
PHYSICAL REVIEW B 84, 224428 (2011)
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Starting with the
√

3 × √
3 and the q = 0 states as reference states, we use the coupled cluster method to high

orders of approximation to investigate the ground state of the Heisenberg antiferromagnet on the kagome lattice
for spin quantum numbers s = 1/2, 1, 3/2, 2, 5/2, and 3. Our data for the ground-state energy for s = 1/2 are in
good agreement with recent large-scale density-matrix renormalization group and exact diagonalization data. We
find that the ground-state selection depends on the spin quantum number s. While for the extreme quantum case,
s = 1/2, the q = 0 state is energetically favored by quantum fluctuations, for any s > 1/2 the

√
3 × √

3 state
is selected. For both the

√
3 × √

3 and the q = 0 states the magnetic order is strongly suppressed by quantum
fluctuations. Within our coupled cluster method we get vanishing values for the order parameter (sublattice
magnetization) M for s = 1/2 and s = 1, but (small) nonzero values for M for s > 1. Using the data for the
ground-state energy and the order parameter for s = 3/2, 2, 5/2, and 3 we also estimate the leading quantum
corrections to the classical values.
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I. INTRODUCTION

The investigation of the low-energy physics of the Heisen-
berg antiferromagnet (HAFM)

H =
∑
〈i,j〉

si · sj (1)

on the kagome lattice is one of the most challenging problems
in the field of frustrated quantum magnetism. The sum over
〈i,j 〉 runs over all nearest-neighbor pairs of sites on the lattice,
counting each bond once only, and si ≡ (sx

i ,s
y

i ,sz
i ) is the spin

operator on site i. Although, there has been an intensive
discussion of the problem over many years applying various
theoretical methods (see, e.g., Refs. 1–34), no conclusive
answer on the nature of the ground state (GS) and the existence
of a spin gap has been found.

While for many years a spin-liquid GS was favored,5,10,12

recently arguments have been given for a valence-bond crystal
GS with a large unit cell of 36 sites that breaks the symmetry of
the underlying kagome lattice.16,20,21 However, very recently
this valence-bond picture has been rechecked by large-scale
numerics28,29,31 and once again the spin-liquid GS is favored.

Although large-scale density-matrix renormalization group
(DMRG) and exact diagonalization (ED) calculations seem
to be most effective to study the low-energy physics of the
kagome HAFM, complementary methods (see, e.g., Refs. 27,
30, 33, and 34), are highly desirable to shed further light on
this challenging problem.

A method which has been successfully applied to strongly
frustrated quantum magnets is the coupled cluster method
(CCM) (see, e.g., Refs. 14, 26, and 35–42). In the present
paper we apply the CCM in high orders of approximation to
the kagome HAFM.

II. COUPLED CLUSTER METHOD

For the sake of brevity we illustrate here only some relevant
features of the coupled cluster method (CCM). For more
general information on the methodology of the CCM, see,
e.g., Refs. 43–48.

We first mention that the CCM approach yields results
directly in the thermodynamic limit N → ∞, where N is the
number of lattice sites (and hence spins). The starting point
for a CCM calculation is the choice of a normalized reference
state |�〉 that is typically a classical GS of the model. For
the kagome HAFM we choose the

√
3 × √

3 and the q = 0
states illustrated in Fig. 1 (see also, e.g., Refs. 2, 7, and 33 for
further details). Then we perform a rotation of the local axes
of each of the spins such that all spins in the reference state
align along the negative z axis. In this new set of local spin
coordinates a complete set of mutually commuting multispin
creation operators C+

I ≡ (C−
I )† related to this reference state

is defined by

|�〉 = |↓↓↓ · · ·〉, C+
I = s+

n , s+
n s+

m, s+
n s+

ms+
k , . . . , (2)

where s+
n ≡ sx

n + is
y
n , the indices n,m,k, . . . denote arbitrary

lattice sites, and the components of the spin operators are
defined in the local rotated coordinate frames. Note that
for spins of quantum number s, each site index in each
configuration index I in Eq. (2) can be repeated up to a
maximum of 2s times. With the set {|�〉,C+

I } thus defined,
the CCM parametrizations of the ket and bra GS eigenvectors
|�〉 and 〈�̃| of the spin system are given by

|�〉 = eS |�〉, S =
∑
I 	=0

aIC
+
I , (3)

〈�̃| = 〈�|S̃e−S, S̃ = 1 +
∑
I 	=0

ãIC
−
I . (4)
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FIG. 1. Illustration of the
√

3 × √
3 (left) and the q = 0 (right)

classical GS of the kagome HAFM.

