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INTRODUCTION 

Chaque proposition dans Bezout a l'air d'un 
grand secret appris d'une bonne femme voisine. 

Stendhal, Vie de Henry Brulard. 

The purpose of this paper is to study analogs of some basic concepts and 
results of projective geometry in the context of Arakelov geometry [Ar2, G-S2]. 

As was first noticed by Faltings in his work on diophantine approximation 
for abelian varieties [Fa2], higher dimensional arithmetic intersection theory 
can be used to define the height of any (closed integral) projective subscheme 
X c ]pN , where ]pN is the N-dimensional projective space over Z (or more 
generally over the integers in a number field). The Faltings height hF(X) , which 
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is a nonnegative real number, is defined in a similar fashion to the degree of a 
projective variety over a field. That is, hF(X) is the intersection, in the sense of 
[G-S2], of the fundamental class of X with the first Chern class of the canonical 
hermitian line bundle on pN, raised to the power d = dim(X) (see 3.1 below). 

In this paper we propose a slightly different definition of the height of X. 
Namely we denote by h(X) the intersection of the fundamental class of X with 
the d-th Chern class of the canonical quotient hermitian bundle on pN (see 
Definition 4.1.1). We prove that h(X) is nonnegative and smaller than hF(X) 
(except when d ~ 1 or when the generic fiber of X is empty, in which case 
h(X) = hF(X)). Furthermore' h(X) = 0 if and only if X is a linear subspace 
pd -\ c pN defined by the vanishing of N + I-d standard coordinates (Theorem 
5.2.3). 

We obtain several results on the heights of projective varieties, which are 
inspired by the analogy between heights and degrees. For instance we compute 
the height of the join of two varieties (Proposition 4.2.2) and the behavior 
of the height under linear projection (3.3.2). We give several proofs of the 
following arithmetic Bezout theorem. Assume X C pN and Y C pN are integral 
projective varieties which meet properly on the generic fiber of pN. Their 
intersection cycle X. Y can then be defined using Fulton's method [Fu2]. It 
is well defined up to the addition of a cycle linearly equivalent to zero in the 
closed fibers of pH over Z, and its height h(X.Y) (defined by extending by 
linearity the definition for integral subschemes) does not depend on the choice 
of representative for X.Y. Denote by de8Q(X) and de8Q(Y) the degrees in 
p~ of the generic fibers of X and Y respectively. Then we have 

h(X.Y) ~ h(X) de8Q(Y) + de8Q(X)h(Y) + cde~(X) de8Q(Y)' 

where the constant c depends only on N, dim(X), and dim(Y) (see also 
[Fa2] in the case of complete intersections). We give three different proofs of 
this inequality (Theorems 4.2.3,5.4.4, and 6.1.1), the smallest value of c being 
the one in Theorem 5.4.4 (we believe that c can be taken equal to zero, but we 
cannot prove it except when X or Y is a linear subspace). 

In transcendental number theory, especially in the work of Nesterenko [Nl], 
[N2] and Philippon [PI], another definition of height has been known for some 
time, whieh does not use Arakelov theory, and cases of the Bezout theorem 
have been proved in that context. Namely the height of X c pH is defined 
to be the height of its Chow form, which is a point in a large projective space. 
The comparison between this definition and hF(X) was made by Soule [S02] 
and Philippon [PI]. We extend their result to more general Chow forms and 
not necessarily standard metrics (Theorem 4.3.2). As a byproduct we get the 
following result. Let R be the resultant of N + 1 homogeneous polynomials of 
degrees do, ... ,d N in N + I variables. This is a multihomogeneous polyno-

N 
mial with integral coefficients of multidegree (°0 ,... , ON) , where OJ = II dj • 

j=O 
Hi 

Its variables are the coefficients of the "generic" homogeneous polynomials of 
degrees do, ... , d N in N + I variables. So R can be viewed as an element of 
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r V 
®sd;(Sd; CN+ 1)V. Equip this vector space with the hermitian norm 1I·IIHenn 
;=0 
induced by the standard hermitian structure on CN+1 • We prove in Lemma 
4.3.4 that 

10gllRilHenn = ~ (fi d;) . ((N + 1) (1 + ~ + ... + ~) - N) 
+e(do' ... ,dN ), 

where 
1 (N ) N 1 le(do' ... ,dN)1 :S "2 N g d; . ~ d; log(d; + 1). 

We also evaluate the size of R for other norms (Theorem 4.3.8). 
Our main analytic tool is the existence of "positive Green forms" for effective 

cycles Z on a complex manifold X. By this we mean a positive COO form 11 
on X -IZI which is locally L1 on X and such that the corresponding current 
g = [11] on X is a Green current for Z , i.e., such that ddc g + dz is COO on 
X (where dz is the current given by integration on Z). An example of such 
a positive Green form is the Levine form, familiar to Nevanlinna theory [Lev], 
[St2], when X is a complex projective space and Z a linear subspace. The 
positivity of these Levine forms has several interesting consequences (Propo-
sition 1.4.2, Proposition 4.1.3). More generally we give conditions for a given 
effective cycle (resp. all effective cycles) on X to have a positive Green form 
(Propositions 6.2.1,6.2.2, and 6.2.3), and a counterexample showing that some 
complex manifolds admit effective cycles with no positive Green forms (6.3). 

The paper is organized as follows. In Section 1 we discuss Green forms "of 
log type" for cycles on complex varieties. A general construction is given in 1.2, 
together with examples. The star product of Green currents is described in 1.3. 
These two sections (as well as the beginning of Section 2) cover material from 
[G-S2], but they improve it in several ways. For instance the associativity of 
the star product is shown in Theorem 1.3.2 without assuming that the ambient 
variety is projective. In 1.4 we use the positivity of Levine forms to compare 
several norms on polynomials, and in 1.5 we prove the continuity of some fiber 
integrals. This last result is used in Section 5 to get arithmetic inequalities, but 
it is probably of independent interest. 

In 2.1 we discuss arithmetic intersection theory, and in 2.2 we explain why 
the intersection product is invariant under linear equivalence. A pairing be-
tween algebraic and arithmetic cycles is discussed in 2.3, and Proposition 2.3.1 
describes its basic properties. This pairing (which was independently considered 
by Zhang [Zh2]) is the main tool to define heights. 

Section 3 studies the height attached to an hermitian line bundle (see also 
[Zh2] and [Gu]). A special case is the height introduced by Faltings in [Fa2]. 
We compute how this height varies with the data (3.2.2), we give conditions 
for it to be nonnegative (3.2.3), and we prove the finiteness of any set of cycles 
whose height and degree with respect to some ample hermitian line bundle are 
bounded (3.2.4). In 3.2.5 we give a formula for this height analogous to the 
Hilbert-Samuel formula for the degree. Section 3.3 is devoted to examples: 
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heights ofhypersurfaces (3.3.1), behavior of the height under linear projection 
(3.3.2, see also [Fa2D, self-intersection of the dualizing sheaf on arithmetic 
surfaces (3.3.3), heights of subvarieties of abelian varieties (3.3.4; we interpret 
Philippon's height [P2] as the height defined by some hermitian line bundle, see 
also [Kr] and [GuD. 

In Section 4 we define the height h(X). Propositions 4.1.2 and 4.1.3 contain 
some of its properties and the comparison with hF(X). In Proposition 4.2.2 
we compute h(X#Y) , where X#Y is the join of two projective varieties X 
and Y. This leads in Theorem 4.2.3 to a first proof of the arithmetic Bezout 
theorem. In 4.3 we compute the height of generalized Chow forms (Theorems 
4.3.2 and 4.3.8) and we deduce the estimates of resultants mentioned above. 
Note that in many respects the height h(X) appears as the dual notion, for 
projective duality, of the Faltings height hF(X). 

In Section 5, we use the analytic result from 1.5 to prove that h(X) ~ 0 
(Theorem 5.2.3; we also consider the case of nonstandard projective spaces) 
and to get our best version of the arithmetic Bezout theorem (Theorem 5.4.4). 
We also prove some Bezout theorems for cycles which do not meet properly on 
the generic fiber (Theorem 5.5.1), and variants involving more than two cycles 
or several projective spaces (5.6). It would be of interest to get precise analogs 
of the Bezout theorem with excess of Vogel [V] and Fulton ([Fu2], Chapter 
XII). 

The last section is devoted to the study of positive Green forms. We get 
from them a third proof of Bezout's theorem (Theorem 6.1.1), we discuss cases 
where they exist (6.2), and where they don't (6.3). 

Some of the results in this paper were announced in the note [BGS]. We 
thank O. Gabber for helpful comments and for the proof of Proposition 6.2.3. 

Conventions. The following notations are used throughout this paper. 
When X is a scheme and E a vector bundle on X, we let g be the locally 

free &x-module of sections of E, gV = Hom(g, &x) its dual, Sk(gV) its 
symmetric powers, and 

JP(E) = Proj (EB Sk(gV)) 
k?O 

the associated projective scheme; i.e., JP(E) = JP(gv) in Grothendieck's nota-
tion. The canonical quotient line bundle on JP(E) is denoted &E(I). When 
E is a holomorphic vector bundle on a complex space X we define similarly 
JP(E) and &E(1). 

When p ~ 0 is an integer and X a scheme of finite type over a Dedekind 
ring we let Zp(X) be the group of algebraic cycles of dimension p on X. If 
X is equidimensional we let 

Zp(X) = Zdim(X)_p(X). 

From the beginning of Section 2, we let K be a number field, &K be its ring 
of integers, and S = Spec(&K) be the associated affine scheme; all arithmetic 
varieties are S-schemes, and their products are products over S. 
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1. PRELIMINARIES: GREEN FORMS OF LOG TYPE 

1.1. Forms and currents on complex varieties. 

1.1.1. If X is a complex manifold, we shall denote by APq (X) (resp. gpq (X) ) 
the vector space of complex-valued COO differential forms (resp., of complex-
valued currents, i.e., of differential forms with distribution coefficients) of type 
(p, q). Thanks to the canonical orientation of X (defined by the volume form 
dX1 1\ dY I 1\ ... 1\ dXd 1\ dYd for any choice of local holomorphic coordinates 
za = xa + iya , n = 1, ... ,d), the space APq(X) may be identified with a 
subspace of gpq (X). More generally, any locally L 1 form rp of type (p, q) 
on X defines a current on X , that we shall sometimes denote by [rp] to avoid 
ambiguity. 

If Y c X is a closed irreducible analytic subset of codimension p , we denote 
by t5y the current of integration on Y; it is the current in gP ,p (X) which maps 
any compactly supported smooth form 11 on X to its integral on the smooth 
part of Y. For any desingularization v : Y -+ Y of Y, this integral coincides 
with Jy v· 11. In other words 

t5y = v.[l]. 

By linearity, the definition of t5y is extended to any analytic cycle on X. 
A Green current for an analytic cycle Z of codimension p in X is an 

element g E gP-I,P-I(X) such that 

dd C g + t5z E APP(X). 

Here d = 8 + 8, d C = (i/41C) (8 - 8) , and therefore ddc = (i/21C)8a. 
A Green form for Z is a Green current which is locally Lion X and COO 

on X -IZI. 
1.1.2. Recall from [G-S2], 1.3.2, the following definition. 

Definition 1.1.1. Let X be a smooth quasi-projective complex variety and Y 
a proper closed algebraic subset of X. A COO form 11 on X - Y is said to 
be of log type along Y when there exist a smooth quasi-projective complex 
variety M (nonnecessarily connected), a proper morphism 1C : M -+ X, and a 
COO form rp on M -1C-1(y) such that: 

(i) 1C -I (Y) is a divisor with normal crossings, and 1C is smooth over X - Y ; 
(ii) 11 is the direct image by 1C of rpIZ-n-1(y) ; 
(iii) For any point x EM, there is an open neighborhood U of x and 

a system of holomorphic coordinates (zl"" , zn) of U centered at x such 
that the set 1C -I (Y) n U has equation Z 1 ... Z k = 0 , for some k :S n , and there 
exist smooth 8- and a-closed forms nj on U, i = 1, ... , k, and a smooth 
form p on U with rplu = L~=I nj loglz/ + p. 

Such a form 11 on X - Y is locally Lion X and defines a current [11] on 
X, which coincides with the direct image 1C.[rp] of the current [rp] defined by 
rp (cf. [G-S2], 1.1.5). 
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Examples. (i) If L is an (algebraic) line bundle on X, endowed with a COO 
hermitian metric II II, and if s is a regular section of L on X which does 
not vanish identically on any component of X, then log lis II is a O-form of 
log type along the divisor Y of s. This follows from Hironaka's Theorem on 
embedded resolution applied to Y eX. 

(ii) Suppose Y is a smooth subvariety of X. Let v : X -+ X be the blow-up 
of Y in X and E = v -I (Y) the exceptional divisor of v, s a regular section 
of &(E) with divisor E. For any COO hermitian metric II II on E and any 
COO forms a and p on X such that a is 0- and a-closed, the COO form 
logllsll.a+p on X-X~X-Y is of log type along Y. (Take M=X and 
1C = v.) 

Forms on X of log type along Yare easily seen to form a vector space stable 
under multiplication by 0- and a-closed COO forms on X. The following is 
proved in [G-S2], 1.3.3 and 2.1.4, by using resolution of singularities. 

Lemma 1.1.2. Let X and X' be smooth quasi-projective complex varieties, 
and let 11 be a COO Jorm on X - Y oj log type along a closed algebraic subset 
YcX. 

(i) For any morphism J: X' -+ X such that J-I(y) does not contain any 
component oj X' , the Jorm J* 11 on X' - J- I (Y) is oj log type along J- I (Y) . 

Suppose moreover that Y is the support oj a cycle Z oj codimension p on 
X and that [11] is a Green current Jor Z. Then, if J- I (Y) has codimension p 
in X', [J* 11] is a Green Jorm Jor the cycle J* (Z) on X' that we shall denote 
by J* [11]; more precisely, iJ we let 

then 

(1.1.1) c * .r* dd [J 11] + Jr(Z) = J (ro). 

(ii) For any proper morphism J: X -+ X' which is smooth outside Y and 
such that J(Y) does not contain any component oj X', the COO Jorm /.11 on 
X' - J(Y) is oj log type along J(Y). 

Observe that, in (ii), the currents /.[11] and [/.11] coincide (cf. [G-S2], 1.1.5). 
If Z is any irreducible subvariety of X which is not contained in Y, any 

COO form 11 on X - Y of log type along Y is locally L I with respect to the 
current of order zero Jz ' and the product 11 Jz is a well-defined current of 
order O. In fact, for any resolution v : Z -+ Z , the form v * 11 is locally L I in 
Z and 

( 1.1.2) 

This extends by linearity to arbitrary algebraic cycles Z on X. 
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1.1.3. We now recall a few basic facts concerning positive forms on complex 
manifolds. i 

Definition 1.1.3. A smooth form '7 of type (p, p) on a complex manifold 
X is said to be a positive form if for any complex manifold V of complex 
dimension p and any holomorphic map rp : V --+ X , the volume form rp"" on 
X is nonnegative. 

Clearly, in this definition, we can restrict V to be a polydisc in CP. The 
positivity of " will be denoted: ,,~O. 

A real COO form ()) of type (1, 1) on X may be written in terms of local 
holomorphic coordinates (z i ' ... , Z d) as 

d 

())= L ())kl dzk"dzl , 
k,i=i 

where ())kl + ())lk = o. It is positive iff the associated hermitian form h on Tx ' 
defined as 

is nonnegative. If h is a positive definite hermitian form, then ()) is said to be 
strictly positive. 

In the sequel, we shall just use the following properties of positive forms: 

Proposition 1.1.4. Let M and N be complex manifolds, and let" be a COO 
positive form of type (k, k) on M. 

(i) For any holomorphic map f: N --+ M, the smooth form J" is positive 
on N. 

(ii) If g : M --+ N is a smooth holomorphic map whose restriction to the 
support of" is proper, the smooth form g .. " is positive on N. 

(iii) For any COO positive form ()) of type (1, 1) on M, the form ())." is 
positive. 

(iv) Let ()) be a strictly positive COO form of type (1, 1) on M. For any COO 
form Q of type (p, p) on M and any relatively compact open subset Q eM, 
there exists a real number R such that for any t ~ R, the (p, p )-form Q + t 01 
is positive on n. 
Proof. Assertion (i) follows immediately from the definition. 

To prove (ii), we may assume that k ~ d := dime N - dime M. For any 
complex manifold V of dimension k - d and any holomorphic map rp : V --+ 
N, we can consider the following cartesian diagram of complex manifolds: 

1 The reader should be aware that, for forms of type (k, k) on a d-dimensional complex mani-
fold, there are (at least!) three natural notions of positivity, which are distinct when 2 ~ k ~ d - 2; 
the definition which we use in this paper coincides with the one introduced by Lelong [LeI], and is 
sometimes called "weak positivity" (see [Ha-K)). 
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~ W:=VxNM--M 

V --N. 

'" 

rp* g* ,., = G* ~* ,., 

911 

shows that rp* g* ,., is the direct image by a smooth map of a nonnegative 
volume form, hence nonnegative (compare [St3], Theorem All 5.4). 

For a proof of (iii) see [LeI], IV, Proposition 3, or [Ha-K]. 
Assertion (iv) can be shown by a compactness argument. 0 

If X is a complex manifold and Z an analytic cycle on X, a Green form 
g for Z whose restriction to X -IZI is positive will be called a positive Green 
form for Z. Suppose that X is quasi-projective and that Z is an algebraic 
cycle. For any such form g of type (p, p) which is log type along IZ I and any 
effective algebraic cycle Z' of dimension p on X, no component of which is 
contained in IZI, it follows from (1.1.2) and Proposition 1.1.4, (iv) that the 
current g. dzl is a positive measure on X. In particular, if X is projective, 
we get: 

( 1.1.3) Lgdzl ~O. 

1.2. Construction of Green forms. 

1.2.1. Let X be a complex manifold, Y c X a closed complex submanifold 
of codimension p, v: X --+ X the blow-up of Y in X, and E = v-I(y) its 
exceptional divisor, so that we have a diagram: 

E J... X 
Lv 

i 
<---+ X. 

We shall also denote by N the normal bundle to Y in X, and by Q the 
canonical quotient bundle v;N/~N( -1) on the projective bundle JP(N) , which 
may be identified with E. Finally we choose a COO hermitian metric II. II on 
~x(E), and a holomorphic section s of ~x(E) on X with divisor E, and we 
let 

P = c1 (~x(E), 1111). 

It is a closed form in A I, I (X) , which satisfies the following identities of cur-
rents: 
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(1.2.1 ) ddC -2 
log lis II + t>E = p. 

In this section, we shall denote by [c] the cohomology class of a closed current 
c. 
Lemma 1.2.1. Let a E AP-1,P-l(X) be a closedform such that the cohomology 
class of j*(a) is the (p - 1)-th Chern class cp _ 1 (Q) E H 2P- 2(E; C). 

(i) The following equalities hold: 

( 1.2.2) ~ nrp-I,p-I v.(a uE) = t>y E ~ (X) 

and 

( 1.2.3) 

(ii) Suppose moreover that m E AP,P (X) is a closed form such that [m] = [t>y] 
in H 2P(X; C) and that Y E AP- 1 ,p-I(X) is such that 

( 1.2.4) ddC y = v·(m) - a /I. p. 
Then the current 

( 1.2.5) 

satisfies the following identity: 

( 1.2.6) 

In particular, g is a Green current for Y. Observe that g is locally Lion 
X and c':'o on X - Y , and that, if X is a quasi-projective variety and Y an 
algebraic subvariety, g is log type along Y (cf. 1.1.2, Example (ii)). 

Proof(Compare [G-S2], 1.3.6 and 1.3.7). (i) We have 

v.(a t>E) = v.(a.j. 1) = v.(j. / a) = i.vy./ a. 

As Vy is proper and smooth, the current Vy j* a belongs to Aoo(y) and is 
defined by the function whose value at y E Y 'is 

Therefore 
v.(a t>E) = i.(I) = t>y. 

By the "key formula" ([Fu2], Proposition 6.7. (a)), we get the equality of 
cohomology classes 
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,/[(\] = j* cp_I(Q)· 
According to (1.2.1) and the hypothesis made in a, we have 

Therefore 

v*[<5y ] = j* / [a] = [a] j* [1] = [a] [<5£] = [a /\ Pl. 
(ii) Since a is a- and a-closed, we have 

ddc g = v* (ddC(log \\S\\-2). a + ddc y) . 

913 

Equation (1.2.6) now follows immediately from (1.2.1), (1.2.2), and (1.2.4). 0 

Lemma 1.2.1 is the basic tool for constructing Green forms, as will be shown 
in the next two subsections. 

1.2.2. Suppose moreover that X is a compact Kahler manifold. Then so is X 
[Bl] and the conditions in Lemma 1.2.1, (ii) are always satisfied: the existence 
of (j) follows from Hodge theory and that of y from the aa-lemma ([G-S2], 
1.2.1). Therefore, if there is a closed form a E AP-1,P-I(X) satisfying the 
hypothesis of Lemma 1.2.1, there exists a Green form for Y (of log type along 
Y in the quasi-projective case). By Hodge theory again, this condition amounts 
to: 

.* 2p-2 ~ 
cp_I(Q)EJ H (X; C). 

Since 

p-I 
cp_I(Q) = LV; Cp_I_;(N) C1 (&'N(I)r ' 

;=0 

this happens when the total Chern class c( N) lies in the image of the restriction 
map 

(1.2.7) 

Consider now a smooth projective variety M. Both M and M x Mare 
Kahler, and the map (1.2.7) is surjective when Y = L1 is the diagonal in X = 
M x M. Therefore there exists a Green form g", for L1 in M x M, of log type 
along L1. Starting from g"" one easily gets Green forms for any cycle in M. 
Indeed, if we denote pr; : M x M --+ M (i = 1, 2) as the two projections, we 
have (compare [Bl], Theorem 2.1): 

Lemma 1.2.2. For any cycle Z E Zp(M), the current 

( 1.2.8) 

is a Green form for Z , of log type along \Z \. 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



914 I.-B. BOST, H. GILLET, AND C. SOULE 

In (1.2.8), the current gA.pr; Jz is well defined as the product of gA and 
pr; Jz = JMxZ ' since .1 and M x Z meet properly (cf. 1.1). 

Proof. We may assume that Z is an irreducible subvariety, and consider a 
resolution 11 : Z -+ Z . Let 

p = (idM , 11): M x Z -+ M x Z, 

and let p : M x Z -+ M be the first projection. By definition 

gA·pr; Jz = P. [p. gAl. 

Therefore 
g = prh P. [p. gAl = p. [p. gAl. 

This shows that the current g is Lion M (cf. [G-S2], 1.1.5) and COO on 
M -IZI. Moreover it follows from Lemma 1.1.2 that it is log type along IZI. 
Finally, if we let 

{J)A = ddc gA + JA 

(E Ad-I,d-I(M x M) , d = dimM) , 

we get from Lemma 1.1.2, (i): 

( 1.2.9) 

on the other hand, we have the equality of cycles 

P.p·.1=Z, 

hence the equality of currents (cf. [G-S2], p.136) 

(1.2.10) 

From (1.2.9) and (1.2.10), we obtain 

ddC g + Jz = p. p. {J)t,: 

As p is a smooth map, this current is Coo. 0 

Observe that, as a corollary of the previous discussion, we recover the fact 
that, for any cycle Z on a smooth projective variety M, there exists a Green 
form for Z of log type along IZI ([G-S2], 1.3.8-1.3.9). Using the existence of 
a smooth projective compactification for any smooth quasi-projective complex 
variety, one sees that this still holds when M is only assumed to be quasi-
projective. 
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1.2.3. Suppose now that there exists a holomorphic vector bundle F of rank 
p on the complex manifold X such that Y is the set of zeros of some global 
holomorphic section (J of F on X which is transverse to the zero section. If 
we write J for the sheaf of ideals in &x of functions vanishing on Y, we 
have an epimorphism: 

* c;rV 
(J:..7 -+J c&x' 

where !T is the sheaf of holomorphic sections of F and !Tv is its dual. If i 
is the inclusion of Y into X, this induces an isomorphism 

and hence 

NyjX ~ tF. 

The homomorphism (J* also induces an epimorphism of graded algebras of 
&x-modules 

k v k ED Sym (!T ) -+ ED J 
k~O k~O 

and hence a closed immersion: 

for which 

J:X 

II 
Proj( ED Jk) 

k~O 

lP'(F) 

II 
PrOj( ED Symk(!TV)) , 

k~O 

j&F (1) =&1(1) =J &1 =&1(-E). 

The map J fits into the following commutative diagram: 

j - f E = lP'(NYjx)~X~lP'(F) 

IVY Iv / p 

Y ~x 

The composition, where s : &1'---+ &1(E) is the canonical section, 
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is 11 * ( a *). In the dual sequence 

S * Cir &x'---+&x(E) '---+ 11 .7 , 

the composite map is 11 * (a). On the open set i - E = X - Y ,where 11 is the 
identity, it coincides with a. 

Suppose now that F is endowed with a COO hermitian metric. This metric 
determines hermitian metrics on p* F , on its quotient bundle QF' on its sub-
bundle &F(-l), and therefore on &x(E). Let ck (F), ck (QF) , ... denote 
the Chern forms associated with these metrics. These are closed COO forms 
of type (k, k), whose cohomology classes are the usual Chern classes ck(F) , 
Ck(QF) ' .... Moreover the closed form 

p* cp(F)-c l (&F(-1»),Cp_1 (QF) EAP,P(lP(F», 

whose cohomology class vanishes, may be written ddc 11, where 11 lies in 
AP-I,P-I(lP'(F». This follows from the results of Bott and Chern [B-C] , §5, 
applied to the following exact sequence of hermitian vector bundles: 

Also observe that 

P = c1 (&(E») =.r c1 (&F( -1») and IIsll2 = 1I*llaIl2 • 

We conclude that the various conditions in Lemma 1.2.1 are satisfied by 

O! =.r cp _ 1 (QF ) , (j) = cp (F) , and y =.r 11, 

and finally, we get that 

(1.2.11) 

is a Green form for Y in X, such that 

ddc g + Jy = cp (F) . 

It is of log type along Y when X is quasi-projective, and F and a are alge-
braic. 
Examples. (i) Suppose X is the total space of a holomorphic vector bundle 
n : e -+ Y over Y. Then Y may be defined by the vanishing of the tautological 
section a of F := n* e , and the previous construction defines, for any choice 
of an hermitian metric on e and of the form 11, a Green current for Y. As 
a matter of fact, the general construction may be recovered from this special 
case: the Green form (1.2.11) coincides with the pull-back by a : X -+ F of the 
Green form of X in the total space of F obtained from the tautological section 
of the pull-back of F. This remark allows one to extend formula (1.2.11) to 
the case where a is only supposed to meet properly the zero section of F and 
Y is the cycle attached to the l.c.i. subscheme defined by the vanishing of a . 
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(ii) Consider the special case of (i) where Y is a point and ~ 
equipped with the standard metric 

cP is 

;=1 

Then lP'(F) = cP x pp-I(C) and the exact sequence of hermitian vector bundles 
g on lP'(F) is the pull back of the analogous exact sequence on PP-I(C). Thus 

C1 (&'F(-1)) .cp_1 (QF ) -; cp(F) =0 

and we may choose ,,= o. Therefore 

g = v* (log IIslI-2.; cp _ 1 (QF )) 

is a Green form of log type for the origin in cP . In terms of coordinates 

2 (C 2)P-I g = -log Ilzll . dd log Ilzll 
and the identity 

ddC g = -c>{O} 

is essentially the Bochner-Martinelli formula. 
(iii) Suppose X is a Stein manifold. Then there exists a Stein neighborhood 

Q of Y in its normal bundle N and a "tubular neighborhood" map rp : Q --+ X , 
i.e., an open holomorphic immersion such that rplY = idlY. According to (i), 
there exists a Green form g for Y in N. For any p E AOo(X) such that 

p == 1 near Y and supp p C rp(Q) , 

the current p rp * (g) on X is a Green form for Y in X. This shows that any 
smooth cycle on X has a Green form. 

A reduction to the diagonal analogous to Lemma 1.2.2, the details of which 
we leave to the reader, shows that the same is true for any analytic cycle on X . 

(iv) Formula (1.2.11) gives in particular a Green form for any smooth com-
p 

plete intersection Y. Indeed, if Y = n H;, where H; are (closed) complex 
;=1 

hypersurfaces in X which are smooth and meet transversally along Y, and if 
s; is a section &,(H) with divisor H;, we may apply the construction above to 

p 
the section S = (S;)I<;<P of F =EB &,(H;). Using the last observation in (i), 

- - ;=1 
this may be extended to any complete intersection. 

(v) Let V be a complex vector space, equipped with an hermitian scalar 
product with associated norm II II, and lP'( V) the complex projective space of 
lines in V. For any linear subspace W c V of codimension p > 0, consider 
the subvariety lP'(W) c lP'(V) , and the vector bundle F = &'v(1) 0 VjW on 
JP'( V). For any line L E lP'( V) , the fiber FL may be identified with the vector 
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space Hom(L, V jW) , and the section a of F which takes as value at L the 
composition of the tautological linear maps 

L~V--+VjW 

is a regular section of F, which meets transversally the zero section of F 
exactly along JP'( W). Therefore the construction above applies to X = JP'( V) 
and Y = JP'(W). 

The projective bundle JP'(F) may be identified with JP'(V) xJP'(VjW), the map 
p with the first projection (onto JP'(V», and QF with P*&v{l)®q*Qv/w' where 
q is the second projection onto JP'(VjW) and Qv/w the canonical quotient 
bundle on JP'( V j W) ; then the exact sequence ~ coincides with the pull-back 
by q of the canonical exact sequence 

0--+ &v/w(-I) --+ VjW --+ Qv/w --+ 0 

twisted by P*&v{l). The hermitian scalar product on V determines hermitian 
v 

structures on VjW, on &v{l) (which is a subbundle of &1P(V)® V), on F (by 
tensor product), on &v/w( -1) , on Qv/w' and on QF. These are compatible 
with the isomorphisms mentioned above. It follows that 

Cp (F) = c1 (&v{l)Y , 

c1 (&F(-I») =p*c1 (&v{l») -q*c1 (&v/w(I») , 

cp _ 1 (QF) = L p*c1 (&v{l»)i. q*C1 (&v/w{l»)i. 
i+i=p-l 

Therefore 
P*CP (F)-C1 (&F(-l))·Cp _ 1 (QF) =0, 

and the construction above applies with 1'/ = O. Therefore the current 

(1.2.12) 

~W) :~ v, (v 'log lIall-2, I+K:-/ c, (~v( l))' .f q' c, (~VfW( I) Y ) 
is a Green form for JP'( W) , of log type along JP'( W) , which satisfies 

c (-----)P dd Ap(W) + I5IP(W) = c1 &v{l) . 

This current is called the Levine form of JP'(W) ([Lev], [G-S3], §5), and 
may be rewritten in a slightly more explicit way as follows. Let W.L be the 
orthogonal complement to W in V, and let n : V --+ W.L be the orthogonal 
projection. On V - {O} (resp. V - W) consider the smooth function p(x) = 
log IIxl12 (resp. r(x) = log Iln(x)112); these functions define (1, 1) forms J.l = 
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ddC p on IP'(V) and A = ddcr on IP'(V) - IP'(W) , and a function p - r on 
1P'( V) - 1P'( W). Then we have: 

( 1.2.13) 

Indeed 

(1.2.14) 

Ap(W) = (p - r) 2: ",i;J (on IP'(V) -1P'(W)). 
i+j=p-l 

1.3. Operations on Green currents. Let X be a smooth quasi-projective com-
plex variety. Given two currents S and T on X, we shall write S == T to 
mean that there exist currents u and v on X with S - T = au + 8v, and we 
shall denote by ~PP(X) the quotient space gPp(X)j == and by T the class in 
gPP(X) of a current T E gPP(X). 

Let Y c X be a closed irreducible subvariety, 11y a Green form for Y of 
log type along Y, and Z an algebraic cycle on X which meets Y properly. 
Using Lemma 1.1.2, (i), one sees that the current 11y dZ (defined by (1.1.2)) 
satisfies the following equation: 

(1.3.1) 

where Wy is the form d d C 11y + dy and Y. Z the usual intersection cycle of Y 
and Z (compare [G-S2], proof of Theorem 2.1.4). If gz is any Green current 
of Z, we define following [GS2], 2.1, the star product of 11y and gz to be 

(1.3.2) 11y * gz = 11ydZ + wygz · 
It follows from (1.3.1) that it is a Green current for Y. Z . 

Proposition-Definition 1.3.1. Let Y1 , ••• 'Yk be irreducible subvarieties of 
codimension p > 0 in X , n1 , ••• , nk some integers, and Z the cycle 

k P E ni Yi E Z (X) . 
i=1 

(i) For any Green current gz for Z in X, there exist Green forms 11y. for 
I 

Yi , of log type along ~, such that 

( 1.3.3) 

(ii) For any algebraic cycle Z' on X which meets Z properly and any Green 
, ~ k 

current gz' for Z , the class in g(X) of the current E n i 11y. dz' (resp. of the 
i=1 I 

k , 
Green current E n i 11y. * gz' for z. Z) depends only on gz and dz' (resp. 

i=1 I 

on gz and gz') and will be denoted gzdz , (resp. gz * gz') . 
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(iii) Let X' be another smooth quasi-projective complex variety and f : 
X' --. X a morphism such that rl(IZI) has codimension p in X'. The class 
~ k 

in 9'(X') of the Green form E n;lj'1yJ for f*Z (cj Lemma 1.1.2, (i)) 
j=1 I 

depends only on g Z and will be denoted j g Z . 

