A(K) be a torsion point of order n and let
t: & — & be the translation by P (considered by properness as an element
of & (&;)). The cubical property of . implies then that

n’. e (P) =nt8(2);
therefore A
in [P2].
Finally, we may also describe #, _cup UsINg arithmetic fundamental classes as
follows. Let s be a nontrivial rational section of .%° on & and O its divisor.
Recall that, for any complex embedding o of K, A  denotes the complex
abelian variety deduced from A by the extension of scalars ¢ : K — C. Let
u e AI’I(AR) be a Kihler form whose restriction to each component A4_(C)
is translation invariant. Then the pg-harmonic forms on A(C) are the forms
whose restriction to each component A_(C) is translation invariant, and the
harmonic projection H : =900(A((C)) — %OO(A(C)) sends u € QOO(A(C)) to
the function which takes as constant value H_(u) on A_(C) the integral of
U4 (C) with respect to the Haar measure of volume 1 on A4_(C). The cubical

Z)y=nh (t,(Z)) for any cycle Z on A, as is also shown

L,cub( L, cub

condition (3.3.10) on .% implies that ¢,() is translation irvariant on every
component A_(C) (cf. [Fa-W], I1.2, and [MB2], I1.2). Therefore

dd° (— log || s n2) +g e (4y)
and the p-normalized Green current for © is
go=—log||s|” +H (log || s II")-
Therefore
6@ =[(e. -10gllsI)]
[(©, 86)] —a (H (log s I))

2
6], —a (H (log Il s I))
and, using (2.3.20), we get the following formula for any 2" € Z (&) :

It

By o) = deg (121,161, — pdegy (2. 6F") Y. H,(og s ).

o:K—-C
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The possibility of such an expression for Philippon’s height was indicated in
[Hi]. For other approaches to the height of cycles on abelian varieties, see [Gu]
and {Kr].

4. THE HEIGHT OF CYCLES IN PROJECTIVE SPACES
4.1. The projective height.

4.1.1. Definition. Let E be an hermitian vector bundle of rank N + 1 over
S, N > 0. The canonical quotient bundle Q on P(E) is defined by the exact
sequence

Z:0-0(-1)>aE->Q—-0

on P(E), where n : P(E) — S is the pr(ﬂection map. It will be equipped
with the quotient metric deduced from zn"E, while &(—1) will be equipped
with the induced metric, which coincides with the dual of the metric on &(1)

—_ e

introduced in 3.1.2.3. For any p > 0 we let EP(Q) € CH‘D(]P’(E)) be the p-th
arithmetic Chern class of Q (see 2.1.2).

Definition 4.1.1. For any cycle Z € Z,(P(E )) we let
(4.1.1) h(Z)=E\eg(5p@|z) €R,
and forany Z € Zp_l(]P’(E)K) , we let

nZ)=h(Z),
where Z € Z,(P(E)) is the Zariski closure of Z .
The real number A(Z) will be called the projective height of the cycle Z
defined by the hermitian vector bundle £. When we shall need to make the

dependence on E explicit, we shall write hE(Z ) instead of A(Z).
When p > 1, we shall also write deg,(Z) for the usual degree of Z , namely

degy(Z) = deg,,, (Zy) = degy (c,_,(Qg) | Z) = degy (G, ,(0) | Z) € Z.

4.1.2. First properties and examples. The next proposition first states that the
number #(Z) defined by (4.1.1) coincides with Faltings’ height hp(Z) :=
hm(Z ) (cf. 3.1.2.3) up to some additive normalization. In particular, #(Z)

deserves to be called a height. As shown by the second part of the next propo-
sition, with this normalization the height of linear subspaces of P(E) takes a
simple form which, contrary to that of Faltings height, does not involve the Stoll
numbers o, .

Proposition 4.1.2. (i) For any cycle Z € Z (P(E)), we have if p > 1:

(4.1.2) h(Z) = h(Z) + (ae\g(F) —[K: Q]ap_l) deg, (Z);

ifp=0and Z=73% n, P, where n; € Z and P, are closed points of X,
i
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(4.1.2)) MZ)=hp(Z)=> n, log # k(P,).

(i) Let F c E be any nonzero subbundle of E, equipped with the induced
metric. Then

(4.1.3) WE (P(F)) = deg(E) — deg(F).
If r denotes the rank of F, hE(IP’(F ))—(Te\g(F) coincides with the Faltings height
of the point P(A'F) in P(A'E) defined by the hermitian vector bundle A'E .*

In particular, when E is trivial, A(P(F)) is the classical height (cf. (3.1.6))
of the Pliicker point of F, in PY(K), M = (N ;L') — 1. Thus the height of

P(F) coincides with the (logarithm of the) height introduced by Schmidt [Sch].
Observe that (4.1.2) and (4.1.3) provide the following generalization of
Lemma 3.3.1:

(4.1.4) he(B(F)) = —deg(F) +[K: Q] g,_,.

Proof. To prove (i) we need to compare ¢, (Q) with C (ﬁ (1))p since, by def-
inition, h.(Z) = hm(Z) (see (3.1.5)).
Identity (2.1.4) applied to the canonical exact sequence & gives

(4.1.5) on" E)= (1 - (W)) .8(0) - a(e(®)).

Indeed ¢ (m) = -G (m) and C, (m) = 0 if p > 2, since

@(—1) has rank 1. The computation of the Bott-Chern class EI;(Z )} is purely

N+1

archimedean, so that we may identify Ec and C with the standard metric.

According to [G-S3], Proposition 5.3, if we write u = ¢, (ﬁ (1)) , we have:

k—1
(4.1.6) ¢(&)=0and (&) = - (Z ;15) k> 1
m=1

Using (4.1.5) and (2.1.2) we get, when p > 1,

5@ =5 (FD) +5, (FO )2 e®) + a (Zu" E,,_,(g)) :

i>0
hence, by (1.4.3) and (4.1.6),
~ = ~ [T ~ (=P —1 * -1
@17 2@ =¢ (ﬁ(l)”) +8, (ﬁu)" )7: ¢,(E)-2a (ap_l e )
*For any embedding ¢ : K — C, the hermitian scalar product (, ), on A'EU is defined

in terms of the hermitian scalar product {, ) on E, by (v; A---Av,, w; A~ Aw)r =
det((”i 3 wj))lSi,er .
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Formula (4.1.2) now follows from the definitions of 4.(Z) and A(Z), since
(2.3.20) gives the identity

Fo @, (FW) " GE)2) = deg (6, (F M) 12) Fep (B,

while

-1

—__\p-1
deg, (61 (ﬁ(l))p | z) = deg,(Z),
and . |
deg (Za(ap_1 WY Z) =[K:Q] degg(Z) 0, ;.

When p = 0, A(Z) and A (Z) are both equal to deg(1/Z), and (4.1.2)
follows from (2.3.16).

(i) Let i : P(F) — P(E) be the inclusion, n, : P(F) — S be the projec-
tion, and Q, be the canonical quotient bundle on P(F). On P(F) there is a
canonical exact sequence

(4.1.8) 0—Q,—i'Q—n'(E/F)—0.

Let us equip the bundles in (4.1.8) with the metric induced from n"E. Then
(4.1.8), as an exact sequence of hermitian holomorphic vector bundles, is split
over the complex points of P(F): for any imbedding ¢ : K — C, i"(Q,) is the

orthogonal direct sum of (Q,), with 7 (F:) , where Fj is the orthogonal

complement to F_ in E_. It follows that the Bott-Chern classes of (4.1.8)
vanish and, by (2.1.5),

i"¢(Q) = &(Qp). ny C(E[F).
Since Q. hasrank r—1, ¢,(Q,) = 0. Furthermore
&/(ETF) =¢,(E) - ¢,(F)

since the metrics are induced from E. Therefore

l*@(a) = 3,_1(§p)- 7[; (61 (E) - 2‘\1(7)) .
Using (2.3.6) and (2.3.20) we get

h((F)) = deg (2,(Q) | P(F))
~ deg (¢,_,(@p)- 1 (&,(E) - &,(F)) IP(F))

= degy (¢,_,(Qp) | P(F)) .deg (¢,(B) - &,(F)).
Since
degy (c,_,(QF) | B(F)) =1,

formula (4.1.3) follows.
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Let ¢ : S —» P(A'E) be the section of n : P(A'E) — S defined by the
subbundle A'F of A"E. We have a canonical isometric isomorphism

* v Vv
£ ﬁ ’E(l) ~ A F .
Therefore
hg—q7 (B(F)) =deg &” &, (1) = —~deg A'F = —deg F.

According to (4.1.3), this equals hE(lP’(F )) — (Te\g E. O

As will be demonstrated in the sequel, many formulas involving the height of
cycles in projective spaces are simplified by the use of the normalized height 4.
Moreover, it enjoys nice positivity properties, which strengthen 3.2.3, Remark
(i). They will be established in 5.2 below. However, we can already prove:

Proposition 4.1.3. Assume that E is trivial and that, on ]P’z, the cycle Z €
Z,(P(E)) meets properly (i.e., does not meet) one of the linear subspaces of

codimension p defined by the vanishing of p of the canonical homogeneous
coordinates (X,, ... , Xy). Then, if Z is effective,

h(Z) > 0.
Proof. Let PY? c PV be a linear subspace of codimension p defined by the
vanishing of p homogeneous coordinates, and assume Z € Zp(]P’N) does not
meet P¥ 7 on ]P’Z. Let A be the Levine form of PV 7 (see 1.2.3, Example
(v)). From [G-S3], Theorem 5.2, we know that the class of (]P’N ?,A) in
cH (]P’N) is equal to ?p (Q). On the other hand, if Z is effective, the class
[IPN_” [Z] in CHnﬁthL n1Z| (]P’N ) can be represented by an effective cycle ) m W,
([Fu2], 12.2, 20.1, and 20.2). From (2.3.16) it follows that °
1
hZ)= ;ma log # k(W,) + 5 pN(C)A d,.

This is nonnegative since A > 0 (Proposition 1.4.1, (i)) and Z is effec-
tive. O

4.2. 'The height of joins.

4.2.1. Arithmetic integral geometry. A very useful tool in the study of heights is
provided by the behavior of degrees under algebraic correspondences. Namely,
let us consider a diagram

C

IV AW
X Y

where X, Y, C are regular projective arithmetic varieties, f is flat, and f;
is smooth. Given any cycle Z on X, we define its image under the correspon-
dence C to be the cycle
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C(2)=g.1(2)
on Y. Givenaclass y € ﬁl*(Y) we let

C*(y) = f.g"(y) e CH (X).
Lemma 4.2.1. Under these hypotheses, the equality

(42.1) v1c.@)=(cwz)

holds in CH (S),.

Proof. We apply Proposition 2.3.1, (iv) to g and Proposition 2.3.1, (v) to f
to get

wic@) =lear@)=(g0 @)
= (hemiz)=(c'm1z). o

To compute C*(y), a useful remark is the following. Assume that, for any
embedding ¢ : K — C, there exists a compact Lie group G, acting upon
X,(C), Y (C), C,(C) insuch a way that f and g, are equivariant maps and
that X_(C) is an hermitian symmetric quotient of G_. Then, if w(y)lY,(C) is
invariant under the action of G_, the same will be true for w(C*(Y))m(C) ,
hence this class will be harmonic for any G_-invariant Kahler structure on
X (C).

GIn the sequel, we shall apply formula (4.2.1) to correspondences defined by
incidence relations between some subvarieties of projective spaces. Correspon-
dences of that kind play a key role in integral geometry and in Nevanlinna
theory (see for instance [B-C], [St4]) as well as in analysis over homogeneous
spaces (see for instance [Ge], in particular Vol. III, part 1, or [He]).

4.2.2. Joins. As a first application of formula (4.2.1), we shall compute the
height of the join of two projective varieties.

Let E, and E, be two vector bundles on S, and E = E, @ E, their direct
sum. We define as follows a correspondence C between X = P(E|) x ¢ P(E,)
and Y = P(E). Let p,: X — P(E,), i =1, 2, be the projection and F the
rank-two bundle prﬁEl(—l) @p;ﬁEz(—l) on X. Denote by # : X — § and
n; : P(E;) — S the projections; since @, (—1) is a subbundle of n(E), F is
a subbundle of '

pin, E,®p, n, E,=nE.
Then welet f: C =P, (F)— X be the projective bundle associated to F and
g : C — Y the map induced by the inclusion F — n"E. When E, and E,
are trivial of rank N, +1 and N, + 1 respectively, we may also describe C as

. Ny+1 . .
the reduced subscheme in PV x P x PM*M*! whose geometric points have
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homogeneou§ coordinates (x;:...: Xy > Yo i VN Axgi.o..: lle 75
- ,uyNz) with (4, u) # (0, 0).

Given two cycles Z, € Zl’l (P(E,)) and Z, € sz(]P’(Ez)) , we define their join
to be the cycle

(4.2.2) Z#Z,=C(Z,xZ,)
in Zpl +p2(]P’(E)). When the cycles Z, and Z, are integral and one of them

is flat over S, Z,#Z, is the cycle attached to the join scheme of Z, and Z,
as defined in [A-K]. In particular, given F, C E, and F, C E, two nonzero
subbundles, we have

(4.2.3) P(F|)#P(F,) = P(F, @ F,).
We suppose now that E, and E, are equipped with hermitian metrics and
that E, @ E, is equipped with the direct sum metric, and we denote by A

the projective heights on P(E|), P(E,), and P(E, ® E,) associated to these
hermitian vector bundles.

Proposition 4.2.2.  For any two cycles Z, on P(E|) and Z, on P(E,) of
dimensions > 0, the following formulae hold:

(4.2.4) deg, (Z,#Z,) = degy(Z,) degy(Z,)
and
(4.2.5) h(Z#Z,) = h(Z,) degy(Z,) + degy(Z,)h(Z,).

Formula (4.2.4) for the degree of the join is well known (see for instance
[Fu2], Examples 8.4.4, 8.4.5).

Proof. Let Q,, Q,, and Q be the canonical quotient hermitian bundles on
P(E,), P(E,), and P(E) respectively, and let ¢(Q) be the total Chern class of
Q. From (4.2.1) we get

(4.2.6) (2@ | zl#zz) = (c*(E(‘Q‘)) | Z, x zz) .
We first show the equality

(4.2.7) C™(c(Q@)) = c(Q,) x ¢(Q,)

in the rational algebraic Chow group CH" (X )Q . We know from [G-S3], Propo-
sition 3.1.4, (i), that the map

CH*(X)Q - CH*(XK)Q

is an isomorphism and therefore CH" (X )o is generated by the classes ¢;(Q,) x
cj(Qz), 0<i<rkE, 0<j<rkE,. Let us write
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Q))—Za,, ¢(0,) x ¢,(Q,)

Using (4.2.6) (in (,/‘}\I (S)) and (2.3.18), we get
deg, (Z,#Z,) = Zaij degy (c(Q)) % ¢;(0,) 1 Z, x Z,)

= Zau degy (c(Q)) 1 Z,) degy (CJ(QZ) | ZZ)

for all cycles Z, and Z, . Applymg this to P(F)) and P(F,), where F, and F,
have codimension i and j respectively, we deduce from (4.2.3) that g, =1
for every (i, j). This proves (4.2.7) and (4.2.4).

Now let

x=C" (@) - &(@,) x €0,).
The image z(x) of x in CH"(X )o Vanishes by (4.2.7). For any imbedding

o : K — C, the form «(x) is invariant under the action of the unitary
group U(E, ) x U(E,,) upon X_(C), therefore, by the discussion in 4.2.1,

w(x) is harmonic on X(C) equipped with the Kihler form p’; ¢ (ﬁEl( 1)) +
p; o (ﬁEI(I)) . From (4.2.7) we know that the cohomology class of w(x) van-
ishes, therefore w(x) = 0. By Lemma 2.1.1 we conclude that x = a(n), where
n is a closed form. Using (4.2.6) (in C/'iII(S) ), we now get:

1
2 Jx)

On the other hand, when Z, = P(F|) and Z, = P(F,) for some nonzero
subbundles F; and F, of E, and E,, we have by (4.2.3) and Proposition
4.1.2, (ii):

(42.8)  h(Z#Z,) = h(Z,) degy(Z,) + deg, (Z,)h(Z,) + N0 4z,

WZ,#Z,) = deg (E, ® E,) — deg (F, & F,)
= (deg(E,) - deg(F)) + (deg(E,) - deg(F))
= h(Z,) + h(Z,).