We have defined C+
0 ≡ 1, and the normalization of the

states is clearly such that 〈�̃|�〉 = 〈�|�〉 = 〈�|�〉 ≡ 1. The
CCM correlation operators S and S̃ contain the correlation
coefficients aI and ãI , which can be determined by the CCM
ket-state and bra-state equations

〈�|C−
I e−SHeS |�〉 = 0, ∀ I 	= 0, (5)

〈�|S̃e−S[H,C+
I ]eS |�〉 = 0, ∀ I 	= 0. (6)

Equations (5) and (6) are fully equivalent to the GS
Schrödinger equations for the ket and bra states. They follow
readily from the requirement that the GS energy functional
〈�̃|H |�〉 be stationary with respect to variations in all of
the correlation coefficients ãI and aI, respectively (∀I 	= 0).
Each ket-state or bra-state equation belongs to a certain
configuration index I , i.e., it corresponds to a certain set
(configuration) of lattice sites n,m,k, . . ., as in Eq. (2).
Using the Schrödinger equation, H |�〉 = E|�〉, we can now
write the GS energy as E = 〈�|e−SHeS |�〉. The magnetic
order parameter (sublattice magnetization) is given by M =
− 1

N

∑N
i=1〈�̃|sz

i |�〉, where sz
i is expressed in the transformed

coordinate system, and N (→ ∞) is the number of lattice
sites.

If we would be able to consider all creation and annihilation
operators C+

I and C−
I , i.e., all sets (configurations) of lattice

sites, in the CCM correlation operators S and S̃ we would get,
in principle, the exact eigenstate.44 However, for the many-
body quantum system under consideration it is necessary to
use approximation schemes in order to truncate the expansions
of S and S̃ in Eqs. (3) and (4) in a practical calculation.
Then the approximate results for the GS energy E and the
order parameter M will depend certainly on the choice of the
reference state.

We use for spin quantum number s = 1/2 the so-called
LSUBn approximation scheme to truncate the expansions of
S and S̃ in Eqs. (3) and (4), where we include only n or
fewer correlated spins in all configurations (or lattice animals
in the language of graph theory) which span a range of no
more than n contiguous lattice sites, where a set of sites is
defined to be contiguous if every site has at least one other in
the set as a nearest neighbor (for more details see Refs. 43 and
46–48). Using efficient parallelized CCM code49 we are able to
solve the CCM equations up to LSUB10 for s = 1/2 (where,

e.g., for the q = 0 reference state a set of 238 010 coupled
ket-state equations has to be solved), which goes significantly
beyond earlier CCM calculations for the kagome HAFM.14,26

Moreover, we also use the CCM to consider spin quantum
numbers s > 1/2.

Since the LSUBn approximation becomes exact for n →
∞ (as does the alternative SUBn-n scheme that we introduce
and use in Sec. III B for values of the spin quantum number
s > 1/2), it is useful to extrapolate the “raw” LSUBn (or
SUBn-n) data to the limit n → ∞. There is ample experience
regarding how one should extrapolate the GS energy per site
e0(n) ≡ E(n)/N and the magnetic order parameter M(n). For
the GS energy per spin, e0(n) = a0 + a1(1/n)2 + a2(1/n)4 is
a very well-tested extrapolation ansatz.35–38,40,46,48 An appro-
priate extrapolation rule for the magnetic order parameter of
highly frustrated systems is37,38,40 M(n) = b0 + b1(1/n)1/2 +
b2(1/n)3/2. Moreover, we know from Refs. 37, 38, and 40
that low levels of approximation conform poorly to these
rules. Hence, we exclude the n = 2 and n = 3 data from the
extrapolations.