Proof. The existence of the '1y'S satisfying (1.3.3) follows from the existence 
of Green forms of log type for ~ny subvariety of a quasi-projective variety and 
from the fact that, if g and g' are any two Green currents for Z, there exists 
a Coo form a on X such that g - g' == a (cf. [G-S2], Theorem 1.2.2 (i)). 
The second assertion follows from [G-S2], Corollary 2.2.11. The third follows 
from the second applied to X' x X, pr; Z, pr; gz, and the graph of f in 
place of X, Z, gz' and Z' respectively. 0 

The main properties of the star product on classes of Green currents may be 
summarized as follows: 

Theorem 1.3.2. (i) (Commut(lfivity) Let ZI and Z2 be two cycles on X which 
intersect properly. If gz and gz are Green currents for ZI and Z2' then 

I 2 

gz * gz = gz * gz in 9'(X). 
I 2 2 I 

(ii) (Associativity) Let ZI' Z2' Z3 be three cycles on X which intersect prop-
erly in the following sense: if Pj denotes the codimension of Zj' we have 

codimx (IZjl n IZjl) = Pj + Pj for if:. j 

and 
codimx (IZII n IZ21 n IZ31) = PI + P2 + P3· 

If gZI' gZ2' gZ3 are Green currents for ZI' Z2' Z3' then 

gz * (gz * gz ) = (gz * gz ) * gz in 9'(X). 
I 2 3 I 2 3 

(iii) (Compatibility of star product and pull-back) Let f : X' --. X be a 
morphism of smooth quasi-projective complex varieties, and let ZI E ZPI (X) 
and Z2 E Z P2 (X) be cycles on X, which intersect properly on X, such that 
f- I (IZII), f- I (IZ21), and f- I (lZII n IZ21) have codimensions PI' P2' and 
PI + P2 respectively. If gz and gz are Green currents for ZI and Z2' then 

I 2 

( 1.3.4) 

and 

(1.3.5) J (gzl t5zJ =f* gZI t5/*(Z2)" 
Proof. The commutativity is Corollary 2.2.9 in [G-S2]. Identity (1.3.4) follows 
from the associativity by working on X' x X and considering X' x ZI ' X' x Z2 ' 
and the graph of f as in [G-S2], 4.4.3, Lemma. Identity (1.3.5) follows easily 
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from (1.3.4), the definition of J gz ' and (1.1.1). Associativity is proved in 
2 

[G-S2), 2.2.14, when X is projective. The following shorter argument avoids 
this extra hypothesis: let Wi = ddc gz + JZ ; these are 0- and a-closed forms, 

~ I I 

and therefore they act upon 9'(X) by multiplication. By commutativity of the 
star product, we get: 

gz * (gz * gz ) = gz * (gz * gz ) 
1 2 3 1 3 2 

(1.3.6) = gz Jz z + WI (gz * gz ) 
1 3· 2 3 2 

= gz . Jz z + WI· gz Jz + WI W3 gz· 
1 3· 2 3 2 2 

On the other hand, using again commutativity, we have 

(gz * gz ) * gz = gz * (gz * gz ) 1 2 3 3 1 2 

= gz . Jz z + w3• gz Jz + W3 WI gz . 
3 I· 2 1 2 2 

(1.3.7) 

The equality of (1.3.6) and (1.3.7) follows from [G-S2), Theorem 2.2.2, applied 
~Y=~,~=~,Z=~,~=~,~dW=~~~rea=~z 

1 3 2" 3 
and 't" = 0). 0 

Remark. Let us go back to the notation of Proposition 1.3.1. If!L is any Green 
form for Z oflog type along IZI such that gz == ", the class in 9(X) (resp. in 
9(X')) of '1Jz' and ,,*gz' (resp. of J'1)coincidewith gz·Jz' and gz*gz' 
(resp. of J gz ). This follows from the same argument as for Proposition 1.3.1, 
once we observe that Theorem 2.2.2 in [G-S2) and its corollaries still hold when 
the cycles Y, Z, and Ware not supposed irreducible (with the notations of 
[loc.cit.), one needs only to assume that IYlnIZI, IYlnIWI, and IYlnlZlnlwl 
have codimensions p + q, p + r, and p + q + r respectively, and that gy and 
gz are Green forms for Y and Z oflog type along IYI and IZI; with trivial 
modifications, the proof in 2.2.4-2.2.8 still applies under these hypotheses). 

Using this more flexible definition, one gets that if 

, /'" f : X --+ X and : X --+ X 

are morphisms of smooth quasi-projective complex varieties such that f- 1 (IZI) 
and (f 0/)-1 (IZI) have codimension p in X' and X" respectively, then 

/*f* gz = (fo/)* gz· 
1.4. An application: Levine forms and comparison of norms on polynomials. As 
an illustration of the constructions presented above, we shall use the Levine 
forms (1.2.3, Example (v)) to compare several notions of size for homogeneous 
polynomials. 
1.4.1. Let V be a complex vector space of dimension N + 1 equipped with an 
hermitian scalar product. Then to any linear subspace We V of codimension 
p > 0 is associated the Levine form Ap(W) , which is a Green form on JP'(V) 
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for the subspace JP(W) (see 1.2.3, Example (v». Its main properties may be 
summarized as follows: 

Proposition 1.4.1. (i) The Levineform Ap(W) is a positive Green form for JP(W) 
of log type along JP( W) . 

(ii) If Jl. denotes the Fubini-Study (1, 1) form on JP(V) defined by the her-
mitian structure on V, 2 the following equation of currents holds: 

ddC Ap(W) + ~p(W) = t1. 
(iii) When JP(V) is equipped with the Kahler structure defined by Jl., the 

harmonic projection of Ap(W) is given by 

(1.4.1 ) 
p N-p 
~ ~ 1 p-l 

H(Ap(W» = L..J L..J m + n Jl. . 
n=l m=O 

In other words 

p N-p f A N-p+l ~ ~ 1 
}p(V) P(W)Jl. = tr ~ m + n· ( 1.4.2) 

Assertions (i) and (ii) have been proved in 1.2.3, Example (v), except the pos-
itivity, which follows from the expression (1.2.13) and Proposition 1.1.4, (iii). 
For a proof of (iii), see [G-S3], Propositions 5.1 and 5.4. Assertions (i) and (ii) 
go back to Levine ([Lev)), while formula (1.4.1) was first shown by Stoll [St2]. 
It may also be written as follows. Let 

(1.4.3) U =! ~ ~ ~ = (p + 1) ~ ~ - ~ if p > 1 p 2L..JL..J m 2 L..J m 2 -, 
k=l m=l m=l 

and up = 0 if p :::; O. Then a simple computation using (1.4.1) shows that 
p-l 

(1.4.4) H([A)) = 2(uN - up_1 - uN_P)Jl. . 

1.4.2. Suppose now, to make notation simpler, that V is CN+1 equipped with 
the standard metric II II such that 

N 

II(zo' ... , zN)11 2 = ~ IZ iI 2 • 
i=O 

Let s be a regular section of the line bundle &(d) on JPN(C) = JP(V) , i.e., 
a nonzero homogeneous polynomial P(zo' ... , ZN). The standard metric on 
CN+1 defines a metric on &(-1) (as in 1.2.3, Example (v)), hence on its tensor 
powers. When &(d) is equipped with this metric, the section s has norm 

2 I.e., Jl is the first Chern fonn of /9' v ( 1) equipped with the metric defined by the scalar product 
on V, cf. 1.2.3, Example (v). 
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at the point x E pN (C) of homogeneous coordinates (zo' ... , Z N). Let 

lis II 00 = sup IIs(x) II 
xEpN(C) 

923 

and denote by J1. the Fubini-Study (1, 1) form on pN (C) attached to the 
standard scalar product on eN + 1 • 

Proposition 1.4.2. For any nonzero regular section s of &'(d) over pN (C), we 
have: 

(1.4.5) /, d N 1 
log lis II 00 ~ log lis II J1.N + "2 L -. 

pN(C) m=l m 
(Compare with [Fa2], Lemma 2.9; see also [PI], [P2], and [Le2] for related 
results involving the Mahler measure of polynomials.) 
Proof. Let D = div (s) be the divisor of s, P E pH (C) a point outside D, and 
Ap the Levine form of P in pH (C). Consider the Green current 

for D. We have 

From the relation 

2 gD = -log Iisli 

gD * Ap == Ap * gD 
(cf. Theorem 1.3.2, (i)) integrated on pN(C) , or more directly from Stokes 
formula, we get: 

gD(P) + d f ).lAp = f ApJD + f J1.N gD. 
JpN(C) JpN(C) JpN(C) 

Using (1.4.2) with p = N, the positivity of Ap , and (1.1.3), this implies: 

N 2 ~ 1/,2 N -logllsll (P) +d L- - ~ - logllsll J1. • 0 
m=l m pN(C) 

1.4.3. Remarks. (i) Let §2N+l be the unit sphere in eN+! , defined by 
N 

Llz/ = 1, 
;=0 
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and let dv be the unique U(N + I)-invariant probability measure on §2N+I. 
The two sides of (1.4.5) may be expressed more concretely in terms of P, 
namely: 

( 1.4.6) lis II 00 = sup IP(z)1 
ZES2N+1 

and 

(1.4.7) r log Ilsll,uN = r log IPldv. 
}pN(C) }S2N+l 

(ii) As any hermitian vector space V of dimension N + 1 is isomorphic 
to CN+ I equipped with the standard metric, Proposition 1.4.2 immediately 
extends to the situation where pN (q is replaced by lP'( V) , etc. 

More generally, let V;, ... , Jk be hermitian vector spaces of dimensions 
NI + 1, ... , Nk + l ' and let 

X = lP'(V;) x ... x lP'(Jk). 

The line bundles &(dl , ... , dk ) on X, d j E Z, are canonically endowed with 
hermitian metrics (deduced by tensor products and pull back from the metrics 
on the line bundles & v ( -1) defined by their injection in the trivial bundle 
with fiber V; on lP'(V;)): and there exists a unique probability measure dv on 
X invariant under the action of U(V;) x ... x U(Jk). Define, for any regular 
section s of &(dl ' ... ,dk ), 

Ilslloo = sup IIs(x)11 , 
xEX 

( 1.4.8) IIsllo = exp (Ix log IIs(x) II dV(X)) , 

and, for any positive real number p, 

(1.4.9) IIsllp = (Ix IIs(x)liP dV(X)) liP. 

We know from standard facts on probability spaces that 

(1.4.10) 

(beware that in general II lip is not a norm if p < 1). By induction on k, we 
get from Proposition 1.4.2: 

Corollary 1.4.3. For any (dl , ... ,dk ) E Nk and any regular section s of 
&(dl , ... , dk ), the following inequality holds: 
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(iii) The inequality (1.4.5) is optimal: it becomes an equality when P is the 
d-th power of a linear form. Indeed, if P = xg , then the sup norm (1.4.6) is 
1, while the integral (1.4.7) is d times the integral 

f 10glXoldvN iS2N+1 

N 
which is easily shown to be -! E i!i. 

m=1 
(iv) Let us go back to the notation of 1.4.1. From the proof of Proposition 

1.4.2 and the preceding remark, we obtain the following extremal property of 
Levine forms in the case p = 1 : the infimum of the integrals 

1 N-p+1 
gil , 

pN(C) 

where g runs over the positive Green forms for P( W) in P( V) of log type 
along P( W) such that 

ddC g + 0p(W) = Ji , 
is 2(O'N - O'p_1 - O'N_P) and is attained when g = AIP(W)' The general case of 
this assertion will be proved in 5.1, Remarks, (iii). 

1.5. The continuity of some fiber integrals. In this section, we establish the con-
tinuity of some integrals associated to families of cycles, which will be used to 
derive the "basic inequality" in 5.1. The proof will provide another application 
of the formalism of Green forms of log type. 

1.5.1. Let M be a smooth projective complex variety of dimension d, and let 
T be a smooth quasi-projective curve. Let p : M x T --+ T be the projection 
onto the second factor, and for any (closed) point t in T, let 

it: M --+ M x T 
x 1--+ (x, t). 

If Z E Zq(M x T) is a cycle which meets properly every fiber M x {t} of p, 
then, for any t E T, the cycle i; Z is well defined (in zq (M» and will be 
denoted Zt' Moreover, if g is a Green form for Z of log type along IZ 1 , 
then i; g is a well-defined Green form of log type for Zt' which we shall denote 
gt' Similarly, if a is a continuous differential form on M x T, the differential 
form i; a on M will be denoted at' 

Proposition 1.5.1. Let ZI and Z2 be two cycles on M x T, of respective 
codimensions PI and P2' PI > O. Let g be a Green form for ZI of log type 
along IZII and let a E Ak,k(M x T) be a closed form, k = d + 1 - PI - P2' 
Suppose that ZI and Z2 meet properly and that, for any t E T, ZI' Z2' and 
IZII n IZ21 meet M x {t} properly, and consider the current a.g.oz on M x T 

2 

and the currents argroz on M (these are well defined according to 1.1.2, 
2,1 

since ZI and Z2 meet properly, as well as IZllt and IZ2It). Then the integral 
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depends continuously on t E T, and the distribution [91] on T coincides with 
the direct image current p.(a.g.oz ). 

2 

A related result was proved by Stoll [Stl], in the case PI = 1. Applied to 
a = 1 and Zl = 0, Proposition 1.5.1 becomes the following classical result of 
Federer, Stoll, and King (see [K], 3.3 and 4.1, for a more general statement and 
references to earlier authors): 

Corollary 1.5.2. Let Z E zq (M x T) be a cycle which meets properly the fibers 
of p. For any WE Ad-q,d-q(M x T), the integral 

91(t) = ( wr 0z 1M t 

depends continuously on t E T. Moreover, we have the equality of currents 

[91] =p.(w.oz )· 
The end of this section is devoted to the proof of Proposition 1.5.1. 

1.5.2. Let us begin by proving Proposition 1.5.1 when Z2 = M x T. Then it 
amounts to proving that the integral 91(t) = IM argt depends continuously on 
t E T. Indeed, in that case the equality of p.(a.g) with the distribution [91] 
follows from the definition of the direct image of a current and from Fubini's 
theorem. To simplify notations, we shall write Z instead of Zl . 

Also observe that it is enough to prove the continuity of 91 for some Green 
form g for Z of log type along IZI. Indeed, if g' is another such Green 
form, there exists u E API-1,PI-1(M x T) such that 

g' - g - u E 89PI - 2 ,PI-1(M x T) + 89P1 - 1,PI-2(M x T) 

([G-S2], Theorem 1.2.2, (i)). Then according to Proposition 1.3.1, (iii) for any 
t E T we have: 

g; - gt - ut E 89PI - 2 ,P1-l(M) + 89P1 - 1,PI-2J (M). 

Since a is a 8- and 8-closed form this implies, by Stokes formula, 

1M arg; = 1M argt + 1M arut ' 

and the last integral defines a continuous (indeed COO) function of t E T. 
Let T be the smooth projective compactification of T, and Z the closure 

of Z in M x T. We shall prove the continuity of IM argt when g is (the 
restriction to M x T of) a Green form for Z in M x T, of log type along IZ I. 

We shall use the following notation: let 

p : M x T -- T and q: M x T -- M 
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be the two projections, let 
W = ddc g + Jz (E APIPl(M x T)), 

and choose h E goo(T x T) a Green current for the diagonal 1:11' in T x T. 
Such a Green current is indeed a Green form of log type along the diagonal; 
namely, if z is a local holomorphic coordinate, we can write locally 

(1.5.1) 

where rp is smooth. For any t E T the function 

h t = h(t , .) 
is a Green form for the point t in T, and we let 

C I, I -J.Lt = dd ht + Jt E A (T). 
For any t E T we have, by definition of gt and g. JMX{t} : 

( 1.5.2) 

On the other hand: 

(1.5.3) g.JMX{t} = g.p* J{t} = g * p* ht - w.p* ht 

and, according to Theorem 1.3.2, (i): 

( 1.5.4) 

From (1.5.2), (1.5.3), (1.5.4), and the fact that Qt is 8- and a-closed, we get: 

(1.5.5) [ Qt.gt = [ _ q* Q("P* h("Jz + [ _ q* Q("P* J.L("g - [ _ q* Q("w.p* h(" 
1M 1MxT 1MxT 1MxT 

The last two integrals on the right-hand side of (1.5.5) are easily seen to be 
COO functions of t E T. To prove the continuity of the first one, we may clearly 
suppose that Z is irreducible. Let then v : Z ----> Z c M x T be a resolution 
of Z. According to (1.1.2), we get 

( 1.5.6) 

In terms of local holomorphic coordinates XI' ... ,xN on Z and z on T, 
the differential form under the sign fz may be written as 

a(x l , ••. ,xN ' z(t)) 
N 

x [log If(x i ' ••• ,xN ) - z(t)1 + p(J(x l ' .•• ,xN ), z(t))] IT dXi 1\ dxi , 
i=1 
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for some COO functions a and p and some nonconstant holomorphic func-
tion f (use (1.5.1». According to the Weierstrass preparation theorem, after 
a possible linear change in the local coordinates (XI"" ,xN ), we may write, 
for XI' ••• ,X Nand z in some neighborhood of 0: 

,XN ' z), 

where dEN, and bl , ... ,bd and q are holomorphic functions such that 
bl (0, ... , 0) = ... = bd(O, ... ,0) = 0 and q(O, ... , 0) =I- O. Using partitions 
of unity, this shows that the continuity of (1.5.6) is a consequence ofthe second 
assertion of the following 

Lemma 1.5.3. Let U c C, V C eN-I, and Wee be open subsets. Let 
b l , ... ,bd be holomorphicfunctions on V x Wand p a compactly supported 
continuous function on U x V x W. 

(i) The integral 

defines a continuous function '1/ of (x2 ' '" ,xN ' z) E V x W. 
(ii) The integral 

( 1.5.8) 

ix v p(xi> ... , xN ' z) loglx; + t. bj(x" ... , X N' z)x;-j I fi dx, A dx, 

defines a continuous function rp of z E W . 
Proof of Lemma 1.5.3. (i) If ..1.1 ' .•• ,A.d denote the roots of the polynomial 

d 
d '" d-j X + ~bj(X2' ..• ,xN ' z)X , 

j=1 

the integral (1.5.7) may be written 

iP(X" ... , xN ' Z)logITI(X, -A)ldX, Ad",. 
This is clearly equal to 

d 

L 1 p(u + A.j' X 2 ' ••• 'XN ' z) log lui du 1\ duo 
j=1 C 
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This expression depends continuously on (A. 1 , ••. ,A.d , X 2 , ••• ,XN , Z) . There-
fore the continuity of (1.5.7) as a function of (X2' ••• ,xN ' z) follows from 
the continuity of the roots of a polynomial. 

(ii) By Fubini's theorem, we have 

( 1.5.9) 

The function p is compactly supported, and so is If!. Therefore the continuity 
of ffJ follows from (1.5.9) and the continuity of If!. 0 

1.5.3. Let us finally prove Proposition 1.5.1 in complete generality. Let g2 be 
a Green form of log type for Z2. Then g * g2 is a Green current for the 
intersection cycle I = Zl. Z2' and there is a Green form of log type h such 
that 

h == g * g2. 

Let w := d de g + dz . It is a smooth closed form of type (PI' PI) , and we have 
1 

(1.5.10) 

This implies 

(1.5.11) 

indeed, as a is 0- and a-closed, (1.5.10) implies that the two sides of this 
equality differ by a current of the form p.au + p.av ; since p. commutes with 
a and a, they must be equal in 9 (T) , hence in 9 (T) , since they are currents 
of degree zero. On the other hand, according to Proposition 1.3.1, (ii), Theorem 
1.3.2, (iii) and 1.3, Remark, we know that, for any t E T: 

Since at is 0- and a-closed, it follows that 

(1.5.12) 

Taken together, (1.5.11) and (1.5.12) show that to prove Proposition 1.5.1, 
it is enough to prove it with (Zl' Z2' a, g) replaced by (/, M x T, a, h) or 
by (Z2' M x T, aw,' g2). As we already established Proposition 1.5.1 when 
Z2 = M x T , this completes the proof. 0 
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2. PRELIMINARIES: ARITHMETIC INTERSECTION THEORY 

2.1. Arithmetic Chow groups and Chern classes. 

2.1.1. Arithmetic Chow groups. Let K be a number field of degree [K : Q], 
&K its ring of integers, and S = Spec(&K) the associated scheme. For any 
imbedding a: K -+ C and any K-scheme or S-scheme X, we shall denote by 
Xu the C-scheme deduced from X by the base change a: Spec(C) -+ Spec(K) 
( E S). Similarly, if I: X -+ Y is a morphism of K-schemes we shall denote 
by lu : Xu -+ Yu the morphism of C-schemes it induces by base change. These 
notations will be used throughout this paper. 

An arithmetic variety is, by definition, a scheme X which is flat and quasi-
projective over S and whose generic fiber X K = X X s Spec( K) is regular. A 
projective arithmetic variety is an arithmetic variety which is projective over 
S. Observe that any (projective) arithmetic variety over S may be seen as a 
(projective) arithmetic variety over Spec(Z). A morphism between two arith-
metic varieties X and Y will be any morphism of schemes from X to Y, not 
necessarily an S-morphism. 

For any arithmetic variety X and any integer p ~ 0 we let Zp(X) (resp. 
zP (X)) be the group of cycles of dimension p (resp. codimension p) over 
X, i.e. the free abelian group on the set of points of dimension p (resp. 
codimension p) of X. For any such cycle Z we denote by IZI c X its 
support. 

The set X(C) of complex points of the scheme X may be identified with the 
disjoint union U Xu(C). Let F 00 : X(C) -+ X(C) be the antiholomorphic 

u: K<-+C 
involution coming from complex conjugation of the coordinates of complex 
points in X. We denote by APP(XR ) (resp. dP(XR )) the set of real forms 0: E 
APP(X(C)) (resp. real currents 0: E dP(X(C))) such that FC:(o:) = (-I)P 0:. 

The image of APP(XR ) (resp. dP(XR)) in AI'P(X(C)) (resp. gPP(XIR )) will 
be denoted APP(XR ) (resp. ijPP(XIR)). 

Any cycle Z in zP (X) defines a current l5z E d P (XR ) by integration on 
its set of complex points: if Z = ~nQZQ' l5z = ~nQl5z (C)' A Green current 

Q Q a 

for Z is any current g Ed-I ,p-I (Xa) such that ddc g + l5z is smooth (i.e., 
a Green current for Z(C), in the sense of 1.1.1, which lies in gP-I,P-I(XR )). 

Let X be a regular arithmetic variety. We let zP (X) be the group of pairs 
(Z, g) where Z E ZP(X) and g is a Green current for Z, with addition 
defined componentwise. Let i?P (X) c zP (X) be the subgroup generated by 
pairs of the form (0, au + 8v) or (div(f), -log 1/12), where 1 E k(Y)* is a 
nontrivial rational function on an integral subscheme Y c X of codimension 
p - 1, and -log 1/12 is the current on X(C) obtained by restricting forms to 
the smooth part of Y(C) and integrating against the L I function -log 1/12 . 
The arithmetic Chow group of codimension p of X is 
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We refer the reader to [G-S2] for more details on this definition, as well as for the 
properties of this group, some of which we shall now recall (see also [Gi], [B2], 
and [So-A-B-K] for expository presentations of arithmetic intersection theory). 

There exist group morphisms 
~..P p ~..P pp z: CI1 (X) --+ CH (X), OJ: CI1 (X) --+ A (XR) , 

a: AP-1,P-l(XR) --+ CiI (X) 

defined as follows: the map z sends the class of (Z, g) to the class of Z in 
the usual (algebraic) Chow group of X; the map OJ sends (Z, g) to ddc g+oz 
(which is smooth by the definition of Green currents); and a sends the class 
r, of "E AP- 1,P-l(XR) C d- 1,P-l(XR) to the class of (0, ,,). Notice that 
OJ 0 a = ddc . 

The following statement is a consequence of Hodge Theory (cf. [G-S2], 1.2.3 
and 3.3.5, p.130): 

Lemma 2.1.1. Let X be a regular arithmetic variety such that XK is pro-
jective. Assume X (C) is endowed with an F 00 -invariant Kahler structure. II 
x E CiI (X) is such that z(x) = 0 and OJ(x) = 0, there exists a harmonic 
lorm " in AP- 1 ,p-l (XR ) such that x = a(r,) . 

Any morphism I: X --+ Y of regular arithmetic varieties induces a group 
morphism 

; : CiI (Y) --+ CiI (X). 

When X and Yare equidimensional, I is proper, and its restriction to X K is 
smooth, there exists also a push-forward morphism 1: : CiI (X) --+ CiI- tS (Y), 
where 0 = dim(X) - dim(Y). The push-forward 1: is defined by the following 
formula: 

1:[(Z, g)] = [(1: Z , Ic*g)] , 
and the pull-back j* is defined "formally" by 

;[(Z, g)] = [(;Z, fc g)], 
when I meets Z properly in the generic fiber and g is a Green form of log 
type along IZI(C). 

Furthermore, there is a cup-product 

(2.1.1) 

"formally" defined by the formula: 

[(ZI' gl)] [(Z2' g2)] = [(ZI' Z2' gl * g2)]' 

when ZI and Z2 meet properly in the generic fiber, and gl and g2 are Green 
forms oflog type along IZ11(C) and IZ21(C) (see [G-S2], 4.1-4.2, and 2.2 below 
for more details). 
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When X is smooth over S, the cup-product lies in Cit+q (X) itself 
([G-S2], 4.5). Both z and ware ring morphisms. Given f as above, one 
has j(xy) = j(x)j(y) , the construction of f. and j are functorial, and, 
if f is proper on X and is smooth on its generic fiber, f.(xj(y)) = f.(x)y 
(projection formula). Note also the following useful formula: 

(2.1.2) a(rl)y = a(l1 w(y)). 

2.1.2. Arithmetic Chern classes. An hermitian vector bundle on the arithmetic 
variety X is a pair E = (E, h) , where E is a locally free coherent &'x-module 
and h is a COO hermitian scalar product on the holomorphic vector bundle Ec 
on X(C); it is also assumed that h is invariant under F 00. If X is regular, 
for any p ~ 0 , one can define a Chern class 

_ .-....0 
(see [G-S3], §4). By definition, co(E) = 1 in CH (X) = Z (when X is 
irreducible) and Ci (E) = c1 (detE), where detE is the maximal exterior 
power of E. If L is an hermitian line bundle, c1 (L) is the class of the pair 
(div(s), -log 1\ s 1\2) for any rational section s of L over X of norm 1\ s 1\ on 
X(C) (so that -log 1\ s 1\2 is a distribution on X(C)). For any E and p ~ 0, 
the form 

cp(E) = w(cp(E)) E APP(XR ) 

is the usual p-th Chern form of the hermitian vector bundle Ec over X(C). 
As for usual Chern classes, if r denotes the rank of E, cp (E) = 0 if p > r. 

Given an exact sequence 

·g:O-E' -E-E"-O 
of vector bundles on X and any choice h', h, h" of metrics on E', E, E" 
respectively, the following formula holds in Cit (X)Q: 

(2.1.3) 
r+s=p 

where cp(g) E AP-1,P-I(XR ) is the Bott-Chern secondary characteristic class 
attached to (g, h' , h, h") [B-C], [G-S3}. It is convenient to introduce the total 
Chern class 

C(E) = L cp (E) E Cil(x) 
p~o 

and the total Bott-Chern secondary class 

c(g) = L cp (E) E A*(X). 
p~o 
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Then (2.1.3) may be Written as 

(2.1.4) c(E) = C(E:) . C( E") - a (C(/?'». 

In particular, if E' EI7 E" denotes the direct sum of E' and E" endowed with 
the orthogonal sum of their metrics, 

(2.1.5) c(E' EI7 E") = c(E'). c(E") In cil (X)Q' 

where eil (X) = EI7 Cit (X). When X is smooth over S, (2.1.4) and (2.1.5) 
p~O 

-* hold in CH (X). See [G-S3] for more details. 
These constructions extend to an arbitrary arithmetic variety X (so there 

might exist singularities on closed fibers) [G-S6]. One then defines arithmetic 
Chow homology groups CHp(X) , generated by pairs (Z, g) where Z E Zp(X) 
and g is a Green current for Z. These are covariant for proper maps which 
are smooth on the generic fiber, and contravariant for flat maps with constant 
relative dimension. Given any map f: X ----t Y , where X and Yare as above 
and Y is regular, there exists a cap-product 

(2.1.6) 

which generalizes the pairing (2.1.1). An hermitian vector bundle E on X 
defines "operational" Chern classes, i.e., morphisms 

(2.1. 7) 

for all p ~ 0 which is compatible with the cap-product (2.1.6): if F is an her-
mitian vector bundle over Y such that E ~ j F , then for any x E CHp(X) , 
we have 

x n cq (E) = x'f cq (F) . 
We refer to [G-S6], §2.3, for these notions and their properties. 

-* 2.1.3. The degree maps on CH (SpeC(l9'K))' In the case of 

X = S = Spec(l9'K) ' 

the group Cit (X) vanishes when p> 1. We shall denote by 

-* degK : CH (S) ----t Z 
and 

- -* deg:CH(S)----t1R 
the following morphisms. The map degK (the algebraic degree map) is just the 
projection 
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while deS (the arithmetic degree map) is the composition of the projection 
* ---Cii (8) ~ CH I (8) of the push-forward morphism 

---1 ---1 
CH (8) ~ CH (Spec(Z)) 

attached to the unique morphism 8 ~ Spec(Z) , and of the isomorphism 
---1 ~ 
CH (Spec(Z)) ~ JR, 

the inverse of which maps the class of (0, 2..1.) to the real number A. E JR . 

An element of 21(8) is a couple (~np p, A.) , where p runs over the 

prime ideals in ~K' the np are integers, almost all zero, and A. is an F 00-

invariant function from 8(C) to JR, i.e., a map A. : (1 ~ ..1.((1) on the set of 
[K : Q] imbeddings (1: K ~ C such that A. (Cf) = ..1.((1). One easily sees that 

(2.1.8) 

where N p denotes the norm of p. 
It follows from [G-S2], 3.4.1 and 3.4.3, that 

---0 
degK : CH (8) ~ Z 

is an isomorphism and that the map 
--- ---1 deg: CH (8) ~ JR 

is onto, with kernel a compact group (namely an extension of the ideal class 
group of K by the compa(:t torus, quotient of JR'I+'2- 1 by the image of Dirich-
let's regulator map). 

---* -0 The multiplicative structure of CH (8) is just given by its (Z = CH (8))-
---1 

module structure (the product of two elements in CH (8) vanishes). It follows 
that 

(2.1.9) 

and 

(2.1.10) 

An hermitian vector bundle E on 8 is the same as the data consisting of a 
finitely generated projective ~K-module E , and of hermitian scalar products on 
the [K : Q] complex vector spaces E(J associated to the imbeddings (1 : K ~ C, 
which are invariant under the involution F 00. The real vector space E ®z JR is 
then naturally endowed with a euclidean scalar product, namely the restriction 
of the hermitian scalar product on 
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(2.1.11) 

defined as the direct sum of the given scalar products on the Eu's. 
The arithmetic degree of the hermitian vector bundle E on S is defined as 

the real number 

(2.1.12) deg (E) = deg (c1 (E)). 
If V is the covolume of the lattice E in the euclidean vector space E ®z lR , 
and AK the discriminant of the number field K, we have 

- - 1 (2.1.13) deg(E) =-logV+ 2 rkE.logIAKI. 

Note also that 

(2.1.14) deg(E) = deg(detE) 

and, when r is an hermitian line bundle over S, 

(2.1.15) 
u 

where # stands for the cardinality of a finite set, s is any nonzero element in L, 
(J : K -+ C runs over the [K : Q] imbeddings of K in C, and II s lIu is the norm 
of s in Lu. Formula (2.1.15) is a consequence of (2.1.8) and the definitions 
of c1 (L) ; when E is trivial, (2.1.13) follows after a short computation from 
(2.1.14), (2.1.15) applied to a trivializing section of detE, and the definition 
of AK ; one reduces to this case by considering E$h, where h is the order of 
the ideal class group of K. 

For more details on these notions, we refer to [Sz], [La], and [G-S7]. 

2.2. The intersection product. Before going on, we shall describe more precisely 
the intersection pairing (2.1.1) on a regular arithmetic variety X (see [G-S2], 
4.2.3). 

First recall that if A and Bare Zariski closed subsets in X, there exists a 
pairing 

(2.2.1 ) 

on Chow groups with supports. This product is associative and compatible with 
restriction to open subsets in X and with enlargement of supports. It can be 
defined by means of the isomorphism between CH~(X)Q and the weight p 
part of the K-theory with supports K:(X)Q [S03], [G-S1]. When X is smooth 
over S, this pairing takes values in CH~~~(X) and can be defined as in Fulton 
[Fu2] (the results in that book extend to that case, see [Fu2], 20.2). 