It follows that the integral | xo " 52 4z, vanishes when Z| 1 and Z, are

linear subspaces of P(E|), and P(E)). Since n is closed, this 1ntegral de-
pends only on the cohomology class of 621#22 , hence on the class of Z #Z, in

CH" (P(E,®E,)y) . As this group is generated by the classes of linear subspaces
of the form P(F, ® F,), the integral always vanishes, and (4.2.5) follows. O

4.2.3. A Bézout theorem for heights. Let E be an hermitian vector bundle of
rank N+1 over §,and X € Z,(P(E)) and Y € Z (P(E)) two effective cycles
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on the projective space of E. Assume that p >0,¢>0,p+¢gq> N+1, and
that X and Y meet properly on P(E), . Denote by X.Y any cycle supported

on |X|N|Y| representing the product [X][Y] € CH@;;?Y_"’ “4PY) (see [Fu2]
and 2.2). This cycle X.Y is well defined up to the addition of }_div(f)),

where each function f is defined on a variety contained in a closgd fiber of
P(E). It follows that the real number A(X.Y) is independent of the choice of
the representative X.Y (by Proposition 3.2.1, (ii) and Proposition 4.1.2, (i)).
Theorem 4.2.3. Assume that E is the trivial hermitian vector bundle ??(NH) .
Then the following inequality holds:

h(X.Y) < h(X)deg, (Y) + deg, (X)A(Y)

429
(4.29) +1K:Q)a(N, p, ) deg(X)degy (¥),

where N 42
+2—-p—¢q
a(N, p ] q) = ap+q._1 - Up+q—N—2 + f 10g2.

As mentioned in the introduction, special cases of Theorem 4.2.3 where X
or Y isan hypersurface, or more generally a complete intersection, have already
been proved by Nesterenko ([N1], Lemma 4), Philippon ([P1], Proposition 2.6;
[P3], Théoreme 2), and Faltings ([Fa2], Proposition 2.17). Nesterenko and
Philippon use heights of cycles defined by means of Chow forms; but these turn
out to differ from the heights 4, and 4 by a multiple of the degree, see [So2],
[P2], and 4.3, infra.

Proof. Let D Cc P(E®FE) be the image of the “diagonal” embedding j : P(E) —
P(E ® E) defined by the bundle morphism id, ® id; : E — E®E, and X#Y
the join of X and Y. Since X and Y meet properly on P(E), , the cycles
X#Y and D meet properly on P(E & E), . Furthermore

(4.2.10) J(X.Y) = (X#Y).D.

By this we mean that for any choice of the representative X.Y of [X][Y] €
CH, (IX|n|Y]), j,(X.Y) is a representative of [X#Y][D] € CH, (|X#Y|N|D|).
This fact follows from [Fu2], Example 8.4.5. (Fulton’s argument is formulated
for joins in projective spaces over a field, but extends immediately to the present
situation.)

Let L =&, (1) be the canonical hermitian line bundle on P(E @ E). By

Proposition 3.2.1, (iii) and (4.2.10) we get

(4.2.11) h -y (X.Y) = h((X#Y).D).

The isomorphism j*é’b.@ £(—1) 5 @;(—1) divides scalar products by 2. Indeed

it maps the triple (x, v, v), x € P(E.), v € E;, t0 (x,v),and || (v, v) ||2:
2||v ||I*. By (3.2.4) it follows that

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



972 J.-B. BOST, H. GILLET, AND C. SOULE

p+q—N-1

(4.2.12)  hjpeg)(X.Y) = hp(X.Y) +[K : Q] 5

(log2)deg, (X.Y)

if p+g>N+1 and

h.

o (X.Y) = hp(X.Y)

if p4+q = N+ 1. All this was valid for an arbitrary E. Assume now that

E = ?NH . Then P(E @ E) gets identified with IP’2N+1 . Let (XO, e X

Y ) IN+1

0> - Yy

H CP 2N+1
l

section of Hy, ... ,H,. When Z is any effective cycle on IP’;N *1 flat over S

and meeting H; properly, we get from Proposition 3.2.1, (iv) that

be the canonical homogeneous coordinates on Pg'", and let

be the hyperplane of equation X, = Y;. Clearly D is the inter-

log 2

(4.2.13) hi(Z.H;) < hi(Z) + [K : Q] —— degy(Z)

since the section s of L corresponding to X;—Y; has norm square at the point
ON+1 N+1
(xoz...:xN:yO:...:yN)eIPSa+ (C) ~ ~ P? +(<C)

2

|xi"yi|
2 2 2 2
Pol” + -+ [xpl™ + [pol” + -+ vyl

On the other hand, for any cycle Z supported in a closed fiber of pM L ,

we have
hZ(Z. Hi) = hr(Z)

according to (3.1.3), since [H,;] = ¢,(L). Therefore (4.2.13) holds for any cycle

Z on P*M*! such that Z, is effective and meets H, properly (on ]P’zN“)
Applying (4.2.13) N +1 times, it follows that

(4.2.149) h((X#Y).D) < hp(X#Y) 4+ [K : Q] log( ) deg, (X#Y).
Indeed, if p+g > N+1 (resp.,, p+g=N+1), |X#Y|Kn |D|; has dimension
p+qg— N—2 (resp., is empty), so that | X#Y| KnH n- ﬂH has dimension
p+q—i-2 forany i € {0, ..., N} (resp., has dimension N —i—1 for any
ie{l,...,N}).

Combmmg (4.2.11), (4.2.12), (4.2.14), Proposition 4.2.2 (applied to E, =
E,=E, Z =X, and Z, =Y ), and using Proposition 4.1.2, (i) to compare
Faltings height with the projective height, Theorem 4.2.3 follows. O

The use of the join to reduce intersection of cycles in projective space to
the intersection of one cycle with a linear subspace goes back to Gaeta ([Ga])
and has been used since by several authors, in relation with Bézout’s theorem
([Bo-V1, [V], [Fu2], Examples 8.4.4 - 8.4.6, [Fu3)).
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Corollary 4.24. Let h be the projective height on cycles in ]P’Q (= P(E)g)
defined by the trivial hermitian vector bundle E. For any two effective cycles
Xe Zp(]Pﬁ) and Y € Z q(]P’Z) which meet properly (p + q > N), the foliowing
inequality on the height of the intersection cycle X.Y holds:

h(X.Y) < h(X) degy(Y) + deg,(X) A(Y)
. 2N-p—gq
(4.2.15) +[K :Q] <0p+aq—ap+q_N+f log2)
x deg,(X).deg, (V).
Proof. According to [Fu2], Corollary 12.2 (a) (see also 20.1 and 20.2), there
exists an effective cycle X.Y supported by |X| N |Y| representing [X] [Y].

Then X.Y —X.Y is an effective cycle supported by the closed fibers of ]P’g - S;
therefore
h(X.Y) = h (XT) < h(X.T).

Combined with (4.2.9) applied to X and Y, this gives (4.2.15). O

Remarks. When comparing the classical Bézout theorem with the inequality
above, we may say that if the degree represents a zeroth order information
about a cycle, then the height is first order information; see 5.4.1 below for a
more precise statement.

It is also an illustration of the point of view of Northcott [No] that the height
measures the “complexity” of the cycle.

4.3. The height of Chow forms and resultants.

4.3.1. Definitions. Let E be a vector bundle of rank N+1 over S, r € [0, N]

an integer, and d= (d,, ... ,d,) an (r + 1)-tuple of positive integers. Let

.V
n: P =P(E) — S be the projective bundle of F, and, for any i, let s E

\2
\%
be the d;-th symmetric product of E'. It is defined as the quotient of E ®d; ,
defined by the coinvariant under the action of the symmetric group. We let

(4.3.1) P =P ((Sd" E)V) and P=P(s% E).

\
The scheme P; “parametrizes” the horizontal divisors of relative degree d,

\%
on PP, as well as the hyperplanes in P,. The schemes P; and P; have relative

dimensions

N, =1k(S% E)— 1= (N;d")——l.

i

The product P; x¢ ]P’;’ contains the incidence subscheme I, that is, the
subscheme, smooth over S, whose points in any field k over S are pairs
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(x,u), where x € P,(k), u € ]P’V(k) and u(X) = 0 for any representative
v \%2
€ (Sd" ) ® k and # € S% E ® k of x and u respectively. Let T" =

K
Iy xg -+ xg I be the product of these schemes. The projection maps

f:r-»HPizz}PoxS---xSP,
i=0

and

r
g:F—-»H}P’;/ =P Xg o Xg P
i=0
are smooth and proper. Finally, let v, : P — P, be the Veronese embedding,

r

attached to the very ample line bundle #(d;) on P. If v : P =[] P, is the
i=0

product of the v;’s, we get a diagram:

r
(4.3.2) fo N\

v - Y
PYITP, 1P
i=0 i=0

Given any cycle Z € Z, ,(P), we define its (generalized) Chow divisor to be

(4.3.3) Chy(Z)=g,f v, (Z)=T,v(Z).

r
This cycle is effective when Z is effective and has codimension one on [] IP’;’ .

i=0
Lemma 4.3.1. When Z is flat over S, resp. flat over S and irreducible, the
same is true for Chd0 _a(Z).

Proof. Assume first that Z is an irreducible cycle on P, i.e., Z is an integral
subscheme of P. Observe that Z is flat over S iffits generic point lies over the
generic point Spec(K) € S. Since f is smooth with geometrically connected
fibers, the cycle f"v (Z) is also irreducible, and its generic point lies above
that of v_(Z), hence also above Spec(K). Write g,/ v, (Z) = nW , where W

r
is the integral subscheme of [] IP’;/ which has the same support as the scheme
i=0

theoretic image of the irreducible scheme f*v, (Z) under g. Since the generic
point of fv,(Z) lies over Spec(K) the same is true for W ;ie., W is flat over
S. Note that the integer n will be zero if W has codimension greater than
1; otherwise it equals the degree of the extension K(f v (Z)) | K(W). Since
proper pushforward and flat pullback of cycles commute ([Fu2] Proposition 1.7,
and §20.1), we may compute n after base changing by the map Spec(K) — S.
Then the assertion that Ch,(Z) is irreducible, i.e., that n = 1, is essentially a
classical result about Chow forms over fields of characteristic zero, which may
be proved as follows.
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Let v' = P —>_I;[1 P, f :.1;[1 I —»_1;[1 P,,and g’ :_];[1 I, —».];[1 P! be the maps
> > i> i> i>

defined analogously to v, f, and g. Then f _lv'(Z } is an integral scheme,
and we have a commutative diagram:

foz) 11 By

>0
(4.3.4) L , Le
£ @)L P

i>1

in which # and 4’ are the maps induced by g and g', p is the obvious
projection, and 7 is induced by the corresponding projection [] 7, =[] I;.
i>0 i>1

We want to show that /4 is generically injective. Suppose that & : Spec(F) —
I1 IP’;/ is a geometric generic point, and let D, C P, be the corresponding
i>1

degree d; hypersurface for i = 1, ... ,r. Since Z, C P, is nonempty and
has dimension 7, Z,ND, N---ND_C P, is nonempty. But this is canonically

isomorphic (via the morphisms v’ and f')to 4'~'(£). Hence 4 isa dominant
morphism between varieties of the same dimension and is therefore generically
finite, of degree A = deg(Z)d, ---d,. Furthermore, since h' is a morphism of
varieties of characteristic zero it is generically étale. Thus

=1 ' !
B @ ={P,..., P}Ccv(®) x&=v(Pg)

with the P, distinct. If we pull back diagram (4.3.4) along { = Spec(F) —
1P/ :

i>1

(@), — Py,
l e l
{P,, ..., P,}—Spec(F)

_ A .
we find that f I’U(Z)c CPy pxBy 5 is U P,xH,, where H, is the hyperplane

dual to P,. Since the P, are distinct, so are the H,, and thus f _I'U(Z )¢ maps
injectively to Py .

When Z is flat over S but not necessarily irreducible, the above argument
applies to each of its components. 0O

4.3.2. Remarks and examples. (i) The definition of the generalized Chow divi-

sor may be extended by replacing the base scheme S by any Noetherian regular
scheme T . Namely, for any vector bundle £ of rank N + 1 over T, we can
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\2
still define P, and P, by (4.3.1) and consider the diagram (4.3.2) (where all

the products are over T ); then for any effective cycle Z on P = P(E) with
relative dimension dimg Z = dimZ - dimS equal to r, formula (4.3.3) defines

a generalized Chow divisor Chy(Z) on H]P’

The compatibility of flat pull-back and proper push-forward imply that the
formation of the Chow divisor commutes with flat base change. Namely, if 7~
is another Noetherian scheme, for any flat morphism 7° — T, we have the

r v
following equality of divisors in (H IPi)
. »

(4.3.5) Chy(Zp) = Chy(Z) -

It follows from the constructions of Mumford in [M-F], 5.3-5.4 (see also [K-
M] and [Fo]}), that if Z is any irreducible cycle in P defined by a subscheme
flat and of relative dimension r over T, the Chow divisor Chy(Z) is flat over
T and formula (4.3.5) holds for a not necessarily flat base change 7' — T.
(In fact, using Mumford’s construction, one may associate a flat Chow divisor
Chy(Z) to any subscheme Z of P flat over T, without any regularity assump-
tion on the base T, in a way compatible with any base change. Moreover, this
definition is compatible with our intersection theoretic definition, as follows
from [M-F], Lemma 5.9, which immediately extends to schemes.)

Formula (4.3.5) also holds when 7’ and T are regular noetherian schemes
and the morphism i: T’ — T is a closed regular embedding such that

dim,. |Z|, = dim, |Z],

ifnow Z, and Ch,(Z),. denote the restrictions of Z and Ch,(Z), i.e., their
image under the Gysin homomorphisms defined by i. This follows from the
compatibility of Gysin homomorphisms with flat pull-back and proper push-
forward ([Fu2], §§6.2 and 20.3).
(i) When T = Spec(k), for some field k of characteristic zero, and d, =
--=d, =1, the Chow divisor Ch,(Z) is the divisor of the classical Chow form
of Z . Indeed, it is irreducible if Z is so (by the same argument as in Lemma
4.3.1), and its geometric points parametrize (r + 1)-tuples of hyperplanes in P
whose intersection meets the support of Z (see [C-Wa], pp. 693-694 and [Sa],
1.9.4; it follows from this last reference that Ch(1 . 1)(Z ) is the classical Chow
divisor of Z when k is algebraically closed of any characteristic).

The introduction of generalized Chow divisors, for arbitrary d,’s, is due to
Philippon [P1]. When T = Spec(k) and k has characteristic zero, Ch,(Z) is
still irreducible when Z is so, and has a geometric interpretation which gener-
alizes the one for Ch(Z) above: the geometric points of its support parametrize
(r + 1)-tuples of hypersurfaces of degree d,,... ,d, in P whose intersection
meets the support of Z (see the proof of Lemma 4.3.1).

(iii) Suppose that T = Spec(4), where A is a field or a principal ideal
domain. Then E may be trivialized, and we get identifications:
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+di \ _
IP:]P’Z and IL‘[II;(I :ICIIPENd‘ ) 1.
i=0 =0

Therefore, Chy(Z) is the divisor of a multihomogeneous form ®, , with co-

r
efficients in A4 in Y (N ;d") variables (the coefficients of the “generic” homo-
i=0 \ %

geneous polynomials of degree d,, ... , d, in N+1 variables), well defined up
to the multiplication by a unit in A . This form generalizes the classical Chow
form and was considered by Nesterenko [N1] and Philippon [P1] (when Z is
irreducible, it coincides with the “forme éliminante” of [P1], p. 23).