For the solution of the CCM equations we rewrite the
Hamiltonian (1) in the rotated coordination frame of the local
quantization axis

Hλ =
∑

〈i→j〉

(
−1

2

(
λsx

i sx
j + sz

i s
z
j

) + λs
y

i s
y

j

+
√

3

2
λ
(−sx

i sz
j + sz

i s
x
j

))
, (7)

where we have further introduced an anisotropy parameter
λ that now multiplies the non-Ising terms, similar to what
was done in Refs. 6 and 45. Note that the symbols 〈i → j 〉
on the sum in Eq. (7) now indicate directionality of the
nearest-neighbor bonds (see, e.g., Refs. 6, 39, and 45), which
is different for the

√
3 × √

3 and the q = 0 reference states.
Starting at λ = 0, where the corresponding reference states are
eigenstates of Hλ, we can slowly increase λ and hence trace
the CCM solutions out to the true kagome point at λ = 1.
Moreover, λ can be understood as a parameter that tunes the
strength of the quantum fluctuations.

III. RESULTS

A. The extreme quantum case: s = 1/2

We start with the CCM investigation of the kagome HAFM
for spin quantum number s = 1/2. At a given finite level
of the CCM LSUBn scheme, the treatment of quantum
effects is performed in an approximate manner. Certainly,
the treatment of quantum effects becomes better as the level
of approximation n is increased. In previous studies of the
GS selection based on an expansion around the classical
limit,4,7,11 the

√
3 × √

3 state was found to be selected by
quantum fluctuations. We present our results for the GS energy
per site in Fig. 2, where the dependence on the anisotropy
parameter λ of the difference in the energies per site between

the two states considered, �e ≡ e
√

3×√
3

0 − e
q=0
0 , is shown

for various LSUBn approximations. Interestingly, the GS
selection depends on the LSUBn truncation index n. Just as
in linear spin-wave theory,2,11 there is also no GS selection
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FIG. 2. (Color online) Difference of GS energies per site, �e ≡
e

√
3×√

3
0 − e

q=0
0 , between the

√
3 × √

3 and q = 0 states of the spin-
1/2 kagome HAFM, for various CCM LSUBn approximations and
spin quantum number s = 1/2.

(i.e., �e = 0) at the CCM-LSUB2 level, thereby indicating a
poor consideration of quantum effects at the lowest LSUBn

order. As the level of approximation n is increased we first find
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FIG. 3. (Color online) CCM-LSUBn data for the magnetic order
parameter M versus λ for the spin-1/2 kagome HAFM, for (a) the√

3 × √
3 reference state and (b) the q = 0 reference state. For the

extrapolations to n → ∞ according to M(n) = b0 + b1(1/n)1/2 +
b2(1/n)3/2 we have used LSUBn data for n = 4,5, . . . ,10 as well as
for n = 6,7, . . . ,10.

that �e < 0 for n = 3 and n = 4 (i.e., the
√

3 × √
3 state is

selected in accordance with previous findings7,11), but as n is
further increased we then find that �e > 0 for n > 4 (i.e., the
q = 0 state is selected). Bearing in mind that quantum effects
are better taken into account at higher LSUBn levels, we might
argue that strong quantum fluctuations indeed favor the q = 0
state. Note that this line of argument is also supported by our
CCM results below for spin quantum numbers s > 1/2 (i.e.,
generally speaking, where quantum fluctuations are weaker),
where in all levels of approximations the

√
3 × √

3 state is
selected (see our discussion below in Sec. III B).

In Fig. 3 we show the magnetic order parameter as a
function of the anisotropy parameter λ. At λ = 0 we have M =
s = 1/2, since the corresponding reference state is the exact
GS of Hλ=0. As λ is increased the order parameter decreases
monotonically. At a certain value of λ, near the true kagome
point λ = 1, the extrapolated order parameter vanishes, thus
indicating that the GS is magnetically disordered. The dif-
ference in the two variants of the extrapolation (including or
excluding LSUB4 and LSUB5) may be considered as an error
bar for the extrapolated order parameter.