Assume now that Y E Zp(X) and Z E zq(X) are algebraic cycles on X, 
and consider their fundamental classes [Y] E CHjYI(X) and [Z] E CHt~I(X). 
We may then look at their product 
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[Y][Z] E CHt~~IZI(X)Q. 

If U c X is an open subset where Y and Z meet properly, the restriction of 
[Y][Z] to 

(2.2.2) 

is the usual intersection cycle E rna Wa ,where Wa are the irreducible compo-
a 

nents of IYI n IZI n U and rna are the Serre intersection multiplicities [G-Sl]. 
When p = 1, the image of [Y][Z] in CHj;jq(X)Q agrees with the class 

considered in [Fu2], 2.3. When Z is contained in I YI this follows from the 
fact that Pic(X)Q is the weight 1 part of Ko(X)Q. In particular, when Y is a 
principal Cartier divisor, [Y][Z] maps to zero in CH~~q(X)Q. 

We shall denote by R~q (X)Q the space of Q-cycles of the form ~ qj div(./;) , 
I 

where qj E Q and./; E k(Y/ is a nontrivial rational function on an integral 
subscheme ~ contained in some closed fiber of 1t : X --+ S , of codimension 
p + q - 1 in X. Observe that, for any cycle R E R~;q (X)Q ' the class of (R, 0) 

in Cit+q (X)Q vanishes. 
Now let a E Cit (X) and P E cil (X). By the moving lemma on X K 

we may represent a and P by pairs (Y, gy) E Zp(X) and (Z, gz) E zq(X) 
respectively, where Y and Z meet properly on X K • 

Let Y. Z be any representative in Zp+q (I YI n IZDQ of the product [Y]. [Z] 
in CHiY~~IZI (X). As Y and Z meet properly in X K ' it is a Q-cycle well 
defined up to the addition of a Q-cycle in R~;q (X)Q . 

Let us write gy = 11 + au + liv , where 11 is a Green form for Yc in 9(XR ) 
--:-..P+q of log type along IYI(C). We then define ap E Cit (X)Q to be the class of 

(Y. Z , 11 * gz) . 
One has to show that this definition does not depend on choices. That it is 

so when Y and Z are fixed follows easily from the definition of Cit+q (X) , 
from Proposition 1.3.1 and 1.3, Remark. To prove in general that it does 
not depend on the choices of representatives (Y, g y) and (Z, g z), we can 
use the commutativity of the product in the Chow groups with supports, the 
commutativity of the *-product, the "moving lemma for K1-chains" ([G-S2], 
Lemma 4.2.6), and we are reduced to the following assertion (see [G-S2], top 
of page 144): let W c X be an integral subscheme of codimension p - 1 in 
X, 1 E k(W)* a nonzero rational function on W, Y = div(f) E ZP(X) its 
divisor, and gy = -log 1/12 the canonical Green current for Y; assume that 
Z E zq(X) meets Y properly on X K ' and let gz be a Green current for Z; 

--:-..P+q then the class of (Y. Z , gy * gz) in Cit (X)Q vanishes. 
To prove this, let us represent the element [W][Z] E CHi;in,~,(X)Q by a 

Q-cycle E jE1 nj Sj + T on IWI n IZI, where the Sj 's are irreducible and meet 
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X K while T is supported on closed fibers. Since Y and Z meet properly on 
X K' the function f is regular at the generic point of Sj; i E I. By [G-S2] 
Lemma 4.2.5, there exist u and v in 9(X(C)) such that 

(2.2.3) 

Let us choose a rational function f on X which is regular at the generic point 
of Wand restricts to f on W. Let Y = divCn. By the associativity of 
the intersection products for Chow groups with supports, we get the following 
equality in CHjn~lzl(X)Q: 

(2.2.4) [Y][Z] = ([Y][W])[Z] = [Y] ([W][Z]) = E nj [Y][Sj] + [YUT]. 
jEI 

Since f is regular at the generic point of Sj' we have 

(2.2.5) 

On the other hand, since Y is principal and T is supported by closed fibers, the 
image of [YUT] in CHj;!jq(X)Q vanishes and any representative of [Y] [T] in 
Zp+q (IYI n IZDQ belongs to R~;q(X)Q. As Y and Z meet properly on XK , 
(2.2.4) and (2.2.5) therefore imply 

(2.2.6) Y. Z = E nj divCljs) 
jEI 

Finally, from (2.2.3), (2.2.6), we get the following equalities in Ci/+q (X)Q : 

[(Y.Z, gy * gz)] 

= [(E nj div fis; , - E nj 10glfis/)] + [(0, au + 8v)] = O. 
jEI jEI 

---* -* 2.3. The pairing CH (X) x Z*(X) -+ CH (Spec(&K))Q' 

2.3.1. Definition and basic properties. Let X be a regular equidimensional 
projective arithmetic variety, d its Krull dimension, p and q nonnegative 

--q 
integers, Y E Zp(X) , and x E CH (X). We shall define an element (xIY) in 
-- --q-p+i 
CHp_q(S)Q := CH (S)Q. 

When p is different from q and q + 1 , then we let (xIY) = O. 
When p = q, choose a representative (Z, g) of x such that Z meets 

Y properly on XK , i.e., IZIK n IYIK is empty, and g is smooth in some 
open neighborhood of IYI(C). The product [Z]. [Y] in CI1z,n,y,(X)Q has a 
representative in Zo(IZI n IYDQ , supported on the closed fibers of 11: : X -+ S, 
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and the product of currents gt5y makes sense since their singular supports do 
not meet. Furthermore gt5y is closed for degree reasons. Therefore the pair 

--d 
(Z. Y, gt5y ) defines a class in CH (X)Q and we let 

(2.3.1) 

When p = q + 1 we let z(Y) E C~-p(X) be the class of Y and z(x) E 
CHq(X) be as in 2.1.1. Then we define 

(2.3.2) o --0 
(xIY) = 1l*(z(x)z(Y)) E CH (8) = CH (8) = z. 

In other words, (xIY) is the intersection number of the elements Z(X)K and 
[YKJ in CH*(XK) , which have complementary dimensions. 

Another definition of (xIY) is as follows. Let gy be a Green current for 
--d-p 

Y and y E CH (X) the class of (Y, gy). Then, if w(x) E Aqq(Xa) is the 
form attached to x (see 2.1.1): 

--* (2.3.3) (xIY) = 1l*(xy - a(w(x)gy)) E CH (8)Q. 

Finally, we may give a third definition of (x I Y). Assume that Y is irre-
ducible and let rp: Y --+ Y be a projective birational morphism such that YK is 
smooth (which exists by resolution of singularities). Denote by 1£: Y --+ 8 and 
'" : Y --+ X the composite of rp with 1l and the inclusion Y ~ X respectively. 
Consider the cap-product x n [YJ E Ciip_/Y)Q of x with the fundamental 
class of Y in Ciip(Y) = CHp(Y). Then 

(2.3.4) (xIY) = 1£* (x n [YJ) 
-- --q-p+! in CHp_q(8)Q = CH (8)Q (compare [Zh2]). 

Proposition 2.3.1. (i) Definitions (2.3.1), (2.3.2), (2.3.3), and (2.3.4) agree and 
do not depend on choices. They define a biadditive pairing 

Ciiq (X) ® Zp(X) --+ Ciiq- p+! (8)Q' 

(ii) When Y = div(f), where f is a nontrivial rational function on an 
integral subscheme contained in a closed fiber of X, then (xIY) = 0 for any 

--* x E CH (X). 
--..* .-* 

(iii) For any x E CH (X), any" E CH (8), and any Y E Z*(X), we have 

(2.3.5) * --* (x.1l (,,)IY) = (xIY)" in CH (8)Q' 

(iv) Let f : X --+ X' be an 8-morphism of regular projective arithmetic 
varieties, x' E Ciiq (X'), Y E Zp(X), and f.(Y) E Zp(X') its direct image by 
f ([Fu1J and [Fu2J, 1.4 and Example 20.1.3). Then we have: 
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(2.3.6) 

(V) Let f : X -> X' be a flat· S-morphism of regular projective arithmetic 
varieties, which has constant relative dimension ~ and whose restriction to X K 

is smooth. Given x E eil (X), Y E Zp(X'), and r(y) E zp+o(X) its inverse 
image by f ([Fu1] and [Fu2], 1.7 and 20.1), we have: 

(2.3.7) 

(vi) Assume Y E Zp(X) is irreducible. Let L be an hermitian line bundle 

on X and s any nonzero rational section of Lover Y. For any x E Ell (X), 
we have: 

(2.3.8) (x 21 (L)IY) = (xl dives)) - n* a (w(x) log II s 112 ~y) in cit (S)Q. 

Proof. To compare (2.3.1), (2.3.2), (2.3.3), and (2.3.4) we may assume that Y 
is irreducible and that p = q (when p ¢. {q, q + I} , the comparison is trivial; 
when p = q + 1 , it easily follows from classical intersection theory for varieties 
over K). By the projection formula for Chow groups with supports (cf. [G-
S2], end of 4.4.3), [Z][Y] coincides with qJ*([Z] n [Y)) in CHI~lnlzl(X)Q = 
CHo(IYI n IZI)Q. Furthermore we may find a Green form of log type Y/ for 
Z and some currents u and v which are smooth in a neighborhood of Y (C) 
such that g = Y/ + au + 8v. It follows that 

g~y = Y/~y + a(u~y) + 8(v~y) = 1fI*[qJ*(y/)] + a(u~y) + 8(v~y). 

Therefore the class of ([Z][Y], g~y) coincides with 1fI* (x n [Y)). Applying n* 
we conclude that (2.3.1) and (2.3.4) coincide. Furthermore xy is by definition 
the class of ([Z][Y], Y/ * gy) and 

Y/ * gy = y/~y + w(x)gy = g~y + w(x)gy - a(u~y) - 8(v~y), 

so that (2.3.3) and (2.3.1) are compatible. The rest of (i) is a consequence of 
these facts. 

The statement (ii) is clear since ~y = 0 and the class of Z. Y is zero in 
CH~~~IYI(X)Q' hence Z. Y belongs to R~:q(X)Q. 

Assertior. (iii) follows from (2.3.3) together with the projection formula ([G-
S2], Theorem 4.4.3, 7)); indeed 

(x.n*Y/IY) = n* (x.n*Y/.y -a(w(x.n*y/)gy)) 

= n* (x.n*y/.y-a(w(x).gy)n*Y/) by (2.1.2) 

=n*(x.y-a(w(x)gy)).n*y/ by the projection formula. 
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To prove (iv), we may again only consider the case p = q. Moreover, we 
may assume that Y is irreducible. By the Moving Lemma for cycles in varieties 
over K, we may choose a representative (Z', g') of x' , where Z' is a cycle 
in zq(X') such that f-1(IZ'I)K has codimension q in XK and IZ'I does 
not meet fey) in X~. Moreover g' may be chosen to be a Green form of 
log type for Z'. Let Z be a representative in Zq(f-l(lZ'I)) of the cycle 
class l([Z']) E CllJ.-l(lZII)(X). Then lex') is the class of (Z, leg')) in 

cil (X). As IZIK n IYIK and IZ'IK n If(Y)IK are empty, we can use definition 
(2.3.1) and we get 

(j(x') I Y) = 1t* [(Z. Y , j(g').Oy)] 

and 
(x' 1.t:(Y)) = 1t: [(Z' . .t:(Y) , g'.Of.(y»)] , 

where 1t' is the structural morphism X' -+ S, and where Z. Y and Z' . .t:(Y) 
denote representatives in Zo (IZ I n Y) and Zo (IZ' I n f( Y)) of products in Chow 
groups with support. The projection formula for rational Chow groups with 
supports (see [G-S2], end of 4.4.3) shows that 

(2.3.9) 
, d 

.t:(Z. Y) - Z . .t:(Y) E Rfm(X)Q. 

Moreover, as g' is smooth on a neighborhood of y(q, we have 

j I , , 

.t:( (g ).Oy) = g . .t: (Oy) = g .of.(Y)" 

From this equality and from (2.3.9), it follows that 

.t: [(Z. Y, j(g').Oy)] = [(Z' . .t:(Y), g'.Of.(Y»)] . 

This implies (2.3.7), since 1t* = 1t:.t: . 
To prove (v) choose a Green current gy for Y. Let y be the class of 

(Y, gy) and 1t : X' -+ S the projection. Notice that co(.t:(x)) = .t:(co(x)) 
([G-S2], 3.6). From (2.3.3) we get 

(.t:(x)IY) = 1t* [.t:(x)y - a(.t:(co(x))gy)) , 
and, by the projection formula 

(.t:(x)IY) = 1t* [.t:(xj(y)) - a.t: (co(x)j (gy))] 

= (xlj(Y)) 
since ley) = (l(Y), f*(gy)) by [G-S2], 3.6.1 and Theorem 4.4.3,2). 

To prove (vi) choose a rational section s of L over X whose restriction to 
Y coincides with s, let gy be a Green current for Y, and y be the class of 
(Y, gy). From (2.3.3) we get 

(x c1(L)IY) = 1t* (x c/L))Y - a(co(x c1(L))gy)). 
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By the associativity of the intersection product, we have 

(x C, (L)) y = X (C, (L)y). = x [( div(s) , -log II s 112 *gy)] . 

By definition, -log II s 11 2*gy is equal to -log II s 11 20y + c/I)gy, and since 
w (x C, (L)) = w(x)c, (L) we conclude from (2.3.3) that 

(x C, (L)IY) = (xl div(s)) -1t* a (w(x) log II s 112 Oy). 0 

Remarks. (i) If in definition (2.3.3) we use the pairing defined in [G-S2], 4.3.2, 
instead of the more general product of [G-S2], 4.2.3, we get an element (xl Y) 

-* in CH (S), i.e., we do not need to neglect torsion. 
(ii) Suppose more generally that X is a projective arithmetic variety 

which we allow to be singular away from the generic fiber X K' Let E, ' . .. ,En 
be hermitian vector bundles over X. For any sequence q" ... ,qn of 
positive integers, and any cycle X E Zp(X) , we can define an element 

(Cql(E')"'~n(En) I Y) in CHq-P+'(S)Q' where q = q, + ... + qn' by the 
following variant of (2.3.3): for any Green current gy for Y, we let y = 
[(Y, gy)] E CHp(X) and 

(Cql (E,)'" cqn (En) I Y) 

= 1t* (Cql (E,) n (- .. n (Cqn (En) n y)) - a (cql (E,) ... Cqn (E n)gy ) ) . 

One easily checks that it does not depend on gy, and that when p = q + 1 it 
coincides with the intersection number of cql (E'K) ... cqn (EnK ) and of [Y]K in 
CH*(XK) . 

Since X is quasi-projective over S , one may find vector bundles F, ' . .. ,Fn 
over a projective arithmetic variety X' smooth over S, an S-morphism f: 
X - X' , and isomorphisms Ei ~ f* Fi (see [Fu1], §3-2). We can assume that 
f is a closed imbedding by replacing X' by X' x s lP'~, f by (f, i) , where 
i : X '--+ lP'~ is an imbedding, and ~ by pr~ Fi • Then the vector bundles ~ may 
be endowed with hermitian metrics which make the isomorphisms r Fi ~ Ei 
isometric. By using variants of the arguments in the proof of Proposition 2.3.1 
and in [G-S6], 2.3 and 2.4.2, one can prove the following formula: 

(Cql (E,) ... cqn (En) I Y) = (Cql (F,) ... cqn (F n) I .t: (Y)) . 

This is easily seen to imply that assertions (ii), (iii), (iv), and (vi) of Propo-
sition 2.3.1 still hold in this more general situation (more precisely, X and 
X' are only supposed to be projective arithmetic varieties; x is replaced by 
cql(E')"'~n(En), w(x) by cql(E,)",cqn(En), x' by Cql(EI')'''Cqn(E'n) ,and 

r x' by cql (r E' ,) ... cqn (r E' n) , where E, ' ... ,En and E', ' ... ,E' n are 
hermitian vector bundles on X and X' respectively). 
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It is also possible to prove a formula analogous to (2.3.4). This allows one 
-* to make sense of (x I y) E CH (S)Q when x is a product of arithmetic Chern 

classes of hermitian vector bundles over an arbitrary arithmetic variety X , and 
when Y is any cycle on X such that I YI maps properly to S. 
2.3.2. Arakelov varieties and arithmeticfundamental classes. Suppose now that 
X = (X, p) is an Arakelov variety, i.e., that X is a projective arithmetic variety 
and that pEA I, I (XR ) is a Kahler form (cf. [G-S2], 5.1). Let 7I'PP (XR ) be 
the space of forms in APP(XR ) which are harmonic with respect to p and 
H: 9 P,P(XR ) -+ 7I'PP(XR ) the harmonic projection. Given a cycle Y E ZP(X) 
we may choose a Green current gy such that ddc gy + Jy = H(Jy ) and 
H(gy) = O. These two conditions determine gy uniquely, up to the addition 
of a current of the form OU + liv ([G-S2], 5.1) and any such gy will be called 
a p-normalized Green current for Y. We let 

(2.3.10) 
-d-p 

[Y]Jl = (Y, gy) E CH (X) 

(see also [Fa2], where [Y]Jl is denoted Y, and [B2], 2.6). The class [Y]Jl will be 
called the arithmetic fundamental class of the cycle Y on the Arakelov variety 
(X,p). 

Notice that the normalization conditions on gy may be written as: 

and 
( w.gy = 0 

ix(C) 

for any w E 7I'd-p,d-P(XR ). Therefore gy and [Y]Jl depend only on the 
space of harmonic forms associated to the Kahler structure defined by p. In 
particular they are unchanged if p is replaced by A.p, A. E lR:. Furthermore 
[Y]Jl = 0 if Y is the divisor of a rational function on a subvariety contained 
in a closed fiber of X over S. Finally, from definition (2.3.3) we get: 

Lemma 2.3.2. For any x E cil (X) such that w(x) is harmonic with respect 
to p, 

(2.3.11) ( ) -q-p+1 
(xIY) = 1l* X. [Y]Jl in CH (S)Q' 

2.3.3. External products. Let XI and X 2 be two arithmetic varieties which 
are smooth over S, and X = XI X S X 2 their product. Given YI E ZPt (X) and 
Y2 E ZP2 (X) , their external product Y = YI x Y2 E Zpt+P2-1 (X) may be defined 
as in [Fu2] , 20.2. Namely, YI x Y2 is zero when both cycles are supported 
in a closed fiber. If YI say is integral and flat over S, then the morphism 
I YII x s X2 -+ X 2 is flat, and YI x Y2 is obtained as the direct image by the 
inclusion I YII x s X 2 -+ XI x S X 2 of the pull-back of Y2 E ZP2 (X2 ) by this flat 
morphism. 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



HEIGHTS OF PROJECTIVE VARIETIES 943 

Let ~ : X -+ XI and 1; : X -+ X 2 be the two projections. When XI E 
---q ---q2 CH I(XI ) and x2 E CH (X2 ) we let 

r* r* --- ql +q2 XI x x2 = JI (xI)h (x2) E CH (X). 

Proposition 2.3.3. Under the above hypotheses 
---* (2.3.12) in CH (8). 

---* Proof. Since XI and X 2 are smooth over 8, we need not tensor CH (8) 
by Q (see 2.1.1). Let 7l'1 : XI -+ 8, 7l'2 : X 2 -+ 8, 7l' : X -+ 8 be the 
obvious projections. Both sides of (2.3.12) vanish unless (PI' P2) is equal to 
(ql + 1, q2 + 1), (ql + 1, q2)' or (ql' q2 + 1). 

In the first case we have 

Notice that 

and 
Z(YI x Y2) = i.(z(YI ))./;*(Z(Y2)). 

From the projection formula it follows that 

(XI x x2 I YI x Y2) = 7l'1* (z(XI)z(YI )) 7l'2* (z(X2)z(Y2)) = (XI I YI )(x2 1 Y2)· 

Assume now that (PI' P2) = (ql + 1, q2) (the case (PI' P2) = (ql' q2 + 1) 
follows by symmetry). Let 

---0 
n = (XI I YI ) = 7l'1*(z(XI )z(YI )) E CH (8) = Z. 

Choose a representative (ZI' gl) for XI such that ZI meets YI properly on 
X IK and gl = ['1d, where '11 is a Green form of log type for YI • Choose 
similarly a representative (Z2' g2) for x2. The external product XI x x2 is 
then represented by (ZI x Z2' gl /\ Jz + WI /\ g2) , where WI = ddc gl + Jz 

2 I 
and /\ is the external product of currents. 

Since, by hypothesis, Z2(C) and Y2(C) do not meet, the current g. /\ Jz 
2 

vanishes in a neighborhood of IYI x Y21(c). Therefore g = gl/\Jz +W. /\g2 is a 
2 

Green current for ZI xZ2 which is smooth on IY. x Y21(c). By (2.3.1) we know 
that (XI x x21YI x Y2) is the class of (7l'*((ZI x Z2)' (YI x Y2)) , 7l'*(gJYI XY)) . 
From the projection formula for Chow groups with supports we get the following 
equality in Zo(S): 

7l'* ((ZI X Z2)(YI x Y2)) = 7l'h (ZI' YI ) 7l'2* (Z2' Y2) = n7l'2* ([Z2][Y2])' 

On the other hand we have 

7l'. (g Jy Xy.) = 7l'* ((WI /\ g2) Jy Xy.) = n7l'2*(g2 Jy')' 
I 2 I 2 2 
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because n = 1I:t.(w l 6y ), since the cohomology class of WI (resp. 6y:) is the 
1 1 

fundamental class of Zl (resp. Yl ). From this we conclude that 

(Xl x x 2 1 Yl X Y2) = n(x2 1 Y2) = (xII Yl )(X2 1 Y2). 0 

Remark. Let Xl' X 2 ' X~ , and X~ be arithmetic varieties which are smooth 
over S, let 1;. : Xl -+ X~, 1; : X 2 -+ X~ be S-morphisms, and let 1;. x 
1; : Xl x s X 2 -+ X~ x s X~ be their product. Then for for any (Xl' X2) in 
---* , -* , 
CH (Xl) x CH (X2) the identity 

(2.3.13) (1;. x 1;)* (Xl x X2) = !;(Xl ) x h(X2) 

---* holds in CH (Xl Xs X2). If moreover 1;. and 1; are smooth over the generic 
-* ---* fibers and proper, for any (Xl' X2) in CH (Xl) x CH (X2) , the identity 

(2.3.14) 

holds in cil (X~ Xs X~). This follows from the functoriality of the pull-back 
and from the projection formula. 

2.3.4. Degrees. Let X be a regular projective arithmetic variety, Y E Z.!'(X) , 
---q ---* and X E CH (X). To the element (x 1 Y) in CH (S)Q we can attach both an 

integer and a real number. Namely, with the notations of 2.1.3, we define 

and 
degK(x 1 Y) = degK«x 1 Y)) E Z 

dei(x 1 Y) = dei«x 1 Y)) E lR. 

Let Z(X)K E CHq(XK) and z(Y)K E CgJ-P(XK) be the images of X and 
Y in the algebraic Chow groups of X K' Then 

degK(x 1 Y) = 1I:*(z(x). [Y]) 
o ---0 = 1I:K* (z(X)K' [YKJ) E CH (Spec(K)) = Z = CH (S) 

(2.3.15) 

is the usual intersection number of the cycle classes on X K attached to X and 
Y. If X is a class in CH*(X) or in CH*(XK) , we will still use the notation 
degK(x 1 Y) for this intersection number. 

We can give "explicit" formulae for dei(x 1 Y) as follows. Let (Z, g) be 
a representative of X in zq(X) such that IZIK n IYI K = 0 and g is smooth 
near IYI(C). If L ma u-:. is a cycle (with rational coefficients) supported in 

a 
IZI n IYI representing [Z][Y] , and if k(Wa ) is the residue field of the closed 
point Wa , we have from formulae (2.1.8) and (2.3.1): 

(2.3.16) dei(x 1 Y) = L ma log (# k(Wa)) + ~ ( g6y. 
a lx(C) 
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In particular deg(xl Y) depends only on X as an arithmetic variety over 
Spec(Z) , and not on the map 1C: X - S. 

Assume moreover that Y and Z are irreducible (by bilinearity of (xl Y) , 
one easily reduces to this case). As Z and Y do not meet on X K ' the coherent 
sheaves Tor~x (l9z ' 19y ) are supported by closed fibers of X, hence have finite 
cohomology groups. It follows from [G-S2), 4.3.8 iv)-v), (2.1.8), and (2.3.1) 
that 

(2.3.17) 
deg(x I Y) = L (_I)i+ j log # Hi (X, Tor~X(l9z' 19y )) + 41 gc5y. 

i,j?O X(C) 

Properties of the pairing (xl Y) imply properties of degK(xl Y) and deg(xl Y) . 
For instance Proposition 2.3.3, (2.1.9), and (2.1.10) give 

(2.3.18) 
and 

(2.3.19) 
deg(XI x x2 I Y1 x Y2) = deg(XI I Y1) degK(x2 I Y2) 

+ degK(x l I Y1) deg(X2 I Y2), 
~"p-I ----I 

and Proposition 2.3.1, (iii) implies, for any x E CN (X),,, E CH (S), and 
Z E Zp(X) , 

(2.3.20) ---- * ----deg(x.1C (,,)IZ) = degK(xIZ). deg(,,). 

3. THE HEIGHT OF CYCLES DEFINED BY AN HERMITIAN LINE BUNDLE 

3.1. Definition and examples. 

3.1.1. The height hr. Let X be a regular projective arithmetic variety and 
L = (L, h) an hermitian line bundle on X. For any cycle Z E Zp(X) we 
define the height of Z with respect to L to be the real number 

(3.1.1) hr(Z) = deg (C1(Lt I z) E JR, 
_ -1 _-

where c1 (L) E CH (X) is the first Chern class of L (1.2.2) and deg is defined 
as in 2.3.4 (this extends the definition in [B2), §§2.4-2.S). This is the arithmetic 
counterpart of the degree 

(3.1.2) 
degL)Z) = 1CK* (C1(LK)P-I[ZK)) = degK (C1(Lt- 1 I z) 

o E CH (Spec(K)) ~ Z, 

where 1CK is the structural morphism XK - Spec(K), cl(LK) E CH1(XK) is 
the first Chern class of the restriction of L to X K' [Z K) E C Hp_1 (X K) is the 
class of the restriction of Z to XK ' and degK is defined as in 2.3.4. 
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Notice that these definitions extend to the case where . X is an arbitrary 
arithmetic variety and IZI is proper over S (use 2.3.1, Remark (ii); see also 
[Zh2] and infra 3.2.1, Remark). 

Finally, when Z is a cycle of dimension q on XK we will denote by hr(Z) 
and degL (Z) the height and the degree of its Zariski closure Z in X; and 

K 
if MK is a line bundle over XK , we will denote by degM Z the intersection 

K 

number of c1(MK )Q and [Z] in CH*(XK ). 

3.1.2. Examples. 

3.1.2.1. When X = S we have hr(S) = deg(L) (see 2.1.3). If X is any 
projective arithmetic variety and P E X(K) is a rational point on X, and if 
Bp : S -t X denotes the section of 1C attached to P, we have by (2.1.12) and 
(2.3.6): 

hr(P) = deS (c; (L) 1 Bp(S») = deg B;(L). 
3.1.2.2. Consider a closed point of S, i.e., a nonzero prime ideal p in ~K' 
Let IF p = ~K / p be its residue field and let N p = #IF p be its norm. Let Z E 
Zp(X) be a cycle on X the support of which is contained in the closed subset 
XF = 1C- 1({p}) eX. Let [Z]F E CHp(XF ) be the class of Z, and 1CF : 

p p p p 

X F -t Spec(IF ) the projection. Then 
p p 

(3.1.3) 

where 1CF • (c 1 (LF )p n [Zh.) (E C Ho (Spec(IF » = Z) is the usual degree of 
p p p p 

Z with respect to 1.., on XF • To check this, notice that the composite map 
p p 

-- deg CHo(Spec(1F p) -t CHo(S) - R. 

is just multiplication by log N p . 
In particular, when Z = L nj Pj E Zo(X) , where nj E Z and Pj are closed 

j 

points of X, the residue fields k(Pj ) are finite and 

(3.1.4) 

In fact hr(Z) equals by definition deg(IIZ), and (3.1.4) follows immediately 
from (2.3.16). 

3.1.2.3. Assume E is an hermitian vector bundle on S. Let 

JP(E) = Proj(Sym(Ev » 
be the projective space of E and ~(1) the canonical quotient line bundle on 
JP(E). We endow ~(1) with the quotient metric, which is such that the projec-
tion 1C* E~ -t ~(1)c induces an isometry between the orthogonal complement 
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to its kernel and &(I)c. For any cycle Z E Zp(JP(E)) we may then consider 
the height 

(3.1.5) 

When E = &;+1 is the trivial hermitian vector bundle of rank N + 1 on S, 
this height coincides with the height introduced by Faltings in [Fa2], as follows 
from (2.3.11) with f.l = c1 (&(1)) . 

In particular, when Z is the cycle attached as above to a rational point P E 
JPN (K) , one recovers the classical height of P ([Si], Zweiter Teil, §2; [No]; [We2] 
pp. 425-426; these authors use the £1 or the £00 -norm instead of the £2 -norm 
on CN+1 ). Namely, if (xo' ... ,xN ) E K N+1 are homogeneous coordinates of 
P,weget 

(3.1.6) 

where p runs over all nonzero prime ideals of &K' lalp = (Np)-Vp(O:) , where 
v p is the p-adic valuation, and a runs over all imbeddings of K in c. 

Let F be a subbundle3 of E , endowed with the induced hermitian metric. It 
follows from (3.2.1) below that, for any cycle Z on JP(F) , the Faltings heights 
of Z considered as a cycle in JP(F) and as a cycle in JP(E) coincide. 

3.1.3. Multiheights. More generally, a finite sequence L = (LI' ... ,Lk ) of 
hermitian line bundles on a projective arithmetic variety X allows one to 
define multiheights of the cycles on X. Namely, for any pEN and any 
I = (iI' ... , ik) E Nk such that III := il + ... + ik = p, we define the I-th 
multiheight of Z E Zp(X) with respect to L to be the real number 

hf(Z) = <leg (C1(L1)i1 ••• cl(Lk)ik I z). 
We can also define, for any Z E Zp+I (X), the I-th multidegree 

deg~K(Z) = degK (CI(LI)il ... CI(Lk)ik I z). 
The various properties of heights which are proved in the next sections have 
generalizations involving multiheights and multidegrees, which we leave to the 
reader (see also [Gu)). 

3.1.4. Change of ground ring. Let Kf be a number field containing K, and 
Sf = Spec(&K'). For any projective arithmetic variety X over S and any 
hermitian line bundle L on X, using the base change Sf -+ S we get an 
arithmetic variety Xf = X X S Sf over Sf , and, if f: Xf -+ X is the projection 

3I.e., F is a subsheaf of E such that E / F is locally free; any such F is determined by the 
K-vector space FK C EK . 
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onto the first factor, we may consider the hermitian line bundle L' :=] Lover 
X' . 

From formula (2.3.6) and 2.3.1, Remark (ii), it follows that for any Z' E 
Z.(X') : 

(3.1. 7) 

This reduces the computation of heights of cycles on X' to the computation of 
heights of cycles on X. As f is a finite and flat morphism of degree [K' : K], 
for any Z E Z.(X) , the pull-back ](Z) E Z.(X') is well defined and the 
following identity holds in Z.(X): 

f.](Z) = [K': K]Z. 
Therefore, we get from (3.1.7): 

(3.1.8) 

Identities (3.1. 7) and (3.1.8) still hold when Z and Z' are cycles on X K and 
X~, (~X K ® K K' ). This allows one to define a normalized height hr, norm on 
Z.(Xij) in the following way: for any cycle Z E Z.(Xij) ' there exists a number 
field K' such that K c K' c ij and such that Z is defined over K' , i.e., Z 
is deduced through the scalar extension K' <.....t ij from a cycle Z' E Z.(XK '). 

Then we let 

1 -, 
hr,norm(Z) = [K' : ij] hr(f.(Z )). 

By (3.1.7), this is also equal to [K' : ijr1 hL,(Z') , and it easily follows from 
(3.1.8) that this number does not depend on the choice of K' . 

Observe finally that degL , and degL satisfy the following compatibility 
K' K 

formulae: 
(3.1.9) 

and 
(3.1.10) 

degL f. (Z') = [K' : K] degL , (Z') 
K ~ 

degL , J (Z) = degL (Z). 
K' K 

3.2. Properties of hr. This section is devoted to the proof of various prop-
erties of heights of cycles which are classical in the case of cycles defined by 
rational points ([No]; [We2]; [Sz], 3.1). 
3.2.1. Basic identities. Proposition 2.3.1 implies the following properties of 
the height of cycles: 
Proposition 3.2.1. Let L be a hermitian line bundle over a regular projective 
arithmetic variety X. 

(i) The height hr(Z) is additive in Z. For any integer n E Z and Z E 
Zp(X), one has 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



HEIGHTS OF PROJECTIVE VARIETIES 949 

p-l p degLn (Z) = n degL (Z) and hy:(Z) = n hr(Z) , 
K K 

-n . 
where L is the n-th tensor power oj L. 

