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The electrostatic and exchange interactions between two ground state 3 ¢ O, molecules have
been calculated ab initio by means of first order exchange perturbation theory. The
nonorthogonality problem has been handled in a second-quantized hole-particle formalism by a
generalization of Wick’s theorem. The splitting between the spin states, S = 0, 1, and 2, of the O,—
O, dimer 1s accurately represented by the Heisenberg Hamiltonian. By means of a spherical
expansion for the orientational dependence and exponential functions for the distance
dependence of the expansion coefficients, complete analytic potential surfaces have been

evaluated, both for the spin-independent term in the Heisenberg Hamiltonian AE and for the
exchange coupling parameter J. The strong anisotropy and distance dependence of J indicate that
magnon-libron and magnon—phonon coupling in solid O, are likely to be strong. A simple four-
electron model containing the O, open shells only reproduces the structure dependence of J

qualitatively, but not quantitatively.

l. INTRODUCTION

The (bulk) properties of molecular matter are essential-
ly determined by the intermolecular potential, which, for
normal closed-shell molecules, depends on the distance
between the molecules and their orientations. For O, mole-
cules, however, which have an open-shell °Z ;- ground state,
the intermolecular potential depends on the orientations of
the molecular (S = 1) spins also. That 1s, for O,-0O,, three
distinct potential surfaces exist, corresponding with the sing-
let (S = 0), triplet (S = 1), and quintet (S = 2) states of the
dimers arising from the coupling of the monomer ground
states. The splitting between those surfaces i1s caused by O,—
O, exchange interactions and there 1s a further splitting of
the nonsinglet surfaces due to smaller magnetic coupling
terms.' >

This extra (spin) degree of freedom leads to many inter-
esting bulk properties. Solid oxygen under its own vapor
pressure can exist in three phases which differ not only in
structure, but also in their magnetic ordering.'~*> The mono-
clinic @ phase, stable between 0 and 23.8 K, 1s the only ho-
mogeneous antiferromagnet known to date. Orientationally
it 1s ordered also; the O, molecules are arranged in layers
with their axes parallel to each other and perpendicular to
the layer (ab ) planes (see Fig. 2 of Ref. 1). The rhombohedral
3 phase, stable between 23.8 and 43.8 K, 1s structurally simi-
lar to the a phase; the molecules are just slightly displaced in
the layer planes so that they make a hexagonal arrangement.
Magnetically it is quite different, however. It has been estab-
lished recently*'~%* that the / phase has short range antifer-
romagnetic order with the three-sublattice 120° spin ar-
rangement proposed earlier.'”~'> The cubic y phase, stable
from 43.8 K to the melting point at 54.4 K is orientationally
disordered and paramagnetic, just as liquid oxygen.

The dominant magnetic coupling term in these con-
densed phases of oxygen is the exchange interaction between
the O, molecules, which is commonly represented in the
form of a Heisenberg Hamiltonian:
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H, = —2) JasSa*Ss. (1)
A<B

It is this coupling which is believed,®'®*>* for instance, to
drive the so-called magnetoelastic f—«a phase transition. For
some time, not much more was known about this interaction
than that the coupling was antiferromagnetic (/o5 <0). In
the usual models for the magnetic structure and excitations
(magnons) in solids the coupling parameter J 55 1s taken as a
constant for nearest neighbors and, sometimes, next nearest
neighbors in the lattice. In DeFotis’ 1981 review,' one can
find values of J obtained from experiments and semiempiri-
cal calculations which range from — 3.0to — 19.8 K for the
nearest neighbors in @-O,. More recent experiments seem to
converge towards higher values for this parameter, but there
are still substantial differences between, for instance, the val-
ues of Stephens et al.*' and Slyusarevetal.,'*'” — 25K, and
that of Meier et al.,'”** — 38 K. It is noteworthy that the
differences seem to be related to the type of measurements
(magnetic susceptibilities, heat capacities, magnon frequen-
cies) from which the J values have been derived. The recent
experimental data on the distance dependence of J and on
the relative magnitudes of J for nearest and next nearest
neighbors in a-0,'®'"'%*! are in reasonable agreement.