To illustrate the quality of the extrapolations of the “raw”
LSUBn data in the limit n → ∞, we show corresponding
plots for the q = 0 state and various values of the anisotropy
parameter λ in Fig. 4. It is obvious that the LSUBn data are
well fitted by the applied extrapolation functions.
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FIG. 4. Illustration of the extrapolation of the CCM-LSUBn data
(symbols) for (a) the ground-state energy e0 and (b) the magnetic
order parameter M for the q = 0 state of the spin-1/2 kagome
HAFM. For the extrapolations to n → ∞ according to e0(n) =
a0 + a1(1/n)2 + a2(1/n)4 and M(n) = b0 + b1(1/n)1/2 + b2(1/n)3/2

we have used LSUBn data for n = 4,5, . . . ,10 (solid lines) as well
as for n = 6,7, . . . ,10 (dashed lines).
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TABLE I. CCM results for the spin-1/2 HAFM on the kagome lat-
tice (i.e., at λ = 1). The quantity e0 ≡ E/N is the GS energy per spin
and M is the magnetic order parameter (sublattice magnetization).
The LSUBn results are extrapolated to n → ∞ according to e0(n) =
a0 + a1(1/n)2 + a2(1/n)4 and M(n) = b0 + b1(1/n)1/2 + b2(1/n)3/2

using LSUBn data for n = 4,5, . . . ,10 as well as for n = 6,7, . . . ,10.

√
3 × √

3 e0 M

LSUB4 −0.408 728 0.320 702
LSUB5 −0.414 235 0.291 917
LSUB6 −0.418 052 0.272 109
LSUB7 −0.420 677 0.248 989
LSUB8 −0.423 554 0.219 994
LSUB9 −0.424 962 0.204 661
LSUB10 −0.426 485 0.187 634
Extrapolated (4–10) −0.4318 <0
Extrapolated (6–10) −0.4336 <0

q = 0 e0 M

LSUB4 −0.408 066 0.322 860
LSUB5 −0.414 418 0.286 462
LSUB6 −0.420 078 0.248 078
LSUB7 −0.423 126 0.225 356
LSUB8 −0.426 054 0.202 074
LSUB9 −0.427 952 0.186 435
LSUB10 −0.429 413 0.172 742
Extrapolated (4–10) −0.4357 <0
Extrapolated (6–10) −0.4372 <0

Other recent results
Ref. 20 −0.433 –
Ref. 27 −0.4322 –
Ref. 29, N = 42 (type a) −0.437 999 –
Ref. 29, N = 42 (type b) −0.438 143 –
Ref. 28 −0.4379 –

Next we analyze the model for λ = 1 in more detail. The
CCM-LSUBn data, as well as the extrapolated data, are listed
in Table I. Moreover, we present results for the GS energy
obtained by other methods for comparison. While the values
e0 = −0.4322 obtained in Ref. 27 and e0 = −0.4332 obtained
in Ref. 28 can be considered as rigorous upper bounds of
the GS energy, the large-scale DMRG result e0 = −0.4379
obtained in Ref. 28 seems to be the most accurate estimate
presently available. The lowest extrapolated CCM energy is
e0 = −0.4372, obtained for the q = 0 reference state using
CCM-LSUBn results for n = 6, 7, 8, 9, and 10 for the
extrapolation. This CCM estimate is very close to the DMRG
result of Ref. 28.

B. Higher spin quantum numbers: s > 1/2

Although several magnetic kagome compounds
carry spins with s > 1/2, such as the s = 3/2
magnet KCr3(OH)6(SO4)2,50 or the s = 5/2 compound
(H3O)Fe3(OH)6(SO4)2,51 far fewer theoretical results are
available for those higher-spin quantum numbers. In the
classical limit s → ∞, thermal fluctuations may lead to√

3 × √
3 long-range order as T → 0.3,23 In most papers

dealing with large-spin quantum models it has been found
that quantum fluctuations select the

√
3 × √

3 state.4,7,11,32

Moreover, magnetic long-range order might be possible for
higher spin values.4,32