(iv) According to Lemma 4.3.1 (or to (i) above), when Z is an effective cycle

on P flat over S, Chy(Z) is the flat divisor extending the divisor Ch,(Z)

r Vv
in (]'[ ]P’i) . On the other hand, when Z is supported in a closed fiber
i=0 K

n-l(x =P_ of P over S, where it has degree J, one finds:

Chy(Z) =6 dy---d, (H ﬁi) .
=0 Jx

This is easy to prove directly, but also follows from the identity (4.3.6) below.
(v) Consider the case where K = Q, E istrivial, and r = N. Then P = IP’IZV ,

and Chd(IP’g ) is the divisor of a multihomogeneous polynomial with integer co-
efficients R, , whose variables are the coefficients of the “generic” homogeneous
polynomials of degrees d,, ... , d, in N +1 variables. This polynomial, well
defined up to a sign, coincides with the classical resultant of N + 1 homo-
geneous polynomials of degrees d,,, ... ,d, in N + 1 variables ([Me]; [Wa],
Chapter XI). Indeed it is irreducible over Z (by Lemma 4.3.1), and its complex
zeros parametrize (N + 1)-tuples of complex homogeneous polynomials of this
type which have a common zero in ]P’N(C). It immediately follows from (ii)
together with the compatibility of Ch, with base change described in (i) that,
as is classically known, R, is absolutely irreducible and that its set of zeros
in any algebraically closed field k parametrizes (N + 1)-tuples of polynomi-
alsin k[X,, ..., XN]do, L Kk[X, L, XN]dN which have a common zero in

PV (k).
4.3.3. The height of generalized Chow divisors.

4.3.3.1. We keep the notation of 4.3.1 and assume that £ is equipped with an

\% \%
hermitian metric #. We endow E with the dual metric /4, and for any integer

v \ A\
d we endow SY E with the quotient metric of the metric n® on E® ,

V. p—— r
and (S° E)" with the dual metric. We denote by Q, the pull-back to [] P
i=0

\%
of the canonical hermitian quotient bundle on P = IP(Sd" E) and by c¢(Q,) its

1
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r
total Chern class. Given any divisor D on ] ]P’;/ , we define its height to be
i=0

r
h(D) = deg (]’[ aQ,) | D) €R

i=0
it is a normalized variant of the multiheight considered in §3.1 (cf. Lemma 4.3.4
below). We shall also consider the multidegrees of D, defined as:

degi(D) = deg[( (CNO(QO) e cNi-| (Qi—l)cN,-—l(Qi)cN,-H (Qi+1) e CN'(Q,-) | D) € Z.

Let &(1) be the canonical hermitian line bundle of degree one on P = P(E).

Theorem 4.3.2. Let Z € Z,_,(P). The Faltings height of Z (resp. the degree of
Z) and the height (resp. the multidegrees) of its generalized Chow form Chy(Z)
satisfy the following proportionality relations:

(4.3.6) h(Ch,(Z)) (]‘[ d )

and
(4.3.6") deg,(Chy(2)) = H d; | dege(z), O<i<r
J#’t
The last identity is classical when d, = --- = d, =1 (see [C-Wa], pp. 693-

694). It is due in general to Philippon ([P1], p. 15, Remarques, 1)). The
identity (4.3.6) is due to Soulé [So2] and Philippon [P2] when FE is trivial and
dy=--=d =1.

The proorf of Theorem 4.3.2 will be based on Lemma 4.2.1 on correspon-
dences, combined with the following:

Proposition 4.3.3. Let F be an hermitian vector bundle on S, & (1), the
canonical hermitian line bundle on P(F), Qv the canonical hermitian quo-
tient bundle on P(F"), and I the incidence correspondence between P(F) and
P(F"). Then the following equality holds in CH *(]P‘(F No:

r (E@Fv)) = 6(@;(1)) .
Proof of Proposition 4.3.3. Consider the commutative diagram
P(F) x P(F")
P(F) le P(FY)

a™N, /ﬂ
S,

the canonical exact sequences
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0—O(-1)— a'F — Qp—0

and
0— Gpv(~1) = BF - Qpv — 0

on P(F) and P(F") respectively, and the dual exact sequence on P(F)

0—+Q;—->a*FV - O(1) — 0.

The divisor I in P(F) x ¢ P(F V) is defined by the vanishing of the composite
map

(4.3.7) g (B (1)) = p"(FY) = £ (@.(1)).

The homology of the complex of length two obtained by restricting the sequence
(4.3.7)to I is

H = coker (g* (G, (-1)) = £7(0p))
= ker (g"(Qpv) = 17 (Gx(1))).-

It follows that we may identify f : I — P(F) with the projective bundle
P(f *(Q;)) — P(F) and H with the quotient bundle on this projective bun-
dle. Furthermore, we have an exact sequence on I :

£:0— H— g (Qp) = [ (Gp(1) — 0.

We equip all bundles with the metric induced by F and we let ¢(&) be the
total Bott-Chern class of & for these choices of metrics. We get from (2.1.4)
and the projection formula

I' (2@p) = fir.8" €Qpv)
= Ji. (22 (1 ZD)) - a (4. 24)
= i (@) € (FD) - a (£, &) .
Since the rank of H and the relative dimension of f, have the same value

rank (F') — 2, the class fI I+ (¢(H)) lies in C/'}TIO(]P’(F )) = Z. It is equal to one as
can be checked on the generic fiber. Furthermore ¢(&) is zero in degrees bigger
than rank (F)—2, therefore f,(c(&)) is a smooth function on P(F)(C). For any
embedding o : K — C, its restriction to P(F)_(C) is invariant under the action

of the unitary group of FU , and therefore must be a constant 4 € R. Indeed,
the short exact sequence of hermitian holomorphic vector bundles on 7 (C)

defined by & is U (E)-equivariant, as well as the map f : I (C) — P(F),(C).
The function o — A, defines an element A € AOO(SR) , and we have

r (E@Fv)) = 6(@) —aa(d).
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To prove that a(d) = 0 in CH 1(S)Q , choose a line bundle L contained in
F and let Z = P(L) € Z,(P(F)) be the corresponding cycle in P(F). From
Lemma 4.2.1 we get

@@ | 1(2) = (¢(FMD);) —a’ad) | Z) =&L") - a(d).

On the other hand, since I (Z) is the irreducible cycle P((F/L)") on P(F"),
from the proof of Proposition 4.1.2, (ii) we know that the component of degree

oneof (6(Qv) | 1,(Z)) in CH (S)g isequalto &,(F")-¢,(F/I)") =,(L").
It follows that a(A)=0. O

Proof of Theorem 4.3.2. Using successively Lemma 4.2.1, (2.3.13), (2.3.14),

Proposition 4.3.3 and Proposition 2.3.1, (iii), we get

h(Ch,(Z)) = deg (H a@Q,) | r;vJZ))

i=0

where fi is the canonical hermitian line bundle of degree one on P,. The
Veronese embedding v; : P — P, is such that v;(L,) is canonically isomorphic

to @(d;). Moreover, Chern classes of line bundles vanish in degree > 1.
Therefore we get:

h(Chy(Z)) = deg (H 2, (ﬁ(di)) | z)
i=0

- Hd,.&éz(e, (é’(l)) ;z)
=0
lr
= [l 4. tz,)(2),
i=0
which proves (i). To compute deg,(Z) we use Lemma 4.2.1 to get

deg;(Chy(2)) = degy (T"(2) | v,(2)) ,

where

a = 5Ni_1@_,-) H E]\Ij(@j)-

i#i
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From Proposition 4.3.3 we know that

I; (ENJ(QJ)) = El(zj)

and
Iz* (6N,—1(—Q_;)) =1
Therefore
I'(a) =[] ()
i=0
and
,
deg,(Chy(Z)) = degy | v Hcl(LJ) | Z
=0 :

i

(H d)).degy(Z). O

J#

4.3.4. The height of generalized Chow forms.

4.3.4.1. We keep the notations of the previous subsection. Let Hi be the pull-

— \%
back to f[ ]\I/"i of the canonical hermitian line bundle é’s '“}'5(1) on P, and
j=0
B =c(M)).
Lemma 4.3.4. For any (r + 1)-tuple of integers (J,, ... , 6,) and any nonzero
r v
rational section s of 'él M? % on [1 P,, the following formulae hold.
i= i=0
(4.3.8)
—~ (17 2 A7 N S e
h(div(s)) = deg (]’[ (M) | div(s)) +Y.6; (deg S“E —[K :Q] aN’__1>
i=0 i=0
(4.3.9)
= 3 / . 1og||s||.ﬁufvf+%[1<:@]§r:5i (1+%+~-+Nl~).
0: KoC (,13, Pi) © i=0 i=0 i

Proof. According to (4.1.7), we have:

A\
~ ~ 55 N, ~ 55 \N,—1 %~ d. == N.—1
&y (@) =6,(M)" +¢,(M)" " 2", (S' E) ~2a(oy_, 4" )
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Therefore

From (2.3.8), we get:

(4.3.10)
r r
deg (H El(ﬁi)Ni |diV(S)) = / oy log||s||.H ﬂﬁv"
o r - r r A\
+deg< e )" <4® H?a‘) l ]P’l)
i=0 i=0 i=0

i=0 i=0
r N+1 v
(4.3.11) = ;ai deg (c1 ﬁsd”via)) ]P’l.)
r e d i
=>4 (—deg (S"E +[K:Q] 0N>
i=0

Equality (4.3.9) follows from (4.3.8), (4.3.10), and (4.3.11). O

Let ZeZ, +1(]P’(E)) be a nonzero effective cycle, and let, for i =0, ... ,r,

r
6;=|114;| deex Z.
T
According to (4.3.6), the divisor Chy(Z), is the divisor of a nonzero multiho-
mogeneous form @, Z, in

r \"
0 v ro ® rod ol Y
H P,:; M ]~ S{S* E .
(,I}) iK i=0 l,K) i=0 ( K)
This generalized Chow form ®, 2 of Z, may be seen as a rational section of

r v rov
® M over [T P,. As Ch,(Z) and div® are divisors in [] P. which
2o i d 4,7, o
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coincide on the generic fiber, we can write

Chy(Z) = div(®, , )~ 3 n, (H f»,.) ,
14 i=0

F"

where p runs over the closed points of S, and where n p is an integer, which
vanishes for almost every p.
If we combine this relation with (4.3.9), we get

(4.3.12)
h(Ch (Z)) = C log || n_logN
a a:;c/(gri)a( || danOu - 2n g,
+—(Hd) Z (1+;+ Ni).[K:Q] deg, Z
j= 0 i

This formula is especially interesting in the following situations:

o The vector bundle E is the trivial vector bundle #&V+D
nonzero effective cycle flat over S ; then D, z, is a polynomial

,and Z is a

(4.3.13) > a .U
|1,|=,
in variables (U g)envst 5 oo 5 (U, g)envst Which represent the coefficients
| K|=d( |Ki=d,
of the “generic” homoggancous polynomlals of degree d,,... ,d in N +1
variables, and since Ch,(Z) is a flat divisor (Lemma 4.3.1), the multiplicities
n, are given by

(4.3.14) n, = min v (a ).

14
(TIRT

—a&(N
In partlcular if E is the trivial hermitian vector bundle & s( *h and d=

(1,...,1), the two first term in the right-hand side of (4.3.12) gives the height
of Z as defined in [P2].

e The class number of K is one (e.g., K = Q); then, as observed in 4.3.2,
(iii) there exists a generalized Chow form over &y , i.e., a nonzero element (Dd’ 7z
of

ofyT Y T ®6, rob fod L\
H [[]P; © M™ :_®0S'(S'E)

i=0 =
such that

Chy(Z) = div(®y ,),
and (4.3.12) holds with ®; , in place of <I>d,ZK and n,= 0.
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4.3.4.2. We keep the notations of the previous paragraphs. For any family

N =(N,),. x_c of continuous functions
rob od L
N6 5" (s F) —,
i=0 a
such that
N,(v)=0&v=0,
N,(Av) = |A] N, (v),
and
N"(E) = Ng(v) H
we may define
hy(Chy(Z)):= Y logN,(® Zn log N,
g: K—C

(by the product formula it does not depend on the ch01ce of @, z, ).
The choice of N is equivalent to the choice of a continuous F_ -invariant

vV
metric |.|| on the line bundle #(1) on P (é N (Sd" E> ) ; namely, the

dual metric ||.||" on &(—1) is such that for any v e® 5% (S E) - {0},
g

i20
the norm |jv||” of v seen as an element of the fiber &(—1 )[v] is N_(v). When
Z is flat over S, hy(Chy(Z)) is nothing else than the height of the point

e er (g5 (55) )

defined by the hermitian line bundle (Z(1), ||.1]).

There are several natural choices for the family N :

e For any p € [0, oo], we can consider N, = {l |]a’p)6:K‘_,C , where ||, ,
is the (quasi-)norm on

és(s E) ~H° Hn»(s E)'ﬁ(& s)

8 ; 0> --- >0,

defined in 1.4.3, Remark (i) (as before, one uses the hermitian structure on
v

sS4 E , deduced from the one on E). We shall write 4, instead of hy

4

A\
A\
e The hermitian structure on E defines hermitian structures on (Sd" E )
AV

V&S,
(see beginning of 4.3.3.1), hence on (Sd" E ) , and, by considering the quo-

\
\'
tient metrics, on N (Sd" E> . Finally, we get an hermitian structure on
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v \%2
'éo s (Sd*' E> , and we can take as N the family (|| ||,)
I=!

tian norms defined by this hermitian structure. The height /,, attached to this
family will be denoted Ay, ; see also, in the case r = 1, [B-B-E-M].

e Let & = (e, ..., ey) be any basis of E,. From %, we get the dual

s k—c Of hermi-

\ N4
basis (f, ..., fy) of Ey,and a basis of s E, , by forming the monomial

v \
I g , I| = d;; then, we consider the dual basis—it is a basis of (Sd" E K) —

v \
and finally the basis (®,) of 'éo s% (Sdi E K) , obtained by taking products
1=

of monomials in the elements of these dual bases. We may consider the family

of norms Ny = (Ng ), . x_c defined by
Ng o (Zax (Dz,a) = }_, |a].-
1 1
For instance, when E, = KM and & is the standard basis, defined by

v \
e = (éij)05 j<n» then éo S (Sd" E K) is the space of multihomogeneous

polynomials of the form (4.3.13), the basis attached to % is formed by the
monomials Uy --- U (|I,| = 4,), and

I 1
(4.3.15) Ng,a( >oa Uo°“'Ur’)= > lay gl
Iy, I, .

We shall write h instead of A Ny -
The heights hp , h hg may be compared as follows:

Proposition 4.3.5. Let Z be any effective cycle in Z, (P(E)).
(i) For any p €[0, o], we have:

Herm °

(4.3.16) ho(Chy(Z)) < h,(Chy(Z)) < h_(Chy(Z)).

Moreover:
r
di
i=0

-Z%<1+%+...+%).[K:@] degy (Z).
i=0 ! l

(i) The following equality holds:

hoo(Chy(Z)) < hy(Chy(Z)) + 1 (
(4.3.17)

(43.18) hyyn(Chy(2)) = hy(Chy(Z)) + 5 [K : Q] degy(Z) )" log (N,-; 6,-) .
i=0 [
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(iii) For any (d, n) € N* x N*, let

‘. n
mid, n)=mn 7

and
I
m.

M, n)= Z

IEN®
|1}=d

Then, for any basis & of E, which is orthonormal in Ea foreach ¢ : K — C,

we have:
(Hd) Z—logm(d N +1).[K : Qldeg,(Z)
(4.3.19) < h g(c-lg( Z)) = hyge(Chy(2))
<= (]‘[ d) X_;—}logM(di, N + 1).[K : Q]deg, (Z).

Inequalities (4.3.16) and (4.3.17) follow from 1.4.3, (ii), and Corollary 1.4.3.
Equality (4.3.18) follows from the relations:

A& —ﬁ (N”) 2.

By tensor product, this is a consequence of the following lemma (compare [G-

S6], p.537):

Lemma 4.3.6. Let V be any hermitian vector space of dimension N + 1. For
v >

any d € N, the norm ||| on sy defined by the hermitian structure on S° V

and the norm ||. ||, on s? I\§: H(P(V); @(d)) defined in 1.4.3, (ii), are related

by
N+d
nx||2=( * ) ]2

Proof of Lemma 4.3.6. The irreducibility of the action of the unitary group
UWV) on S" V implies the existence of 4 € R such that, for any x € S”

2 2
(4.3.20) Ix]” = A [Ix]l5.