(ii) When Z is the divisor oj a rational Junction on an integral variety con-
tained in a closed fiber oj X, hr(Z) = O. 

(iii) For any morphism J: X -+ X' oJregular arithmetic projective varieties 
and any cycle Z on X, 

(3.2.1) 

(iv) Assume that Z E Zp(X) is irreducible, and let s be a nonzero rational 
section oj a power L n oj Lover Z, n E Z, and II II the norm on L n deduced 
Jrom h by tensor power. Then 

(3.2.2) hr(div(s)) = n hr(Z) + r log II s II c1 crf- 1 l5z . 
JX(Cl 

Remark. By appealing to 2.3.1, Remark (ii), we may extend Proposition 3.2.1 to 
the case where X is a not necessarily regular arithmetic projective variety. This 
can also be done as follows, without any explicit reference to the operational 
Chern classes (2.1. 7). 

Let r be an hermitian line bundle over a projective arithmetic variety X. 
There exists an hermitian line bundle L' over an arithmetic variety X' smooth 
over S and an S-morphism J: X -+ X' , which is a closed imbedding such 
that r ~ J* L' (cf. 2.3.1, Remark (ii)). So we can define the height hr(Z) of 
a cycle Z on X by 

To make this definition meaningful, we have to show that hL,(f.(Z)) does not 
depend on the choice of X' , L', and J. Then it is easily seen that Proposition 
3.2.1 still holds in the general case. 

Let, for i = 1 , 2, L' j be an hermitian line bundle over a smooth projective 
arithmetic variety X; and 1; : X -+ X; an S-morphism such that 1;* L' j ~ r. 
We must show that, for any Z E Zp(X) , 

Let X' := X: Xs X~, J:= (It, fJ : X -+ X', prj: X: Xs X~ -+ X; be the 
projections, and M j = pr; L'j. 

Using (3.2.1), we get: 
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hL, U;.(Z)) - hL, U~.(Z)) = hM (f..(Z)) - hM (f..(Z)) 
2 1 2 1 

= deS (CI(M 2t 1 f..(Z)) - deS (CI(MI)P 1 I. (Z)) 

= L deS(CI(MI)iCI(M2)jCI(M2®M~)lf..(Z)). 
i+j=p-I 

The isomorphisms of hermitian line bundles 

.r M I ~.r; L'I ~ L ~.r; L' 2 ~.r M 2 

show that there exists a nonvanishing regular section of (M2 ® M~)lf(lzl) 

of norm 1 on f(IZI)((;). Therefore, by (2.3.8), for any x E &-1 (X') , 

deS (x cl (M2® ~I) 1 f..(Z)) = O. This proves the required equality. 

3.2.2. Dependence on metrics and integral structures. 

Proposition 3.2.2. Let L = (L, h) be an hermitian line bundle on a projective 
arithmetic variety X, and let M K be an ample line bundle on X K . 

(i) Assume that h' = e'P h is another hermitian scalar product on L. Then, 
for any cycle Z E Zp(X) : 

1 '" r h i h' j (3.2.3) h(L,h)(Z) - h(L,h')(Z) = 2: ~ J l rpc l (L, ) ci (L, ) ~z· 
i+ j=p_1 X(Cl 

In particular, when the smooth function rp is constant, 

(3.2.4) 

Moreover, there exists C E lR+, depending only on Lc' h, h', and MK , 
such that, if Z is effective, 

(3.2.5) 

(ii) For any choice of a projective arithmetic variety X' and of an hermitian 
line bundle L' on X' such that (X~, L~) is isomorphic to (XK' L K) (i.e., such 
that there exists an isomorphism of schemes f : X K ~ X~ for which f* L~ ~ 
L K ), there exists C E lR + such that, for any effective cycle Z K on X K ' 

(3.2.6) 

Observe that the inequalities (3.2.5) and (3.2.6) do not really depend on the 
choice of the ample line bundle MK since, for any two ample line bundles MK 
and M~ on X K ' there exist CI and C2 in lR: such that, for any effective 
cycle ZK on X K ' the following inequalities hold: 
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(3.2.7) 

Proof. Using the construction of 3.2.1, Remark, one easily sees that to prove 
(i), one may assume X regular. Note that, by the definition of c1 in 2.1.2, 

C. (L, h) - C. (L, h') = a(qJ). 
Together with (2.1.2), this implies: 

c1(L, hl-c.(L, h'l =a (qJ.?= c1(L, h)i c1(L, h,)j) , 
I+}=p-l 

where c1(L, h) = co (c1(L, h)) is the first Chern form of (~h). Formula 
(3.2.3) then follows, according to the expression (2.3.16) for deg(.I.). 

To prove (3.2.5), observe that there exists a Coo hermitian metric on the 
ample line bundle MK whose first Chern form 0: is strictly positive on X(C). 
According to Proposition 1.1.4, (iv), there exists C E lR+ such that 

p-l 1 '" -c.o: $;"2 L-
i+j=p-l 

Then (3.2.5) follows from (3.2.3), since 

r o:p-l Oz = [K: IQ] degM (ZK)' 
lx(C) K 

Under the hypotheses of (ii), the closure in X x s X' of the graph of f is a 
projective arithmetic variety X , and the two projections from X to X and X' 
are isomorphisms over Spec(K). Therefore, to prove (ii), we may assume that 
the isomorphism f: X K ~ X~ extends to a morphism f: X -+ X' . Moreover, 
it follows from inequalities (3.2.7) that the line bundle MK over XK may be 
assumed to be the restriction of an ample line bundle M over X. Finally, 
using (3.2.5), we may assume that the isomorphism 1 L~ ~ LK is isometric. 
Then this isomorphism defines a rational section a of the hermitian line bundle 
1 L' ® "I-lover X such that II a II = 1 and the divisor div( a) is supported 
by closed fibers of X. 

Let ZK be any effective cycle in Zp_l (XK) , and let Z E Zp(X) be its Zariski 
clusure. Then !.(Z) is the Zariski closure of I. (ZK) . Therefore 

hr(ZK) = hr(Z) and hL,(!.(ZK)) = hL,(!.(Z)). 

Applying Proposition 3.2.1, (iii), we now get: 

hL,(!.(ZK)) - hr(ZK) = hr(L')(Z) - hr(Z) 

(3.2.8) = dei (C1(1(L')l- c.(Lll z) 
= L dei(C1(1(L,))i c1(L)j c1(lL' ®"I- 1) I z). 

i+j=p-l 
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According to Proposition 2.3.1, (vi) and 2.3.1, Remark (ii) (applied to each 
component Y of Z, which meets div(a) properly), we have 

dei (C1 Cr (Li))i c1 (L)i c1 (f* L' ® £-1) I z) 
= dei (c1(j*(L'))i c1(£)i I div(a).z). 

(3.2.9) 

The intersection cycle div(a). Z is supported on some closed fibers of X, and 
we shall estimate the right-hand side of (3.2.9) by applying in these closed fibers 
the following standard result: 

Lemma 3.2.3. Let V be a projective scheme over a field k, let L be an ample 
line bundle on V, and let 

degk : CHo(V) ~ Z 

be the composition CHo(V) ~ CHo(Spec(k)) ~ Z, where p denotes the struc-
tural morphism V ~ Spec(k). For any finite family (~, ... ,~) of line 
bundles over V, there exists C E 1R+ such that the following equality holds for 
any effective cycle T E Zn(V): 

Idegk (Cl(~)"·Cl(~).[TJ)l $ Cdegk (c1(L(.[T]). 

Indeed, we can write 

div(a) = LDp' 
pEl 

where I is a finite set of nonzero prime ideals in &K ' and where D p is a Cartier 
divisor supported on XF • We have 

p 

div(a).Z = LDp'Z' 
pEl 

and the cycle D . Z may be seen as a cycle on XF ,and, by the same argument 
p p 

as in 3.1.2.2, we have 

(3.2.10) 

For any pEl, we can find kEN such that the Cartier divisors kXF + D p and 
p 

kXF - D are effective. Then the cycles (kXF + D ). Z and (kXF - D ). Z 
p p p p p p 

are effective, and Lemma 3.2.3, applied to V = XF ' L = MF ' n = p - 1 , 
p p 

~ = ... =2; = j(L')F ' Y+l = ... =Yp _ 1 = L~ ,and T = (kXF +D ).Z 
pIp P P 

or (kXF - D ). Z , shows the existence of a constant C(i, j, p) such that, for 
p p 

any flat effective Z E Zp(X) , 
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(3.2.11) 
IdeglFp (C1(J(L\/ C1(LlFp([Dp.Z])1 

:S C(i, j, p) deglF (C1 (MF )P-l [XII" . Z]) . 
I' P P 

The compatibility of intersection operations and specialization ([Fu2], 20.3 and 
Example 20.3.3) shows that, for any p: 

(3.2.12) deglF (C1(MIF )P-l [X]F .Z]) = degM ZK' 
p p p K 

Finally, we get from (3.2.8)-(3.2.12): 

IhL,(f(ZK)) - hr(ZK)I :S L C(i, j, p) degMK ZK' 0 
i+j=p-I 

pEl 

Remark. Let V be a smooth projective variety over Q, and let L, M be two 
line bundles on V, with M ample. Let K be a number field such that V 
and L can be defined over K, let r be a projective arithmetic variety over 
Spec( &'K ) , and let :? be an hermitian line bundle over r such that ~ ~ V 
and :?Q ~ L. It follows from Proposition 3.2.2 that the function on the set of 
nonzero effective cycles on XQ which sends a cycle Z to 

(degM(Z))-1 .h.;?(Z) E lR 

does not depend on the choices of K, r, and :? , up to an error term which 
is uniformly bounded when Z varies. See also [Gu], §6 and §7, for similar 
considerations. 

3.2.3. Positivity. The following statement extends Proposition 2.6 in [Fa2] to 
the heights hr. 

Proposition 3.2.4. Let 1. be an hermitian line bundle on a projective arithmetic 
variety X. Assume that c1 (1.) is positive and that some positive power L n of 
L is generated by global sections of sup norm less than or equal to one. Then, 
for any effective cycle Z on X, 

hr(Z) ~ O. 
Proof. We prove this by induction on the dimension of Z. When dim(Z) = 
o this follows from (3.1.4). When dim(Z) > 0, we may assume that Z is 
irreducible and we can choose a rational section of L n of sup norm :S 1 which 
does not vanish identically on Z (otherwise the fiber of L n at the generic point 
of Z would not be generated by global sections of L n ). Calling s its restriction 
to Z we deduce from (3.2.2) that 

nhr(Z) ~ hr(div(s)), 

and the result follows since dim(div(s)) = dim(Z) - 1. 0 
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Remarks. (i) Let us use the notations of 3.1.2.3. If E is the trivial hermitian 
vector bundle of rank N + 1 (i.e., the direct sum of N + 1 copies of & = 
(&, 1111), 111 II = 1 ), the hermitian line bundle &(1) on lP'(E) satisfies the hy-
potheses of Proposition 3.2.4. Therefore, we recover Proposition 2.6 in [Fa2], 
which asserts that hF(Z) ~ 0 for any effective cycle Z on lP'(E) (see Proposi-
tion 4.1.3 and Theorem 5.2.3 for a better estimate). 

(ii) The relation between the positivity of the height hr and the existence of 
"small" sections for some power of L n has been thoroughly studied by Zhang 
in [Zhl], [Zh2]. 

(iii) It follows from (3.2.4) and Proposition 3.2.4 that if we only assume that 
c 1 (L) is positive and that some positive power L n is generated by its global 
sections over X, then there exists a constant C E 1R+ such that, for any effective 
cycle Z on X, 

hr(Z) ~ -C degL (Z). 
K 

Using Proposition 3.2.2, we also get that, if some positive power L~ is 
generated by its global sections over X K ' and if M K is an ample line bundle 
over XK , there exists C E 1R+ such that for any effective cycle Z on XK 

hr(Z) ~ -C degM (Z). 
K 

(iv) Proposition 3.2.4 and the preceding remark extend to multiheights. For 
instance, if 1.1 ' ••• ,1.p are hermitian line bundles on a projective arithmetic 
variety such that c1 (L1), ••• ,c1 (1.p) are positive and some positive powers 
L~I , ... ,L;p are generated by global sections, then there exist constants 
C1 ' •.• , Cp E 1R+ such that for any effective cycle Z E Zp(X) 

dCg(i'.(LI)···cl(Lp ) 1 z) ::, -te, desK (~CI(L)I z). 
3.2.4. Finiteness. 

Theorem 3.2.S. Let L be an hermitian line bundle on a projective arithmetic 
variety X. If L is ample on X, then for any real number A > 0, there exists 
only finitely many effective cycles Z E Zp(X) such that degLK (Z) $ A and 
hr(Z) $ A. 
Proof. First, by Proposition 3.2.1, (i), we may replace L by a positive power, 
and therefore assume that L is very ample. Then there exists a closed immer-
sion i : X -+ lP'; = lP'(&SED(N+I») such that L ~ t&(I). We shall equip &(1) 
with the hermitian metric defined by the trivial hermitian metric on &:(N+I); 
then Proposition 3.2.2, (i) shows that we may assume that 1. = t&(I), and 
Proposition 3.2.1, (iii) reduces the proof of Theorem 3.2.5 to the case where 
X = lP'; and 1. = & (1) . 

Any effective cycle Z E Zp(lP';) may be decomposed as 
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Z =Zh+ EZp' 
p 

955 

where Zh is effective and flat over S, where p runs over the nonzero prime 
ideals of &K' and where Zp is an effective cycle on 1P': which vanishes for al-

p 

most every p. Let us denote by degF Y the degree of a cycle Y E Zp(IP':) (Le., 
p p 

with the same notation as in Lemma 3.2.3, degF Y = deglF (c1 (&(l)t· [YJ)). 
p p 

The positivity of the height hF = hr (3.2.3, Remark (i)) and formula (3.1.3) 
show that 

(3.2.14) 

and 

(3.2.15) degF Zp.logNp ~ h(Z). 
p 

Since Zp is effective, deglF Zp ~ 1 if Zp #- O. Therefore (3.2.15) implies 
p 

that, if h(Z) ~ A , we have Zp = 0 unless 

(3.2.16) 10gNp ~ A. 

There is only a finite set of p satisfying (3.2.16). Moreover, for any given 
p, the set of effective cycles on 1P': of degree less that (log N p) -1. A is finite 

p 

(this follows for instance from the classical theory of Chow forms, cf. [C-Wa], 
[Sa], 1.9). Therefore there is only a finite set of possibilities for the "vertical 
parts" E Zp in the decomposition (3.2.13) of the effective cycles Z such that 

p 
h(Z) ~ A. 

Together with (3.2.14), this shows that, to prove Theorem 3.2.5, it is enough 
to prove that a set of flat effective cycles of bounded degrees and heights is finite. 
As hinted in [S02], this follows from the computation of the height of Chow 
forms (see 4.3.4 below). One can also deduce it from the previous statements 
in this section together with the following geometrical fact (which is another 
consequence of the classical theory of Chow forms): 

Lemma 3.2.6. For any p E {I , ... , N} and any integer D, there exists a finite 
set HI' ... ,H M of hyperplanes in 1P'; which satisfies the following condition: 
for any two distinct effective cycles ZK and Z~ in Zp(IP';) of degrees at most 
D, there exists i E {I , ... , M} such that Hi meets ZK and Z~ properly and 
the cycles Hi. ZK and Hi. Z~ are distinct. 

Indeed, let p E {I , ... , N} , and let Z E ZP+l (1P':) be a flat effective cycle 
on X whose height and degree are bounded by A. We apply Lemma 3.2.6 
with some D ~ A. For any i E {I, ... , M}, let Si be a section of &(1) over 
1P': such that ~:= div(sJ restricts to Hi on 1P';. If Hi meets Z properly, 
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then :t; meets Z properly, and :t;. Z is an effective cycle in Zp(f';) which 
restricts to H j • ZK in the generic fiber, therefore 

hF(Hj • ZK) ::; hF(:t;. Z). 
Moreover, we get from (3.2.2): 

(3.2.17) hF(:t;.Z)::; hF(Z) + [K: Q] cjdegt9'(I)K(Z)::; A (1 + [K: Q] cj) , 

where cj is the sup norm of log IIsill . Furthermore 

(3.2.18) 

Lemma 3.2.6 together with (3.2.17) and (3.2.18) reduces the proof of Theorem 
3.2.5 for flat cycles of relative dimension p E {I, ... ,N} in f'; to the proof 
for flat cycles of relative dimension p - 1. As it is true when p = 0 by the 
classical theory of heights ([No], [We2l) Theorem 3.2.5 follows. 0 

Ifwe combine Theorem 3.2.5 with Proposition 3.2.2, (ii) and formulae (3.1.9) 
and (3.1.10), we get: 

Corollary 3.2.7. Let L be an hermitian line bundle on a projective arithmetic 
variety X. If LK is ample on XK , then for any real number A> 0, there exist 
only finitely many effective cycles Z E Z (Xij) defined over a number field K' :) 
K of degree [K' : K] ::; A and such that degL_(Z) ::; A and hI. norm(Z) ::; A. 

Q ' 

3.2.5. Hilbert-Samuel formula. Let L be an hermitian line bundle over a pro-
jective arithmetic variety X , and Z an integral subscheme of dimension p in 
X, flat over S. When LK is ample, the degree degL (ZK) is given by the lead-

K 
ing term of the Hilbert polynomial of L K1zK ' Namely, we have the following 
"Hilbert-Samuel formula", as n goes to infinity: 

p-I 
. 0 n n p-2 

dlmKH (ZK; L K) = degLK(ZK) (p _ I)! + O(n ). 

We now want to describe an arithmetic counterpart to this formula, which again 
illustrates the analogy between the degree of varieties over a field and the height 
of arithmetic varieties. 

Let HO (Z , L n) be the set of sections of L n over Z , n ~ O. This is a torsion 
free Z-module. We endow it with the sup norm II . 1100 of sections of L n over 
X(C). Let V bethecovolumeof ~(Z,Ln) in ~(Z,Ln)®lR fortheHaar 

00 z 
measure which gives volume one to the unit ball, and deg (~(Z , L n ), 11'11 00 ) 

= -log(Voo)' 

Theon. 3.2.8. Assume that L is ample and that c1 (I) is positive. As n goes 
to infinity, the following asymptotic formula holds: 
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(3.2.19) -- (0 n ) nP p-I deg H (Z, L ), II . 1100 = hr(Z) , + O(n logn). p. 
This formula is shown in [G-S4), [B2), 4.3, and [G-S6), 5.1.2 when ZK is 

smooth and c1 (L) is strictly positive, and by Zhang [Zh2) in general. 
N ---Observe that when X = IP' z and L = &( 1), Theorem 3.2.8 provides a very 

concrete interpretation of the Faltings height of an irreducible subscheme Z C 
1P': in terms of the homogeneous ideal I C Z[ Xo' ... ,X N) which defines it: 
indeed, for n large enough, the left-hand side of (3.2.19) is then the covolume 
of Z[Xo' ... ,XN)n/1n equipped with the norm It 1100 defined by 

II [P)II - IP(zo,···,zN)1 00- sup nl2 . 
(zo : ... : ZN)EZ(C) ( N 2) L IZil 

i=O 

3.3. More examples. 

3.3.1. Fa/tings heights of hypersurfaces and of projective spaces. Let E be an 
hermitian vector bundle of rank N + lover S, IP'(E) the projective bundle of 
E, &(1) the standard hermitian line bundle on IP'(E) , and s a global section 
of &(d) on IP'(E). For any complex imbedding a : K -+ C, we may identify 
IP'(E)q(C) with IP'N (C) by choosing an orthonormal basis for Eq . The section 
s then defines an homogeneous polynomial Pq E q XO' ••• ,X N) of degree d . 
Let D = div(s), and let dv be the U(N + I)-invariant probability measure on 
the unit sphere §2N+I in CN+1 . 

Applying formula (3.2.2) to Z = IP'(E) and L = &(1) and then formula 
(1.4.7), we find: 

(3.3.1) 
hF(D) = dhF(IP'(E)) + r log II s II c1 (&(I))N 

Jp(E)(C) 

= dhF(IP'(E)) + L r log IPq(x)ldv. 
q: K--+CJs2N+1 

Assume now that E = &;+1 is trivial and let ~ = 1P'(&;+I). Using the 
preceding formula for the height of hypersurfaces, we can easily compute the 
Faltings height of 1P'; in terms of the Stoll number aN defined in (1.4.3). 

Lemma 3.3.1. The Fa/lings height of 1P'; is 
N (3.3.2) hF(lP's) = [K : Q) aN. 

Proof(see also [G-S3), p. 212). Let s be the section of &(1) defined by the ho-
mogeneous coordinate Xo; then D = 1P';-1 . Applying (3.3.1) and the identity 
(see 1.4.3, Remark (iii» 

l iN 1 
10glXoldv = --2 '"" -, 

S2N+1 L..J m 
m=1 
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we get 

N-I N 1 hF(IP'S ) = hF(lP's) + [K : Q] log IXoldv 
S2N+l 

N 1 (N 1) = hF(IP's ) - [K : Q]:2 ~ m . 

Since hF(IP'~) = 0, the result follows by induction on N. 0 

3.3.2. Heights of linear projections. Let E be an hermitian vector bundle on 
S , let F be a subbundle of E , and let E / F be the quotient bundle, equipped 
with the quotient metric. Let Z be an effective cycle in Zp(IP'(E)K) ' no com-
ponent of which is contained in IP'(F)K' We shall compare the Faltings height 
of Z , defined by means of the hermitian vector bundle E, with the Faltings 
height of its linear projection p*(Z) in IP'(E/F)K' defined by means of the 
hermitian vector bundle E / F . This will extend Proposition 2.10 in [Fa2]. 

First recall how p* (Z) is defined. Let 1/ : B -+ IP'(E) be the blow-up of 
IP'(E) along IP'(F) and DeB the exceptional divisor. Denote by Q the 
canonical quotient bundle on IP'(E / F) , and by prl (resp. pr2) the projection of 
IP'(E) Xs IP'(E / F) onto the first (resp. second) factor. The projective arithmetic 
variety B may be identified with the subscheme of IP'(E) x s IP'(E / F) defined 
by the vanishing of the regular section a of pr; &'E( 1) Q9 pr; Q attached to the 
composite of the following tautological maps: 

pr~&'E(-1) -+ pr~n;(E)E ~ n;(E)XslP(E/F)E -+ n;(E)XslP(E/F)E/F 

~ pr;n;(E/F)E/F -+ pr;Q. 

Then the restriction of prl to B is equal to 1/, and the restriction of pr2 to B 
is a smooth morphism such that, on IP'(E) - IP'(F) , f 01/ -I coincides with the 
linear projection onto IP'(E/F). The cycle p*(Z) E Zp(IP'(E/F)K) is defined as 
the image f..Z of the proper transform Z of Z in BK • 

By definition of Faltings heights, 

hF(Z) = hF(Z) = <leg (CI (&'E(1)r+ 1 I Z) , 
where Z is the Zariski closure of Z , and 

hF(p*(Z)) = hF (P*(Z)) = <leg (CI (&'E/F(1) r+ 1 I p*(Z)) . 

On the other hand, we have the equalities of cycles 

and 
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Therefore, by (2.3.6), we get: 

(3.3.3) 

and 

(3.3.4) 

Consider the hermitian line bundle 

£:=v* &(1)0f' &E/F(-1) 

over B . According to the definition of B by the vanishing of (J , the canonical 
map 

pr;&E(-1) --t pr;n;(E/F)E/F 

introduced above takes values in the subbundle pr;&E/F(-I) when restricted 
to B, hence defines a regular section s of Lover B, which is easily seen to 
be =I- 0, to have D as divisor, and to have norm ::; 1. Using (3.3.3), (3.3.4), 
and Proposition 2.3.1, (vi), we get: 

(3.3.5) _ (* (_)P+I ( )P+I -=) hF(Z) - hF(p*(Z)) = deg v c1 &E(I) - f' c1 &E/F(I) I Z 

= (leg (cl (£) . . L v* c1 (&E(l)Y·f' c1 (&E/F(l)Y I t) 
1+]=P 

= deg (L v* c1 (&E(I)Y .f* c1 (&E/F(I)Y I D.t) 
I+]=P 

+ 1 (L v*c1 (&E(1)Y .f*c1 (&E/F(I)Y) . log II s II-I· JZ· 
B(C) i+j=p 

As this last integral is nonnegative (since c1 (&E(1)) and c1 (&E/F(l)) are 
positive (1, 1) forms, II s II::; 1, and t is effective) the difference hF(Z)-
h F (p * (Z)) is bounded below by the sum of the real numbers 

(3.3.6) 

which are nothing else than the biheights of the effective cycle D. Z on 
D = JP'(F) Xs JP'(E/F) attached to the hermitian line bundles v*&E(1) and 
f*&E/F(1). It then follows from 3.2.3, Remark (iii) that hF(Z) - hF(p*(Z)) 
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is bounded below by a linear expression in the bidegrees of D. Z in JP(F) K x K 
JP(E / F) K' whose coefficients depend only on E and F . 

In particular, when IZIK does not meet JP(F)K' the cycle D. Z is effective 
and supported on closed fibers of B, so we get the inequality: 

(3.3.7) 
In other words, the height of an effective cycle decreases by linear projection from 
a center that it does not meet in the generic fiber. 

Suppose moreover that Z is irreducible and that F is a line bundle. Then 
JP'(F) defines a point P E P(E)(S) , the support of the sub scheme P n Z is a 
finite set of closed points {Ql' ... , Qn}' and the Segre class of P n Z in Z 
takes the form 

n 

S (pnZ, Z) = Lm i Qi' 
i=l 

where m i is the multiplicity of Z along P n Z at Qi (cf. [Fu2], §§4.2 and 
4.3). In that case, the expression (3.3.6) vanishes if i ~ 1 , and, for i = 0, is 
easily seen to be 

n 
L m i 10g#k(QJ 
i=l 

Therefore, hF(Z) - hF(p*(Z)) is the sum of this weighted sum of multiplicities 
and of the integral in (3.3.5), which may be interpreted as the "archimedean 
multiplicity of Z at P n Z ". 

3.3.3. The Arakelov-Faltings invariant (w XIS' W XIS) . We now indicate how 
invariants of arithmetic surfaces introduced by Arakelov and Faltings fit into 
our framework. 

Suppose that X is a semi-stable regular arithmetic surface over S (i.e., X 
is a regular projective arithmetic variety of dimension 2, X F is geometrically 
irreducible of genus ~ l, and the closed fibers of 1C : X -+ S are semi-stable 
curves). When L is the hermitian line bundle W XIS defined as the relative 
dualizing sheaf W XIS equipped with the Arakelov metric II IIA at infinite places 

(cf. [Arl], [Fal]), the height hr(X) is the real number (W XIS ' WXIS ) attached 
to X considered by Arakelov [Ar2] and Faltings [Fal]. 

More generally, if X' is any semi-stable model of X Kover S (not necessarily 
regular), the relative dualizing sheaf W X' IS is still a well-defined line bundle on 
X' , which may be equipped with the Arakelov metric II IIA ' and we can consider 
the height hWxIIS (X') defined by W X' IS = (w X' IS' II IIA) . This height does not 
in fact depend on the semi-stable model X' of X K' Indeed, there exists a 
unique morphism f: X -+ X' which extends the identity on the generic fiber 
(f is the contraction of some rational curves of self-intersection - 2 in the 
closed fibers of X) and the identification 
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COXISIXK ~ COXK ~ (Jcox'IS)lxK 

extends to an isomorphism of hermitian line bundles 

coxls ~ f* cox'ls· 

Therefore, we get from (3.2.1) and 3.2.1, Remark: 

(3.3.8) hw (X) = hw (f.(X)) = % (X'), 
~ ~~ ~~ 

since f is birational. 

961 

In particular, we can take as X' the stable model of X K. As the formation 
of this stable model and of its relative dualizing sheaf co x' Isis compatible 
with the base changes S' = Spec( 19K ,) --> S = Spec( 19K ) defined by extensions 
K ~ K' of number fields, we recover from 3.1.4 the fact that the real number 

e(X) = [K : Q]-I hw (X) 
XIS 

is an invariant of Xij. This fact, as well as (3.3.8), was originally due to Moret-
Bailly ([MB3], 3.3 and 5.4; the coincidence of hWx'ls(X') andof (coX'IS' coX'IS) 
as defined by Moret-Bailly, using Deligne's pairing, follows from (2.3.11), 
(3.2.2), and [MB2], 6.7-8; see also [G-S3], Theorem 4.10.1, (i) when X' is 
smooth over S). 

3.3.4. Heights on abelian varieties. Let A be an abelian variety over K, and 
L be a line bundle on A. Given any nonempty subset I c {I, 2, 3} , let 

3 PI: A --> A 

be the morphism sending a geometric point (XI' x2 ' x3 ) to L Xj , where A 3 
JEI 

is the product over K of three copies of A. According to the theorem of the 
cube, the line bundle 

C(L) := 

(3.3.9) 

16) p;(L)(-I)*I 
IC{I,2,l} 

I~0 

* -I * -I * -I PI (L) 16) P2 (L) 16) P3 (L) 
* * * *-J 16) P12(L) 16) P23 (L) 16) P13 (L) 16) PI23(L) 

may be trivialized on A 3 . The choice of an isomorphism 

c: C(L) ..:::. &'Al 

is equivalent to the choice of the nonzero element c -I ( 1 ) (0) in the fiber of 
C(L) at the origin of A3, i.e., to the choice of a nonzero element in the fiber 
of L -I at the origin of A. 

To simplify the discussion, assume that A has good reduction over S, i.e., 
there exists an abelian scheme .SiI over S with generic fiber A . The projections 
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PI extend in the obvious way to morphisms from oW'3 := oW' xsoW' xsoW' to oW' , 
and for any hermitian line bundle 2' on oW' we define C(2') as an hermitian 
line bundle on oW'3 by the same formula as (3.3.9). According to Faltings [Fa-
W], 11.2, and Moret-Bailly [MBl], Chapter II, given any pair (L, c) of a line 
bundle L with an isomorphism c: C(L) .::+ &'A3 , there exists a unique (up to 

unique isomorphism) pair (2', c) formed by an hermitian line bundle 2' on 
oW' and an isometric isomorphism 

(3.3.10) 

where &' ~3 denotes &' ~3 equipped with the trivial metric (defined by II 1 II = 
1 ), such that 2'IA = Land clA3 = c. Moreover, the class of 2' in Pk(oW') 
depends only on the class of L in Pic(A). 

The height hy will then be denoted hL,cub. The isometric isomorphism c 
implies that given three points Pi' P2 , P3 in A(K) the following holds: 

Therefore, on rational points, the height hL,CUb coincides with the Neron-Tate 
height defined by L; see [Fa-W], 11.2, and [MB 1], Chapter III. 

For any integer n E Z let [n] be the endomorphism of A or oW' mapping 
x to nx. Assume that L is symmetric, i.e., [-1 r L ::= L. Then we get 
[-lrci (2') = ci (2') and, by the cubical property (3.3.10) of 2', [nrci (2') = 
n2ci (2'). Therefore, given any cycle .% E Zp(oW') , we have 

(3.3.11) 

and 

degL([n]*.%) = n2p- 2 degL (.%)· 
If, in addition, L is very ample and such that A is projectively normal 

when imbedded using sections of L, Philippon defines a height hp(Z) for any 
effective cycle Z on A (cf. [P2], Proposition 9, p. 281; note however that 
in [loc.cit.] A need not have good reduction over S). Philippon's height is 
characterized by the following two properties: 

(i) for any effective cycle Z on A of dimension P - 1 and for any n E 
N - {O}, 

hp([n]*Z) = n2p hp(Z); 
(ii) there exists a constant C E R.+ such that, for any effective cycle Z .on 

A, 
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(in [P2] one considers instead of hr the height of the Chow form of Z for 
the projective imbedding given by sections of L, but these are known to be 
equivalent; see 4.3.4 below). 

When A has good reduction, these properties are satisfied by h L, cub ac-
cording to (3.3.11) and Proposition 3.2.2(ii); therefore Philippon's height hp 
coincides with the cubical height hL,cub on effective cycles on A. The equality 
of cubical and Philippon's heights allows one to recover various properties of 
the latter. For instance, let P E A(K) be a torsion point of order n and let 
t : N -+ N be the translation by P (considered by properness as an element 
of N(&K)). The cubical property of 2' implies then that 

2 *~- 2~-n . t C1 (2') = n . C1 (2') ; 

therefore hL,cUb(Z) = hL,cub(t.(Z)) for any cycle Z on A, as is also shown 
in [P2]. 