For our CCM approach for s > 1/2 we use (instead of
the LSUBn scheme) the alternative SUBn-m approximation
scheme to truncate the expansions of S and S̃ in Eqs. (3) and
(4). This is because as s increases the number of fundamental
configuration I retained at a given LSUBn level also increases,
since each spin at any site i may be raised up to 2s times by
its raising operator s+

i , and hence each site index i may be
repeated up to 2s times in the operators C+

I of Eq. (2). In the
SUBn-m scheme we include no more than n spin flips spanning
a range of no more than m contiguous lattice sites.47,48 In what
follows we consider the case n = m, i.e., SUBn-n, which for
s = 1/2 is identical to the LSUBn scheme. Since the number
of coupled ket-state equations for a certain level of SUBn-n ap-
proximation increases with increasing spin quantum number s,
the highest level of approximation we can consider is SUB8-8
for s = 1, 3/2, 2, 5/2, and 3. The maximum number of
ket-state equations we have to take into account is 416 126
for s = 3. For the extrapolation to n → ∞ we use the
same extrapolation formulas as for s = 1/2, and consider the
SUBn-n data for n = 4, 5, 6, 7, and 8.

First we discuss the GS selection. In Fig. 5 we present
the dependence on the anisotropy parameter λ of the energy

difference per site, �e ≡ e
√

3×√
3

0 − e
q=0
0 , for the highest level

of approximation that we have performed (viz., SUB8-8), and
for values of the spin quantum number s = 1/2,1, . . . ,3. We
find that the

√
3 × √

3 state is selected for all values s >

1/2. This is in agreement with previous studies based on an
expansion around the classical limit,4,7,11 but it is in contrast
to our findings for the extreme quantum case s = 1/2. Hence,
interestingly, our results suggest that for the frustrated quantum
spin system under consideration the s = 1/2 case and the cases
s > 1/2 may exhibit different behavior. It is interesting to note
that a similar effect has also been observed for a frustrated
quantum spin chain.52 We see clearly that the energy difference
�e scaled by s2 decreases monotonically with increasing s,
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FIG. 5. (Color online) Difference of the GS energies per site,

�e ≡ e
√

3×√
3

0 − e
q=0
0 , between the

√
3 × √

3 and q = 0 states of the
kagome HAFM, calculated for the CCM SUB8-8 approximation and
for spin quantum numbers s = 1/2, 1, 3/2, 2, 5/2, and 3.

224428-4



HEISENBERG ANTIFERROMAGNET ON THE KAGOME . . . PHYSICAL REVIEW B 84, 224428 (2011)

0

 0.2

 0.4

 0.6

 0.8

1

0  0.2  0.4  0.6  0.8 1

M
/s

λ

(b)

s=1/2
s=1

s=3/2
s=2

s=5/2
s=3

 0.2

 0.4

 0.6

 0.8

1

M
/s

(a)

s=1/2
s=1

s=3/2
s=2

s=5/2
s=3

FIG. 6. (Color online) Extrapolated magnetic order parameter
M/s versus λ for (a) the

√
3 × √

3 reference state and (b) the q = 0
reference state of the kagome HAFM, for various values of the spin
quantum number s. For the extrapolations to n → ∞ according to
M(n) = b0 + b1(1/n)1/2 + b2(1/n)3/2 we have used SUBn-n data for
n = 4,5, . . . ,8. [Note that even for the s = 1/2 case we have excluded
the (available) LSUB9 and LSUB10 data here to be consistent with
the s > 1/2 cases.]

thereby demonstrating that for s → ∞ the
√

3 × √
3 and the

q = 0 states become degenerate.
Next we discuss the magnetic order parameter M . To

compare results for various values of s it is useful to consider
M/s. Since for s → ∞ the chosen reference state is an
eigenstate, we would get M/s = 1 within our CCM approach
in this classical limit. Hence, we may expect that by increasing
the spin quantum number the quantity M/s becomes nonzero
for a certain value s > s0 in the whole range 0 � λ � 1 (see,
e.g., Ref. 4). In Fig. 6 we show the extrapolated magnetic
order parameter for both reference states as a function of the
anisotropy parameter λ, for values s = 1/2,1, . . . ,5/2,3. For
large values of s the scaled order parameter becomes almost
constant, M/s ∼ 1, over a wide range of λ values. However, as
the true kagome point at λ = 1 is approached we find a steep
decay of M/s. Nevertheless, only for s = 1/2 (as discussed
already above) and for s = 1 does the extrapolated order
parameter vanish at λ = 1, whereas M/s remains nonzero
for s > 1. Hence, our data suggest that for higher values of
s a