To compute the constant A, we may assume that V is c¥*! endowed with the
standard hermitian scalar product and use the notations of 1.4.3. According to

(4.3.20), we have for every multi-index I € N'*' of length d:

I I_I
m:l/szmz z dv.
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’ d
2
A:;/SZNH (Z|zi| ) dv
i=0

d! I I
= Z ﬂ/sumz 7 dv

TeNN+
||=d

= Y 1=(N;d). O

(IIENN“
1|=d

Therefore

To prove (4.3.19), we need to introduce a few notations. If & = (e, ... , €,)
is a basis of a finite-dimensional complex vector space V', we denote by || || 5
the norm on V defined by

n

= Il

i=1

n
in €;
i=1

\ \
we denote by # the dual basis of E, and, for any d € N*, by S’ % the basis
of SYE formed by monomials in the ¢,’s. If %, = (el1 s een s el )y oo , B, =

ny

(ef yeee s efk) are bases of complex vector spaces V|, ..., V, , we denote by
B,®--®F, thebasis (¢} @ @el)icycn of V;®...0V,. Finally, if ¥

. . - - “, . ISIkS"k .
is any finite-dimensional hermitian vector space and % a basis of V', we let

2
m(V, %)= min Ixliz
xeV—-{0} (x, x)

and

2
MV, %)= max —”ic—“@—
xev—{0} (X, X)

Lemma 4.3.7. Let & = (e, ... ,e,) be any orthogonal basis of an hermitian
vector space V .

(i) We have:
— . -1
(4.3.21) m(V, %) =min ((e,-,eﬁ )
and
(4.3.22) MTV,B)= Y (e, e) .
1<i<n

(i) Forany d e N*, S°@& is an orthogonal basis of S° V , and we have

(4.3.23) m(S* V,8°®B) = m(V, B)*
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and

(4.3.24) MS TV, 8°®B)=MT , ®B)".

(iii) If % is an orthonormal basis of V , then for any d € N*, (Sd %’)

\
\%
is an orthogonal basis of (Sd 7) , and

\' v [
(4.3.25) m ((s” '17) ,(8° é)v) = m(d, n) :=min %
1]=d )
and
AR ) I!
(4.3.26) M|SV] ,(8°®) |=Md,n) = Z‘ 5
|$[]1d

(iv) If B' is any orthogonal basis of a finite-dimensional hermitian vector
space V', then B @ &' is an orthogonal basis of V@V, and we have

mVeV , BB =mTV,Z)m¥V , B
and o . .
MVRV , BBY=MV,B)YMV ,%.
Proof of Lemma 4.3.7. Equations (4.3.21) and (4.3.22) follow respectively from

the triangle and Cauchy-Schwarz inequalities. Assertion (iv) immediately fol-
lows from (4.3.21) and (4.3.22).

To prove (ii), observe that S°% = (¢') ,cxn and that, if we let o, = (e, e;),

h \=d
then

!
(4.3.27) (', ey = % o

As 4 >1 and § =1 if I takes the form (d J;)), ., » this implies (4.3.23).
Moreover, using the multinomial formula, we get:

n d
Yl ey = f—: al= (Za;‘) = M7 ,B)",

IEN" IEN" i=1
|I|=d |I}=d

that is, (4.3.24).
\ \
Let us prove assertion (iii). Let &= (f,, ..., f,); then S B= (fl),e,.n ,

|f]=d

\2
and (Sd &Y = (E;) exn , where E; is defined by

|I|=d
El(fJ) = 51,1-
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v

A\ 4
The bases &, s’ @ , and (Sd %)" are orthogonal. Moreover, the equality

above shows that
1

(ELEN ' =

\
and, since .% is orthonormal,
=
This proves (4.3.25) and (4.3.26). O

From Lemma 4.3.7, we get that, under the hypotheses of (iii),

Hm(d,,N+
i=0 H H

This implies (4.3.19).

<HMd N+ 1)°

4.3.4.3. Finally, by combining the results of the preceding subsections, we can
prove:

Theorem 4.3.8. For any effective cycle Z € Z,__ (P(E)), we have:

hy(Chy(2)) (H d) Zmd % (g di)

.Zdl(1+%+-- L [K : Qldegy(Z)

i=0 ¢

(4.3.28)

and

(4.3.29) Ngerm(Chy(2)) = (H dl.) .hW(Z) +[K : Qldegy(Z) 4(Z),

i=0

where

(4.3.30) ley(Z (H d) Z — log(N +1).

—0

Moreover, for any basis & of E, which is orthonormal in Fa for each embed-
ding g : K — C, we have:

(4.3.31) hg (Hd) Z) +[K : Qldegy(Z) ny(Z2),
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where

__(Hd> [(r+1 log(N+l)+Z log(N+1)

i=0
(4.3.32)

<ny(2) < (H d,.) > % log(N, + 1).

i=0 i=0

Observe that

N+1= (N;df) <@+

1

Therefore we get the following upper bound for the right-hand side in (4.3.30)
and (4.3.32):

r r

(4333 4.3 Tloa(N+ <N, (H dl.) Z -log(d + 1)
i i=0

i=0 i=0

Proof of Theorem 4.3.8. Equation (4.3.28) follows from (4.3.5), (4.3.12), and
the definition of 4.
If we combine (4.3.28) and Proposition 4.3.5, we get:

Pigerm(C )—(Hd) 7 Z) + K : Q1 §(2),

where
(4.3.34)

1 r r 1 1 r N.+6

- 5(&4) l_zoz(1+§+~-- l)degK( ) 2§1 ( 5 )
. 1< N, +9,

< &g2)<5 i=010g< 5 ) ,
and
(4.3.35) hg(Chy(Z)) =] d- hzy(Z) + K : Q1 7,(2),

i=0
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N —
—
=,
+ ~——
M~
o
/\
[a ¥
®
~
N
ot
Q
oe
3
Q,
=
+
—
|
ot
|
|
|
|
2|~
g
N—

- 1+ 1
gnd(Z)gz(Hdi) , Zdeg,((Z) logM(d,, N+1)

Inequality (4.3.30) (resp. (4.3.32)) follows from (4.3.34) (resp. (4.3.36))
together with the estimates

1 1
log]\’i§1+5+-~-+ﬁglog(]\7i+l),

i

N.+ 6. s,
( 15‘ ’> <N+ 17,
(4.3.37) m(d,, N+1)>(N+1)"%
and
(4.3.38) M(d,, N+1) <N,
Notice that (4.3.37) follows from the multinomial identity
d)!
Y =N+,
I
IENNJrl
11=d;

and (4.3.38) follows from the fact that there are N, terms in the sum defining
M(d;, N + 1), each of them being at most one. O

4.3.4.4. If we apply Theorem 4.3.8 to the case where K = Q, E is the trivial
hermitian vector bundle ?;B;:Z(J'zl)) ,r=N,and Z = Pg , we get the formula
for the size of the resultant R; of N+ 1 homogeneous polynomials of degrees
dy,...,dy in N+ 1 variables (cf. 4.3.2, (v)). Namely, using the expression

(3.3.2) for the Faltings height of Pg , Theorem 4.3.8, and (4.3.33), we get

(43.39)  log|R,ll, = (ﬁ) di) : ( i d ( T NL)) ’

[

(4.3.40)

N
10g || Ryl pterm — (H di) -On
i=0

1 N Mo
<3 N(Hd,.) .Zzlog(d,.+1),

i=0
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and, if % is the standard basis of QN+1 ,

(4.3.41) log N ( d)<(Hd) <0N+NZ logd+1)>

=0
Observe that ||R,||, may be written concretely as follows: The resultant R,
is a multihomogeneous polynomial in

ClXy, - s Xyly XX CLg, o, Xyl

let S*M7! be the unit sphere in C[X,, ... , X,]; equipped with the hermitian

norm |.|| defined by
2

1!
YU x| =3 Slul

IENN+I 1enN+l !

1=d; i=d;
and let dv; be the unitary invariant probability measure on s~ Then:
log|[Ryll, = /I’_VISZN,.A‘ log|Ry| dvy---dvy.
i=0
In particular, when d, = --- =d, = 1, R isjust the determinant of size N+1,
and (4.3.39) reads
2
/(Szmu)ml log ‘det(xu o<i, 1<N’ dv
(4.3.42) : )
=20y —(N+1) <1+§+-~+N) =-—N,
aN+1\ N
where (S ) denotes the product of spheres of equations Z [x | =1,

0 < j < N,and dv the product of the U(N + 1)-invariant probablhty measures
on these spheres.

Recall also that the norm ||R,||, which appears in (4.3.41) is nothing else
than the sum of the absolute values of the coefficient of R, (cf. (4.3.15)). An
estimate of this norm has already been obtained by Wiistholz ([Wu], Proposition
7) by using Macaulay’s construction of R; as g.c.d. of generalized Sylvester’s
determinants; namely, he proves that

]+ 1 jd|+1
(4.3.43) log |Rll z < ( N + log N !,

where |d| = d;+---+d, . When the d,’s are bounded and N goes to infinity,
(4.3.41) is better than (4.3.43). On the other hand, when N is fixed and d goes

to infinity, the right-hand side of (4.3.43) grows like Ile log|d|, and therefore
(4.3.43) improves on (4.3.41). Observe also that, when N is fixed, log||Ry]|,

and log ||R,|l4.m are of the same order as IdIN+1

the ratios - ” and Ll take “large” values.
Mg

,hence R, isa form on which

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



HEIGHTS OF PROJECTIVE VARIETIES 993

4.3.4.5. The computation of the height of Chow forms allows one to give an-
other proof of the Finiteness Theorem 3.2.5. .
Recall that to prove Theorem 3.2.5 it is enough to prove that when E is the

.. .. —®(N+1 . .
trivial hermitian vector bundle & s( * ), then a set of flat effective cycles in

P(E) = IP’éV of bounded degrees and heights is finite. Consider the morphism

Py =P} x, S—P},
defined as the projection onto the first factor. The map
N N
fo=2Z.(Pg)— Z.(Py),

restricted to effective cycles, is finite to one. Together with the relations (3.1.7)
and (3.1.9), this shows that to prove the required finiteness we may assume that
S = Spec(Z) .

Theorem 4.3.8 shows that the Chow form &, := <I>(1 .1,z over Z of a flat
effective cycle Z in Z, +1(11”{2v ) of degree & is a multihomogeneous polynomial
with Z-coeflicients of multidegree (J, ... , ), the norm of which is bounded
in terms of J and the height of Z . Therefore, the set of possible ®, when the
degree and the height of Z are bounded is finite. As a flat cycle is determined
by its Chow form, this completes the proof of Theorem 3.2.5.

Observe that this proof, contrary to the one in 3.2.4, does not rely on the
special case p = 1 of Theorem 3.2.5, that is, the finiteness of effective O-cycles
in ]P’g of bounded degree and height. In fact, when p = 1, our last proof
coincides with the classical proof of this fact (see [No], p. 503 and [We2}, p.
426; the homogeneous polynomials ¢ and F in [loc. cit.] are nothing else
than Chow forms for O-cycles in Pg , whose definition goes back at last to
[Kro], §24).

It may be worth noting that the close relation between Chow forms and
heights was already advocated in 1950 by Weil ([Wel], p. 96), who claimed
that it should be interpreted in a yet to be developed “geometry over integers”,
which would realize the program initiated by Kronecker’s Grundziige [Kro].

5. POSITIVITY OF THE PROJECTIVE HEIGHT
AND ARITHMETIC BEZOUT THEOREM

5.1, The basic inequality. Let ]P’N((C) = IP’(CN“) be the N-dimensional com-
plex projective space, @(1) the canonical line bundle of degree one on IPN((C)

with its standard metric, u = ¢, (ﬁ (1)) the Fubini-Study Kihler form, W C

cVt! 4 complex linear subspace of dimension g+ 1 (with 0 < g < N), and

P(W) C i (C) its projective space. Denote by A the Levine form of P(W)

in ]P’fcv (see 1.2.3, Example (v)), H(A) its harmonic projection for the standard
Kihler structure, and

(5.1.1) 8wy = A — H(A).
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Observe that gy, is a p-normalized Green current for P(W). Let W™ be

the orthogonal complement of W in C¥'!

and

(for the standard scalar product)

[N -PW") - B(W)

the map induced by the orthogonal projection of C onto W . Finally,
denote by deg(X) the degree of an algebraic cycle in pY (©).

N+1

Propesition 5.1.1. Let p be an integer such that 0 <p < N and p+q > N, and
let X € ZP(PN(C)) be an effective cycle on PN(C) which meets P(W) properly.
Then the following inequality holds:

1 1-N
(5.1.2) 3 /PN(C) ang(W)ﬂp+q+ > deg(X)(0,+0, -0y —0,, . )

Eguality occurs if and only if there is an effective cycle Y Cc P(W) such that
X =71(Y).
Observe that, as any hermitian vector space V' of dimension N+1 is isomor-

phic to ch+! equipped with the standard metric, this proposition immediately
extends to the situation where P" (C) is replaced by P(V).

Proof. We may assume that X is irreducible. For any 4 € C*, define an
automorphism ¢, of i (C) by sending the classof vow, ve W, we wt,
to the class of Avew . Let & C A' (C) x Py (C) be the Zariski closure of the set
of points (4, ¢,(x)) € C* x i (C), x € X(C). It ¢ is the standard coordinate
of the affine line A\I(C) ,and 4 € C, the cycle on A' (C) x i (C) defined by the
divisor on @ of the restriction of the function ¢ — A takes the form {1} x ®,

for some effective cycle @, on Py (©).
When 4 # 0, ®, is the irreducible cycle ¢,(X). Its specialization &, when

A — 0 coincides with the Zariski closure f*(X -P(W)) of the inverse image
(X -P(W)) in PY(C) — P(W™') of the intersection cycle of X and P(W).
Indeed, PV (C) — ]P’(Wl) may be canonically identified with the total space of
the vector bundle W' @ @ (1) on P(W) (consider the map which sends the

class [vew], (v,w) € W x W, 1o ([v],A), where A: Cv — W' is the
linear map defined by A(v) = w). Then f gets identified with the projection

map W @& (l)u,(W) — P(W) and ¢, with the multiplication by 27! in the
fibers of W' @@ (1)ipgwy - The description of X - P(W) using deformation to
the normal cone of P(W) shows that

f(X-PW)) = Dy p¥(c)_p )

Moreover, since dim®, = p > dim P( Wl) =N-gq—1, we have

@, = q)OIPN(C)—P(W‘L)'
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Let pr, : A'(C) x PY(C) — A'(C) and pr, : A'(C) x PY(C) — PV(C) be the
two projections. For any A € C define

p+g+1-N

w(4) = /P”(C) atbz'gP(W)'”

According to Proposition 1.5.1, the function ¥ is continuous and the associated
distribution [y] coincides with

pri. (%0 213 (se0n) #7777

We shall now prove that, for all A € C,

(5.1.3) w(4) > w(0).

Indeed, we deduce from the relation dd¢ &ew) + Opw) = ¥ that

b

c * * N—g
dd (% pr, (glP(W))> + Oguprs (p(w)) = 99 PT, (K )

hence
dd* (W) = pry, (8 o5 (1)) = Py, (Sgup ey PT3 (W77 T)).
Since ®@ - pry(P(W)) = pry(X - B(W)), we have

r»x (ﬂp+q+1—N))

p+q+1—-N
pry, (5¢-pr;(P<W» pry ) =0

=PIy, Pr, (5X-1P(W) H

for degree reasons. Therefore, the real current of type (1, 1)

(5.1.4) dd* (1)) = pr,, (6 pT; ("))

is positive on the complex line, in the sense that its integral on a positive func-
tion in &(C) is positive.