Finally, we may also describe hL,cUb using arithmetic fundamental classes as 
follows. Let s be a nontrivial rational section of 2' on Nand 9 its divisor. 
Recall that, for any complex embedding a of K, Aq denotes the complex 
abelian variety deduced from A by the extension of scalars a : K -+ C. Let 
/i E A1,1(AlR ) be a Kahler form whose restriction to each component Aq(C) 
is translation invariant. Then the /i-harmonic forms on A(C) are the forms 
whose restriction to each component Aq(C) is translation invariant, and the 
harmonic projection H : 9oo(A(C)) -+ Koo(A(C)) sends U E 9oo(A(C)) to 
the function which takes as constant value Hq(u) on Aq(C) the integral of 
uIA/T(C) with respect to the Haar measure of volume 1 on Aq(C). The cubical 
condition (3.3.10) on 2' implies that c1 (2') is translation irvariant on every 
component Aq(C) (cf. [Fa-W], 11.2, and [MB2], 11.2). Therefore 

ddc (-log II s In +Je E K1,1(A lR ) 

and the /i-normalized Green current for e is 

Therefore 

C1 (2') = [( 9, -log II s In] 
= [(9,ge)]-a(H(logllsIl2)) 

= [9]11 - a (H (log II s In) 
and, using (2.3.20), we get the following formula for any % E Zp(N): 

hL,cub(%) = deS ([%]11· [9~) - pdegK (%K"~-l) L Hq(1og II s II)· 
q:K-C 
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The possibility of such an expression for Philippon's height was indicated in 
[Hi]. For other approaches to the height of cycles on abelian varieties, see [Gu] 
and [Kr]. 

4. THE HEIGHT OF CYCLES IN PROJECTIVE SPACES 

4.1. The projective height. 

4.1.1. Definition. Let E be an hermitian vector bundle of rank N + 1 over 
S, N ~ O. The canonical quotient bundle Q on lP'(E) is defined by the exact 
sequence 

W : 0 -+ &( -1) -+ 7(: E -+ Q -+ 0 
on lP'(E) , where n : lP'(E) -+ S is the projection map. It will be equipped 
with the quotient metric deduced from n* E , while &(-1) will be equipped 
with the induced metric, which coincides with the dual of the metric on &(1) 
introduced in 3.1.2.3. For any p ~ 0 we let ~(Q) E Cit (lP'(E)) be the p-th 
arithmetic Chern class of Q (see 2.1.2). 

Definition 4.1.1. For any cycle Z E Zp(lP'(E)) we let 

(4.1.1) h(Z) = &g (Cp(Q) I z) E JR, 

and for any Z E Zp_l(lP'(E)K) ' we let 

h(Z) = h(Z), 

where Z E Zp(lP'(E)) is the Zariski closure of Z 

The real number h(Z) will be called the projective height of the cycle Z 
defined by the hermitian vector bundle E. When we shall need to make the 
dependence on E explicit, we shall write hE(Z) instead of h(Z). 

When p ~ 1 , we shall also write degK(Z) for the usual degree of Z , namely 

degK(Z) = degt9'(I)K(ZK) = degK (Cp_1(QK) I ZK) = degK (Cp_1(Q) I z) E Z. 

4.1.2. First properties and examples. The next proposition first states that the 
number h(Z) defined by (4.1.1) coincides with Faltings' height hF(Z) := 
ht9'(I)(Z) (cf. 3.1.2.3) up to some additive normalization. In particular, h(Z) 
deserves to be called a height. As shown by the second part of the next propo-
sition, with this normalization the height of linear subspaces of lP'(E) takes a 
simple form which, contrary to that of Faltings height, does not involve the Stoll 
numbers (In' 

Proposition 4.1.2. (i) For any cycle Z E Zp(lP'(E)), we have if p ~ 1 : 

(4.1.2) h(Z) = hF(Z) + (&g(E) - [K: !Q](lP-l) degK(Z); 

if p = 0 and Z = E ni Pi' where n i E Z and Pi are closed points of X, 
i 
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( 4.1.2') h(Z) = hF(Z) = L n i log # k(PJ 

(ii) Let F c E be any nonzero subbundle of E, equipped with the induced 
metric. Then 

(4.1.3) E ----h (lP'(F)) = deg(E) - deg(F). 

If r denotes the rank of F, hE(lP'(F)) -deg(E) coincides with the Faltings height 
of the point lP'(A' F) in lP'(A' E) defined by the hermitian vector bundle A' E .4 

In particular, when E is trivial, h(lP'(F)) is the classical height (cf. (3.1.6)) 
of the Plucker point of FK in lP'M (K), M = (N~I) - 1. Thus the height of 
lP'(F) coincides with the (logarithm of the) height introduced by Schmidt [Sch]. 

Observe that (4.1.2) and (4.1.3) provide the following generalization of 
Lemma 3.3.1: 

(4.1.4) 

Proof. To prove (i) we need to compare cp(Q) with c1 (&(1)r since, by def-
inition, hF(Z) = h&(I)(Z) (see (3.1.5)). 

Identity (2.1.4) applied to the canonical exact sequence g' gives 

(4.1.5) c(n* E) = (1-c1 (&(1))) .c(Q) -a(c(g')). 

Indeed ~ (&(-1)) = -c1 (&(1)) and cp (&(-1)) = 0 if p ~ 2, since 
&( -1) has rank 1. The computation of the Bott-Chern class C; (g') is purely 
archimedean, so that we may identify Ec and CN +1 with the standard metric. 
According to [G-S3], Proposition 5.3, if we write JL = c1 (&(1)), we have: 

(4.1.6) co(g') = 0 and 0c(g') = - (E ~) /-1 if k ~ 1. 

Using (4.1.5) and (2.1.2) we get, when p ~ 1 , 

hence, by (1.4.3) and (4.1.6), 

(4.1.7) 

4For any embedding (J: K --+ IC, the hermitian scalar product ( , ) AT on ATE" is defined 
in terms of the hermitian scalar product ( , ) on E" by (VI 1\ ... 1\ vr ' WI 1\ ... 1\ W r ) AT = 
det((v i , w))I':;i,j':;,· 
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Formula (4.1.2) now follows from the definitions of hF(Z) and h(Z), since 
(2.3.20) gives the identity 

<leg (cI (&(1) y-I . n* cI (E)IZ) = degK (CI (&(1) y-I I Z) <leg cI (E), 

while 

and 
<leg (2a(ap _ I /lP-I) I z) = [K: Q] degK(Z) ap _ I ' 

~ I 
When p = 0, h(Z) and hF(Z) are both equal to deg( liZ), and (4.1.2) 
follows from (2.3.16). 

(ii) Let i : lP'(F) ---> lP'(E) be the inclusion, n F : lP'(F) ---> S be the projec-
tion, and QF be the canonical quotient bundle on lP'(F). On lP'(F) there is a 
canonical exact sequence 

( 4.1.8) o ---> QF ---> t Q ---> n * (E / F) ---> O. 

Let us equip the bundles in (4.1.8) with the metric induced from n* E. Then 
(4.1.8), as an exact sequence of hermitian holomorphic vector bundles, is split 
over the complex points of lP'(F): for any imbedding a : K ---> C, i* (Qu) is the 
orthogonal direct sum of (QF)u with n; (F~), where F~ is the orthogonal 
complement to F u in E u' It follows that the Bott-Chern classes of (4.1.8) 
vanish and, by (2.1.5), 

i*C(Q) = C(QF)' n; c(E/F). 

Since Q F has rank r - 1 , C, (Q F) = O. Furthermore 

CI (E / F) = cI (E) - cI (F) 

since the metrics are induced from E. Therefore 

tc,(Q) = C'_I (QF)' n; (cl (E) - cl (F)). 
Using (2.3.6) and (2.3.20) we get 

h(lP'(F)) = <leg (c,(Q) 1lP'(F)) 

= <leg (C,_I(QF).n; (cl(E) - cl(F)) 1lP'(F)) 

= degK (C'_I (QF) 1lP'(F)) . <leg (cI (E) - cI (F)). 

Since 
degK (C,-I(QF) 1lP'(F)) = 1, 

formula (4.1.3) follows. 
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Let e : S ---+ JP(A' E) be the section of 11: : JP(A' E) ---+ S defined by the 
subbundle A' F of A' E. We have a canonical isometric isomorphism 

Therefore 
- * --,---

h~ArE(l) (JP(F» = deg e &'A'E(I) = -deg A F = -deg F. 

If --According to (4.1.3), this equals h (JP(F» - deg E. 0 

As will be demonstrated in the sequel, many formulas involving the height of 
cycles in projective spaces are simplified by the use of the normalized height h. 
Moreover, it enjoys nice positivity properties, which strengthen 3.2.3, Remark 
(i). They will be established in 5.2 below. However, we can already prove: 

Proposition 4.1.3. Assume that E is trivial and that, on ~, the cycle Z E 
Zp(JP(E» meets properly (i.e., does not meet) one of the linear subs paces of 
codimension p defined by the vanishing of p of the canonical homogeneous 
coordinates (Xo' ... ,X N). Then, if Z is effective, 

h(Z) ~ o. 
Proof. Let JPN - p c JPN be a linear subspace of codimension p defined by the 
vanishing of p homogeneous coordinates, and assume Z E Zp(pN) does not 
meet pN-p on JP;. Let A be the Levine form of JPN - p (see 1.2.3, Example 
(v». From [G-S3], Theorem 5.2, we know that the class of (JPN - P , A) in 
Cit (JPN) is equal to cp(Q). On the other hand, if Z is effective, the class 
WN-PUZ] in CH~-:~nlzl(JPN) can be represented by an effective cycle E ma Wa 

a 
([Fu2], 12.2,20.1, and 20.2). From (2.3.16) it follows that 

h(Z) = E ma log # k(Wa) + -21 ( Adz· 
a jpN(C) 

This is nonnegative since A ~ 0 (Proposition 1.4.1, (i» and Z is effec-
tive. 0 

4.2. The height of joins. 

4.2.1. Arithmetic integral geometry. A very useful tool in the study of heights is 
provided by the behavior of degrees under algebraic correspondences. Namely, 
let us consider a diagram 

C 
I.E' 

X y 

where X, Y, C are regular projective arithmetic varieties, f is flat, and fK 
is smooth. Given any cycle Z on X, we define its image under the correspon-
dence C to be the cycle 
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C*(Z) = g*f*(Z) 

on Y. Given a class y E &* (Y) we let 

* *-* C (y) = f*g (y) E CH (X). 

Lemma 4.2.1. Under these hypotheses, the equality 

(y I C*(Z») = (C*(y) I z) 
-* holds in CH (S)IQ!' 

Proof. We apply Proposition 2.3.1, (iv) to g and Proposition 2.3.1, (v) to f 
to get 

(y I C*(Z») = (y I g*J(Z») = (g*(y) I f*(Z») 

= (J..g*(y) I z) = (C*(y) I z). 0 

To compute C* (y) , a useful remark is the following. Assume that, for any 
embedding (J : K <-...t C, there exists a compact Lie group G a acting upon 
Xa(C) , Ya(C) , Ca(C) in such a way that fa and ga are equivariant maps and 
that Xa(C) is an hermitian symmetric quotient of Ga' Then, if w(y)IYq(C) is 
invariant under the action of Ga , the same will be true for w(C*(Y»IYq(C) ' 
hence this class will be harmonic for any G a -invariant Kahler structure on 
Xa(C) . 

In the sequel, we shall apply formula (4.2.1) to correspondences defined by 
incidence relations between some subvarieties of projective spaces. Correspon-
dences of that kind playa key role in integral geometry and in Nevanlinna 
theory (see for instance [B-C], [St4]) as well as in analysis over homogeneous 
spaces (see for instance [Ge], in particular Vol. III, part 1, or [He]). 

4.2.2. Joins. As a first application of formula (4.2.1), we shall compute the 
height of the join of two projective varieties. 

Let E, and E2 be two vector bundles on S, and E = E, E!1 E2 their direct 
sum. We define as follows a correspondence C between X = IP'(E,) Xs IP'(E2) 
and Y = IP'(E). Let Pi : X ..... IP'(E) , i = I, 2, be the projection and F the 
rank-two bundle p~&'E(-I)E!1p;&'E(-I) on X. Denote by n:X ..... S and 

\ 2 ni : IP'(Ei) ..... S the projections; since &'E (-1) is a subbundle of n; (E), F is 
a subbundle of I 

P~ n~ E, E!1 p; n; E2 = n* E. 

Then we let f: C = IP' x(F) ..... X be the projective bundle associated to F and 
g : C ..... Y the map induced by the inclusion F ..... n* E. When E, and E2 
are trivial of rank N, + 1 and N2 + 1 respectively, we may also describe C as 
the reduced subs cherne in IP'N\ x IP'N2 x IP'N\+N2+1 whose geometric points have 
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homogeneous coordinates (xo : ... : xN ' Yo : ... : YN ' AXo : ... : AXN : f..lYo : 
1 2 1 

... :f..lYN ) with (A,f..l)-I-(O,O). 
2 

Given two cycles ZI E Zp (P(E I )) and Z2 E Z (P(E2)) , we define their join 
1 P2 

to be the cycle 

( 4.2.2) 

in ZPl +P2 (P(E)). When the cycles ZI and Z2 are integral and one of them 
is flat over S, ZI #Z2 is the cycle attached to the join scheme of ZI and Z2 
as defined in [A-K]. In particular, given FI c EI and F2 C E2 two nonzero 
subbundles, we have 

(4.2.3) 
We suppose now that EI and E2 are equipped with hermitian metrics and 

that EI EB E2 is equipped with the direct sum metric, and we denote by h 
the projective heights on P(E I ) , P(E2) , and P(EI EB E 2) associated to these 
hermitian vector bundles. 
Proposition 4.2.2. For any two cycles Zion P(E I ) and Z2 on P(E2) of 
dimensions > 0, the following formulae hold: 

(4.2.4) 
and 

( 4.2.5) 
Formula (4.2.4) for the degree of the join is well known (see for instance 

[Fu2], Examples 8.4.4, 8.4.5). 

Proof. Let Q I' Q2' and Q be the canonical quotient hermitian bundles on 
P(E I ) , P(E2 ) , and peE) respectively, and let c(Q) be the total Chern class of 
Q. From (4.2.1) we get 

(4.2.6) 

We first show the equality 

( 4.2.7) 

in the rational algebraic Chow group CH*(X)Q' We know from [G-S3], Propo-
sition 3.1.4, (i), that the map 

CH*(X)Q -t CH*(XK)Q 

is an isomorphism and therefore CH*(X)Q is generated by the classes Ci(QI) x 
Cj (Q2) ' 0::; i ::; rk E I , 0::; j ::; rk E2 . Let us write 
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C*(C(Q)) = Laij Ci(QI) X C/Q2) , aij E Q. 
i ,j 

--0 
Using (4.2.6) (in CH (S)) and (2.3.18), we get 

degK (ZI#Z2) = Laij degK (Ci(QI) x C/Q2) I ZI x Z2) 
i ,j 

= Laij degK (Ci(QI) I ZI) degK (C/Q2) I Z2) 
i ,j 

for all cycles ZI and Z2' Applying this to IP(FI) and IP(F2) , where FI and F2 
have codimension i and j respectively, we deduce from (4.2.3) that aij = 1 
for every (i, j). This proves (4.2.7) and (4.2.4). 

Now let 

x = C* (C(Q)) - C(QI) x C(Q2)' 

The image z(x) of x in CH*(X)Q vanishes by (4.2.7). For any imbedding 
u : K ~ C, the form ltJ(x) is invariant under the action of the unitary 
group U(E 1(1) x U(E2(1) upon X(1(C) , therefore, by the discussion in 4.2.1, 
ltJ(x) is harmonic on X(C) equipped with the Kahler form P~ c1 (l!?E.(l)) + 
p; cI (l!?E2(1)). From (4.2.7) we know that the cohomology class of ltJ(x) van-
ishes, therefore ltJ(x) = O. By Lemma 2.1.1 we conclude that x = a(,,) , where 

--I 
" is a closed form. Using (4.2.6) (in CH (S)), we now get: 

(4.2.8) . 11 h(ZI#Z2) = h(ZI) degK (Z2) + degK(ZI)h(Z2) + -2 " t5z #z . 
X(C) • 2 

On the other hand, when ZI = IP(FI) and Z2 = IP(F2) for some nonzero 
subbundles FI and F2 of EI and E2, we have by (4.2.3) and Proposition 
4.1.2, (ii): 

h(ZI#Z2) = de8(EI EBE2) -de8(FI EBP'2) 

= (de8(E1)-de8(F1)) + (de8(E2)-de8(F2)) 

= h(ZI) + h(Z2)' 

It follows that the integral JX(C)" t5z #z vanishes when ZI and Z2 are 
• 2 K K 

linear subspaces of IP(E1)K and IP(EI)K' Since" is closed, this integral de-
pends only on the cohomology class of t5z #z ,hence on the class of ZI #Z2 in 

• 2 

CH*(IP(EI EBE2)K)' As this group is generated by the classes of linear subspaces 
of the form IP(FI EB F2) , the integral always vanishes, and (4.2.5) follows. 0 

4.2.3. A Bezout theorem for heights. Let E be an hermitian vector bundle of 
rank N + lover S, and X E Zp(IP(E)) and Y E Zq(IP(E)) two effective cycles 
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on the projective space of E. Assume that p > 0, q > 0, p + q ~ N + 1 , and 
that X and Y meet properly on JP'(E)K. Denote by X.Y any cycle supported 
on IXI n IYI representing the product [X][Y] E C~~~~~p-q(pH) (see [Fu2] 
and 2.2). This cycle X.Y is well defined up to the addition of Ediv(fa)' 

a 
where each function fa is defined on a variety contained in a closed fiber of 
JP'(E). It follows that the real number h(X.Y) is independent of the choice of 
the representative X. Y (by Proposition 3.2.1, (ii) and Proposition 4.1.2, (i)). 

Theorem 4.2.3. Assume that E is the trivial hermitian vector bundle ~(N+1) . 
Then the following inequality holds: 

(4.2.9) 
h(X.Y) ~ h(X) degK(Y) + degK(X)h(Y) 

+ [K : Q] a(N, p, q) degK(X) degK(Y) , 

where 
2N +2-p-q 

a(N, p, q) = O"p+Q_1 - O"p+Q_N_2 + 2 log 2. 

As mentioned in the introduction, special cases of Theorem 4.2.3 where X 
or Y is an hypersurface, or more generally a complete intersection, have already 
been proved by Nesterenko ([Nl], Lemma 4), Philippon ([PI], Proposition 2.6; 
[P3], Theoreme 2), and Faltings ([Fa2], Proposition 2.17). Nesterenko and 
Philippon use heights of cycles defined by means of Chow forms; but these turn 
out to differ from the heights hF and h by a multiple of the degree, see [S02], 
[P2], and 4.3, infra. 

Proof. Let D c JP'(E $E) be the image of the "diagonal" embedding j : JP'(E) -+ 
JP'(E $ E) defined by the bundle morphism idE $ idE: E -+ E $ E, and X#Y 
the join of X and Y. Since X and Y meet properly on JP'(E)K' the cycles 
X#Y and D meet properly on JP'(E $ E)K. Furthermore 

(4.2.10) j.(X.Y) = (X#Y).D. 

By this we mean that for any choice of the representative X.Y of [X][Y] E 
CH.(IXI n IYI), j.(X.Y) is a representative of [X#Y][D] E CH.(IX#YI niDI). 
This fact follows from [Fu2], Example 8.4.5. (Fulton's argument is formulated 
for joins in projective spaces over a field, but extends immediately to the present 
situation. ) 

Let L = ~E$E(I) be the canonical hermitian line bundle on JP'(E $ E). By 
Proposition 3.2.1, (iii) and (4.2.10) we get 

(4.2.11) hj"([)(X.Y) = hr((X#Y).D). 

The isomorphism j·~E$E(-I) ~ ~E(-I) divides scalar products by 2. Indeed 

it maps the triple (x,v,v), XEJP'(Ed, VEEc,to (x,v),and II (v,v) 112= 
2 II V 112. By (3.2.4) it follows that 
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(4.2.12) p+q-N-l 
hjO(L)(X.Y) = hF(X.Y) + [K : Q] 2 (log 2) degK(X.Y) 

if p + q > N + 1 and 
hj"(L)(X.Y) = hF(X.Y) 

if p + q = N + 1. All this was valid for an arbitrary E. Assume now that 
E = t:9';+I. Then IP'(E ffi E) gets identified with ~N+l. Let (Xo' ... ,X N' 

Yo' ... ,YN ) be the canonical homogeneous coordinates on ~N+l, and let 
Hi C ~N+l be the hyperplane of equation Xi = Yi . Clearly D is the inter-
section of Ho' ... , HN . When Z is any effective cycle on IP'~N+l flat over S 
and meeting Hi properly, we get from Proposition 3.2.1, (iv) that 

(4.2.13) log 2 
hy;(Z.H;) ~ hy;(Z) + [K : Q] -2- degK(Z) 

since the section s of L corresponding to Xi - Yi has norm square at the point 
(xo: •.. : xN : Yo: ... : YN) E ~:+I(C) ~ p2N+l(C) 

On the other hand, for any cycle Z supported in a closed fiber of 1P'2N+l - S, 
we have 

hy;(Z. Hi) = hy;(Z) 

according to (3.1.3), since [Hi] = c1(L). Therefore (4.2.13) holds for any cycle 
Z on 1P'2N+l such that ZK is effective and meets Hi properly (on 1P'~+I). 

Applying (4.2.13) N + 1 times, it follows that 

(4.2.14) N+l 
hy;«X#Y).D) ~ hy;(X#Y) + [K: Q] -2- log(2)degK(X#Y). 

Indeed, if p + q > N + 1 (resp., p + q = N + 1), IX#YIK n IDIK has dimension 
p + q - N - 2 (resp., is empty), so that IX#YIK n Ho n··· nHi has dimension 

K K 
P + q - i - 2 for any i E {O, ... ,N} (resp., has dimension N - i-I for any 
i E {I , ... ,N}). 

Combining (4.2.11), (4.2.12), (4.2.14), Proposition 4.2.2 (applied to El = 
E2 = E, Zl = X, and Z2 = Y), and using Proposition 4.1.2, (i) to compare 
FaItings height with the projective height, Theorem 4.2.3 follows. 0 

The use of the join to reduce intersection of cycles in projective space to 
the intersection of one cycle with a linear subspace goes back to Gaeta ([GaD 
and has been used since by several authors, in relation with Bezout's theorem 
([Bo-V], [V], [Fu2], Examples 8.4.4 - 8.4.6, [Fu3D. 
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Corollary 4.2.4. Let h be the projective height on cycles in lP; (~ lP(E)K) 
defined by the trivial hermitian vector bundle E. For any two effective cycles 
X E Zp(lP;) and Y E Zq(lP;) which meet properly (p + q ~ N), the following 
inequality on the height of the intersection cycle X. Y holds: 

h(X.Y) ~ h(X) degK(Y) + degK(X) h(Y) 

(4.2.15) ( 2N -p-q ) + [K : Q] up + u q - u p+q _ N + 2 log 2 

x degK(X). degK(Y). 
Proof. According to [Fu2], Corollary 12.2 (a) (see also 20.1 and 20.2), there 
exists an effective cycle X.Y supported by IXI n IYI representing [X] [Y]. 
Then X. Y - X. Y is an effective cycle supported by the closed fibers of ~ --+ S ; 
therefore 

h(X.Y) = h (X.Y) ~ h(X.Y). 

Combined with (4.2.9) applied to X and Y, this gives (4.2.15). 0 

Remarks. When comparing the classical Bezout theorem with the inequality 
above, we may say that if the degree represents a zeroth order information 
about a cycle, then the height is first order information; see 5.4.1 below for a 
more precise statement. 

It is also an illustration of the point of view of Northcott [No] that the height 
measures the "complexity" of the cycle. 

4.3. The height of Chow forms and resultants. 

4.3.1. Definitions. Let E be a vector bundle of rank N + lover S, r E [0, N] 
an integer, and d = (do'''' ,d,) an (r + I)-tuple of positive integers. Let 
7t : lP = lP(E) --+ S be the projective bundle of E, and, for any i, let sL j E 

v v 
be the dj-th symmetric product of E. It is defined as the quotient of E®d; , 
defined by the coinvariant under the action of the symmetric group. We let 

(4.3.1) 

v 
The scheme lPj "parametrizes" the horizontal divisors of relative degree d j 

v 
on lP, as well as the hyperplanes in lPj • The schemes lPj and lPj have relative 

dimensions 

Nj = rk(Sd; E) _ 1 = (N ~ dj ) - 1. 

The product lPj Xs lP~ contains the incidence subscheme Ij' that is, the 
subscheme, smooth over S, whose points in any field k over S are pairs 
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(x, u), where x E lPj(k), u E lP~ (k), and u(x) = 0 for any representative 

x E (Sd; 'E) v ® k and U E Sd; E ® k of x and u respectively. Let r = 
~K ~K 

10 x s ... x s Ir be the product of these schemes. The projection maps 

and 

r 

f: r -+ II lPj := lPo xs'" Xs lPr 
j=O 

r II v v v g:r-+ lPj :=lPo xs···xSlPr 
j=O 

are smooth and proper. Finally, let Vj : lP -+ lPj be the Veronese embedding, 
r 

attached to the very ample line bundle &(d) on lP. If v : lP -+ n lPj is the 
j=O 

product of the Vj 's, we get a diagram: 

r 
(4.3.2) f/ 

Given any cycle Z E Zr+! (lP), we define its (generalized) Chow divisor to be 

(4.3.3) 

r V 
This cycle is effective when Z is effective and has codimension one on n lP j • 

j=O 
Lemma 4.3.1. When Z is flat over S, resp. flat over S and irreducible, the 
same is true for Chdo , ... , d, (Z) . 
Proof. Assume first that Z is an irreducible cycle on lP, Le., Z is an integral 
subscheme of lP. Observe that Z is flat over S iff its generic point lies over the 
generic point Spec(K) E S. Since f is smooth with geometrically connected 
fibers, the cycle jv.(Z) is also irreducible, and its generic point lies above 
that of V.(Z) , hence also above Spec(K). Write g*jv.(Z) = nW, where W 

r 
is the integral subscheme of n lP~ which has the same support as the scheme 

j=O 
theoretic image of the irreducible scheme j v. (Z) under g. Since the generic 
point of jv.(Z) lies over Spec(K) the same is true for W; Le., W is flat over 
S. Note that the integer n will be zero if W has codimension greater than 
1; otherwise it equals the degree of the extension K(jv*(Z)) I K(W). Since 
proper pushforward and flat pullback of cycles commute ([Fu2], Proposition 1.7, 
and §20.1), we may compute n after base changing by the map Spec(K) -+ S. 
Then the assertion that Chd(Z) is irreducible, Le., that n = 1, is essentially a 
classical result about Chow forms over fields of characteristic zero, which may 
be proved as follows. 
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Let V' = lP' -+ I1 lP'i' r : I1 Ii -+ I1 lP'i' and g' : I1 Ii -+ I1 lP' ~ be the maps 
i~1 i~1 i~1 i~1 i~1 

defined analogously to v, f, and g. Then r-Iv'(Z) is an integral scheme, 
and we have a commutative diagram: 

f-Iv(Z) ~ I1lP'~ 
i~O 

(4.3.4) 
r-IV'(Z)~ I1lP'~ 

i~1 

in which hand h' are the maps induced by g and g', p is the obvious 
projection, and 1C is induced by the corresponding projection I1 Ii -+ I1 Ii. 

i~O i~1 

We want to show that h is generically injective. Suppose that e : Spec(F) -+ 

I1 lP'~ is a geometric generic point, and let Di C lP' F be the corresponding 
i>1 
degree d i hypersurface for i = 1, ... , r. Since ZK C lP' K is nonempty and 
has dimension r, ZF n DI n··· n Dr C lP' F is nonempty. But this is canonically 
isomorphic (via the morphisms v' and r) to h,-I (e). Hence h' is a dominant 
morphism between varieties of the same dimension and is therefore generically 
finite, of degree A. = deg(Z)dl ... dr. Furthermore, since h' is a morphism of 
varieties of characteristic zero it is generically etale. Thus 

,-I " h (e) = {PI' ... ,p.,) C v (lP') x e = v (lP'F) 
with the Pi distinct. If we pull back diagram (4.3.4) along e = Spec(F) -+ 

I1lP'~ : 
i~1 

1 

we find that f-Iv(Z)~ C lP'O.F xlP'~.F is i~1 Pi xHi' where Hi is the hyperplane 

dual to Pi. Since the Pi are distinct, so are the Hi' and thus f-Iv(Z)~ maps 
injectively to lP'~.F. 

When Z is flat over S but not necessarily irreducible, the above argument 
applies to each of its components. 0 

4.3.2. Remarks and examples. (i) The definition ofthe generalized Chow divi-
sor may be extended by replacing the base scheme S by any Noetherian regular 
scheme T. Namely, for any vector bundle E of rank N + lover T, we can 
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v 
still define IP'; and IP'; by (4.3.1) and consider the diagram (4.3.2) (where all 

the products are over T); then for any effective cycle Z on IP' = IP'(E) with 
relative dimension dimsZ = dimZ -dimS equal to r, formula (4.3.3) defines 

, v 
a generalized Chow divisor Chd (Z) on TIIP';. 

;=0 
The compatibility of flat pull-back and proper push-forward imply that the 

formation of the Chow divisor commutes with flat base change. Namely, if T' 
is another Noetherian scheme, for any flat morphism T' -+ T, we have the 
following equality of divisors in (fI Pi) : 

;=0 T' 

(4.3.5) 

It follows from the constructions of Mumford in [M-F], 5.3-5.4 (see also [K-
M] and [Fo]), that if Z is any irreducible cycle in IP' defined by a subscheme 
flat and of relative dimension rover T, the Chow divisor Chd(Z) is flat over 
T and formula (4.3.5) holds for a not necessarily flat base change T' -+ T. 
(In fact, using Mumford's construction, one may associate a flat Chow divisor 
ChiZ) to any subscheme Z of IP' flat over T, without any regularity assump-
tion on the base T, in a way compatible with any base change. Moreover, this 
definition is compatible with our intersection theoretic definition, as follows 
from [M-F], Lemma 5.9, which immediately extends to schemes.) 

Formula (4.3.5) also holds when T' and T are regular noetherian schemes 
and the morphism i: T' -+ T is a closed regular embedding such that 

dimT, IZI T, = dimT IZI, 

if now ZT' and Chd(Z)T' denote the restrictions of Z and Chd(Z), i.e., their 
image under the Gysin homomorphisms defined by i. This follows from the 
compatibility of Gysin homomorphisms with flat pull-back and proper push-
forward ([Fu2], §§6.2 and 20.3). 

(ii) When T = Spec(k), for some field k of characteristic zero, and do = 
... = d, = 1, the Chow divisor Chd(Z) is the divisor of the classical Chow form 
of Z . Indeed, it is irreducible if Z is so (by the same argument as in Lemma 
4.3.1), and its geometric points parametrize (r + 1 )-tuples of hyperplanes in IP' 
whose intersection meets the support of Z (see [C-Wa], pp. 693-694 and [Sa], 
1.9.4; it follows from this last reference that Ch(1 , ... ,I)(Z) is the classical Chow 
divisor of Z when k is algebraically closed of any characteristic). 

The introduction of generalized Chow divisors, for arbitrary d; 's, is due to 
Philippon [PI]. When T = Spec(k) and k has characteristic zero, Chd(Z) is 
still irreducible when Z is so, and has a geometric interpretation which gener-
alizes the one for Ch(Z) above: the geometric points of its support parametrize 
(r + 1 )-tuples of hypersurfaces of degree do, '" ,d, in IP' whose intersection 
meets the support of Z (see the proof of Lemma 4.3.1). 

(iii) Suppose that T = Spec(A), where A is a field or a principal ideal 
domain. Then E may be trivialized, and we get identifications: 
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Therefore, Chd(Z) is the divisor of a multihomogeneous form cl>d,Z with co-

efficients in A in t (N;d;) variables (the coefficients of the "generic" homo-
i=O I 

geneous polynomials of degree do' ... , d, in N + 1 variables), well defined up 
to the multiplication by a unit in A. This form generalizes the classical Chow 
form and was considered by Nesterenko [Nl] and Philippon [PI] (when Z is 
irreducible, it coincides with the "forme eliminante" of [PI], p. 23). 

(iv) According to Lemma 4.3.1 (or to (i) above), when Z is an effective cycle 
on lP' flat over S, Chd(Z) is the flat divisor extending the divisor ChiZK) 

in (n Pi) . On the other hand, when Z is supported in a closed fiber 
1=0 K 

n-1(x) = lP'x of lP' over S, where it has degree ~, one finds: 

This is easy to prove directly, but also follows from the identity (4.3.6) below. 
(v) Consider the case where K = Q, E is trivial, and r = N. Then lP' = lP': ' 

and Chd (lP':) is the divisor of a multihomogeneous polynomial with integer co-
efficients Rd , whose variables are the coefficients of the "generic" homogeneous 
polynomials of degrees do, . .. ,d N in N + 1 variables. This polynomial, well 
defined up to a sign, coincides with the classical resultant of N + 1 homo-
geneous polynomials of degrees do, ... ,dN in N + 1 variables ([Me]; [Wa] , 
Chapter XI). Indeed it is irreducible over Z (by Lemma 4.3.1), and its complex 
zeros parametrize (N + I)-tuples of complex homogeneous polynomials of this 
type which have a common zero in lP'N (C). It immediately follows from (ii) 
together with the compatibility of Chd with base change described in (i) that, 
as is classically known, Rd is absolutely irreducible and that its set of zeros 
in any algebraically closed field k parametrizes (N + I)-tuples of polynomi-
als in k[Xo' ... ,XN]d ' ... , k[Xo' ... ,XN]d which have a common zero in o N 
lP'N(k) . 