√
3 × √

3 magnetic order might be possible. To provide
more detailed information on the GS properties of the kagome
HAFM, we present in Table II CCM-SUB8-8 data as well

TABLE II. CCM results for the HAFM on the kagome lattice
(i.e., at λ = 1) for spin quantum numbers s = 1, 3/2, 2, 5/2, 3. The
quantity e0 ≡ E/N is the GS energy per spin and M is the magnetic
order parameter (sublattice magnetization). The SUBn-n results
are extrapolated to n → ∞ according to e0(n) = a0 + a1(1/n)2 +
a2(1/n)4 and M(n) = b0 + b1(1/n)1/2 + b2(1/n)3/2 using SUBn-n
data for n = 4, 5, 6, 7, and 8.

√
3 × √

3 q = 0

s = 1 e0/s
2 M/s e0/s

2 M/s

SUB8-8 −1.383 644 0.580 079 −1.379 680 0.607 293
extr4-8 −1.4031 <0 −1.3965 <0
s = 3/2 e0/s

2 M/s e0/s
2 M/s

SUB8-8 −1.257 354 0.690 229 −1.254 588 0.709 167
extr4-8 −1.2680 0.0744 −1.2643 0.2438
s = 2 e0/s

2 M/s e0/s
2 M/s

SUB8-8 −1.195 442 0.735 642 −1.193 145 0.754 580
extr4-8 −1.2026 0.2029 −1.2000 0.3645
s = 5/2 e0/s

2 M/s e0/s
2 M/s

SUB8-8 −1.157 697 0.766 290 −1.155 703 0.785 822
extr4-8 −1.1627 0.2942 −1.1607 0.4586
s = 3 e0/s

2 M/s e0/s
2 M/s

SUB8-8 −1.132 263 0.788 722 −1.130 497 0.808 862
extr4-8 −1.1360 0.3583 −1.1344 0.5256
s → ∞ e0/s

2 M/s e0/s
2 M/s

Exact −1 1 −1 1

as extrapolated data at λ = 1, for values of the spin quantum
number s = 1, 3/2, 3, 5/2, and 3. We see clearly that the
scaled GS energy per spin approaches the classical value,
e0/s

2 = −1, quite rapidly as s is increased. On the other
hand, even for the largest spin considered here (viz., s = 3)
the extrapolated order parameter remains relatively small,
particularly for the

√
3 × √

3 state.
Our CCM data for e0 and M , available up to s = 3, together

with the known results in the classical limit, lims→∞ e0/s
2 =

−1 and lims→∞ M/s = 1, also allow us to discuss the s

dependence of e0/s
2 and M/s in the large-s limit. In spin-wave

theories one typically obtains expansions for eo and M in
powers of 1/s.53,54 For the GS energy of the kagome HAFM the
standard linear spin-wave theory yields for both the

√
3 × √

3
and the q = 0 states, e0/s

2 = −1 − 0.4412/s (see Refs. 2 and
9). On the other hand, due to the presence of the flat zero mode
in the kagome HAFM, the integral for the order parameter
diverges.9,55 Using an effective spin-wave theory, in which
short-wavelength fluctuations are neglected, Asakawa and
Suzuki9 obtained M/s = 1 − 0.336/s, whereas Chubukov7

found fluctuation corrections proportional to s−2/3 (in contrast
to conventional spin-waves) by using a self-consistent spin-
wave approach.