On the other hand, when |A| = 1 the automorphism ¢, is unitary. Since
it fixes P(W), we see that ¢; 8pw) = Erpowy > hence, for any ' € C, y(id) =
w(A'). In other words, w(X) is a continuous function of the norm || and we
may find a continuous real function y : R — R such that

w(4) = x(log|A]) when Ae€C",

and y(0) -—-)ﬂmoo x(x). Since dd‘[w] is positive, the second derivative of x is
a nonnegative distribution. It follows that y is convex, and therefore bounded
below by w(0). This proves (5.1.3).

To prove the inequality (5.1.2), it is now enough to show that y(0)/2 coin-
cides with the right-hand side of (5.1.2). Indeed, by the very definition of v , its
left-hand side coincides with y(1)/2 and, according to (5.1.3), w(1) > w(0).
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Let b:P — PY(C) be the blow up of P¥(C) along P(W™) and let f:P —
P(W) be the map extending the projection ]P’N((C) - Wl) — P(W). We get

5 p+g+1—-N
W(O) = X P(W)) gP(V) ,u

p+q+1—-N
/‘5 “(X-P(W)) (glP(W) H )
+g+1-N
_/p()”‘W iy (g“’(W>”pq )

The unitary group U(W) of W for the induced metric acts upon ]P’N((C) by
the decomposmon c¥! — w @ W™ . This action extends to P, commutes
with b and f, fixes 8wy and p, and therefore f b* (gP(W) u””H”N) is
U(W)-invariant, hence harmomc on P(W). If u, is the restriction of u to

P(W) we have
ib* (gP(W) ﬂp+q+1—N) _ aﬂ;;;-q—N ’
where o is a real constant depending only on p, ¢, and N . It follows that
¥ (0) = a deg(X).

To compute « let W' C W be a subspace of dimension p+ g +1— N and
X=PW' & WJ') . In that case @, = X, therefore

‘//(0) =a= / , L gP(W) u
P oWl

The restriction of the Levine form A of P(W) to P(W' & W) is the Levine
form A, of ]P(W’) Therefore, by (1.4.4), we get

p+q+1 N 1 g+1
Ap
2/W®WJ‘ 2 PY(C)

= (0, =0y g~ On_1-g) ~ (O —Oy_y_,—0,)

=O'p+0'q—O'N ap+q N*

p+q+1-N

This completes the proof of (5.1.2).
When there exists a cycle Y in P(W) such that X = f*(Y), we have, for
any AeC":

¢1(X ) =
Therefore ®, = ®,, w(1) = y(0), and (5.1.2) becomes an equality.
Conversely, when (5.1.2) is an equality, the convex function x satisfies

Jim - x(x) = 2(0),

and hence is constant on R_ . Therefore, y is constant on the disk D ={z €
C, |z| £ 1}, and, according to (5.1.4),

o]

pr,, (6¢.pr; ,upﬂ) =0 on D.
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It follows that

(5.1.5) / o015 7 = 0.
DxPY(C)

Let V be the regular locus of |®| N (5 x PV (C)). Since @ is effective and

1t positive, (5.1.5) implies that

(5.1.6) pr;W =0

As the (1, 1) form u is strictly positive, the restriction of uf * 1o any (p+1)-
dimensional complex submanifold of pY (C) is a strictly positive volume form,
and (5.1.6) shows that the map pr, : V — IPN((C) has everywhere rank smaller

than p + 1. It follows that V' may be written lo) xV,, where ¥, is some

(locally closed) submanifold of PV (C). This 1mpl1es that the (analytic) cycle
onN (D xPY (C)) in D x PV (C) may be written D x®, for some cycle @, in

i (C). Therefore, ®, does not depend on A eD , and finally:
O =@,=f(X-P(W)). O
Remarks. (i) Inequality (5.1.2) is strictly stronger than the inequality

1 1-N 1 1-N
5 [ v . Ox &w) TR ) / Sy HMW™
(5.1.7) P'(©)

= deg(X) (aq +Oy 41— O'N)

which follows from the pointwise inequality A > 0.

(ii) Clearly, inequality (5.1.7) still holds when p + ¢ = N — | provided
X € Zp(]P’N((C)) is effective and meets P(W) properly ( i.e., if |X]| and P(W)
do not meet). This shows that (5.1.2) still holds when p+49g = N - 1. As
AlP(WL) = 0, we see that, when p+q = N — 1, (5.1.2) or (5.1.7) become
equalities when X is a multiple of P( WL) . Moreover, it immediately follows
from the expression (1.2.13) for A and the strict positivity of z that this occurs
only in this case.

(iii) The equality

/pN(c) Oeont) Beon =2 (U‘I T ON-g-1 7 GN)

holds in fact for any u-normalized Green form for P(}). This follows from
Stokes’s formula, together with the fact that the difference of two u-normalized
Green forms for P(W) may be written du + dv, where ¥ and v are currents

C” on IP’N(C) —P(W). If g is any positive Green form for P(¥") such that
dd® g + 0y =" °,
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this equality applied to

1 N—g-1
Bowy =8 —H(g) =g~ (/PN(C)gﬂ‘”) we

proves that

g+1
gu =/ Opwty (& — &) 220y —0,—05_. 1) >
/P”(C) Y () P(W ) B(W) (N q N—gq 1)

as was announced in 1.4.3, (iv).
5.2. Lower bounds for the projective height.

5.2.1. Let E be an hermitian vector bundle over S of rank N + 1, where

N >1,andlet Kt (resp. hj ) be the associated projective height (resp. Faltings
height) of cycles in P(E) (cf. 4.1.1 and 3.1.2.3).
The following proposition is a first application of the basic inequality (5.1.2).

Proposition 5.2.1. Let F c E be any subbundle of rank N in E , equipped with
the induced metric, and let Z be a cycle on P(E) of dimension p € {1,... , N+
1} such that Zy is effective and meets P(F), properly in P(E), . For any

representative Z.P(F) of the intersection class [Z].[P(F)] € C H[J;Trf;(’})(]?(E ),

we have:
(5.2.1) Wz BF) <hE(Z) if p>2;
(5.2.2) W (Z.B(F)) < hE(Z) — deg, Z.deg F  if p=1.

Equality holds in (5.2.1) (resp. in (5.2.2)) if and only if, for any embedding
o:K — C, Z_ is the inverse image of a cycle on P(F), by the orthogonal
projection P(E)_ — P(F), defined using the hermitian metric on E_ (resp. a

multiple of the center P(F UL) of this projection).
Proof. Using (4.1.2), (4.1.2), and the equality

deg, Z =degy(Z.P(F))
if p > 2, we see that (5.2.1) and (5.2.2) are equivalent to

(5.2.3)
he(Z.P(F)) < hp(Z) + degy Z. [Ee\g(E) — deg(F) +[K : Ql(a,_, — ap_l)] .

As P(F) is a projective bundle over S, the map
CH'(S)®Z — CH'(P(E))
x®k - (x)+c (@ (k)

is an isomorphism. Therefore, if # denotes the order of CH ! (S) (which is
nothing else than the ideal class group of K ), there exists s € H O(IP’(E ); Og(h))
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such that divs = h P(F). Let g = c, (@’E(l)) . Formula (3.2.2) for the height
of a divisor shows that

(5.2.4) h(Z.B(F)) = hp(Z) + B~ / log s]l. 6, 4"
P(E)(C)
and
(5.2.5) hy (B(F)) = h, (B(E)) + ™" / log 1s]| u".
P(E)(C)

On the other hand, for any embedding o : K — C, the function

-1 -2 -1 -2 N
W oglsI = [ ™ oglll
B(E),(C)

on P(E)_(C) is the p-normalized Green form for P(F), . Therefore we get
from Proposition 5.1.1 applied to X = Z

-1 —1 -1 -1 -1 N
h logls| ™ 8, u°~ —deg, Z.h log|ls| ™~ &
(5.26) P(E),(©) P(E), (C)
> deg, Z. (ap_l +oy_ —0y— Up_z) ;

indeed
/ o, w= deg(Z,) = degy(Z).
P(E),(C)

Inequality (5.2.3) follows from (5.2.4)-(5.2.6), together with the following
consequence of formula (4.1.4) for the Faltings height of a projective space:

he(B(F)) — hp(P(E)) = deg E —deg F +[K : Q] (9y_, —0,). O

Proposition 5.2.2. Let F,, ..., Fy , besubbundles of rank N in E such that
! F, « =0, and, for any nonempty subset I C {1, ... , N+ 1}, let F,cE

i=1

be the subbundle ‘21 F, of E (i.e, the bundle attached to the intersection of the
H

O-submodules corresponding to F;, i € I), equipped with the induced metric.
Then, for any effective cycle Z € Z (P(E)),

(5.2.7) WE(Z)>0 ifp=0;
E . —_
(5.2.8) h™(Z) > degy Z. Ic{lg_xfm} deg F, ifpef{l,..., N+1}

#l=p

Proof. First observe that Proposition 4.1.2, (i) and formula (3.1.3) imply that

(5.29) for any nonzero effective cycle Z supported by closed fibers in P(E),
WE(Z) = hp(Z) > 0.
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This proves (5.2.7) and shows that, to establish (2.2.8), we may assume that

Z is irreducible and flat over S. Moreover, as h° (P(E)) = 0, (5.2.8) clearly
holds when p = N + 1, and we may assume that p € {1, ... , N}.
Let Z € Z,(P(E)) be such a cycle. As

N+l ,
Z #@ and [ P(F)g=0,
i=1
there exists i, € {I,... , N + 1} such that Z, is not contained in ]P’(Fi)K.

Then Z meets P(F i) properly, and we can apply Proposition 5.2.1.
Therefore, if p =1, we get

KE(z) > hFo(z. P(F,)) + degy (Z).deg F, .

As Z.P(F i°) is an effective 0-cycle, hFo (Z. lP’(FI.O)) is nonnegative, and (5.2.8)
follows when p=1.
If p > 2, we obtain

(5.2.10) H*(2) > W0 (Z.B(F, ).
Using (5.2.10), inequality (5.2.8) follows by induction on p. Indeed, Z. ]P’(FI.O)
is an effective cycle of dimension p—1 in lP’(Fio) ,and (5.2.8) appliedto p—1,

Fio’ Z.P(F,), (FionFi)o§%~ in place of p, E, Z, (F))y,cy reads:

)

(5.2.11) ho(Z. IP’(I’iO)) > deg, (Z. ]P’(Fio)) l’c{xl,I}f,‘NH} deg FI,U{iO} ;
#I'=p—1
'3y

since

degy (Z.B(F, )) = degy(Z),
(5.2.10) and (5.2.11) imply (5.2.8). O

5.2.2. Let®us assume in this subsection that E is the trivial hermitian vector
[— + .
bundle &¢ . Then on P(E) = ]P’g.V we have canonical homogeneous coor-

dinates X;,... , X in HO(Pg;(?(l)). For any subset 7 C {0,... , N}, we

denote by P, the linear subspace of codimension #I in ng defined by the
equations

X,=0, iel

Theorem 5.2.3. If E is the trivial hermitian vector bundle, then for any effective
cycle Z € Z (P(E)), we have:

(5.2.12) h(Z) > 0.
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Moreover equality holds in (5.2.12) ifand only if Z =0 when p =0, and if
and only if Z may be written as

(5.2.13) Z= > nP,
#I=N+1-p
where n, € N, when p € {1, ... , N+1}.
Proof. Inequality (5.2.12) follows from Proposition 5.2.2 where one takes as

F, the subbundle of é’s@ N+1) defined by the vanishing of the i-th component.
When equality holds in (5.2.12), Z is necessarily flat over S by (5.2.9), and
therefore vanishes when p = 0. The equality case when p > 1 follows by
induction on p from the proof of Proposition 5.2.2 and the equality case in
Proposition 5.2.1. (Observe that the orthogonal projections P(E), — P(F;), co-

/o
incide with the projection defined by the morphism E — F,, (x;, ... , Xy, )+

(X5 X450, X045 -0 5 Xy,y)) O

5.2.3. In this subsection, we go back to the case of an arbitrary hermitian vector
bundle F of rank N + 1 over S, and we give lower bounds for the projective

height KE in terms of invariants attached to E by the geometry of numbers.
Forany pe{l,... , N+ 1}, we let:

m = inf{degK(Z)“‘.hE(Z) ; Z € Z,(P(E)) , Z effective , Z, ;éo}

= inf{degK(Z)_l.hE(Z) s ZeZ, ((P(E)g) , Z effective , Z # 0}

(the last equality follows from (5.2.9); m, is a real number by 3.2.3, Remark
(ii1), and (4.1.2)). We also consider the minimal height of a linear subspace:

¢ = inf {hE(P(F )) | F subbundle of rank p in E }

= inf {hE(]P’(F %)) | Fx K-vector subspace of dimension p in E K} ,

and the p-th minima:

A, = inf{AeR|3(P,..., P)e ]P‘N(E)(K), (Py,...,P)is projectively
free (i.e., these points are not all contained in any linear sub-
space of dimension p — 2), and h.(P)) <4,..., hF(Pp) <A}
and
A, =inf{A€R|3(v,,... ,v,) € E’ , the v’s are K-linearly independent,
and foranyo:K—Candanyi=1,...,p, log|v,, <4},

where, for any embedding ¢ : K — C, we denote by || |, the norm on
E, — E ®, C defined by the hermitian structure on E. The sequences
(4,)1<p<ns1 and (A;,)1 <p<N+1 AT€ increasing. Moreover, there exist sequences
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Q- > Qyy) € PEYK)™' and (w,,...,wy,,) € E"' such that
(@5 ... > Qy,,) 1s a projective basis of P(E),, (w,,... ,wy,,) is a basis
of the K-vector space E, , and forany pe {1,... , N+ 1}

(5.2.14) hp(Q,) =4, and aes;ggclogﬂwplla =4,

The height h F([wp]) of the point [w,] € P(E ) is bounded above by

Y. loglw,ll, <[K:Ql4,

¢ : K—C
It follows that

(5.2.15) A, <IK:Ql4,

Theorem 5.2.4. Forany pe{l,..., N+ 1}, the following inequalities hold:
N+1 P o

(5.2.16) - Y A <m,<¢,<> i +degE.
Jj=p+l1 j=1

We may combine inequalities (5.2.15) and (5.2.16), and Minkowski’s second
theorem in the form established by Bombieri and Vaaler [Bo-Va], namely:

N+l
[K:Q]) A, <C(N,K)-degE,
i=1
where C(N, K) is the following expression involving the numbers r, and r, of
real and complex places, the absolute discriminant A, of K, and the standard
euclidean volume V, of the unit ball in R":

N+1
C(N,K)=(N+1)(r,+r,))log2 + > log|Ag| —r logVy , —rlogV,y ..
Then we get:
Corollary 5.2.5. Forany pe {1,..., N+ 1}, the following inequalities hold:

p p
Y A+deg E-C(N,K)<[K:Q]) A;+deg E— C(N,K)<m,
j=1

j=1
p ——
<8, <Y A +degE.
j=1
In particular, any of the sequences (m,), (£,), (Ap), and (l;) determine
the other ones up to some error term bounded by an expression depending only

on N and X.
The proof of Theorem 5.2.4 will rely on the following,.
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Lemma5.2.6. Let (P,..., P) be a projective free family of points in P(E)(K),

and let V' be the linear subspace of P(E), spanned by (P,, ... , P,). Then:
E & o
(5.2.17) R*(V)< Y hp(P)+degE.
i=1

Proof. Let L, C E be the subbundle of rank 1 of E such that P(L;)(K) =
{P;}, equipped with the induced metric. Consider the rank p subbundle F =

?
<E Li> NE of E;the subscheme P(F) of P(E) coincides with the Zariski
i K

i=1
closure of V. According to (4.1.3) and to the definition of /., we have

K (V) = deg(E) — deg(F)

and

hp(P,) = —deg(L,).
Therefore, (5.2.17) is equivalent to

(5.2.18) deg(F) — i deg(L,) > 0.

i=1

The injections L, — F define a map

F4
(p:@Li—»F,
i=1

which is an isomorphism over Spec(K). Thus the map

r P
A 0 - AP (EB Li) :® L, — detF
i=1

i=1
is nonzero, and defines a nonzero section of the hermitian line bundle det F®