4.3.3. The height of generalized Chow divisors. 

4.3.3.1. We keep the notation of 4.3.1 and assume that E is equipped with an 
v v 

hermitian metric h. We endow E with the dual metric h, and for any integer 
v v 

d we endow Sd E with the quotient metric of the metric h®d on 
dVv -and (S E) with the dual metric. We denote by Qi the pull-back to 

, n lP'~ 
i=O 

of the canonical hermitian quotient bundle on lP'~ = lP'(si; E) and by C(Qi) its 
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r 
total Chern class. Given any divisor D on II P~ , we define its height to be 

;=0 

h(D) = deg (g c(Q;) I D) E R; 

it is a normalized variant of the multiheight considered in §3.1 (cf. Lemma 4.3.4 
below). We shall also consider the multidegrees of D, defined as: 

Let 19'(I) be the canonical hermitian line bundle of degree one on P = P(E). 

Theorem 4.3.2. Let Z E Zr+l (P). The Faltings height of Z (resp. the degree of 
Z) and the height (resp. the multidegrees) of its generalized Chow form Chd(Z) 
satisfy the following proportionality relations: 

(4.3.6) 

and 

( 4.3.6' ) deg,(Ch.(Z)) ~ (g d j ) degK(Z), 0:$ i:$ r. 

The last identity is classical when do = ... = dr = 1 (see [C-Wa], pp. 693-
694). It is due in general to Philippon ([PI], p. 15, Remarques, 1)). The 
identity (4.3.6) is due to Soule [S02] and Philippon [P2] when E is trivial and 
do = ... = dr = 1. 

The proof of Theorem 4.3.2 will be based on Lemma 4.2.1 on correspon-
dences, combined with the following: 

Proposition 4.3.3. Let F be an hermitian vector bundle on S, 19'( 1) F the 
canonical hermitian line bundle on P(F) , QFv the canonical hermitian quo-
tient bundle on P(FV) , and [the incidence correspondence between P(F) and 
P( F v). Then the following equality holds in Cii * (P( F))Q : 

[* (C(QF V )) = C(l9'F(I)). 
Proof of Proposition 4.3.3. Consider the commutative diagram 

P(F) Xs P(Fv) 
!,/ "-,.g 

P(F) 
/p 

S, 
the canonical exact sequences 
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and 
* v 0-+ &Fv(-I) -+ P F -+ QFv -+ 0 

on IP(F) and IP(Fv) respectively, and the dual exact sequence on IP(F) 

v * v 0-+ QF -+ 0: F -+ &F(I) -+ o. 
The divisor I in IP(F) Xs IP(Fv) is defined by the vanishing of the composite 
map 

(4.3.7) 

The homology of the complex of length two obtained by restricting the sequence 
(4.3.7) to I is 

H = coker (g* (&Fv (-I)) -+ f*(Q~)) 

= ker (g*(QFV ) -+; (&F(I))). 

It follows that we may identify f : I -+ IP(F) with the projective bundle 
1P(j*(Q~)) -+ IP(F) and H with the quotient bundle on this projective bun-
dle. Furthermore, we have an exact sequence on I: 

W : 0 -+ H -+ g*(QFv) -+ ;(&F(I)) -+ O. 
We equip all bundles with the metric induced by F and we let c(W) be the 
total Bott-Chern class of W for these choices of metrics. We get from (2.1.4) 
and the projection formula 

1* (C(QFV )) = fjI*g* C(QFv) 

= fjI* (C(H)C(; &F(I))) - a (fjI* c(W)) 

= fjI* (C(H))C(&F(I)) -a (fjI* c(W)). 

Since the rank of H and the relative dimension of fjI have the same value 
_ ---0 

rank (F) - 2, the class fjI*(c(H)) lies in CH (IP(F)) = z. It is equal to one as 
can be checked on the generic fiber. Furthermore c(W) is zero in degrees bigger 
than rank (F)-2, therefore J.(c(W)) is a smooth function on IP(F)(C). For any 
embedding (J : K -+ C, its restriction to IP(F)u(C) is invariant under the action 
of the unitary group of F u ' and therefore must be a constant Au E 1R. Indeed, 
the short exact sequence of hermitian holomorphic vector bundles on Iu(C) 
defined by W is U(Fu)-equivariant, as well as the map fa : Iu(C) -+ IP(F)u(C) . 
The function (J I-t Au defines an element A E AOO(SR)' and we have 
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-I 
To prove that a(A) = 0 in CH (S)Q' choose a line bundle L contained in 
F and let Z = r(L) E ZI (r(F)) be the corresponding cycle in r(F). From 
Lemma 4.2.1 we get 

(C(QFV) I I*(Z)) = (C(&(1)F) - c./a(A) I Z) = c(Lv) - a(A). 

On the other hand, since 1* (Z) is the irreducible cycle r( (F / L) v) on r(F v) , 
from the proof of Proposition 4.1.2, (ii) we know that the component of degree 

-. - --- * __ -v -. - - v __-v one of (c(QFv) I I*(Z)) in CH (S)Q is equalto c1 (F )-c1 ((F /L) ) = c1 (L ). 
It follows that a(A) = O. 0 

Proof of Theorem 4.3.2. Using successively Lemma 4.2.1, (2.3.13), (2.3.14), 
Proposition 4.3.3 and Proposition 2.3.1, (iii), we get 

h(Chd(Z)) = deg (g c(Qj) I r*v*(z)) 

= deS (r* (g C(Q;)) I v*(Z)) 

= deS (g c(Lj) I v*(Z)) 

= deS (gC(V;(Lj)) IZ), 

where L j is the canonical hermitian line bundle of degree one on r j . The 
Veronese embedding Vj : r -4 rj is such that v; (L j ) is canonically isomorphic 
to &(dj ). Moreover, Chern classes of line bundles vanish in degree > 1. 
Therefore we get: 

h(Chd(Z)) = deS (g c1 (&(d j )) I Z) 

r 

= II dj.deS(cl (&(1)) : z) 
j=O 
r 

= II d j • hi9'(I) (Z) , 
j=O 

which proves (i). To compute degj(Z) we use Lemma 4.2.1 to get 

degj(Chd(Z)) = degK (r*(o:) I V*(Z)) , 

where 
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From Proposition 4.3.3 we know that 

and 

Therefore 

and 

, 
r*(a) =II CI (L j ) 

, 

j=O 
Hi 

= (II dJ degK(Z). 0 
j=O 
Hi 

4.3.4. The height of generalized Chow forms. 

981 

4.3.4.1. We keep the notations of the previous subsection. Let M j be the pull-
, v _ v 

back to II]Pj of the canonical hermitian line bundle &' di" (1) on ]Pj' and 
j=O s E 

Ilj = cl(Mj). 

Lemma 4.3.4. For any (r + I)-tuple of integers (00 , ••• ,0,) and any nonzero 
rational section s of .® Mj®Ji on n Pj , the following formulae hold: 

1=1 j=O 

(4.3.8) 

h(div(s)) = deg (g cl(Mjti I diV(S)) + ~Oj (deg Sdi; -[K: Q] O"Ni-l) 

( 4.3.9) 
f ' N. 1 ' (1 1) 

= IT :~cJ(n Pi) 11(C) logllsll· Do Ilj '+ "2[K: Q]~Oj 1 +"2 + ... + N j • 

Proof. According to (4.1.7), we have: 
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Therefore 

From (2.3.8), we get: 

( 4.3.10) 

<leg (t! ct(Mit; I diV(S)) = 

---- (IT' ~ - N. ~ ( , ~J;) I IT' V) + deg i=O Ct (MJ '. Ct i~O Mi i=O lP'i • 

Using (2.3.12) and (4.1.4), we obtain 

<leg (t! Ct(MJN;.Ct C§o M7J;) I t! Pi) 
(4.3.11) ~ t,Oi deg (C1 (&$',,,(1)) N,+l I Pi) 

= ~~i (-<leg (Sd; ~) + [K: ij] (TN) . 
Equality (4.3.9) follows from (4.3.8), (4.3.10), and (4.3.11). 0 

Let Z E Z,+t (lP'(E)) be a nonzero effective cycle, and let, for i = 0, '" ,r, 

0i ~ (~d}degK z. 

According to (4.3.6), the divisor Chd(Z)K is the divisor of a nonzero multiho-
mogeneous form <I> d Z in 

, K 

This generalized Chow form <l>d z of ZK may be seen as a rational section of 
, K 

, <8IJ ' v , v 
@ M j j over I1 lP'j' As Chd(Z) and div<l>d z are divisors in I1 lP'j which 

}=o j=O ' K j=O 
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coincide on the generic fiber, we can write 

ChiZ ) = div(q,d,z) - L n~ (tI Pj) , 
~ 1=0 F 

p 

where p runs over the closed points of S, and where n~ is an integer, which 
vanishes for almost every p. 

If we combine this relation with (4.3.9), we get 

(4.3.12) 

h(Chd(Z)) = L h(' V) logllq,d,zK II . IT /L~j - Ln~logN~ 
(1 : K-+C n P j (C) j=O ~ 

1=0 a 

1(' )'1( 1 1) + 2" Do d j • ~ d
j 

1 + 2" + ... + N
j 

.[K: Q] degKZ. 

This formula is especially interesting in the following situations: 
• The vector bundle E is the trivial vector bundle t!fS$(N+l) , and Z is a 

nonzero effective cycle flat over S; then q, d Z is a polynomial 
, K 

(4.3.13) L u.Io UI, a··· 10 , ••• ,I, 0 , 
IIjl=oj 

in variables (Uo K) KENN+I , ... , (U, K) KENN+I which represent the coefficients 
'IKI=do 'IKI=d, 

of the "generic" homogeneous polynomials of degree do,... ,d, in N + 1 
variables, and since Chd(Z) is a flat divisor (Lemma 4.3.1), the multiplicities 
n ~ are given by 

(4.3.14) 

I . I ·f E· h ··al h . . b dl Ai,fo(N+l) d d n partlcu ar, 1 IS t e tnvl ermlt1an vector un e C7 s an = 
(1 , ... , 1), the two first term in the right-hand side of (4.3.12) gives the height 
of Z as defined in [P2] . 

• The class number of K is one (e.g., K = Q); then, as observed in 4.3.2, 
(iii) there exists a generalized Chow form over t!fK , i.e., a nonzero element q,d Z 
of ' 

such that 

Chd(Z) = div(q,d,z)' 
and (4.3.12) holds with q,d,Z in place of q,d,ZK and n~ = o. 
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4.3.4.2. We keep the notations of the previous paragraphs. For any family 
N = (Nq)q: K-+C of continuous functions 

such that 

and 

we may define 

N : (8) ~i Sdi E -+ lR r ( V)V 
q ;=0 q + 

Nq(v) = 0 ¢:} v = 0, 

Nq(Av) = IAI Nq(v) , 

hN(Chd(Z)):= L log Nq(cI>d,Z) - L np log Np 
q: K ...... C p 

(by the product formula it does not depend on the choice of cI>d,ZK ). 
The choice of N is equivalent to the choice of a continuous F 00 -invariant 

metric II. II on the line bundle 19 ( 1) on IP C§o SJi (Sd i E) V) ; namely, the 

dual metric 1I.llv on 19(-1) is such that for any v E;§o SJi (Sd i E): - {O}, 

the norm IIvllv of v seen as an element of the fiber 19(-1)[V] is Nq(v). When 
Z is flat over S, hN(Chd(Z)) is nothing else than the height of the point 

[cI>d,ZJ E IP C§o SJi (Sd i E) V) (K) 

defined by the hermitian line bundle (19(1) , 11.11). 
There are several natural choices for the family N: 
• For any p E [0, 00], we can consider Np = (1IIIq,p)q :K ...... C' where 11.llq,p 

is the (quasi-)norm on 

;§o SJi (~i E): ~ nO (g IP (Sd i £q) ; 19(60 ' ... ,6r )) 

defined in 1.4.3, Remark (i) (as before, one uses the hermitian structure on 
V Sdi Eq deduced from the one on E). We shall write hp instead of hN . 

p 

• The hermitian structure on E defines hermitian structures on (Sd i E) V 

(see beginning of 4.3.3.1), hence on (Sd i E) v®Ji 
, and, by considering the quo-

tient metrics, on ~i ( ~i E) v. Finally, we get an hermitian structure on 
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j~O S.5; (Sd; E) v, and we can take as N the family (II 110")0": K-+C of hermi-

tian norms defined by this hermitian structure. The height hN attached to this 
family will be denoted hHerm ; see also, in the case r = 1, [B-B-E-M] . 

• Let ~ = (eo, ... ,eN) be any basis of EK . From ~, we get the dual 
v v 

basis (10, ... ,fN) of EK , and a basis of Sd; EK , by forming the monomial 

/, III = d j ; then, we consider the dual basis-it is a basis of (Sd; E K ) v -

and finally the basis (<I>.l.) of j~O S.5; (Sd; EK) v , obtained by taking products 

of monomials in the elements of these dual bases. We may consider the family 
of norms NIB = ( NIB, 0") 0" : K -+C defined by 

NIB,O" (~a.l. <I>.l.,O") = ~la.l.l. 
For instance, when EK = K N+! and ~ is the standard basis, defined by 

e j = (Jjj )O$.i5,N' then j~O S.5; (Sd; EK) v is the space of multihomogeneous 

polynomials of the form (4.3.13), the basis attached to ~ is formed by the 
monomials u.Io ... VI, (11.1 = J.) and o r I I' 

(4.3.15) ( L I I) L N a U. 0 ••• V '= la I. IB , 0" 10 , ••• ,I, 0 r 10 , ••• , I, 
10 , ••• ,In 10 , ••• ,I, 

We shall write hIB instead of hN . 
II 

The heights hp' hHerm , hIB may be compared as follows: 

Proposition 4.3.5. Let Z be any effective cycle in Zr+! (JP'(E)). 
(i) For any p E [0, 00], we have: 

(4.3.16) 
Moreover. 

(4.3.17) 

(ii) The following equality holds: 
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(iii) For any (d, n) E N* x N* , let 

and 

I! 
m(d, n) =min d! 

lEN" 
Ill=d 

I! 
M(d,n)= L ,. 

lEN" n. 
Ill=d 

Then, for any basis g of E K which is orthonormal in E u for each (1 : K - C , 
we have: 

1 (r ) r 1 "2 gdj ·~djIOgm(dj,N+l).[K:Q]degK(Z) 

( 4.3.19) ::; hg;(Chd(Z)) - hHerm(Chd(Z)) 

1 (r ) r 1 ::;"2 g dj . ~ dj 10gM(dj , N + 1). [K : Q] degK(Z). 

Inequalities (4.3.16) and (4.3.17) follow from 1.4.3, (ii), and Corollary 1.4.3. 
Equality (4.3.18) follows from the relations: 

2 ITr (N.+J.) 2 1I·lIu = I J. I .1I.lb,u. 
i=O I 

By tensor product, this is a consequence of the following lemma (compare [G-
S6], p.537): 

Lemma 4.3.6. Let V be any hermitian vector space of dimension N + I. For 
d V ,..,d.::!... any dEN, the norm II. II on S V defined by the hermitian structure on ,y V 

and the norm 11.11 2 on sd V::::: HJ(JP'(V); &(d)) defined in 1.4.3, (ii), are related 
by 

IIxll2 = (N; d) IIxll~. 

Proof of Lemma 4.3.6. The irreducibility of the action of the unitary group 
_ v v 

U(V) on sn V implies the existence of A. E JR.: such that, for any x E sn V: 

(4.3.20) 2 2 IIxll = A. IIxlb. 
To compute the constant A., we may assume that V is CN +! endowed with the 
standard hermitian scalar product and use the notations of 1.4.3. According to 
(4.3.20), we have for every multi-index IE NN+! of length d: 

I! 1 1-1 d ' = A. z z dv. 
• S2N+1 
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Therefore 

To prove (4.3.19), we need to introduce a few notations. If !I = (e l , ••• ,en) 
is a basis of a finite-dimensional complex vector space V, we denote by II litH 
the norm on V defined by 

Ilt x; e;11 = tlXjl, 
1=1 1=1 

v v 
we denote by !I the dual basis of E, and, for any d E N* , by st!l the basis 

of Sd E formed by monomials in the ej's. If !II = (e: ' ... ,e~ ), ... ,!lk = 
1 

k k (e l ' ••• ,en) are bases of complex vector spaces V;, ... , Vk , we denote by 
k 

!II 0··· 0!1k the basis (e;11 0··· 0 <) 1~iI~n1 of V; 0 ... 0 Jk. Finally, if V 
19k~nk 

is any finite-dimensional hermitian vector space and !I a basis of V, we let 

and 

m(V, !I) = min Ilxll~ 
XEV-{O} (x, x) 

M(V,!I)= max 
xEV-{O} 

Ilxll~ 
(x, x)' 

Lemma 4.3.7. Let !I = (e l , ••• ,en) be any orthogonal basis of an hermitian 
vector space V. 

(i) We have: 

(4.3.21) 

and 

( 4.3.22) M(V,!I)= L (ej,e;)-I. 
19:9 

(ii) For any dE N*, Sd!l is an orthogonal basis of Sd V, and we have 

(4.3.23) d- d - d m(S V, S !I) = m( V, !I) 
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and 

( 4.3.24) 

(iii) If &I is an orthonormal basis of V, then for any d E N*, (Sd ~ ) v 

is an orthogonal basis of (S" ~) , . and 

( ( d~) v d v v) I! m S V ,(S &I) = m(d, n) :=~!~ d! 
III=d 

( 4.3.25) 

and 

(4.3.26) M ( (S" ~f. (S" 91)') = M(d. nj:= E !;. 
Ill=d 

(iv) If &I' is any orthogonal basis of a finite-dimensional hermitian vector 
-" - =-=' space V , then &I ® &I is an orthogonal basis of V ® V , and we have 

m(V ® V' , &I ® &I') = m(V, &I) m(V, &I') 
and --, , - -" M(V ® V ,&I ®&I) = M(V, &I) M(V ,&I). 
ProofofLemma 4.3.7. Equations (4.3.21) and (4.3.22) follow respectively from 
the triangle and Cauchy-Schwarz inequalities. Assertion (iv) immediately fol-
lows from (4.3.21) and (4.3.22). 

To prove (ii), observe that Sd &I = (el)IEN" and that, if we let a j = (e j , e j ), 
111=<1 

then 

(4.3.27) III! 1 
(e ,e ) = d! a . 

As 1f ~ 1 and 1f = 1 if I takes the form (d 0ij)l5,i5,n' this implies (4.3.23). 
Moreover, using the multinomial formula, we get: 

L (/, /)-1 = L ~: a -I = (ta;l)d = M(V, &I)d, 
lEN" lEN" 1=1 
III=d 1/1=<1 

that is, (4.3.24). 
v v 

Let us prove assertion (iii). Let &1= (1;., ... ,1,,); then Sd &1= (l)IEN" , 
Ill=d 

d v v . and (S &I) = (E1 ) lEN" , where EI IS defined by 
Ill=d 

E1(}') = °1 , J' 
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v d v d V V 
The bases ~, S ~,and (S ~) are orthogonal. Moreover, the equality 
above shows that 

V 
and, since ~ is orthonormal, 

(/, /) = !;. 
This proves (4.3.25) and (4.3.26). 0 

From Lemma 4.3.7, we get that, under the hypotheses of (iii), 

, N 2 , II m(di , N + I)J;::; gj't::;II M(di , N + I)J;. 
i=O 11·llu i=O 

This implies (4.3.19). 

4.3.4.3. Finally, by combining the results of the preceding subsections, we can 
prove: 

Theorem 4.3.8. For any effective cycle Z E Z'+1 (IP'(E)) , we have: 

(4.3.28) 

and 

(4.3.29) 

where 

(4.3.30) 

Moreover, for any basis ~ of EK which is orthonormal in Eu for each embed-
ding u : K --+ C, we have: 

(4.3.31) 
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where 

- ~ (g d j ). [(r+ 1).log(N + 1) + ~ ~j log(Nj + 1)] 

(4.3.32) 

( 
T ) T 1 

:5 l1iZ ):5 Po d j • ~ d j log(Nj + 1). 

Observe that 

Therefore we get the following upper bound for the right-hand side in (4.3.30) 
and (4.3.32): 

( 4.3.33) TTl (' ) T 1 Po d j • ~ d j log(Nj + 1):5 N. Po d j • ~ d j log(dj + 1). 

Pro%/Theorem 4.3.8. Equation (4.3.28) follows from (4.3.5), (4.3.12), and 
the definition of ho. 

If we combine (4.3.28) and Proposition 4.3.5, we get: 

where 

and 

( 4.3.35) 
T 

h&/(Chd(Z)) = IT d j • h~(I)(Z) + [K : Ql l1d(Z) , 
j=O 
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~ (U d;)·ta ~; (degK(Z). (IOgm(d;, N + 1) -1- ~ - ... - ~J) 

!~l (N;+d;) + 2 L- og d. 
;=0 1 

~ 1(')' 1 ~ "liZ) ~"2 n d; . t; d; degK(Z).logM(d;, N + 1) 

! ~l (N; + d;) + 2 L- og d. . 
;=0 1 

991 

Inequality (4.3.30) (resp. (4.3.32)) follows from (4.3.34) (resp. (4.3.36)) 
together with the estimates 

(4.3.37) 

and 

(4.3.38) 

log N < 1 + ! + ... + ~ < log(N + 1) 
1- 2 N. - 1 ' 

1 

(N;; d; ) ~ (N; + 1)6;, 

m(dp N + 1) ~ (N + 1)-d;, 

Notice that (4.3.37) follows from the multinomial identity 

E ~r'=(N+l)d;, 
IENN+I 

III=d; 

and (4.3.38) follows from the fact that there are N; terms in the sum defining 
M(d;, N + 1), each of them being at most one. 0 

4.3.4.4. If we apply Theorem 4.3.8 to the case where K = Q, E is the trivial 
hermitian vector bundle ~~~~), r = N, and Z = lP: ' we get the formula 
for the size of the resultant Rd of N + 1 homogeneous polynomials of degrees 
do, ... ,dN in N + 1 variables (cf. 4.3.2, (v)). Namely, using the expression 
(3.3.2) for the Faltings height of lP: ' Theorem 4.3.8, and (4.3.33), we get 

(4.3.39) 10gllRdilo = (fi d;) . (UN - ~ t ~; (1 + ~ + ... + ~J ) , 
(4.3.40) IIOglIRdllHerm - (fi d;) .UNI ~ ~ N (fi d;). t ~j log(dj + 1), 
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and, if ~ is the standard basis of ijN + 1 , 

(4.3.41) 

Observe that IIRdllo may be written concretely as follows: The resultant Rd 
is a multihomogeneous polynomial in 

C[Xo' ... ,XN]d x ... x C[Xo' ... ,XN]d ; o N 

let S2Nj -l be the unit sphere in C[Xo' ... ,XN]d equipped with the hermitian 
norm 11.11 defined by J 

L UIXI 
lENN+l 

Ill=<li 

2 

and let dV i be the unitary invariant probability measure on S2Ni-l . Then: 

log IIRdiio = fN log IRdl dvo· .. dvN • 
JhS2Ni - 1 

;=0 

In particular, when do = ... = d N = 1 , R is just the determinant of size N + 1 , 
and (4.3.39) reads 

f log Idet(Xij.)o<i j.<NI 2 dv J(S2N+lt+l - , -

= 2a N - (N + 1) ( 1 + ~ + ... + ~ ) = - N , 
(4.3.42) 

( 2Nl)N+l N 2 where S + denotes the product of spheres of equations ~ I xii I = 1 , 
1=0 o ~ j ~ N, and dv the product of the U(N + I)-invariant probability measures 

on these spheres. 
Recall also that the norm IIRdlig which appears in (4.3.41) is nothing else 

than the sum of the absolute values of the coefficient of Rd (cf. (4.3.15)). An 
estimate ofthis norm has already been obtained by Wtistholz ([Wu], Proposition 
7) by using Macaulay's construction of Rd as g.c.d. of generalized Sylvester's 
determinants; namely, he proves that 

(4.3.43) 10gllRdlig ~ Cdl; 1) + log Cdl; I}, 

where Idl = do + ... + dN • When the d i 's are bounded and N goes to infinity, 
(4.3.41) is better than (4.3.43). On the other hand, when N is fixed and d goes 
to infinity, the right-hand side of (4.3.43) grows like Idl N log Idl , and therefore 
(4.3.43) improves on (4.3.41). Observe also that, when N is fixed, 10gllRdilp 
and log IIRdllHerm are of the same order as IdI N+1 ,hence Rd is a form on which 
the ratios ,l''',l~ and ~ take "large" values. 
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4.3.4.5. The computation of the height of Chow forms allows one to give an-
other proof of the Finiteness Theorem 3.2.5. 

Recall that to prove Theorem 3.2.5 it is enough to prove that when E is the 
. ·al h . . b dl ~(N+I) h f fl ffi· I· tnvl ermltIan vector un e (7 s ' t en a set 0 at e ectlve cyc es In 

P(E) = P; of bounded degrees and heights is finite. Consider the morphism 

N N N 
f: Ps =Pz X z S~Pz' 

defined as the projection onto the first factor. The map 

restricted to effective cycles, is finite to one. Together with the relations (3.1.7) 
and (3.1.9), this shows that to prove the required finiteness we may assume that 
S = Spec(Z). 

Theorem 4.3.8 shows that the Chow form cl>z := cI>(l, ... ,I), Z over Z of a flat 
effective cycle Z in Z'+I (P:) of degree ~ is a multihomogeneous polynomial 
with Z-coefficients of multidegree (~, ... ,~), the norm of which is bounded 
in terms of ~ and the height of Z . Therefore, the set of possible cl>z when the 
degree and the height of Z are bounded is finite. As a flat cycle is determined 
by its Chow form, this completes the proof of Theorem 3.2.5. 

Observe that this proof, contrary to the one in 3.2.4, does not rely on the 
special case p = 1 of Theorem 3.2.5, that is, the finiteness of effective O-cycles 
in P~ of bounded degree and height. In fact, when p = 1, our last proof 
coincides with the classical proof of this fact (see [No], p. 503 and [We2], p. 
426; the homogeneous polynomials rp and F in [loco cit.] are nothing else 
than Chow forms for O-cycles in p~, whose definition goes back at last to 
[Kro], §24). 

It may be worth noting that the close relation between Chow forms and 
heights was already advocated in 1950 by Weil ([WeI], p. 96), who claimed 
that it should be interpreted in a yet to be developed "geometry over integers", 
which would realize the program initiated by Kronecker's Grundzuge [Kro]. 

5. POSITIVITY OF THE PROJECTIVE HEIGHT 
AND ARITHMETIC BtZOUT THEOREM 

5.1. The basic inequality. Let pN (C) = p(CN+I ) be the N-dimensional com-
plex projective space, & ( 1) the canonical line bundle of degree one on pN (C) 
with its standard metric, f.l = ci (&(1)) the Fubini-Study Kahler form, We 

CN+I a complex linear subspace of dimension q + 1 (with 0 :::; q :::; N), and 
P(W) C pN(C) its projective space. Denote by A the Levine form of P(W) 
in P~ (see 1.2.3, Example (v)), H(A) its harmonic projection for the standard 
Kahler structure, and 

(5.1.1) gP(W) = A - H(A). 
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Observe that gP(W) is a ,u-normalized Green current for P(W). Let Wi be 
the orthogonal complement of W in CN+1 (for the standard scalar product) 
and 

f: pN (C) _p(Wi) -+ P(W) 

the map induced by the orthogonal projection of CN+1 onto W. Finally, 
denote by deg( X) the degree of an algebraic cycle in pN (C) . 

Proposition 5.1.1. Let p be an integer such that 0 ~ p ~ Nand p+q ~ N. and 
let X E Zp (pN (C)) be an effective cycle on pN (C) which meets P( W) proper/yo 
Then the following inequality holds: 

(5.1.2) 11 p+q+I-N -2 t>xgP(W),u ~ deg(X)(O"p + O"q - O"N - O"P+q_N)' 
pH(C) 

Equality occurs if and only if there is an effective cycle Y c P( W) such that 
X = j(Y). 

Observe that, as any hermitian vector space V of dimension N + 1 is isomor-
phic to CN+ I equipped with the standard metric, this proposition immediately 
extends to the situation where pN (C) is replaced by P( V) . 

Proof. We may assume that X is irreducible. For any A E C* , define an 
automorphism rp;. of pN (C) by sending the class of v E9 w, v E W, W E Wi , 
to the class of AV E9 W . Let <I> CA l (C) X pN (C) be the Zariski closure of the set 
of points (A, rp;.(x)) E C* X pN(C) , x E X(C). It t is the standard coordinate 
of the affine line Al (C) , and A E C , the cycle on A I (C) X pN (C) defined by the 
divisor on <I> of the restriction of the function t - A takes the form {A} x <1>;. 
for some effective cycle <1>;. on pN (C) . 

When A I 0, <1>;. is the irreducible cycle rp;. (X). Its specialization <1>0 when 
A -+ 0 coincides with the Zariski closure j(X ·P(W)) of the inverse image 
j(X ·P(W)) in pN(C) _p(Wi) of the intersection cycle of X and P(W). 
Indeed, pN (C) _P(Wi ) may be canonically identified with the total space of 
the vector bundle Wi ® &(1) on P(W) (consider the map which sends the 
class [v E9 w], (v, w) E W X Wi ,to ([v], A), where A. : Cv -+ Wi is the 
linear map defined by A(V) = w). Then f gets identified with the projection 
map Wi ®&(I)IP(W) -+ P(W) and rp;. with the multiplication by A-I in the 
fibers of Wi ® &( 1 )IP(W)' The description of X ·P(W) using deformation to 
the normal cone of P( W) shows that 

f(X ·P(W)) = <l>olpH(C)-p(w.lr 

Moreover, since dim <1>0 = p > dimP(W i ) = N - q - 1, we have 
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Let pr 1 : Al (C) X pN (C) ~ Al ( C) and pr 2 : Al (C) X pN (C) ~ pN (C) be the 
two projections. For any A E C define 

(1) 1 ~ p+q+l-N If/ A = UeI> • gP(W)" Jl . 
pH (C) J. 

According to Proposition 1.5.1, the function If/ is continuous and the associated 
distribution [If/] coincides with 

pr1* (JeI> pr; (gl'(W) JlP+q+1- N )) • 

We shall now prove that, for all A E C, 

(5.1.3) If/(A) ~ If/(O). 

Indeed, we deduce from the relation ddc gl'(W) + Jp(W) = JlN - q that 

hence 

ddC (* P+l) ( * P+Q+l-N) ([If/]) = pr1* JeI> pr2 (Jl ) - prh JeI>.pr;(iI'(w» pr2 (Jl ) . 

Since cI>. pr;(P(W)) = pr;(X ·P(W)), we have 

( ~ * P+Q+l-N) * ( P+Q+l-N) prh ueI>.pr;(iI'(W)) pr2 (Jl ) = prh pr2 Jx .II'(W) Jl = 0 

for degree reasons. Therefore, the real current of type (1, 1) 

(5.1.4) 

is positive on the complex line, in the sense that its integral on a positive func-
tion in ~OO(C) is positive. 

On the other hand, when IAI = 1 the automorphism '1'). is unitary. Since 
it fixes P(W), we see that rp;gll'(W) = gl'(W) , hence, for any A.' E c, If/(U') = 
If/(A'). In other words, If/(A) is a continuous function of the norm IAI and we 
may find a continuous real function X : lR ~ lR such that 

If/(A) = X(log IAI) when A E C* , 

and If/(O) = lim X(x). Since ddc[lf/] is positive, the second derivative of X is 
x---+-oo 

a nonnegative distribution. It follows that X is convex, and therefore bounded 
below by If/(O). This proves (5.1.3). 

To prove the inequality (5.1.2), it is now enough to show that 1f/(0)/2 coin-
cides with the right-hand side of (5.1.2). Indeed, by the very definition of If/ , its 
left-hand side coincides with If/( 1) /2 and, according to (5.1.3), If/( 1) ~ If/(O) . 
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~ N N.L ~ ~ 

Let b: JP --+ JP (C) be the blow up of JP (C) along JP( W ) and let f: JP --+ 

JP(W) be the map extending the projection pH(C) _JP(W.L) --+ JP(W). We get 

1 .'p+q+I-N 
",(0) = _N ~ /*(X'P(W)) gP(V) II-

r(C) 

= ktS7*(x.p(W)) b" (gP(W) ,l+q+I-N) 

1 f. ~b" ( P+q+I-N) 
= tSX'P(W).. gP(W) J.l • 

II'(W) 

The unitary group U(W) of W for the induced metric acts upon JPN(C) by 
the decomposition CN+1 = W EI7 W.L. This action extends to jp, commutes 
with band 1, fixes gll'(W) and J.l, and therefore l..b" (gP(W) J.lP+q+I- N ) is 
U(W)-invariant, hence harmonic on JP(W). If J.lw is the restriction of J.l to 
JP( W) we have 

f. ~b" ( P+q+I-N) p+q-N 
.. gP(W) J.l = aJ.lw ' 

where a is a real constant depending only on p, q, and N. It follows that 
",(0) = a deg(X). 