Here we use our extrapolated CCM data for s = 3/2, 2, 5/2,
and 3 to find the leading corrections to the classical values. By
fitting the extrapolated GS energy e0/s

2 with a fitting function
f (s) = −1 + a1s

−a2 , we obtain a value for the exponent a2

very close to one for both reference states. Hence, finally we
have fitted the extrapolated CCM data for e0/s

2 using f (s) =
−1 + x1s

−1 + x2s
−2. The fits yield the corresponding values

x1 = −0.414 (−0.410) and x2 = 0.018 (0.020) for the
√

3 ×√
3 (q = 0) reference states, as shown in Fig. 7(a). Obviously,
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FIG. 7. (Color online) Dependence on the spin quantum number
s of (a) the extrapolated scaled GS energy per spin, e0/s

2, and (b) the
extrapolated scaled magnetic order parameter, M/s, of the kagome
HAFM. For M/s the exponent α = 1/2 for the

√
3 × √

3 state and
α = 2/3 for the q = 0 state. (Symbols are CCM data points; lines are
fits to the data points).

the 1
s

prefactor is close to that of the linear spin-wave theory,
and the contribution of the next order is small. Note, however,
that if the fitting function f (s), with the above given values for
x1 and x2, is applied to the s = 1/2 case, it does not reproduce
the GS selection of the q = 0 state in this extreme quantum
case [c.f., Fig. 7(a) at the value 1/s = 2].

Next we use g(s) = 1 + b1s
−b2 as a fitting function to

fit the extrapolated CCM order parameters M/s, again us-
ing data or s = 3/2, 2, 5/2, and 3. For the exponent b2

we get the values b2 = 0.529 for the
√

3 × √
3 reference

state and b2 = 0.666 for the q = 0 reference state. Clearly,
the leading correction is not proportional to s−1; rather

Chubukov’s result7 of a leading correction proportional to
s−2/3 is confirmed for the q = 0 state. By contrast, for
the

√
3 × √

3 reference state our results are in favor of a
leading correction for the order parameter proportional to
s−1/2. Hence, finally we have fitted the extrapolated CCM
data for M/s using the fitting functions g(s) = 1 + y1s

−1/2 +
y2s

−1 [g(s) = 1 + y1s
−2/3 + y2s

−4/3] for the
√

3 × √
3 [q =

0] reference states. The fits yield the corresponding values
y1 = −1.058 [−1.000] and y2 = −0.094 [0.006], as shown in
Fig. 7(b).

IV. SUMMARY

In the present investigation we present data for the GS
energy per spin, e0, and the order parameter (sublattice
magnetization), M , of the kagome HAFM for spin quantum
numbers s = 1/2, 1, 3/2, 2, 5/2, and 3, using high-order
CCM-SUBn-n calculations based on the

√
3 × √

3 and the
q = 0 reference states. Our best estimate of the GS energy for
the s = 1/2 case, viz., e0 = −0.4372, is clearly below rigorous
upper bounds reported recently,27,28 and it also agrees well with
recent accurate DMRG28 and ED29 results. We find that the GS
selection by quantum fluctuations depends on the spin quantum
number s. While for s = 1/2 the q = 0 state is selected, for
all values s > 1/2 the

√
3 × √

3 state has lower energy. Using
CCM data for s = 3/2,2,5/2 and 3 we determine also the
leading quantum corrections to the classical values of the GS
energy and the order parameter.

For the order parameter M/s obtained by an appropriate
extrapolation of the CCM-SUBn-n data we get small (but
nonzero) values M/s > 0 for all values of the spin quantum
number s > 1. For s = 1/2 and s = 1 the situation is different.
Clearly, in any SUBn-n approximation for finite n we have
a magnetic quantum ground state (i.e., a finite M/s) with
the corresponding symmetry of the classical ground state.
Extrapolating to n → ∞ we get a nonmagnetic ground
state (vanishing order parameter) but locally the magnetic
correlations still fit to the symmetry of the classical ground
state. However, they can be extremely short ranged; i.e., the
ground state can be considered as a spin-liquid state with spin
correlations on a very short-ranged length scale. However, the
true kagome ground state might have also an admixture of
contributions of other classical ground states renormalized by
quantum fluctuations.
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