-
® L:/ , which is easily seen to have norms < 1. This implies that
i=1
deg(F) — Y deg(L,) =deg | detF o Q) L,
i=1 i=1
is nonnegative and proves (5.2.18). O
Proof of Theorem 5.2.4. The inequality m, < ¢, is trivial, and the inequal-
p ——
ity £, <3 A it deg E follows from Lemma 5.2.6 applied to the sequence
j=1
(Ps... . P)=1(Q,,...,Q,). To prove the first inequality in (5.2.16), con-
sider the rank 1 vector spaces L, ¢ CEx defining Qp ,1<p<N+1,and
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apply Proposition 5.2.2 to the subbundles F,, ... , F, v such that
N+1
F g = ﬁj Lj,K
J#i
Then, for any p € {1, ... , N} and any subset 7 C {1,... , N+ 1} such that

#I = p, the subscheme P(F)) is the Zariski closure of the linear subspace of
P(Ey) spanned by {Qj}je{l,... NHIN - Therefore, formula (4.1.3) and Lemma

5.2.6 show that

—

deg F, = — h*(P(F,)) +deg E

N+1
> - > he(@)=- D A
JE{1,... ,N+1}\I j=p+1

Since, according to (5.2.8), m, zlcuian N Ee\g 7, , this proves the required
e s N+
#I=p

inequality. O

Remark. One may wonder if there exists a lower bound of £, —m, which
involves only N and [K : Q], and if m, may be expressed in terms of the
canonical polygon of E as defined by Stuhler [Stu] and Grayson [Gr] (observe
that [K : Q]_1 £, is unchanged by extension of the ground field K, and that,
up to some trivial normalization, the same is true for the canonical polygon of

E).
5.3. The fundamental class of an intersection. Let X be a projective regular

arithmetic variety of pure dimension d and u € 4' ’I(XR) a Kihler form. As
in 2.3.2, we denote by H the harmonic projection of currents and, for any cycle
Y € ZP(X), we let [Y], € 61\1P(X) be the class of (Y, g,), where g, is a
Green form for Y of log type along |Y|, which is u-normalized, i.e., which
satisfies the normalization conditions ddc(gY) +d, = H(dy) and H(g,)=0.
Recall that [Y] =0 if Y is the divisor of a rational function on a subvariety

contained in a closed fiber of X over S. It follows that, if ¥ € Z?(X) and
Z € Z%(X) are cycles on X which meet properly on X x » the class [Y.Z] €

CH +q(X )Q is well defined (provided p + g < d), independently of the choice
of a representative Y.Z for the intersection cycle [Y].[Z] € C Hﬁ,‘]ﬂll ZI(X )Q .

Proposition 3.3.1. Assume that the product of two harmonic forms (with re-
spect to u) on X(C) is still harmonic. Then the following equality holds in

CH ™ (X)qy :
(5.3.1) [Y.Z], = [Y1,IZ], - a(H(8,5,)).

Proof. Let g, be a p-normalized Green form for Z of log type along |Z].
Then [Y] W21, is the class of
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(Y.Z , g,0,+H(,)g,).
The form
dd*(gy 6, + H(8y)g,) + 6y, = 0([Y],[Z],) = H(Sy)H(S;)
is harmonic by our hypothesis, so it coincides with H(d, ;). It follows that
8yz = 8y9z + H(0y)8, — H(8y 0, + H(dy)8;)

is a u-normalized Green current for Y.Z . Since, by our hypothesis again,

H(H(dy)gz) = H(éy)H(gz) =0,
we get
[Y1,1Z], = (Y. Z, g,, + H(gy 6,))] = [Y.Z],+ a(H(gy6,)). ©

5.4. Arithmetic Bézout theorem.

5.4.1. Computations in CH"(P(E)). Let E be an hermitian vector bundle of

rank N+1 over S, P(E) = (P(E), u) its projective bundle equipped with the

Kihler form u = ¢, (ﬁE(l)) ,and 7 : P(E) — § the projection. Denote by
CH” (IP(E)) C @*(P(E)) the subring consisting of those elements x such

that the form w(x) is harmonic ( see [G-S2], 5.1). Given x in CH’ (]P’(E))
we define

— " N+1-p
hp(x) = degm, <C1 (@’E(l)) x) eRr
and, if p< N,
—__\N-—p
deg, (x) = deg, T, (E, (ZM) x) A
When x = [Y], one recovers hp(Y) and deg,(Y) defined as in (3.1.5) and
4.1.1; this follows from Lemma 2.3.2.
Proposition 5.4.1. Let x € CH” (]P’(E)) and y € CH? (]P’(E)) . Then, if
max(p,q,p+q)<N,
degy (xy) = deg,(x) degy (y)
and, if max(p,q) <N and p+q<N+1,
hp(xy) = hg(x)degy (v) + degg(x)he(y)
+ deg, (x) deg, (v) (deg(E) - [K : Q] o) -

The proof of Proposition 5.4.1 is based on the following description of the
group CH*(P(E)):
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Lemma 5.4.2. The map
CH (™' - cH" (]P’(E))
N i
sending (o, ... , ay) to Y n(a,)¢ (ﬁE(l)) is a group isomorphism.
i=0

Proof of Lemma 5.4.2. As in [G-S3], Proposition 3.3.2, this result follows from
the Five Lemma applied to the exact sequence describing CH” (IP’(E )) . O

Proof of Proposition 5.4.1. Let
i=¢ (g,m).
By Lemma 5.4.2, x € CH? (W) can be written as
x=n"()i" +7" (B,
with a € CH (S)~Z and B € CH (S), where by convention 2~ = 0 and
B =0 when p=0.
Then we have deg,(x) = a and
he(x) = degn, (2" x)

= deg(am, 2" + pm, BY)
(5.4.1) = adegn, (&) + deg(B)

= degy (x) gy (B(E)) + deg f
deg, (x) (K : Q] o,y — deg(E)) + deg(B)

by (4.1.4).
Similarly we may write

o~ * ~g—1
y=deg,(y) B + " (0’

'—o if ¢ =0, and we get:

with y =0 and %"

xy = degy (x) deg, (VA" + (n*(ﬂ) degy(y) + degK(x)n*(y)) TR

It follows that deg,(xy) = degy(x)deg,(y) if p+¢ < N and, by (5.4.1) and
(4.1.4),

hp(xy) = degy(x) degy(y) deg z, A" + deg(8) degy (v) + degy (x) deg y
= hF(x) degK(y) + degK(x)hp(y)
+ deg, (x) deg, (¥) (deg(E) - [K:Q] aN) . o
By applying Propositions 5.3.1 and 5.4.1 to x = [X] B and y = [Y] o and

comparing h; and & by Proposition 4.1.2, (i), we get, for any u-normalized
Green current g, for Y, of log type along |Y]:
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Proposition 54.3. Let X € Z (P(E)) and Y € Z (P(E)) be two cycles on
P(E). Assume that p>1, g>1, p+q> N+1, and that X and Y meet
properly on P(E). . Then, when p+q > N + 1, we have:

(5.4.2)

h(X.Y) = h(X)deg(Y) + degy (X)A(Y) - é et B prrel

+[K : Q] degy(X) deg,(Y) (ap_l +0,_;—0y— ap+q——N——2) ;
when p+q = N+ 1, we have:

h(X.Y) = h(X) deg,(Y) + deg, (X) h(Y) - % /P O Y

+deg, (X) degy(Y)([K : Ql(g,_, +0,_, —0oy) — deg E).

5.4.2. Arithmetic Bézout theorem. Our earlier version of an arithmetic Bézout
theorem, Theorem 4.2.3, is improved and extended by the following:

Theorem 5.4.4. Let E be an hermitian vector bundle of rank N+1 on S, and
P(E) the associated projective bundle, and let X € Z,(P(E)) and Y € Z (P(E))
be effective cycles on P(E). Assume that p>1, ¢>1, p+q>N+1, and
that X and Y meet properly on P(E), , andlet X.Y be a representative of the

intersection class [X].[Y] € CHIZJ\]’\II:IZY—IP "(IP’(E)).

(i) If furthermore Y = P(F) is a linear subspace of P(E), then

(5.4.3)

(5.4.4) h(X.Y) < h(X)+degg (X)(Y) if p+q>N+1
and
(5.45)  h(X.Y) < h(X)+deg(X) [(Y) —deg E] if p+q=N+1.
Equality holds in (5.4.4) ( resp. (5.4.5)) if and only if for any imbedding o :
K — C, X, is the inverse image of a cycle on Y, by the orthogonal projection
P(E), — P(F,) (resp. a multiple of ]P’(Fal)).

(ii) In general, when p +q > N + 1, we have:

h(X.Y) < h(X)degy(Y) + deg, (X)h(Y)

(5.4.6) +[K: Q]ngK(X) degK(Y) (N+ _pt q) log2;

2
when p+q =N+ 1, we have
h(X.Y) < h(X) degy(Y)+ degy(X) h(Y)

+deg, X.deg, Y ([K Q1. N+

Observe that assertion (i) extends Proposition 5.2.1.

(5.4.7)

10g2—aé\gf).

Proof. Statement (i) follows from Propositions 5.4.3 and 5.1.1 and from 5.1,
Remark (ii).
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To prove (ii), we go back to the first part of the proof of Theorem 4.2.3.
Suppose p +g > N + 1. Applying (5.4.4) to D and the join cycle X#Y in
P(E & E), we get
(5.4.8) hE®T (X#Y). D) < hPF (X#Y) + deg, (X#Y) h"®F (D).

Using (4.1.2), (4.2.11), (4.2.12), and the classical Bézout theorem

degy ((X#Y).D) =deg,(X.Y) = degy X.deg, Y

we get
(5.4.9)
WP®F (x#Y).D) = KE(X.Y)
+ (deg(E ®E)—deg E +[K : Q] ’iﬂ—}u log 2) deg, (X). deg, (Y).

Since the scalar product induced on E by its diagonal imbedding in E & E is
twice the original scalar product, we have, by Proposition 4.1.2, (ii),

(5.4.10) hP®E (D) = deg(E & E) — deg(E) + [K : Q] % log2

Inequality (5.4.6) follows from (5.4.8), (5.4.9), (5.4.10), and Proposition 4.2.2.
Inequality (5.4.7) is obtained by a similar proof, where (5.4.8) is replaced by

hE9F (X#Y). D) < hEPE(X#Y) + deg, (X#Y) (hf@f(z)) _degEe ‘E‘))

and (5.4.9) by L B
RE®E (x#Y).D) =5 (X.Y). O

5.4.3. Remarks. (i) Theorem 5.4.4 implies Theorem 4.2.3 since

<N+1 p;q)log2<a(N D, q)

Indeed, p+9q— N—-2<p+q -1, therefore Oprg-N-2S0p4q

(i1) Like Theorem 4.2.3, Theorem 5.4.4 may be applied to bound the height
of the intersection of two cycles in P(E), . Namely, the same proof as for
Corollary 4.2.4 shows that for any two integers p and g suchthat 0<p< N,
0<g¢<N,and p+g > N-1, and for any two effective cycles X € Zp(]P’(E)K)

and Y € Z (P(E)), which meet properly, the following inequality holds:

h(X.Y) < h(X) degy(Y) + degy(X) A(Y)
5.4.11 e
( ) +[K : Q] degy(X) degy(Y) 2N+q log2,

if p+g> N and (5.4.7) holds when p+g=N—1.
(iii) Let F and G be two subbundles of F suchthat E = F+G. Then X =
P(F) and Y = P(G) are two integral subschemes of P(E), whose intersection
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(as schemes and as cycles) is P(FNG) (observe that FNG is a subbundle of F
and that there exist subbundles F' and G’ of E suchthat E = F'oG &(FNG),
F =F' &(FNnG),and G = G &(FNG)). Applied to these two cycles, Theorem
5.4.4 together with Proposition 4.1.2, (ii) give the inequality

(5.4.12) deg(F) + deg(G) < deg(F N G) + deg(F + G),

where the &;-modules F, G, FNG are equipped with the metric induced from
E . This inequality is due to Stuhler ([St], Proposition 2) and Grayson ([Gr],
Theorem 1.12; see also [Sch], Lemma 2 and Proof of Theorem 2, and [S-V])
and may also be proved as follows: consider the isomorphism of line bundles
over §

I:detF @detG ~det(F & G) — detE @ det(F N G)

defined, up to a sign, by the short exact sequence of &, -modules
0-FNGLF®&G—-E -0,

where i(x) = (x, —x) and p(x,y) = x + y; using formulae (2.1.14) and
(2.1.15), we get

deg (F N G) + deg(E) — deg(F) — deg(G) = — Z log |11},
o:.:K—-C
this is nonnegative, since the value of each archimedean norm ||I||, of 7 is at
most 1, as is easily seen using exterior hermitian algebra.
Let us return to the notation of 5.1, and consider two effective cycles X €

Zp(lPN(C)) and Y € Zq(]P’N(C)) which meet properly (we assume 0 < p < N,
0<g<N,and p+g>N~-1),and a u-normalized Green form g, for Y,
of log type along |Y|. The preceding discussion together with formulae (5.4.2)

and (5.4.3) shows that the real number

1 p+g—N+1
CX,Y)= 3 (0 Oy 8y M — deg(X) deg(Y)(Up +0, -0y~ ap+q—N)

may be interpreted as some (logarithmic) measure of the “angle” between X
and Y: it is independent of the choice of g, and symmetric in (X, Y) (this
follows from Proposition 1.3.1, (it) and Theorem 1.3.2, (i)), and it reduces to
—logl|7|j in the linear case.

(iv) Observe that, according to the equality case in Theorem 5.4.4, the in-
equalities (5.4.6) and (5.4.7) are strict except in the trivial case p=g=N+1.
We conjecture that, under the hypotheses of Theorem 5.4.4, the inequalities

h(X.Y) < h(X) degy(Y) +deg (X) A(Y) if p+g>N+1
and,if p+g=N+1,
h(X.Y) < h(X) degy(Y) +degy(X) h(Y) — deg,(X).deg, (Y) c/le\g E

always hold. This would follow from the nonnegativity of the real number
C(X, Y) for any two effective cycles in IP’N((C) which meet properly.
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5.5. Arithmetic Bézout theorem for improper intersections. In this section ]P’fqV
denotes the standard projective space P (é’fw +1)) over S, and & the pro-

jective height on cycles in stv defined by the trivial hermitian vector bundle
—B(N+1)
o .

Let X € Zp (IP’i,v) and Y € Zq(]P’JsV) be two effective cycles, with p+g > N+1,
and let

XIn|Y|=u W,

be the decomposition into irreducible components of the (set theoretic) inter-
section of their support. For any a, we have

(5.5.1) dimW,>p+g-N-1,

and we shall say that « is “good” when equality occurs in (5.5.1) and that o is
“bad” otherwise. In other words, the W ’s, o good, are the proper components
of the intersection of X and Y. For any of them, there is a well-defined
positive intersection multiplicity m_ of X and Y along W_, given by Serre’s
Tor-formula, and we let

=2 m W, (€Z,, y ().
a good
This cycle coincides with the image of the product class [X].[Y]e CH, | XI Y| (]PN )
by the canonical map
CHY P =~ cHY Y 0 P zw, - P zw,.

[XInfY] abaa Wa

a good a good

The W ’s, a bad, are the components of |X|N|Y|, where X and Y meet
“with excess”, and we let

=Yw € @ zrE),

a bad k>p+g—N-—1
h((X.Y),)= > h(W,
a bad
and
degK Z deg, (W,
a bad

If X, Y,and Z are any three effective cycles on PV of respective dimensions
p, q and r, the associativity of the intersection product for Chow groups with
supports implies that

(5.5.2) ((X. Y)pr.Z)pr = (X. (Y. Z)pr)pr (€ Zyygur_an—a®")).

Moreover, if Y and Z meet properly:

(5.53) (X.(Y.Z)), < ((X. Y)pr.Z)ex + (X Y)gy Z) | + ((X.Y). Z),.-
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Indeed the left-hand side is the sum of the irreducible components of |X|N|Y|N
|Z]| of dimension > p+¢g+r—2N —2, and any of them appears in one of the
cycles on the right-hand side, which are effective. Finally, if ¢ = r, we have

(5.5.4) X(Y+2)),=XY), +(XZ),

and

(5.5.5) (X(Y+2Z)), <(X.Y), +(X.Z),.