To compute a let W' C W be a subspace of dimension p + q + 1 - Nand 
X = JP(W' EI7 W.L). In that case <1>0 = X, therefore 

1 p+q+I-N 
",(0) = a = gP(W) J.l • 

II'(W' E9W.L) 

The restriction of the Levine form A of JP( W) to JP( W' EI7 W.L) is the Levine 
form AWl of JP(W'). Therefore, by (1.4.4), we get 

aIr A p+q+I-N 1 ( A q+1 
'2 = 2" jp(W'E9W.L) W' J.l - 2" jpN(C) J.l 

= (O"p - O"p+Q_N - O"N_I_q) - (O"N - O"N_I_q - O"q) 

= O"p + O"q - 0" N - O"p+q_N' 

This completes the proof of (5.1.2)_ 
When there exists a cycle Y in JP(W) such that X = j(Y), we have, for 

any A. E c'" : 

¢J;.(X) = X. 
Therefore <1>1 = <1>0' "'( 1) = ",(0) , and (5.1.2) becomes an equality. 

Conversely, when (5.1.2) is an equality, the convex function X satisfies 

lim X(x) = x(O) , 
x-+-oo 

and hence is constant on R._. Therefore, '" is constant on the disk D = {z E 
c, Izl ~ I}, and, according to (5.1.4), 

prh (tSeII • pr; J.lP+I) = 0 on b. 
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It follows that 

(5.1.5) 

o N 
Let V be the regular locus of 1cI>1 n (D x P (C)). Since cI> is effective and 

p,P+1 positive, (5.1.5) implies that 

( 6) * p+1 5.1. pr2 p, =0. 
IV 

As the (1, 1) formp, is strictly positive, the restriction of p,P+1 to any (p+ 1)-
dimensional complex submanifold of pH (C) is a strictly positive volume form, 
and (5.1.6) shows that the map pr2 : V --+ pN(C) has everywhere rank smaller 

o 
than p + 1. It follows that V may be written D x Vo, where Vo is some 

(locally closed) submanifold of pN (C). This implies that the (analytic) cycle 
o N0N 0 

cI> n (D xP (C)) in D xP (C) may be written D xcI>o for some cycle cI>o m 
o 

pN (C). Therefore, cI>,t does not depend on A. ED, and finally: 

<1>1 = cI>o = j(X . peW)). 0 

Remarks. (i) Inequality (5.1.2) is strictly stronger than the inequality 

(5.1.7) 
1 ( J p+q+I-N - -21 f Jx H(A)IIP+q+ I- N 2 jpN (C) x gP(W) P, ~ r-

= deg(X) (O'q + O'N_q_1 - O'N) 

which follows from the pointwise inequality A ~ O. 
(ii) Clearly, inequality (5.1.7) still holds when p + q = N - 1 provided 

X E Zp(pN (C)) is effective and meets peW) properly ( i.e., if IXI and peW) 
do not meet). This shows that (5.1.2) still holds when p + q = N - 1. As 
A,p(w-L) = 0, we see that, when p + q = N - 1, (5.1.2) or (5.1.7) become 
equalities when X is a multiple of P(W.l). Moreover, it immediately follows 
from the expression (1.2.13) for A and the strict positivity of p, that this occurs 
only in this case. 

(iii) The equality 

( Jp(w-L) gP(W) = 2 (O'q + O'N_q_1 - O'N) 
jpN(C) 

holds in fact for any p,-normalized Green form for P(W). This follows from 
Stokes's formula, together with the fact that the difference of two p,-normalized 
Green forms for peW) may be written au + av, where u and v are currents 
COO on pN(C) - P(W). If g is any positive Green form for P(V) such that 

d e N-q 
d g + Jp(W) = p, , 
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this equality applied to 

gP(W) = g - H(g) = g - (fpN(C) g J.Lq+ l ) 

proves that 

N-q-l 
J.L 

~N g J.L q+1 = ~ 6p(w.L) (g - gP(W») ~ 2 (O"N - O"q - O"N_q_l) , 
}~(C) }p (C) 

as was announced in 1.4.3, (iv). 

5.2. Lower bounds for the projective height. 

5.2.1. Let E be an hermitian vector bundle over S of rank N + 1 , where 
N ~ 1 , and let hE (resp. hF ) be the associated projective height (resp. Faltings 
height) of cycles in IP(E) (cf. 4.1.1 and 3.1.2.3). 

The following proposition is a first application of the basic inequality (5.1.2). 

Proposition S.2.1. Let F c E be any subbundle of rank N in E, equipped with 
the induced metric, and let Z be a cycle on IP(E) of dimension p E {I , ... , N + 
I} such that ZK is effective and meets IP(F)K properly in IP(E)K. For any 
representative Z.IP(F) of the intersection class [Z]. [1P(F)) E CHI~7~;(~)(IP(E)), 
we have: 

(5.2.1) 

(5.2.2) F E ---h (Z.IP(F)) ~ h (Z) - degK Z. deg F if p = 1. 

Equality holds in (5.2.1) (resp. in (5.2.2)) if and only if, for any embedding 
0" : K -t C, Z(J is the inverse image of a cycle on IP(F)(J by the orthogonal 
projection IP(E)(J -t IP(F)(J defined using the hermitian metric on E(J (resp. a 
multiple of the center IP(F(J.L) of this projection). 
Proof. Using (4.1.2), (4.1.2'), and the equality 

degK Z = degK(Z.IP(F)) 
if p ~ 2, we see that (5.2.1) and (5.2.2) are equivalent to 

(5.2.3) 
hF(Z.IP(F)) ~ hF(Z) + degK Z. [deg(E) - deg(F) + [K : Q](O"p_2 - O"P_I)] • 

As IP(E) is a projective bundle over S, the map 

CH1(S)tB'L-t CH1W(E)) 

x tB k 1-+ n*(x) + c1 (e'E(k)) 

is an isomorphism. Therefore, if h denotes the order of CH1(S) (which is 
nothing else than the ideal class group of K), there exists s E JtJ(IP(E); e'E(h)) 
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such that div s = h JP'(F). Let '" = c1 (&E(1)) . Formula (3.2.2) for the height 
of a divisor shows that 

(5.2.4) 

and 

(5.2.5) 

On the other hand, for any embedding (J: K --+C , the function 

h -1 log IIsll-2 - ( h -1 log IIsll-2 ",N 
jP(E),,(C) 

on JP'(E)q(C) is the ",-normalized Green form for JP'(F)q. Therefore we get 
from Proposition 5.1.1 applied to X = Zq : 

(5.26) 
h-1 { logllsll-l t5z ",P-1-degK Z.h- 1 ( logllsll-l ",N 

jP(E),,(C) jP(E),,(C) 

~ degK Z. ((JP_1 + (IN_1 - (IN - (JP_2) ; 

indeed 
( t5z ",P = deg(Zq) = degK(Z). 

jP(E),,(C) 

Inequality (5.2.3) follows from (5.2.4)-(5.2.6), together with the following 
consequence of formula (4.1.4) for the Faltings height of a projective space: 

Proposition 5.2.2. Let F1 , ••• ,FN+1 be subbundles of rank N in E such that 
N+1 - -.n F j K = 0, and, for any nonempty subset I c {I , ... , N + I}, let F [ C E 
1=1 ' 
be the subbundle n F" of E (i.e., the bundle attached to the intersection of the 

;E[ 
&K-submodules corresponding to F;, i E I), equipped with the induced metric. 
Then, for any effective cycle Z E Zp(JP'(E)) , 

(5.2.7) 

(5.2.8) hE(Z) ~ degK Z. inf (leg F[ if p E {I, ... , N + I}. 
IC{I •...• N+I} 

#I=p 

Proof. First observe that Proposition 4.1.2, (i) and formula (3.1.3) imply that 

(5.29) for any nonzero effective cycle Z supported by closed fibers in JP'(E) , 
E h (Z) = hF(Z) > o. 
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This proves (5.2.7) and shows that, to establish (5.2.8), we may assume that 
Z is irreducible and flat over S. Moreover, as hE(P(E)) = 0, (5.2.8) clearly 
holds when p = N + 1, and we may assume that p E {I, '" , N}. 

Let Z E Zp(P(E)) be such a cycle. As 

N+l 

ZK:f= 0 and n P(Fi)K = 0, 
i=l 

there exists io E {I , . .. , N + I} such that Z K is not contained in P( Fi) K • 

Then Z meets P(F i ) properly, and we can apply Proposition 5.2.1. 
Therefore, if p = 1 , we get 

E F --h (Z) ~ h ;o(Z. P(Fi )) + degK(Z). deg Fi . 
o 0 

As Z.P(FiO) is an effective O-cycle, hFio(Z.P(Fi )) is nonnegative, and (5.2.8) 
o 

follows when p = 1 . 
If p ~ 2 , we obtain 

(5.2.10) 

Using (5.2.10), inequality (5.2.8) follows by induction on p. Indeed, Z.P(Fi ) 
o 

is an effective cycle of dimension p - 1 in P(Fi ), and (5.2.8) applied to p - 1 , 
o 

Fi ' Z. P(Fi ), (Fi n F)O:-:;i:~N in place of p, E, Z, (Fi)o<i<N reads: o 0 0 '''''0 - -

(5.2.11) hF;o(Z.P(Fi )) ~ degK(Z.P(Fi )) inf deg F['U{io}; 
o 0 I'C{I •... • N+l} 

tll'=p-l 
I' 'Jio 

since 

degK(Z. P(Fi )) = degK(Z), 
o 

(5.2.10) and (5.2.11) imply (5.2.8). 0 

5.2.2. Let us assume in this subsection that E is the trivial hermitian vector 
-Ea(N+l) N • bundle & s . Then on P(E) = P s we have canonIcal homogeneous coor-

dinates Xo' ... ,XN in Ji>(P:; &(1)). For any subset I ~ {O, ... , N}, we 
denote by PI the linear subspace of codimension #1 in P: defined by the 
equations 

Xi = 0 , i E I. 

Theorem 5.2.3. If E is the trivial hermitian vector bundle, then for any effective 
cycle Z E Zp(P(E)) , we have: 

(5.2.12) h(Z) ~ O. 
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Moreover equality holds in (5.2.12) if and only if Z = 0 when p = 0, and if 
and only if Z may be written as 

(5.2.13) Z = I: nI lP'1' 
#I=N+'-p 

where n lEN, when p E {I , ... , N + I} . 
Proof. Inequality (5.2.12) follows from Proposition 5.2.2 where one takes as 
Fi the subbundle of &'SfIJ(N+') defined by the vanishing of the i-th component. 
When equality holds in (5.2.12), Z is necessarily flat over S by (5.2.9), and 
therefore vanishes when p = O. The equality case when p ::::: 1 follows by 
induction on p from the proof of Proposition 5.2.2 and the equality case in 
Proposition 5.2.1. (Observe that the orthogonal projections lP'(E)u -t lP'(F;)u co-
incide with the projection defined by the morphism E -t F;, (x" ... , x N+,) 1--+ 

(x" ... ,Xi_"O'Xi+', ... ,XN+,).) 0 

5.2.3. In this subsection, we go back to the case of an arbitrary hermitian vector 
bundle E of rank N + lover S, and we give lower bounds for the projective 
height hE in terms of invariants attached to E by the geometry of numbers. 

For any p E {I , ... , N + I} , we let: 

mp = inf {degK(Z)-'. hE(Z) ; Z E Zp(lP'(E)) , Z effective, ZK # O} 
= inf {degK(Z)-'. hE(Z) ; Z E Zp_, (lP'(E)K) , Z effective, Z # O} 

(the last equality follows from (5.2.9); mp is a real number by 3.2.3, Remark 
(iii), and (4.1.2)). We also consider the minimal height of a linear subspace: 

lp = inf {hE(lP'(F)) IF subbundle of rank p in E} 

= inf {hE(lP'(FK)) I FK K-vector subspace of dimension pin EK} , 

and the p-th minima: 

Ap = inf{A E lR I 3(P, ' ... , Pp) E lP'N (E)(K), (P, ' ... , Pp) is projectively 
free (Le., these points are not all contained in any linear sub-

space of dimension p - 2), and hF(P,) :::; A, ... , hF(Pp) :::; A} 

and 
A~ = inf{A. E lR I 3(v" ... , vp ) E E P , the v;'s are K-linearly independent, 

and for any 0' : K <.....+ C and any i = 1 , ... , p , log IIv i lIu :::; A}, 
where, for any embedding 0' : K <.....+ C, we denote by II lIu the norm on 
E K <.....+ E ® u C defined by the hermitian structure on E. The sequences 
(Ap)'9~N+' and (A~)'9~N+' are increasing. Moreover, there exist sequences 
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(QI' ... ,QN+I) E lP'(E)(K)N+I and (WI' ... 'WN+I ) E E N+I such that 
(QI' ... ,QN+I) is a projective basis of lP'(E)K' (WI' ... ,wN+1) is a basis 
of the K-vector space EK , and for any P E {I, ... , N + I} 

(5.2.14) 

The height hF([wp]) of the point [wp] E lP'(EK) is bounded above by 

L log IIwpli/1 ~ [K : IQ] A~. 
/1: K~C 

It follows that 

(5.2.15) 

Theorem 5.2.4. Fo, any p E {I , ... , N + I}, the following inequalities hold: 

N+I p 

(5.2.16) - L Aj ~ mp ~ lp ~ LAj +deg E. 
j=p+1 j=1 

We may combine inequalities (5.2.15) and (5.2.16), and Minkowski's second 
theorem in the form established by Bombieri and Vaaler [Bo-Va], namely: 

N+I 
[K : IQ] L A~ ~ C(N, K) - deg E, 

i=1 

where C(N, K) is the following expression involving the numbers 'I and '2 of 
real and complex places, the absolute discriminant ilK of K , and the standard 
euclidean volume ~ of the unit ball in ]Rn: 

N+ 1 
C(N, K) = (N + 1)('1 + '2) log 2 + -2- log lilKI- '1 log VN+I - '2 log JiN+2. 

Then we get: 

Corollary 5.2.5. Fo, any p E {I , ... , N + I}, the following inequalities hold: 

p p 

LAj + deg E - C(N, K) ~ [K: IQ]LA~ +deg E - C(N, K) ~ mp 
j=1 j=1 

P 

< l <" A.. + deg E. - p-~ J 
j=1 

In particular, any of the sequences (mp) , (lp) , (Ap) , and (A~) determine 
the other ones up to some error term bounded by an expression depending only 
on Nand K. 

The proof of Theorem 5.2.4 will rely on the following. 
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Lemma 5.2.6. Let (PI' ... ' Pp) be a projective free family of points in JP'(E)(K), 
and let V be the linear subspace of JP'(E)K spanned by (PI' ... , Pp). Then: 

(5.2.17) 
;=1 

Proof. Let L; c E be the subbundle of rank 1 of E such that JP'(L;)(K) = 
{P;} , equipped with the induced metric. Consider the rank p subbundle F = 
(t L;) n E of E; the subscheme JP'(F) of JP'(E) coincides with the Zariski 

1=1 K 
closure of V. According to (4.1.3) and to the definition of hF' we have 

E -...---
h (V) = deg(E) - deg(F) 

and 

hF(P;) = -deg(L;). 
Therefore, (5.2.17) is equivalent to 

p 

(5.2.18) deg(F) - L deg(L;) ~ o. 
;=1 

The injections L; '---+ F define a map 

;=1 

which is an isomorphism over Spec(K). Thus the map 

AP rp : AP (~L;) c:=~ L; -+ detF 

is nonzero, and defines a nonzero section of the hermitian line bundle det F ® 

® L~ , which is easily seen to have norms ~ 1 . This implies that 
;=1 

deg(F) - ~ deg(L;) = deg (detF ® ~ L~) 

is nonnegative and proves (5.2.18). 0 

Proof of Theorem 5.2.4. The inequality mp ~ lp is trivial, and the inequal-
p --ity lp ~ LA.· + deg E follows from Lemma 5.2.6 applied to the sequence 

j=1 ] 

(PI' ... ,Pp) = (Ql' ... , Qp). To prove the first inequality in (5.2.16), con-
sider the rank 1 vector spaces Lp,K C EK defining Qp' 1 ~ p ~ N + 1, and 
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apply Proposition 5.2.2 to the subbundles Fo' ... ,F N such that 

N+l 
F. K = 67 L. K" 

I, j=l}' 
j#i 

Then, for any p E {I, ... ,N} and any subset! c {I, ... , N + I} such that 
#! = p, the subscheme IP(F[) is the Zariski closure of the linear subspace of 
IP(EK) spanned by {Q)jE{l, ... ,N+l}V. Therefore, formula (4.1.3) and Lemma 
5.2.6 show that 

N+l 
> L hF(Qj) ~ - L Ar 

jE{l, ... ,N+l}V j=p+l 

Since, according to (5.2.8), mp ~ inf deg F[, this proves the required 
IC{I •... • N+I} 

*I=p 
inequality. 0 

Remark. One may wonder if there exists a lower bound of lp - mp which 
involves only Nand [K : lQ], and if mp may be expressed in terms of the 
canonical polygon of E as defined by Stuhler [Stu] and Grayson [Gr] (observe 
that [K : lQ]-l lp is unchanged by extension of the ground field K, and that, 
up to some trivial normalization, the same is true for the canonical polygon of 
E). 

5.3. The fundamental class of an intersection. Let X be a projective regular 
arithmetic variety of pure dimension d and f.l E A1,1(XR ) a Kahler form. As 
in 2.3.2, we denote by H the harmonic projection of currents and, for any cycle 
Y E Zp(X) , we let [Y]fl E Cit (X) be the class of (Y, gy), where gy is a 
Green form for Y of log type along 1 YI , which is f.l-normalized, i.e., which 
satisfies the normalization conditions ddC(gy) + t5y = H(t5y ) and H(gy) = o. 
Recall that [Y]fl = 0 if Y is the divisor of a rational function on a subvariety 
contained in a closed fiber of X over S. It follows that, if Y E Zp (X) and 
Z E zq(X) are cycles on X which meet properly on XK ' the class [Y.Z]fl E 

Cit+q (X)Q is well defined (provided p + q ~ d), independently of the choice 
of a representative Y. Z for the intersection cycle [Y]. [Z] E C Hi:;~IZI (X)Q . 

Proposition 5.3.1. Assume that the product of two harmonic forms (with re-
spect to f.l) on X(C) is still harmonic. Then the following equality holds in 
~"p+q 

Cli (X)Q: 

(5.3.1) [Y. Z]fl = [Y]fl[Z]fl - a(H(gyt5z »· 
Proof. Let gz be a f.l-normalized Green form for Z of log type along IZI. 
Then [Y]fl[Z]fl is the class of 
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The form 

ddc(gy Oz + H(oy)gz) + Oy.z = w([Y],JZ]/J) = H(oy)H(oz) 

is harmonic by our hypothesis, so it coincides with H(oy'z)' It follows that 

gy'z = gyOZ + H(oy)gz - H(gy Oz + H(oy)gz) 

is a ,u-normalized Green current for Y. Z . Since, by our hypothesis again, 

we get 

5.4. Arithmetic Bezout theorem. 

5.4.1. Computations in CH*(JP'(E)). Let E be an hermitian vector bundle of 
rank N + lover S, JP'(E) = (JP'(E),,u) its projective bundle equipped with the 
Kahler form ,u = c1 (&'E(1)) , and 7t : JP'(E) -+ S the projection. Denote by 

C H* (JP'( E)) ceil C1P'( E)) the subring consisting of those elements x such 

that the form w(x) is harmonic ( see [G-S2], 5.1). Given x in CHP (JP'(E)) 
we define 

and, if p ~ N, 

degK(x) = degK 7t* (C1 (&'E(1))N-P x) E Z. 

When x = [Y]/J one recovers hF(Y) and degK(Y) defined as in (3.1.5) and 
4.1.1; this follows from Lemma 2.3.2. 

Proposition 5.4.1. Let x E CHP (JP'(E)) and Y E cHi (JP'(E)). Then, if 
max(p, q, p + q) ~ N, 

degK(xy) = degK(x) degK(y) 

and, if max(p, q) ~ Nand p + q ~ N + 1, 

hF(xy) = hF(x) degK(y) + degK(x)hF(y) 

+ degK(x) degK(y) (dei(E) - [K : IQ] UN) . 
The proof of Proposition 5.4.1 is based on the following description of the 

group C H* (JP'( E)) : 
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Lemma 5.4.2. The map 

cfl(st+1 -+ CH* (JP(E)) 
N . 

sending (00 , •.• ,oN) to ~ 1l*(a j )c1 (t:9'E(l))' is a group isomorphism. 
1=0 

Proof of Lemma 5.4.2. As in [G-S3], Proposition 3.3.2, this result follows from 
the Five Lemma applied to the exact sequence describing C H* (JP( E)). 0 

Proof of Proposition 5.4.1. Let 

ji = c1 (t:9'E(1)). 
By Lemma 5.4.2, x E CHP (JP(E)) can be written as 

x = ll*(a)jiP + ll*(p)jiP-l , 
---- 0 ---- 1 1 with a E CH (S) ~ Z and P E CH (S), where by convention jiP- = 0 and 

P = 0 when p = O. 
Then we have degK(x) = a and 

hF(x) = degll* (jiN+I-P x) 

d----( ~N+l P ~N) = eg all* J.l + ll* J.l 

(5.4.1) ---- (N+l) ----= adegll* ji + deg(p) 

= degK(x) h~(I) (JP(E)) + deg P 

= degK(x) ([K: Q] aN - deg(E)) + deg(P) 
by (4.1.4). 

Similarly we may write 

Y = degK(y) jiq + ll*(y)jiq-l , 

with y = 0 and jiq-l = 0 if q = 0, and we get: 

xy = degK(x) degK(y)jip+q + (ll*(P) degK(y) + degK(x)ll*(Y)) jiP+q-l. 

It follows that degK(xy) = degK(x) degK(y) if p + q :5 N and, by (5.4.1) and 
(4.1.4), 

---- N + 1 ---- ----hF(xy) = degK(x) degK(y) deg ll* ji + deg(p) degK(y) + degK(x) deg y 

= hF(x) degK(y) + degK(x)hF(y) 

+ degK(x) degK(y) (deg(E) - [K : Q] aN). 0 

By applying Propositions 5.3.1 and 5.4.1 to x = [X]Jl and y = [Y]Jl' and 
comparing hF and h by Proposition 4.1.2, (i), we get, for any J.l-normalized 
Green current gy for Y, of log type along I YI : 
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Proposition 5.4.3. Let X E Zp(JP(E)) and Y E Zq(JP(E)) be two cycles on 
JP(E). Assume that p ~ 1, q ~ 1, p + q ~ N + 1, and that X and Y meet 
properly on JP(E)K' Then, when p + q > N + 1, we have: 

(5.4.2) I/, p+q-N-l h(X. Y) = h(X) degK(Y) + degK(X)h(Y) - "2 dx gy f.l 
P(E)(C) 

+ [K : Q] degK(X) degK(Y) (Up_1 + uq_ 1 - UN - UP+q_N _ 2 ) ; 

when p + q = N + 1, we have: 

h(X. Y) = h(X) degK(Y) + degK(X) h(Y) - 4 [ dx gy 
(5.4.3) Jp(E)(C) 

+ degK(X) degK(Y)([K: Q](up _ 1 + uq_ 1 - UN) - <leg E). 

5.4.2. Arithmetic Bezout theorem. Our earlier version of an arithmetic Bezout 
theorem, Theorem 4.2.3, is improved and extended by the following: 
Theorem 5.4.4. Let E be an hermitian vector bundle of rank N + 1 on S, and 
JP(E) the associated projective bundle, and let X E Zp(JP(E)) and Y E Zq(JP(E)) 
be effective cycles on JP(E). Assume that p ~ 1, q ~ 1, p + q ~ N + 1, and 
that X and Y meet properly on JP(E)K' and let X. Y be a representative of the 
intersection class [X]. [Y] E CHI~~~;jP-q(JP(E)). 

(i) Iffurthermore Y = JP(F) is a linear subspace of JP(E), then 

(5.4.4) 
and 
(5.4.5) 

h(X. Y) ~ h(X) + degK(X)h(Y) if p + q > N + 1 

h(X. Y) ~ h(X) + degK(X) [h(Y) - <leg E] if p + q = N + 1. 
Equality holds in (5.4.4) (resp. (5.4.5)) if and only if for any imbedding U : 

K --+ C, Xu is the inverse image of a cycle on Yu by the orthogonal projection 
JP(E)u --+ JP(Fu) (resp. a multiple of JP(Fu.l)). 

(ii) In general, when p + q > N + 1, we have: 

h(X. Y) ~ h(X) degK(Y) + degK(X)h(Y) 
(5.4.6) + [K: Q]degK(X) degK(Y) (N + 1 - p; q) log2; 

when p + q = N + 1, we have 
h(X. Y) ~ h(X) degK(Y) + degK(X) h(Y) 

(5.4.7) 
( N+l --) + degK X. degK Y [K: Q]. -2- log 2 - deg E . 

Observe that assertion (i) extends Proposition 5.2.1. 
Proof. Statement (i) follows from Propositions 5.4.3 and 5.1.1 and from 5.1, 
Remark (ii). 
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To prove (ii), we go back to the first part of the proof of Theorem 4.2.3. 
Suppose p + q > N + 1. Applying (5.4.4) to D and the join cycle X#Y in 
JP'(E E9 E) , we get 

(5.4.8) 

Using (4.1.2), (4.2.11), (4.2.12), and the classical Bezout theorem 

we get 

(5.4.9) 

hE$E ((X#Y).D) = hE(X. Y) 

+ (<leg(E E9 E) - <leg E + [K : Q] p + q ~ N - 1 log 2 ) degK(X). degK(Y). 

Since the scalar product induced on E by its diagonal imbedding in E E9 E is 
twice the original scalar product, we have, by Proposition 4.1.2, (ii), 

(5.4.10) E$E -- - - -- - N + 1 h (D) = deg(E E9 E) - deg(E) + [K : Q] -2 - log 2. 

Inequality (5.4.6) follows from (5.4.8), (5.4.9), (5.4.10), and Proposition 4.2.2. 
Inequality (5.4.7) is obtained by a similar proof, where (5.4.8) is replaced by 

hE$E ((X#Y).D):::; hE$E(X#Y) + degK(X#Y) (hE$E(D) - <leg(E E9 E)) 

and (5.4.9) by 

5.4.3. Remarks. (i) Theorem 5.4.4 implies Theorem 4.2.3 since 

(N + 1 - p; q) log 2 :::; a(N, p, q). 
Indeed, p + q - N - 2:::; p + q - 1, therefore up+q _ N _ 2 :::; up+q _ l • 

(ii) Like Theorem 4.2.3, Theorem 5.4.4 may be applied to bound the height 
of the intersection of two cycles in JP'(E) K' Namely, the same proof as for 
Corollary 4.2.4 shows that for any two integers p and q such that 0:::; p :::; N , 
0:::; q :::; N, and p+q ~ N -1, and for any two effective cycles X E Zp(JP'(E)K) 
and Y E Zq(JP'(E))K which meet properly, the following inequality holds: 

h(X. Y):::; h(X) degK(Y) + degK(X) h(Y) 
(5.4.11) 2N -p-q + [K: Q] degK(X) degK(Y) 2 log 2 , 

if p + q ~ Nand (5.4.7) holds when p + q = N - 1 . 
(iii) Let F and G be two subbundles of E such that E = F +G. Then X = 

JP'(F) and Y = JP'(G) are two integral subschemes of JP'(E) , whose intersection 
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(as schemes and as cycles) is ]p(FnG) (observe that FnG is a subbundle of E 
and that there exist subbundles F' and G' of E such that E = F' (£}G' (£}(FnG) , 
F = F' (£}(FnG) , and G = G' (£}(FnG)). Applied to these two cycles, Theorem 
5.4.4 together with Proposition 4.1.2, (ii) give the inequality 

(5.4.12) 

where the &K-modules F, G, FnG are equipped with the metric induced from 
E. This inequality is due to Stuhler ([St], Proposition 2) and Grayson ([Gr], 
Theorem 1.12; see also [Sch], Lemma 2 and Proof of Theorem 2, and [S-V]) 
and may also be proved as follows: consider the isomorphism of line bundles 
over S 

I: detF ® detG ~ det(F (£) G) --+ detE ® det(F n G) 
defined, up to a sign, by the short exact sequence of &K-modules 

0--+ F n G ~ F (£) G --+ E --+ 0, 

where i(x) = (x, -x) and p(x, y) = x + y; using formulae (2.1.14) and 
(2.1.15), we get 

dei (F n G) + deiCE) - deg(F) - dei(G) = - L log 11111/1; 
/1: K-+C 

this is nonnegative, since the value of each archimedean norm 11/11/1 of I is at 
most 1, as is easily seen using exterior hermitian algebra. 

Let us return to the notation of 5.1, and consider two effective cycles X E 
Zp(]pN(C)) and Y E Zq(lPN(C)) which meet properly (we assume 0:::; p :::; N, 
0:::; q :::; N, and p + q ~ N - 1 ), and a .u-normalized Green form gy for Y, 
oflog type along IYI. The preceding discussion together with formulae (5.4.2) 
and (5.4.3) shows that the real number 

I/, p+q-N+I C(X, Y) = -2 t5x gy .u - deg(X) deg(Y)(O'p + O'q - O'N - O'p+q_N) 
pN(C) 

may be interpreted as some (logarithmic) measure of the "angle" between X 
and Y: it is independent of the choice of gy and symmetric in (X, Y) (this 
follows from Proposition 1.3.1, (ii) and Theorem 1.3.2, (i)), and it reduces to 
-log 11/11 in the linear case. 

(iv) Observe that, according to the equality case in Theorem 5.4.4, the in-
equalities (5.4.6) and (5.4.7) are strict except in the trivial case p = q = N + 1 . 
We conjecture that, under the hypotheses of Theorem 5.4.4, the inequalities 

heX. Y) :::; heX) degK(Y) + degK(X) heY) if p + q > N + 1 
and, if p + q = N + 1 , 

heX. Y) :::; heX) degK(Y) + degK(X) heY) - degK(X). degK(Y) dei E 

always hold. This would follow from the nonnegativity of the real number 
C(X, Y) for any two effective cycles in ]pN (C) which meet properly. 
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5.5. Arithmetic Bezout theorem for improper intersections. In this section If": 
denotes the standard projective space If" (&>:(N+I») over S, and h the pro-

jective height on cycles in ~ defined by the trivial hermitian vector bundle 
~(N+I) 

(7 S . 

Let X E Zp(If":) and Y E Zq(If":) be two effective cycles, with p+q ~ N+l, 
and let 

be the decomposition into irreducible components of the (set theoretic) inter-
section of their support. For any O!, we have 
(5.5.1) dimWo:~p+q-N-l, 

and we shall say that O! is "good" when equality occurs in (5.5.1) and that O! is 
"bad" otherwise. In other words, the Wo: 's, O! good, are the proper components 
of the intersection of X and Y. For any of them, there is a well-defined 
positive intersection multiplicity rno: of X and Y along Wo:' given by Serre's 
Tor-formula, and we let 

(X. Y)pr = L rno: Wo: 
0: good 

This cycle coincides with the image of the product class [X]. [Y] E CHi:rlnIYI(If"N) 
by the canonical map 

cn2N+2-P-q(If"N) '" CH2N+2-P-q(If"N) ffi ffi ZW ffi ZW 
IXlnlYI -,,~ w" W 0: -. W 0:' 

0: good 0: good 

The Wo: 's, O! bad, are the components of IXI n IYI, where X and Y meet 
"with excess", and we let 

0: bad k>p+q-N-I 

h ((X. Y)ex) = L h(Wo:) , 
0: bad 

and 

0: bad 

If X, Y, and Z are any three effective cycles on If"N of respective dimensions 
p, q and r, the associativity of the intersection product for Chow groups with 
supports implies that 

(5.5.2) 

Moreover, if Y and Z meet properly: 

(5.5.3) (X. (Y. Z))ex :5 ((X. Y)pr. z) + ((X. Y)ex' Z) + ((X. Y)ex' Z) . 
~ ~ ~ 
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Indeed the left-hand side is the sum of the irreducible components of IXI n I YI n 
IZI of dimension > p + q + r - 2N - 2, and any of them appears in one of the 
cycles on the right-hand side, which are effective. Finally, if q = r, we have 

(5.5.4) (X. (Y + Z))pr = (X. Y)pr + (X. Z)pr 

and 

(5.5.5) (X. (Y + Z))ex $ (X. Y)ex + (X. Z)ex' 

Theorem 5.5.1. (i) Let F l , ... ,F, be rank N subbundles of &:(N+l) such , 
that the subbundle F = n F; has rank N + 1 - r. For any effective cycle 

;=1 

Z E Zp (lP';) with p ~ r, the following inequality holds: 
, 

(5.5.6) h (Z.lP'(F) )pr) + h (Z.lP'(F) )ex) $ h(Z) + degK(Z). L h (lP'(FJ) . 
;=1 

(ii) For any two effective cycles X E Zp(lP';) and Y E Zq(lP';) with p ~ 1, 
q ~ 1, p + q ~ N + 1 , the folloWing inequality holds: 

h (X. Y)pr) + h (X. Y)ex) 

(5.5.7) $ h(X) degK(Y) + degK(X)h(Y) 
N+ 1 + [K: Q] degK(X) degK(Y) -2- log 2. 