Theorem 5.5.1. (i) Let F,,... ,F, be rank N subbundles of ﬂ’f WD such

that the subbundle F = ﬁl F, has rank N + 1 —r. For any effective cycle
=
Zec Zp(]P’fqV } with p > r, the following inequality holds:
r
(5.5.6) A ((Z. ]P’(F))pr) +h((Z.P(F)),) <hZ)+ degK(Z).Zh (B(F)).
i=1

(ii) For any two effective cycles X € Zp(IP’gv) and Y € Zq(Pg) with p > 1,
q>1, p+q>N+1, the following inequality holds:

(X)) +h ((X.7))
(5.5.7) < h(X) degy(Y) +degp(X)h(Y)
+ [K: Q] deg,(X) deg,(Y) % log 2.

(ii1) Let X and Y be two closed integral subschemes in ]P’gV of positive
dimension and let

XnY|=U W,
be the decomposition of the support of their intersection into irreducible compo-
nents. Then
Y h(W,) < h(X) deg,(Y)+ deg, (X)h(Y)
(5.5.8) «

N+1
+[K : Q] deg,(X)deg,(Y) —— log 2.
(Compare with [P2], Théoréeme 2.)
During the proof we shall also recover the following geometric inequalities,
under the hypotheses of (i), (ii), (iil) respectively:

(5.5.6)) degy (Z.P(F)),, + degy (Z.B(F)),, < degy(Z), if p >,

(5.5.7) degy(X.Y), +degy(X.Y), < degy (X).deg,(Y), ifp+g>N+1,
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(5.5.8') > degy(W,) < degg(X).deg,(Y).
a,dim W,>0

These inequalities are well known: (5.5.6') and (5.5.7') follow from Vogel’s
“main theorem” in [V], Chapter II, or from the “refined Bézout theorem” in
[Fu2], 12.3; (5.5.8) is due originally to Fulton, Lazarsfeld, and MacPherson
([Fu2], Example 8.4.6). Our proof of Theorem 5.5.1, using the join construc-
tion, is very similar to the proof of (5.5.8') by these last authors and is in the
same spirit as [V].

Proof of Theorem 5.5.1. (i) Inequalities (5.5.6) and (5.5.6') will be proved to-
gether by induction on r. Using the nonnegativity of degrees and heights of
effective cycles (Theorem 5.2.3) together with (5.5.4) and (5.5.5), we see that it

is enough to prove them when Z is irreducible.
Suppose r = 1 and Z is irreducible. Then, if Z ¢ P(F,), Z and P(F))

meet properly; therefore (5.5.6) follows from (5.4.4) and (5.4.5), and (5.5.6')
follows from the equality

deg, (Z.P(F,)) = degg(Z).
When Z C P(F), (Z.P(F)),, =0, (Z.P(F)),, = Z, and (5.5.6) and
(5.5.6') are trivial.
Suppose now that » > 2 and let F’ be the subbundle :ﬁ: F, of rank N —r

in #2M*Y | Then P(F') and P(F,) meet properly and, in P}, their (scheme
theoretic) intersection coincides with P(F). Therefore

P(F').B(F,) = P(F) +R,

where R is some effective cycle (supported by closed fibers). Then, by using
(5.5.2)-(5.5.5), the nonnegativity of degrees and heights of effective cycles, and
(5.5.6) and (5.5.6') with (r, F) replaced by (1, F)or (r—1, F'y we get:

i ((X.B(EF)),, ) + b (X.P(F)),,)
=h ((X. (P(F"). P(F,)))pr) +h ((X. (P(F"). P(F,)))cx)
< h (X B(F), B(F),,) +h (X P(F), B(F)) )

+ (X BF)) o P(E)y ) + b (X PE) BE)) )
<h ((X. P(F’))p,) +deg, (X. P(F'))pr _h (B(F))

+h ((X.B(F),,) +degye (X-P(F)) .4 (P(F))

<h ((X. ]P’(F'))pr) +h ((X. ]P‘(F'))ex) + degy (X). h (B(F)))
r—1

< h(X) +degy(X). > h (P(F,)) + degy (X). h (B(F,)) .

i=1

!
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This proves (5.5.6). The proof of (5.5.6') is similar, but simpler.

(ii) To prove (5.5.7) and (5.5.7'), we use the join construction, as in the
proof of Theorems 4.2.3 and 5.4.4, (ii). Let j: Py — P3'*', D c P2**', and
H; C ]P’?Wrl be asin 4.2.3 and let X#Y € Z | q( §N+I) be the join of X and

Y . From [Fu2], Examples 8.4.5, we know that j:|X|N|Y| — |[X#Y|ND isan
isomorphism, and that

(5.5.9) J. ((X- Y)pr) = ((X#Y). D),
and
(5.5.10) J (X.Y)g) = (X#Y).D),,

Moreover, using (3.2.1) and (3.2.4), and the fact that the canonical isomorphism
jH(@(=1)) =~ @(-1) divides scalar products by 2, we obtain that, for any

ZeZ(PY),
(5.5.11) h(Z) = h(j,(Z)) - [K : Q] deg(Z). 7 log2 < h(j,(Z)).
We deduce from (5.5.9), (5.5.10), (5.5.11) that

(5.5.12) h ((X. Y)pr) +h(X.Y),)<h (((X#Y). D)pr) +h ((X#Y). D)ex) .

Inequality (5.5.6), when applied to Z = X#Y, r=N+1, P(F|)=H,, ...,
P(Fy,

) = H,, gives

h(((X#Y).D),) +h ((X#Y).D),,)

5.5.13
( ) < h(X#Y) +[K : Q] deg, (X#Y). ]—Vil log?2;

indeed A(P(H))) = %[K : Qllog 2. Together with Proposition 4.2.2, inequalities
(5.5.12) and (5.5.13) prove (5.5.7). Inequality (5.5.7') follows from the same
argument, where the height /4 is replaced by the degree deg, , and (5.5.11) by
the equality deg,(Z) = degg(/,(Z)).

(iii) When dim X +dimY > N+1, (5.5.8) and (5.5.8') follow from (5.5.7)
and (5.5.7'). The general case may be proved along the same lines as (5.5.7):
first, an argument similar to the one in (i), but simpler, shows by induction on
r thatif Y =P(F) with F as in (i), we have

(5.5.14) Zh ) < h(X) + deg (X Z (P(F))

and

(5.5.14") Y deg (W) < degg(X);
dlm;’a>0
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then one deduces (5.5.8) and (5.5.8') from (5.5.14) and (5.5.14') by the join
construction. One may also reduce to the case where dimX + dimY > N +
1 by considering X#P; and Y#P) in P3'*' (observe that dim(X#PY) +
dim(Y#PY) > 2 dimP} = 2N+2 and that, scheme theoretically, (XNY)#PY =
(X#PY) N (Y#Py), and use that for Z € Z,(PY), h(Z#P)) = h(Z) and

degK(Z#IP’g) = degy(Z)). In that way we get (5.5.8'), and (5.5.8) with &£l
replaced by N+ 1. O

5.6. Variants. Theorem 5.4.4 can be extended to the case of several effective
cyclesXeZ(lP’(E)) i=1, Jk,p,=1, , N+1. When E(p—l)
(k—1)N and when the cycles Z, meet properly on the generic ﬁber (1 €., when

any component of nl |Z,|x has dimension E (p;,—1)—(k—=1)N ), we get
i= i=1

h(X,.-.X,) < ZhX)(HdegK )

J#i

k
+[K:Q]HdegK(Xi).%( (N+1) Z )logk,

i=1 i=1

where X,.---. X, denotes any representative of
[X,].-.[X,] € CH}y 1 iy (P(E)).

This follows from a proof similar to the one of Theorem 5.4.4, using the “mul-
tijoin” X #---#X, in P(E®").

k
We may also consider the case of a product of projective spaces P =[] P(E))
i=1
where Ei is an hermitian vector bundle of rank N, +1 over S. For any cycle

Z on P and any multi-integer 4= (a,,... ,q) € N* , we let

A Ju—
W'(Z)=deg (¢, (@,)-+¢, (@)1 2) €R,
resp.
A o~ p— —~ pR—
degyy(Z) = degy (2, (@))€, (@) | Z) €2,
where _Q—i is the pull-back on P of the canonical hermitian quotient bundle on
P(E;,). When |4| := a, +---+q, # dim(Z), resp. |4| # dim(Z), we have
h*(Z) =0, resp. deg,’:(Z) = 0. Assume now that X € Z (P) and Y € Z (P)
k
are effective cycles on P meeting properly on P, and that p+¢ > 1+ > N;.
i=1

If N is the multi-integer (N, ... , N;), by mimicking the proof of Theorem
5.4.4 and using (2.3.19) to evaluate multiheights of external products, we get
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rxys< Y (hB(X)deg,‘;(Y)+degﬁ(X)hC(Y))

BgiiN
(5.6.1) .
+[K:Q]Z(Ni+ —B—fz’—‘l> deg(X.Y).log?2,
i=1
where 4, =(a;,... ,a;_y,a;—1,a,,,...,a) when A=(a, ..., q).

Theorem 5.5.1 may also be extended to these more general situations. We
leave this to the reader.

6. PosITIVE GREEN FORMS

6.1. Positive Green forms and the Bézout theorem. In this last section, we shall
discuss the following problem:

Given an effective cycle Z on a complex variety X , when is it the case that
Z has a positive Green form, i.e., a positive form 7 on X — Z which is L
and such that [#n] is a Green current for Z ?

Usually, we shall also ask that # is of log type along |Z| (see 1.1.2).

We have several reasons for asking this question. We noticed in Proposition
1.4.1 that the Levine form is positive, and this was used in Proposition 1.4.2
and Proposition 4.1.3. In Nevanlinna theory, this positivity is used to derive
the Nevanlinna inequality from the first main theorem ([St4], {Sh], § 4.4, (21)),
so this question is a prerequisite for extending Nevanlinna theory to arbitrary
varieties ([Co-G]).

This question is also relevant in the content of Arakelov geometry. For in-
stance, when X is an arithmetic variety, we could say that an arithmetic cycle
(Z, g) on X is effective when Z is an effective algebraic cycle and g = [#],
where 7 is a positive Green form of log type along |Z|. In codimension one,
these are pairs (div(s), —log ||s||2) , where s is a global section of an hermitian
line bundle of sup norm less than one.

The notion of positive Green form can also be used to give another proof
of the arithmetic Bézout theorem. To see that, let N > 1 be an integer, A be
the diagonal in P"(C) x PY(C), u = ¢,(@(1)) be the standard Fubini-Study
(1, 1) form on IP’N((C) , pr: ]P’N(C) X ]PN((C) — ]P’N(C) be the two projections,
i=1,2,and g, = pr;‘ (u). Assume that n is a positive real form of type
(N-1,N-1) on ]P’N((C) X PN((C) — A, which is of log type along A and such
that dd‘[n] + 6, is an harmonic form (for the standard Kéhler structure on
]P’N(C) X IPN((C) , defined by u, + u, ). For any integer ¢, 0<g< N +1, let

N+1-g¢
A, = / nuy i -
9 Jpvoxp¥e 2

Now consider the situation of 4.2.3 and 5.4.1, i.e., let E be an hermitian
vector bundle of rank N+1 over S, andlet X € Z (P(E)) and Y € Z (P(E))
be effective cycles on P(E) which meet properly on the generic fiber, p + g >
N+1.
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Theorem 6.1.1. Under the above hypotheses, the following inequality holds:.

h(X.Y) < h(X)degy(Y) + degg (Y)h(X)

6.1.1
( ) +[K: Q]cpq deg, (X)deg,(Y),
where
Cog = 21 +0, | +0,_ | —Oy—0, . N> if p+gq>N+1
and
Cra ,1+a L 40, —0y—[K:Q] 'degE ifp+q=N+1.

Proof. Accordmg to Proposition 5.4.3, (6.1.1) follows from the lower bound

(6.1.2) /P(E)( )‘ngyllp+q_N_l > _[K : Q] )'q deg, (X) deg,(Y),

where g, isa p-normalized Green current for Y . To prove it, we may replace
P(E)(C) by ]P’N(C) and consider the integral

+g—N—1
/PN(C) Jngup ‘ ’

where X and Y are irreducible cycles on i (C) of dimensions p — 1 and
g — 1 respectively.

Denote by H the harmonic projection for the standard Kahler structures on
PY(C) and PV(C) x PY(C), and let

(6.1.3) g = [n] = H([nD).
According to formula (1.2.8) and {B1], Theorem 2.1, (i), we have
8y = P’u(gAp’;‘Sy)'

(Note in the proof of [B1], loc. cit., that H(pr, (g,pr,d,)) = O uses Stokes’
formula for currents; this is justified there by the consideration of wave front
sets and, in our case, by the fact that # is of log type along A.) Therefore

—N-1 * * —-N-—1
(6.1.4) / S gy = / pri(8,).pry(0,).8u 10 T
Y (C) PY(C)xPY(C)
Clearly
N—i 1 1
H(n) = Zzu wt
so0 that

Lo pri@0 R0, HEDA !
PY(C)xP¥(C)

(6.1.5) — p-1 g-1
o g 0 202D
= A, deg(X) deg(Y).
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Since 7 is positive, we deduce from (6.1.3), (6.1.4), and (6.1.5) that
L Seeya?™ ™ 2 -2, deg(x) deg(v).
PY(O)
This proves (6.1.2). O

One way to construct a positive Green form » for the diagonal is as follows.
Let D c P “((C) be the diagonal subspace, made of points of homogeneous

coordinates (X, ... , Xy, Xy, .-+ » Xy), B C IP’N(C) xPN((C) x]PZN’Ll((C) be the
set of points with homogeneous coordinates (X, :...: Xy, ¥y i...: Yy, AXy:
v DAXy DUV ... uyy), where (A, u) #(0,0), ¢, : B — ]P’N(C) x ]P’N(C)

and ¢, : B — ]P’ZNH((C) be the projections, and A be the Levine form of D

in PPY*'(C). Then 7 = 4,.(4;(A)) has the required properties. One may
compute
A, =(N+1)log(2) + 2(oy — 0, — ON_g—1)-

This leads to a constant Cpq in Theorem 6.1.1 which is bigger than the constants
appearing in Theorem 4.2.3 and Theorem 5.4.4.

Remark. The argument used in the proof of Theorem 6.1.1 to get a lower bound
for g, applies more generally to the situation of 5.3, once there exists a positive
Green form 7 for the diagonal A in X(C)x X(C) of log type along A. Assume
as in Proposition 5.3.1 that the cycles ¥ € Z’(X) and Z € Z%X) meet
properly on X, and that the product of two u-harmonic forms on X(C) is
still harmonic. Also assume that there exists an hermitian line bundle L on
X with first Chern form a positive multiple of the Kidhler form u. Let k =
dim(X) — p — q. From Proposition 5.3.1 and the proof of Theorem 6.1.1 we
get the estimate

deg(¢,(L)[Y.2],) - deg(¢,(L)"[Y1,[Z],)
-1

* * 7k
=73 gapr, 8y )pri (9¢,(L)")
X(C)xX(C)

< % / H([n)pry(6y)pr, (azcl(z)") = o(cl(Y), cl(Z)),
X(C)x X(C)

where c/(Y) € H”'?(Xg), resp. cl(Z) € H*"?(Xy), denotes the cohomology
class of Y, resp. Z, and ¢ is some bilinear form on H”'?(Xp) x H*9(Yy)
which depends only on u, #, and L, . That type of inequality may be used
to extend the arithmetic Bézout theorem to grassmannians (cf. 6.2.2, Example
(iii) infra).

6.2. Construction of positive Green forms.

6.2.1. In this section, we use the constructions of 1.2 to produce, under suitable
hypotheses, positive Green forms for effective cycles.

Proposition 6.2.1. Let X be a compact Kdhler manifold, and Y Cc X a complex
submanifold of codimension p. Suppose that the following two conditions are
satisfied:
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(i) there exists a holomorphic vector bundle F of rank p over an open neigh-
borhood Q of Y in X such that Y is defined by the vanishing of some holo-
morphic section o of F over Q, which is transverse to the zero section;

(ii) the canonical quotient bundle Q. on P(F) may be endowed with an

hermitian metric ||.|| such that the top Chern form c,_(Qr, |l |I) is positive.
Then there exists a positive Green form for Y (of log type along Y when X
is projective).

Proof. Let v : X — X be the blow-up of Y in X. We saw in 1.2.3 that o
defines an embedding f : X — P(F) and that there exists a C™ form 7 on
P(F) such that

g=v, (v loglol ™. S ¢, (@p) + S (m)

is a Green form for Y in X (cf. (1.2.11)). Let w be a Kihler form on X.
Since f*(7) is C*™ on X and v*log ||o|| > f* ¢ (Q) is positive on a

neighborhood of E = v~ (¥Y) in X and C* on X — E, it follows from
Proposition 1.1.4, (ii) and (iv), that if £ € R_ is large enough, the current

g =v, (vViogllol| ™. f ¢, , @p)+ (M +10"")

is a positive form on X — Y. On the other hand, dd° g’ = dd° g since w is
closed. Therefore g’ is a Green form for Y in X, which is clearly of log type
along Y when X is projective. O

Examples and remarks. (i) When Y is a smooth hypersurface, the hypotheses
of Proposition 6.2.1 are satisfied by taking Q@ = X and F = #(Y). In fact,
any effective divisor Z on any complex manifold X admits a positive Green
form: if || || is any hermitian metric on &(Z), if s is a holomorphic section
of #(Z) with divisor Z,and if p:R_—[0,1] isa C™ function such that

Proam=1  and oy =0,

then
-2
g =(pollsll)-log |s|]

is such a Green form.

(ii) The hypotheses of Proposition 6.2.1 are easily seen to be satisfied when
Y is a point. In fact, the existence of a positive Green form for any point P
in a complex manifold follows immediately from the positivity of the Bochner-
Martinelli Green form (cf. 1.2.3, Example (ii)): it is enough to pull back this

Green form to a neighborhood Q of P from chmX using holomorphic co-
ordinates centered at P, and to “truncate” it by multiplication by a C* non-
negative function on X , supported by a small enough compact neighborhood
of P in Q, which takes the value 1 near P. Suppose that X is compact,
Kahler, and connected, and let ¢ be a positive volume form on X such that
Jy o = 1. By adding suitable C* forms to the Green forms obtained by this
construction, we get a family {g,},., of positive Green forms for the points
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of X, which is bounded in the L' topology and such that, for any P € X,

dd ch +d, =o0.
If L is any holomorphic line ‘bundle on X equipped with an hermitian
metric || ||, the tensor powers L", n € N, may be endowed with the tensor

power metrics and we can define “quasinorms” || || > P €[0, o], on the space

of sections HO(X , L"), by formulae (1.4.8) and (1.4.9). Then the inequalities
(1.4.10) still hold, and the same argument as in the proof of Proposition 1.4.2,
using g, instead of A,, shows that there exists C € R: such that, for any

neN andany s € H(X, L"),
51l < C"lsllg-

(Compare [Vo], Lemma 8.1.)

(iii) Let X be any complex manifold and ¥ C X a complex submanifold.
Assume that condition (i) in Proposition 6.2.1 is satisfied and that the restriction
of F to Q is the quotient of a trivial bundle. Equip this restriction and the
canonical quotient bundle Q,. on the projective bundle p : P(F) — Q with the

quotient metric of the trivial metric. It is shown in [B-C], §5, that cp_l(Q_F) is

positive and that there exists a positive form 5 € 477?71 (P(F)), defined by
local formulae in terms of the hermitian metric on F, such that

dd‘n=p*c,(F)—c,(6(-1)).c,_,(OF)-
Then the Green form (1.2.11):

g=v, (v logllol™>.f"c,_,(Qp) + £ (M),

is a Green form for Y in Q, positive on a neighborhood of Y. If p € C*(X)
is nonnegative, has its support in £, and is equal to 1 in a neighborhood of
Y, then pg is a positive Green form for ¥ in X .

Observe that the preceding hypotheses hold if F is generated by its global
sections on € (this is elementary, after shrinking € if necessary, when Y
1s compact; the general assertion is proved by a standard argument using the
Baire theorem). Using the construction of 1.2.3, Example (iii), it follows that
any submanifold Y of a Stein manifold X admits a positive Green form.

6.2.2. If we combine the preceding discussion with the construction of Green
forms “by reduction to the diagonal” provided by Lemma 1.2.2, we get the
following statement:

Proposition 6.2.2. Suppose that a smooth projective complex variety M satisfies
the following condition (C):

There exists an open neighborhood (in the complex topology) Q of the
diagonal A in M x M, a holomorphic vector bundle E on Q generated by its
global holomorphic sections on Q, and a holomorphic section ¢ of E over Q,
transverse to the zero section, which vanishes exactly on A. Then any effective
cycle Z on M admits a positive Green form of log type along |Z|.

Proof. Indeed, if (C) holds, there exists a positive Green form g, of log type
for A by Proposition 6.2.1 and 6.2.1, Example (iii), and g = p, ,u*gA is positive
on M —|Z] by Proposition 1.1.4, (i) and (ii). O
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Examples and remarks. (i) The product of two projective varieties which satisfy
(C) clearly satisfies it also.

(ii) Abelian varieties are easily seen to satisfy (C): if M isa g-dimensional
complex abelian variety and if ¢ : U — C?® is a holomorphic chart defined on
an open neighborhood of the origin 0 in M , then condition (C) is satisfied by

Q={y,y)eM’, x-yeU}, E=8°,

and
o(x,y)=p(x-y)
(compare with the convolution formulae of [B1], §3.2).
(iii) Flag manifolds also satisfy (C). Let indeed M be the space of flags
of type (r;,...,r) in C"(0<r, <r,<---<r <n). Points of M are
sequences F = (F, ... , F;) of vector subspaces of C" such that

FCF,C---CF,

and
dim. F, =r, (1<i<k).

Forany (F,F)e M xM',let Eg p be the vector space of k-tuples (fi)15igk

k
in AeBl Hom(F,, C" /F,.') such that the following diagrams commute:
i=
F, = CF]

, (1<i<k-1).
F}+l'_+1,C”/F}:_1

(The right vertical arrow is the surjective map defined thanks to the inclusion
Fi' - le+1 .) The family E of these vector spaces is naturally endowed with a
structure of algebraic vector bundles over M x M. To any m € End(C") is
associated the section o,, of E which sends (F, F)e M x M to the k-tuple

(f)1<i<i defined by the composite maps
[, F,— C"-2C"—C"/F,.
These sections of E are regular and generate E. Finally, the subscheme of
M x M defined by o,, = 0 is easily seen to coincide with A. This shows (C)
is satisfied by the vector bundle £ on Q=M x M and o =0,,.
(iv) Using 6.2.1, Example (iii), and a “reduction to the diagonal” analogous

to Lemma 1.2.2, one may prove that any effective cycle on a Stein manifold
admits a positive Green form,

6.2.3. Let us recall that a complex manifold M is called Aomogeneous if the
group Aut(M) of automorphisms of M (as a complex manifold) acts tran-
sitively on M . The following facts are well known: (i) A compact complex
manifold M is homogeneous iff there exist a complex Lie group G and a
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closed complex subgroup H of G such that M ~ G/H . Moreover, if M is
projective, ¢ may be chosen to be a complex algebraic group, and the action
GxM— M of G on M a morphism of algebraic varieties.

(i) A compact connected complex manifold M is homogeneous iff its holo-
morphic tangent bundle T,, is generated by its global holomorphic sections
over M . In particular, any connected smooth projective variety M which sat-
isfies condition (C) of Proposition 6.2.2 is homogeneous (indeed, if E and
o are as in (C), the differential of ¢ along A defines an isomorphism from
T, ~ N,(M x M) to E,,, which is generated by its global sections).

. For more information on compact homogeneous complex manifolds, see [B-
R} and the references given there. Let us only mention that the connected
compact homogeneous algebraic complex manifolds are projective (Chow) and
are exactly the products of complex abelian varieties and generalized flag man-
ifolds’ (Borel-Remmert).

One may ask if any effective cycle on such a manifold admits a Green form
of log type. (According to the examples in 6.2.2, this is true for any product
of abelian varieties and flag manifolds.) The following proposition, due to
O. Gabber, solves a variant of this question.

Proposition 6.2.3. Any effective cycle Z on a compact homogeneous complex
manifold M admits a positive Green form.

Proof. Clearly we may assume that Z is irreducible, and consider a resolution
of singularities v : Z — Z . Let G be a complex Lie group acting transitively
on M (cf. (i) above), and let f: Gx Z — M be the holomorphic smooth map
defined by
f(g, x)=gwx).

The identity element ¢ of G, seen as a O-cycle in G, admits a positive Green
form g, with compact support (6.2.1, Example (ii)). Let w = ddcge +d,. If
pr: G x Z — G denotes the first projection, the current pr* g, is compactly
supported, and

g=/fpre,
is well defined. Moreover
dd‘g = f.pr'dd‘g, = f.pr’(w-46,) = f.pro-f.6, ;.
We have
f*(Sexz- = 1/*52 = 62.

On the other hand, since f is smooth and pr'w is C* and compactly sup-
ported, f*pr*w is C™« This shows that g is a Green current for Z in M.
Itis C* on M - Z, since prg, is C* on (G — {e}) x Z, which contains
f —I(M — Z), and it is positive by Proposition 1.1.4, (i} and (ii). O

Remark. Let X be a smooth quasi-projective complex variety and Y a proper
closed algebraic subset of X. We can say that a C™ form n on X — Y

A generalized flag manifold is a quotient G/P, where G is a connected reductive complex
algebraic group and P a parabolic subgroup of G .
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is “almost of log type” along Y when the conditions in Definition 1.1.1 are
satisfied, except that only the restriction of 7 to the support of ¢, and not =
itself, is supposed to be proper. Observe that the Green form g constructed
in the preceding proof is almost of log type along |Z| when M is projective,
provided G is chosen to be an algebraic group acting algebraically on M and
g, is obtained from the Bochner-Martinelli form as in 6.2.1, Example (ii).

6.3. An obstruction to the existence of positive Green forms. When the con-
struction in the preceding section of positive Green forms for some smooth
submanifolds Y of a complex manifold X applies, the top Chern class of the
canonical quotient bundle Q on the projective bundle P(N, X) may be repre-
sented by a closed positive form. In this section we shall see that, conversely,
at least in the linear situation where X is the total space of a vector bundle
over Y, the existence of a positive Green form for Y in X implies a kind of
“numerical effectivity” for the top Chern class of Q.

Let Y be a smooth projective complex variety, and let F' be a rank r vector
bundle on Y. Consider the projective completion X = P(F @ &) of F, it
contains as subvarieties Y (identified with the zero section of F ) and P(F) =
X — F . Consider also Q the canonical quotient bundle on P(F), c,_,(Q) its
top Chern class, and p : X — Y — P(F) the morphism defined by the first
projection F @ — F . Finally, for any A € C", let ¢ , be the automorphism
of X which extends multiplication by A on the fibers of F.

Proposition 6.3.1. Let g be any Green current for Y in X which is C* on
X =Y. For any subvariety Z of dimension r — 1 in X, such that

ZgP(F) and ZNY =,
the following asymptotic formula holds:

. —1\—1 *
(6.3.1) }11_2% (logiA| ™) /Xg.éwl(z) =2pc,_,(Q),I[Z]).
Related asymptotic formulae have been announced independently in [H-W].

Proof. Let g and g’ be two Green currents for ¥ which are C™° on X —Y .
There exist u € @ "(X), v € 27" 1(X), and v € A""(X) such that u
and v are C™ on X —Y and

g -g=0u+dv+y

(see [G-S2], 1.2.2, and [B1], Proposition 1.1, (ii)). By Stokes formula, this
implies that for any 1 € C*:

!/
/Xg Og,2) = /X 80p,2) = /X V-9, 2y

According to Corollary 1.5.2 applied to the cycle in X x Aé defined as the
closure of

{(9,(x),4); x€Z,2€C},

which is flat over Aé and therefore fulfills the hypothesis of [loc.cit.], the last
integral defines a continuous function of A € C* which extends continuously
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to C. Therefore, to prove Proposition 6.3.1, we can assume that g is a Green
current obtained by the construction of §1.2. More precisely, let us choose g

as follows. Let v : X — X be the blow-up of Y in X, and let E = u—l(Y)
be the exceptional divisor; we shall identify (by v ) X—E and X - Y. The
map p: X — Y — P(F) extends to a regular map from X to P(F), which
we shall still denote by p. In fact P is the canonical isomorphism from E

to P(F) = P(N, X). Let us choose a metric |.| on &(E) and a closed form
eed ! (P(F)) whose cohomology class is ¢,_,(Q) . According to 1.2.2, if
s is a section of @(E) of divisor E, there exists y € A """"'(X) such that

g= u*(log||s|l'2.p*6 + y) is a Green current for Y .
To study the asymptotics of [, g.9 02) 35 A — 0, we choose a metric ||.||

on F anda C* function w:R, — [0, 1] such that
Vio.im =1 and ¥y 4o =0,

we define r: X — P(F) — R , as the map which sends a point x to the norm
|lv(x}|| of the element v(x) of F, and we let p = wor. Then JJ%[[ , defined
on X — (EUP(F)), is easily seen to extend to a C* nonvanishing function on
a neighborhood of E . Therefore there exists y' € Aht ()? ) such that

log|is||_2.p*e +y=p.log r_z.p*e +7,

and we get

-2 * ’
(6.3.2) /Xg.émz):/;?p.logr -p 66¢1(z)+/)7y.6¢l(z).

According to Corollary 1.5.2 applied to the cycle in X x Aé defined as the
closure of {(¢,(x),4);x€Z, A€ C"}, the last integral in (6.3.2) defines a
continuous function of 4 € C* which extends continuously to C.

On the other hand, if @, denotes the automorphism of X which lifts ?,
we have @,r = [A|r and ¢;p”e = p”e. Therefore

-2 * ok - *
/Jp-logr D €9, (Z)=/v¢)l(p.logr 2pte)s,
X i X
~ [ 0300081 +108r )5 e 8.

The function log r~2is L' with respect to the measure p*e.JZ (indeed log r2
is a function of log type along P(F), which meets Z properly). Since |¢;p| <1
and

lim ¢ p(x) = lim ¢ (Ar(x)) = 1

for any x € X — P(F), Lebesgue’s theorem on dominated convergence shows
that

. * -2 *
/}%p.logr D €.0,
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has a limit when 4 — 0 and that
tim [ 9070, = [ ped, = 076,,(Q), 12]).
-0 J¥ X
Finally when A — 0, the integral (6.3.2) equals
2log A" (p"¢,_,(Q), [Z]) + O(1).

From Proposition 6.3.1, we immediately get:

Corollary 6.3.2. Ifthere exists a subvariety Z of dimension r—1 in X meeting
P(F) and Y properly such that

(p’c, (@), [Z]) <0,
then there is no Green form for Y which is positiveon X —Y .

Examples of vector bundles F — Y for which such a Z exists are easily
constructed. For instance, take for Y any smooth projective curve, and for F
any rank two vector bundle which admits a subbundle L of rank 1 such that

degF <deglL < —g,

where “deg” denotes the degree of vector bundles on Y and g the genus of

Y . Then the dual of L has a nonzero regular section s. Its inverse sVisa
meromorphic section of L which does not vanish, and defines a section of the
projection morphism X — Y. Clearly its image Z does not meet Y and is
not contained in P(F). Moreover, the cycle p,Z is the image of the section ¢
of P(F) defined by the subbundle L C F ;since 0" Q ~ F/L, we get:

(e, 1(Q), [Z]) = (¢,_,(D), P.[Z]) = (07 (Q); [Y])
= (¢, (F)—c/(L);[Y]) =degF —deg L <0.
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