(iii) Let X and Y be two closed integral subschemes in lP'; of positive 
dimension and let 

IxnYI=u w a a 

be the decomposition of the support of their intersection into irreducible compo-
nents. Then 

(5.5.8) 
N+ 1 + [K: Q] degK(X)degK(Y) -2- log 2. 

(Compare with [P2], Tbeoreme 2.) 
During the proof we shall also recover the following geometric inequalities, 

under the hypotheses of (i), (ii), (iii) respectively: 

( 5.5.6') degK (Z.lP'(F))pr + degK (Z.lP'(F))ex $ degK(Z) , if p > r, 
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( 5.5.8' ) L degK(WJ::::; degK(X).degK(Y). 
a,dim Wa>O 

These inequalities are well known: (5.5.6') and (5.5.i) follow from Vogel's 
"main theorem" in [V], Chapter II, or from the "refined Bezout theorem" in 
[Fu2], 12.3; (5.5.8') is due originally to Fulton, Lazarsfeld, and MacPherson 
([Fu2], Example 8.4.6). Our proof of Theorem 5.5.1, using the join construc-
tion, is very similar to the proof of (5.5.8') by these last authors and is in the 
same spirit as [V]. 

Pro%/Theorem 5.5.1. (i) Inequalities (5.5.6) and (5.5.6') will be proved to-
gether by induction on r. Using the nonnegativity of degrees and heights of 
effective cycles (Theorem 5.2.3) together with (5.5.4) and (5.5.5), we see that it 
is enough to prove them when Z is irreducible. 

Suppose r = 1 and Z is irreducible. Then, if Z ct lP'(FI) , Z and lP'(FI) 
meet properly; therefore (5.5.6) follows from (5.4.4) and (5.4.5), and (5.5.6') 
follows from the equality 

degK (Z.lP'(F1)) = degK(Z). 

When Z c lP'(FI), (Z.lP'(F))pr = 0, (Z.lP'(F))ex = Z, and (5.5.6) and 
(5.5.6') are trivial. 

, ,-I 
Suppose now that r 2: 2 and let F be the subbundle n F. of rank N - r 

i=1 I 

in &'StfJ(N+I) • Then lP'(F') and lP'(F,) meet properly and, in lP';, their (scheme 
theoretic) intersection coincides with lP'(F). Therefore 

lP'(F').lP'(F,) = lP'(F) + R, 

where R is some effective cycle (supported by closed fibers). Then, by using 
(5.5.2)-(5.5.5), the nonnegativity of degrees and heights of effective cycles, and 
(5.5.6) and (5.5.6') with (r, F) replaced by (1, F,) or (r - 1 , F') we get: 

h ((X.lP'(F))pr) +h ((X.lP'(F))ex) 

= h ((x. (lP'(F').lP'(F,)))pr) + h ((X. (lP'(F').lP'(F,)))ex) 

::::; h (((X. lP'(F'))pr. lP'(F,))pr) + h (( (X.lP'(F'))pr·lP'(F,) tJ 
+ h (( (X. lP'(F'))ex.lP'(F,) )pr) + h ( ((X.lP(F') )ex·lP(F,)) eJ 

::::; h ((X.lP'(F'))pr) +degK (X.lP'(F'))pr.h (lP'(F,)) 

+ h ((X.lP'(F'))ex) + degK (X.lP'(F')) ex. h (lP'(F,)) 

::::; h ((X.lP'(F') )pr) + h ((X.lP'(F') )ex) + degK(X). h (lP'(F,)) 
,-I 

::::; heX) + degK(X). L h (lP'(Fi)) + degK(X). h (lP'(F,)) . 
i=1 
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This proves (5.5.6). The proof of (5.5.6') is similar, but simpler. 
(ii) To prove (5.5.7) and (5.5.7'), we use the join construction, as in the 

proof of Theorems 4.2.3 and 5.4.4, (ii). Let j : lP': -+ ~N+l , D C ~N+l , and 
H j c lP'~N+l be as in 4.2.3 and let X#Y E Zp+q(~N+l) be the join of X and 
Y. From [Fu2], Examples 8.4.5, we know that j: IXI n IYI-+ IX#YI nD is an 
isomorphism, and that 

(5.5.9) 

and 

(5.5.10) 

Moreover, using (3.2.1) and (3.2.4), and the fact that the canonical isomorphism 
t(t:9(-I)) ~ t:9(-I) divides scalar products by 2, we obtain that, for any 

N Z E Zr(lP'S)' 

(5.5.11) h(Z) = h(j.(Z)) - [K : Q] degK(Z). ~ log 2 ~ h(j.(Z)). 

We deduce from (5.5.9), (5.5.10), (5.5.11) that 

(5.5.12) h ((X. Y)pr) + h ((X. Y)ex) ~ h (((X#y).D)pr) + h (((X#Y).D)ex)' 

Inequality (5.5.6), when applied to Z = X#Y, r = N + 1, lP'(Fl) = Ho' ... , 
lP'(FN+l ) = HN , gives 

h(((X#Y).D)pr) + h (((X#Y).D)ex) 
(5.5.13) N+ 1 

~ h(X#Y) + [K: Q] degK(X#Y). -2- log2; 

indeed h(lP'(HJ) = ![K : Q] log 2 . Together with Proposition 4.2.2, inequalities 
(5.5.12) and (5.5.13) prove (5.5.7). Inequality (5.5.7') follows from the same 
argument, where the height h is replaced by the degree degK, and (5.5.11) by 
the equality degK(Z) = degKU.(Z)). 

(iii) When dim X + dim Y ~ N + 1 , (5.5.8) and (5.5.8') follow from (5.5.7) 
and (5.5.7'). The general case may be proved along the same lines as (5.5.7): 
first, an argument similar to the one in (i), but simpler, shows by induction on 
r that if Y = lP'(F) with F as in (i), we have 

(5.5.14) 

and 

(5.5.14') 

r 

L h( W,,) ~ h(X) + degK(X). L h(lP'(Fj)) 

" j=l 
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then one deduces (5.5.8) and (5.5.8') from (5.5.14) and (5.5.14') by the join 
construction. One may also reduce to the case where dim X + dim Y ~ N + 
1 by considering X#JP: and Y#JP: in JP~N+I (observe that dim(X#JP:) + 
dime Y #JP:) ~ 2 dim JP: = 2N + 2 and that, scheme theoretically, (X n Y)#JP: = 
(X#JP:) n (Y#JP:), and use that for Z E Z*(~), h(Z#JP:) = h(Z) and 
degK(Z#~) = degK(Z)). In that way we get (5.5.8'), and (5.5.8) with Ntl 
replaced by N + 1. 0 

5.6. Variants. Theorem 5.4.4 can be extended to the case of several effective 
k 

cycleSXjEZp(JP(E)), i=I, ... ,k,P j =I, ... ,N+l.When E(Pj-l)~ 
, j=1 

(k - I)N and when the cycles Zj meet properly on the generic fiber (i.e., when 

any component of .~ IZjlK has dimension t (p j - 1) - (k - I)N ), we get 
~I ~I 

where Xl.···. Xk denotes any representative of 

[Xd····· [Xk ] E CHI~·lln ... nlxJJP(E)). 

This follows from a proof similar to the one of Theorem 5.4.4, using the "mul-
tijoin" XI#···#Xk in JP(E$k). 

k 
We may also consider the case of a product of projective spaces JP = IT JP( E j ) , 

j=1 
where E j is an hermitian vector bundle of rank N j + lover S. For any cycle 
Z on JP and any multi-integer A = (aI' ... , ak) E Nk , we let 

resp. 
deg:(Z) = degK (cal (QI) ... cak (Qk) I Z) E Z, 

where Q j is the pull-back on JP of the canonical hermitian quotient bundle on 
JP(Ej). When IAI := al + ... + ak =I- dim(Z), resp. IAI =I- dim(ZK)' we have 
hA(Z) = 0, resp. deg:(Z) = o. Assume now that X E Zp(JP) and Y E Zq(JP) 

k 
are effective cycles on JP meeting properly on JP K and that P + q > 1 + E N j • 

i=1 
If N is the multi-integer (NI , ••• , Nk ), by mimicking the proof of Theorem 
5.4.4 and using (2.3.19) to evaluate multiheights of external products, we get 
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hA(X. Y) $ ~ (hB (X) deg;(Y) + deg;(X)hC (Y)) 
B,C 

B+C=A+N 

k . '" ( p + q) Ai + [K . Q] L.... Nj + 1 - -2- degK (X. Y).log2, 
1=1 

lOIS 

where Aj = (ai' ... ,aj _ l , a j - 1, a j +1 ' ••• , ak ) when A = (ai' ... , ak ) • 
Theorem 5.5.1 may also be extended to these more general situations. We 

leave this to the reader. 

6. POSITIVE GREEN FORMS 

6.1. Positive Green forms and the Bezout theorem. In this last section, we shall 
discuss the following problem: 

Given an effective cycle Z on a complex variety X , when is it the case that 
Z has a positive Green form, i.e., a positive form " on X - Z which is L I 
and such that [,,] is a Green current for Z ? 

Usually, we shall also ask that " is of log type along IZ I (see 1.1.2). 
We have several reasons for asking this question. We noticed in Proposition 

1.4.1 that the Levine form is positive, and this was used in Proposition 1.4.2 
and Proposition 4.1.3. In Nevanlinna theory, this positivity is used to derive 
the Nevanlinna inequality from the first main theorem ([St4], [Sh], § 4.4, (21)), 
so this question is a prerequisite for extending Nevanlinna theory to arbitrary 
varieties ([Co-G]). 

This question is also relevant in the content of Arakelov geometry. For in-
stance, when X is an arithmetic variety, we could say that an arithmetic cycle 
(Z, g) on X is effective when Z is an effective algebraic cycle and g = [,,], 
where " is a positive Green form of log type along IZ I. In codimension one, 
these are pairs (div(s), -log IIsll2) , where s is a global section of an hermitian 
line bundle of sup norm less than one. 

The notion of positive Green form can also be used to give another proof 
of the arithmetic Bezout theorem. To see that, let N ~ 1 be an integer, d be 
the diagonal in ]pN(C) x ]pN(C) , J.l = ci (&(1)) be the standard Fubini-Study 
(1,1) form on ]pN(C), prj:]PN(C)x]pN(C)_]pN(C) be the two projections, 
i = 1, 2, and J.l j = pr;(J.l). Assume that " is a positive real form of type 
(N - 1 , N - 1) on ]pN (C) x ]pN (C) - d, which is of log type along d and such 
that ddc [,,] + t>ll is an harmonic form (for the standard Kahler structure on 
]pN (C) x ]pN (C) , defined by J.l I + J.l2). For any integer q, 0 $ q $ N + 1 , let 

Now consider the situation of 4.2.3 and 5.4.1, i.e., let E be an hermitian 
vector bundle of rank N + lover S, and let X E Zp (]P(E)) and Y E Zq (]P(E)) 
be effective cycles on ]peE) which meet properly on the generic fiber, p + q ~ 
N+1. 
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Theorem 6.1.1. Under the above hypotheses, the following inequality holds: 

(6.1.1 ) 

where 

and 

heX. Y) $ heX) degK(Y) + degK(Y)h(X) 
+ [K : Q]cpq degK(X) degK(Y) , 

1 -1--. 
Cpq = iAq + ap_1 + aq_ 1 - aN - [K: Q] degE ifp + q = N + 1. 

Proof. According to Proposition 5.4.3, (6.1.1) follows from the lower bound 

( 6.1.2) 

where gy is a .u-normalized Green current for Y . To prove it, we may replace 
]p'(E)(C) by ]p'N (C) and consider the integral 

1 ~ p+q-N-l 
_N uxgy.u , 
r(C) 

where X and Yare irreducible cycles on ]p'N (C) of dimensions p - 1 and 
q - 1 respectively. 

Denote by H the harmonic projection for the standard Kahler structures on 
]p'N (C) and ]p'N (C) X ]p'N (C), and let 

(6.1.3) gil = ['1] - H(['1]). 

According to formula (1.2.8) and [BI], Theorem 2.1, (i), we have 

gy == prl .. (gllpr;~y). 
(Note in the proof of [BI], loco cit., that H(prh(gA'pr;~y)) = 0 uses Stokes' 
formula for currents; this is justified there by the consideration of wave front 
sets and, in our case, by the fact that '1 is of log type along .1.) Therefore 

1 p+q-N-l 1 .... p+q-N-l (6.1.4) ~xgy.u = pr1 (~X)·pr2(~y)·gll.ul . 
IP'N(C) pN(C)XpN(C) 

Clearly 
N 

H(['1]) = EAi.u~-i.u~-1 , 
i=O 

so that 

(6.1.5) 
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Since 1'/ is positive, we deduce from (6.1.3), (6.1.4), and (6.1.5) that 

r 0xgyll+q-N-I ~ -Aq deg(X) deg(Y). 
JpN(C) 

This proves (6.1.2). 0 

One way to construct a positive Green form 1'/ for the diagonal is as follows. 
Let Dc p2N+l(C) be the diagonal subspace, made of points of homogeneous 
coordinates (xo' ... ,xN ' xo' ... ,xN), Be pN(C) xpN(C) xp2N+I(C) be the 
set of points with homogeneous coordinates (xo : ... : xN ' Yo : ... : YN' AXo : 
... : AXN : IlYo : ... : llYN), where (A, Il) i- (0,0), ql : B --+ pN(C) x pH(C) 
and q2 : B --+ p2N+I(C) be the projections, and A be the Levine form of D 
in p2N+I(C). Then 1'/ = ql* (q;(A») has the required properties. One may 
compute 

Aq = (N + 1)log(2) + 2(O'N - O'q - O'N_q_I)' 
This leads to a constant cpq in Theorem 6.1.1 which is bigger than the constants 
appearing in Theorem 4.2.3 and Theorem 5.4.4. 
Remark. The argument used in the proof of Theorem 6.1.1 to get a lower bound 
for gy applies more generally to the situation of 5.3, once there exists a positive 
Green form 1'/ for the diagonal d in X(C) x X(C) oflog type along d. Assume 
as in Proposition 5.3.1 that the cycles Y E Zp(X) and Z E zq(X) meet 
properly on XK and that the product of two Il-harmonic forms on X(C) is 
still harmonic. Also assume that there exists an hermitian line bundle L on 
X with first Chern form a positive multiple of the Kahler form Il. Let k = 
dim(X) - p - q. From Proposition 5.3.1 and the proof of Theorem 6.1.1 we 
get the estimate 

--- -k --- k deg(c1 (L) [Yo Z]Jl) - deg(c1 (L) [Y]Jl[Z]Jl) 

= -~ r g~pr;(oy)pr: (ozc1 (L)k) 
JX(C)XX(C) 

$ ~ r H([1'/])pr;(oy)pr; (ozc1 (L)k) = qJ(cl(Y) , cl(Z») , 
JX(C) x X(C) 

where cl(Y) E HP,P(XR) , resp. cl(Z) E Hq,q(XR) , denotes the cohomology 
class of Y, resp. Z, and qJ is some bilinear form on HP,P(XR) x ~,q(YR) 
which depends only on Il, 1'/, and L K • That type of inequality may be used 
to extend the arithmetic Bezout theorem to grassmannians (cf. 6.2.2, Example 
(iii) infra). 
6.2. Construction of positive Green forms. 

6.2.1. In this section, we use the constructions of 1.2 to produce, under suitable 
hypotheses, positive Green forms for effective cycles. 
Proposition 6.2.1. Let X be a compact Kahler manifold, and Y c X a complex 
sub manifold of codimension p. Suppose that the following two conditions are 
satisfied: 
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(i) there exists a holomorphic vector bundle F of rank p over an open neigh-
borhood Q of Y in X such that Y is defined by the vanishing of some holo-
morphic section u of F over Q, which is transverse to the zero section; 

(ii) the canonical quotient bundle QF on JP(F) may be endowed with an 
hermitian metric 11.11 such that the top Chern form cp _ 1 (QF' II II) is positive. 

Then there exists a positive Green form for Y (of log type along Y when X 
is projective). 
Proof. Let v : i --+ X be the blow-up of Y in X. We saw in 1.2.3 that u 
defines an embedding f: i --+ JP(F) and that there exists a C,o form fJ on 
JP(F) such that 

g = v* (v*10gllull-2.j Cp _ 1(QF) + j(fJ)) 

is a Green form for Y in X (cf. (1.2.11)). Let OJ be a Kahler form on i. 
Since j(fJ) is COO on i and v*log lIull-2.j cp _ 1 (QF) is positive on a 
neighborhood of E = v-I (Y) in i and COO on i - E, it follows from 
Proposition 1.1.4, (ii) and (iv), that if t E 1R+ is large enough, the current 

g' = v* (v* log lIull-2• j cp _ 1 (QF) + j(fJ) + t OJP- 1) 

is a positive form on X - Y. On the other hand, ddc g' = ddc g since OJ is 
closed. Therefore g' is a Green form for Y in X , which is clearly of log type 
along Y when X is projective. 0 

Examples and remarks. (i) When Y is a smooth hypersurface, the hypotheses 
of Proposition 6.2.1 are satisfied by taking Q = X and F = &,(Y). In fact, 
any effective divisor Z on any complex manifold X admits a positive Green 
form: if II II is any hermitian metric on &,(Z) , if s is a holomorphic section 
of &,(Z) with divisor Z, and if p: 1R+ --+ [0, 1] is a COO function such that 

PI[O,I/2] == 1 and PI[I,+oo[ == 0, 
then 

is such a Green form. 

-2 g = (p 0 IIsll).log lis II 

(ii) The hypotheses of Proposition 6.2.1 are easily seen to be satisfied when 
Y is a point. In fact, the existence of a positive Green form for any point P 
in a complex manifold follows immediately from the positivity of the Bochner-
Martinelli Green form (cf. 1.2.3, Example (ii)): it is enough to pull back this 
Green form to a neighborhood Q of P from Cdim X using holomorphic co-
ordinates centered at P, and to "truncate" it by multiplication by a COO non-
negative function on X, supported by a small enough compact neighborhood 
of P in Q, which takes the value 1 near P. Suppose that X is compact, 
Kahler, and connected, and let u be a positive volume form on X such that 
Ix u = 1. By adding suitable COO forms to the Green forms obtained by this 
construction, we get a family {gp}Pex of positive Green forms for the points 
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of X, which is bounded in the L 1 topology and such that, for any P EX, 

ddc gp + ~p = a. 
If L is any holomorphic line bundle on X equipped with an hermitian 

metric II II, the tensor powers L n, n EN, may be endowed with the tensor 
power metrics and we can define "quasinorms" II lip , p E [0, 00], on the space 
of sections HO(X, L n ), by formulae (1.4.8) and (1.4.9). Then the inequalities 
(1.4.10) still hold, and the same argument as in the proof of Proposition 1.4.2, 
using gp instead of Ap , shows that there exists C E lR: such that, for any 
n E N and any s E nD(X, L n ), 

IIslloo ~ Cnllsllo· 
(Compare [Vol, Lemma 8.1.) 

(iii) Let X be any complex manifold and Y c X a complex submanifold. 
Assume that condition (i) in Proposition 6.2.1 is satisfied and that the restriction 
of F to n is the quotient of a trivial bundle. Equip this restriction and the 
canonical quotient bundle QF on the projective bundle p : IP(F) ---+ Q with the 
quotient metric of the trivial metric. It is shown in [B-C], §5, that cp _ 1 (QF) is 
positive and that there exists a positive form 11 E AP-1,P-I(IP(F)) , defined by 
local formulae in terms of the hermitian metric on F , such that 

ddcl1 = p* cp(F) - c1 (l!?(-1)).cp_1 (QF)· 
Then the Green form (1.2.11): 

g = v* (v * log lIall-2 • .r* cp _ 1 (QF) + .r* (11)) , 
is a Green form for Y in Q, positive on a neighborhood of Y . If P E COO (X) 
is nonnegative, has its support in Q, and is equal to 1 in a neighborhood of 
Y , then p g is a positive Green form for Y in X. 

Observe that the preceding hypotheses hold if F is generated by its global 
sections on Q (this is elementary, after shrinking Q if necessary, when Y 
is compact; the general assertion is proved by a standard argument using the 
Baire theorem). Using the construction of 1.2.3, Example (iii), it follows that 
any submanifold Y of a Stein manifold X admits a positive Green form. 
6.2.2. If we combine the preceding discussion with the construction of Green 
forms "by reduction to the diagonal" provided by Lemma 1.2.2, we get the 
following statement: 
Proposition 6.2.2. Suppose that a smooth projective complex variety M satisfies 
the following condition (C): 

There exists an open neighborhood (in the complex topology) n of the 
diagonal .1 in M x M, a holomorphic vector bundle E on Q generated by its 
global holomorphic sections on Q, and a holomorphic section a of E over n, 
transverse to the zero section, which vanishes exactly on d. Then any effective 
cycle Z on M admits a positive Green form of log type along IZ I. 
Proof. Indeed, if (C) holds, there exists a positive Green form gil of log type 
for d by Proposition 6.2.1 and 6.2.1, Example (iii), and g = P*Il* gil is positive 
on M -IZI by Proposition 1.1.4, (i) and (ii). 0 
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Examples and remarks. (i) The product of two projective varieties which satisfy 
(C) clearly satisfies it also. 

(ii) Abelian varieties are easily seen to satisfy (C): if M is a g-dimensional 
complex abelian variety and if rp : U -+ Cg is a holomorphic chart defined on 
an open neighborhood of the origin 0 in M, then condition (C) is satisfied by 

2 n = {(y, y) EM, x - y E U}, 

and 

E - Ar EIlg - un ' 

a(x, y) = rp(x - y) 
(compare with the convolution formulae of [BI], §3.2). 

(iii) Flag manifolds also satisfy (C). Let indeed M be the space of flags 
of type ('p ... , 'k) in Cn (0 < 'I < '2 < ... < 'k < n). Points of Mare 
sequences F = (FI ' ... ,Fk) of vector subspaces of Cn such that 

FI c F2 c··· C Fk 

and 
dimcFi ='i (I ~ i ~ k). 

For any (F, F') EM X M' ,let EF,F' be the vector space of k-tuples Ct;)19~k 

in .~ Hom(Fj, Cn / F:) such that the following diagrams commute: 
1=1 

1 1 
(l~i~k-I). 

(The right vertical arrow is the surjective map defined thanks to the inclusion 
F: c F:+1 .) The family E of these vector spaces is naturally endowed with a 
structure of algebraic vector bundles over M x M. To any m E End(Cn ) is 
associated the section am of E which sends (F, F) EM x M to the k-tuple 
(J;)19~k defined by the composite maps 

I" n m n n/, 
J i : Fi ~ C --c --c Fi · 

These sections of E are regular and generate E. Finally, the subscheme of 
M x M defined by aid = 0 is easily seen to coincide with d. This shows (C) 
is satisfied by the vector bundle E on n = M x M and a = aid. 

(iv) Using 6.2.1, Example (iii), and a "reduction to the diagonal" analogous 
to Lemma 1.2.2, one may prove that any effective cycle on a Stein manifold 
admits a positive Green form. 

6.2.3. Let us recall that a complex manifold M is called homogeneous if the 
group Aut(M) of automorphisms of M (as a complex manifold) acts tran-
sitivelyon M. The following facts are well known: (i) A compact complex 
manifold M is homogeneous iff there exist a complex Lie group G and a 
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closed complex subgroup H of G such that M ~ G / H. Moreover, if M is 
projective, G may be chosen to be a complex algebraic group, and the action 
G x M -+ M of G on M a morphism of algebraic varieties. 

(ii) A compact connected complex manifold M is homogeneous iff its holo-
morphic tangent bundle T M is generated by its global holomorphic sections 
over M. In particular, any connected smooth projective variety M which sat-
isfies condition (C) of Proposition 6.2.2 is homogeneous (indeed, if E and 
(J are as in (C), the differential of (J along d defines an isomorphism from 
TM ~ NA(M x M) to EM' which is generated by its global sections) . 

. For more information on compact homogeneous complex manifolds, see [B-
R] and the references given there. Let us only mention that the connected 
compact homogeneous algebraic complex manifolds are projective (Chow) and 
are exactly the products of complex abelian varieties and generalized flag man-
ifolds5 (Borel-Remmert). 

One may ask if any effective cycle on such a manifold admits a Green form 
of log type. (According to the examples in 6.2.2, this is true for any product 
of abelian varieties and flag manifolds.) The following proposition, due to 
o. Gabber, solves a variant of this question. 

Proposition 6.2.3. Any effective cycle Z on a compact homogeneous complex 
manifold M admits a positive Green form. 
Proof. Clearly we may assume that Z is irreducible, and consider a resolution 
of singularities v : Z -+ Z . Let G be a complex Lie group acting transitively 
on M (cf. (i) above), and let f: G x Z -+ M be the holomorphic smooth map 
defined by 

f(g, x) = g.v(x). 
The identity element e of G, seen as a O-cycle in G, admits a positive Green 
form ge with compact support (6.2.1, Example (ii)). Let w = ddc ge + de. If 
pr : G x Z -+ G denotes the first projection, the current pr* ge is compactly 
supported, and 

is well defined. Moreover 
c *c * * J. dd g = J.,pr dd ge = J.,pr (w - de) = J.,pr w - .dexZ · 

We have 
J.,dexZ = V.dz = dz · 

On the other hand, since f is smooth and pr* w is COO and compactly sup-
ported, J.,pr* w is Coo.. This shows that g is a Green current for Z in M. 
It is COO on M - Z , since pr* ge is COO on (G - {e}) x Z , which contains 
f- 1(M - Z), and it is positive by Proposition 1.1.4, (i) and (ii). 0 

Remark. Let X be a smooth quasi-projective complex variety and Y a proper 
closed algebraic subset of X. We can say that a COO form '1 on X - Y 

5 A generalized flag manifold is a quotient G / P ,where G is a connected reductive complex 
algebraic group and P a parabolic subgroup of G. 
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is "almost of log type" along Y when the conditions in Definition 1.1.1 are 
satisfied, except that only the restriction of 1C to the support of rp, and not 1C 
itself, is supposed to be proper. Observe that the Green form g constructed 
in the preceding proof is almost of log type along IZI when M is projective, 
provided G is chosen to be an algebraic group acting algebraically on M and 
ge is obtained from the Bochner-Martinelli form as in 6.2.1, Example (ii). 
6.3. An obstruction to the existence of positive Green forms. When the con-
struction in the preceding section of positive Green forms for some smooth 
submanifolds Y of a complex manifold X applies, the top Chern class of the 
canonical quotient bundle Q on the projective bundle JP(NyX) may be repre-
sented by a closed positive form. In this section we shall see that, conversely, 
at least in the linear situation where X is the total space of a vector bundle 
over Y, the existence of a positive Green form for Y in X implies a kind of 
"numerical effectivity" for the top Chern class of Q. 

Let Y be a smooth projective complex variety, and let F be a rank r vector 
bundle on Y. Consider the projective completion X = JP(F ffi &') of F; it 
contains as subvarieties Y (identified with the zero section of F) and JP(F) = 
X - F. Consider also Q the canonical quotient bundle on JP(F) , cr_ 1 (Q) its 
top Chern class, and p : X - Y -t JP(F) the morphism defined by the first 
pr~jection F ffi &' -t F. Finally, for any ,l E C* , let rp). be the automorphism 
of X which extends multiplication by ,l on the fibers of F. 
Proposition 6.3.1. Let g be any Green current for Y in X which is COO on 
X - Y. For any subvariety Z of dimension r - 1 in X, such that 

Z {t JP(F) and Z n Y = 0, 

the following asymptotic formula holds: 

(6.3.1) lim (logl,ll-lr 1 f g.~'11 (Z) = 2(p*cr_ 1(Q) , [Z]}. 
),-+0 lx I. 

Related asymptotic formulae have been announced independently in [H-W]. 

Proof. Let g and g' be two Green currents for Y which are COO on X - Y . 
There exist u E 9 r- 1 ,r(X), v E gr,r-l(X) , and IfI E Ar,r(X) such that u 
and v are COO on X - Y and 

g' - g = au + 8v + IfI 
(see [G-S2], 1.2.2, and [Bl], Proposition 1.1, (ii)). By Stokes formula, this 
implies that for any ,l E C* : 

Ix g'·~'III.(Z) - Ix g'~'II1(Z) = Ix IfIApl.(z)· 

According to Corollary 1.5.2 applied to the cycle in X x A~ defined as the 
closure of 

{(rp).(x),,l); x E Z, ,l E C*}, 

which is flat over A~ and therefore fulfills the hypothesis of [loc.cit.], the last 
integral defines a continuous function of ,l E C* which extends continuously 
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to C. Therefore, to prove Proposition 6.3.1, we can assume that g is a Green 
current obtained by the construction of §1.2. More precisely, let us choose g 
as follows. Let v : X -+ X be the blow-up of Y in X, and let E = v -I (Y) 
be the exceptional divisor; we shall identify (by v) X - E and X - Y. The 
map P : X - Y -+ lP'(F) extends to a regular map from X to lP'(F) , which 
we shall still denote by p. In fact PIE is the canonical isomorphism from E 
to lP'(F) = lP'(NyX). Let us choose a metric 11.11 on ~(E) and a closed form 
f E Ar- I ,r-I (lP'(F)) whose cohomology class is cr _ 1 (Q). According to 1.2.2, if 
s is a section of ~(E) of divisor E, there exists y E Ar-I,r-I(X) such that 
g = v*(logllsll-2.p *f + y) is a Green current for Y. 

To study the asymptotics of Ix g.dlfll(Z) as A -+ 0, we choose a metric 11.11 
on F and a COO function "': R+ -+ [0, 1] such that 

"'1[0,1/2] = 1 and "'1[1, +oo[ = 0, 

we define r: X -lP'(F) -+ lR+ as the map which sends a point x to the norm 
IIv(x)1I of the element v(x) of F, and we let p = '" 0 r. Then lIfll., defined 
on X - (EUlP'(F)), is easily seen to extend to a COO nonvanishing function on 
a neighborhood of E. Therefore there exists y' E A r - I , r-I (X) such that 

-2 * -2 * , log lis II .p f + y = p.logr .p f + y , 

and we get 

(6.3.2) tg·dlfll(Z) = hP.logr-2.p*fdlfll(Z) + hl.d,fll(Zr 

According to Corollary 1.5.2 applied to the cycle in X x A~ defined as the 
closure of {(qI;.(x) , A); x E Z, A E C*}, the last integral in (6.3.2) defines a 
continuous function of A E C* which extends continuously to C. 

On the other hand, if iP;. denotes the automorphism of X which lifts qI;., 
we have iP;r = lAir and iP;P*f =P*f. Therefore 

h J p.logr -2.p* f.dlfll(Z) = h iP;(p.logr -2.p* f)dz 

= hiP;P.(10gIAI-2 +10gr-2).p*f.dz · 

The function 10gr-2 is LI with respect to the measure p*f.dz (indeed 10gr-2 
is a function oflog type along lP'(F) , which meets Z properly). Since lfi;pl ~ 1 
and 

lim iP;p(x) = limql(Ar(x)) = 1 
;'-+0 ;'-+0 

for any x E X -lP'(F), Lebesgue's theorem on dominated convergence shows 
that r * -2 * 1x iP;.p.logr .p f.dz 
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has a limit when A - 0 and that 

l~ fx iP;p.p* u5z = fxp* u5z = (p* cr _ 1 (Q), [Z]). 

Finally when A- 0, the integral (6.3.2) equals 
-I * 2 log IAI .(p cr _ 1 (Q), [Z]) + O( 1). 

From Proposition 6.3.1, we immediately get: 

Corollary 6.3.2. If there exists a subvariety Z of dimension r - 1 in X meeting 
JP'(F) and Y properly such that 

(p*Cr_I(Q) , [Z]) < 0, 

then there is no Green form for Y which is positive on X - Y . 

Examples of vector bundles F - Y for which such a Z exists are easily 
constructed. For instance, take for Y any smooth projective curve, and for F 
any rank two vector bundle which admits a subbundle L of rank 1 such that 

degF < degL ~ -g, 

where .. deg" denotes the degree of vector bundles on Y and g the genus of 
Y. Then the dual of L has a nonzero regular section s. Its inverse s -I is a 
meromorphic section of L which does not vanish, and defines a section of the 
projection morphism X - Y. Clearly its image Z does not meet Y and is 
not contained in JP'(F). Moreover, the cycle p*Z is the image of the section u 
of JP'(F) defined by the subbundle L c F; since u* Q ~ F / L , we get: 

(p* cr _ 1 (Q), [Z]) = (cr _ 1 (Q), p*[Z]) = (u* c1 (Q); [Y]) 
= (c1 (F) - c1 (L); [Y]) = degF - degL < O. 
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ABSTRACT. Using arithmetic intersection theory, a theory of heights for projec-
tive varieties over rings of algebraic integers is developed. These heights are 
generalizations of those considered by Weil, Schmidt, Nesterenko, Philippon, 
and Faltings. Several of their properties are proved, including lower bounds 
and an arithmetic Bezout theorem for the height of the intersection of two 
projective varieties. New estimates for the size of (generalized) resultants are 
derived. Among the analytic tools used in the paper are "Green forms" for 
analytic subvarieties, and the existence of poSitive Green forms is discussed. 
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