In principle, however, the coupling parameter J ,5 1n
Eq. (1) depends not only on the distance between the O,
molecules A and B, but also on their orientations, just as the
other (spin-independent) terms in the intermolecular poten-
tial. In a recent letter by van Hemert and the present auth-
ors,?® it is demonstrated that the distance and orientational
dependence of J ,5 can be obtained from ab initio calcula-
tions. This preliminary study has shown that indeed J de-

pends strongly on the distance and the orientations of the
monomers. In order to obtain the effective J value probed by

the measurements, one has to average (thermally) over the
lattice vibrations and this might well explain some of the
experimental differences. Moreover, the geometry depen-
dence of J indicates that strong coupling can occur between
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the magnons and the lattice vibrations (translational and li-
brational phonons). The possibility of this coupling has been
mentioned before,'?'®**** in order to explain some experi-
mentally observed effects and discrepancies, but it could not
be introduced quantitatively into the models because the

structure dependence of J was not known.

Besides the extensive work on solid oxygen, there are
experimental data available on (O,), dimers in molecular
beams,?”*® in the gas phase,”””° and diluted in solid rare-
gas®! or nitrogen>* matrices. For the interpretation of these
data, too, it is very useful to have knowledge of the O,-0O,
potential and, in particular, of the Heisenberg exchange
term (1). From scattering data only the 1sotropic, spin-inde-
pendent part of this potential has been derived.”” In the field
of ab initio calculations, one has only looked until now at the
““chemical bonding” region of O,,”* using small basis sets.

In the present paper, we have undertaken the task of
computing the full distance and orientational dependence of
the coupling parameter J 55, as well as the other exchange
and electrostatic contributions to the O,-O, potential, by
means of extensive ab initio calculations using sizable bases.
As calculations of such interactions between open-shell mol-
ecules have not been done before, we have developed a new
formalism, which may have other applications as well. The
final results have been given in analytic form, so that they
can be used in lattice dynamics or scattering calculations, for

instance.

Il. THEORY

The exchange interactions between two open-shell
atoms or molecules can be represented 1n an exact manner in
the form of an effective operator in spin space:

H, = YI% (8. 85" 2
k

where §A and §B are the monomer spin operators. This
expression has been formally derived’>”° via the Dirac iden-
tity for the electron permutation operators. If multiple ex-
change interactions between the atoms or molecules are neg-
ligible, then one can truncate the expansion (2) after the
bilinear term and obtain the well-known Heisenberg Hamil-
tonian (1) (JYh= — 2J,5).

We wish to emphasize that, in order to calculate J 5,
the overlap between the orbitals on the monomers A and B
should not be neglected. Already in the simple Heitler—Lon-
don model for the exchange between two H atoms, one finds
that only the two-electron exchange integral survives, if the
overlap 1s zero. This integral being positive, the exchange
coupling constant J,p becomes necessarily positive as
well.”’ If one still wishes to account for antiferromagnetic
coupling, as found between the H atoms and also between O,
molecules, one has to invoke artificial charge transfer contri-
butions.'* This can be understood by realizing that the neg-
lect of overlap implies that the monomer orbitals are effec-
tively orthogonalized. Orthogonalization of the orbitals
leads to the implicit inclusion of charge transfer configura-
tions into the neutral dimer state. Explicit admixture of such
configurations 1s required then, in order to remove these
components. If the overlap i1s not neglected, however, anti-

ferromagnetic coupling can arise naturally, if the nuclear
attraction terms dominate over the two-electron exchange,
as in H,. We shall see in the results of Secs. III and IV that in
0,-0O, both ferro- and antiferromagnetic coupling can oc-
cur, depending on the orientations of the O, axes which de-
termine the overlap between the open-shell antibonding 7,
orbitals.

We have chosen to calculate the rather weak exchange
interactions between O, molecules in the van der Waals re-
gion by perturbation theory. An alternative would be a su-
permolecule O, treatment, but then the incorrect asymptotic
behavior of the Hartree—Fock wave functions necessitates
the inclusion of correlation, for instance via the CI (configu-
ration interaction) method. In such a supermolecule treat-
ment one gets so-called basis set superposition errors,>® both
at the Hartree—Fock and the CI level. Especially the latter
are practically impossible to correct for, and that while they
can be even larger than the physical interactions we are inter-
ested 1n.

In the usual Rayleigh—Schrodinger perturbation theory
one would employ products of the free monomer wave func-
tions. In order to include explicitly the exchange interactions
between the molecules, which for closed-shell systems lead
to the repulsive part of the van der Waals potential, it is
necessary to fully antisymmetrize these products. In the case
of O,—0O, we are especially interested in these exchange inter-
actions, as they cause both the exchange repulsion and the
splitting between the dimer spin states S = 0, 1, and 2, that
can be obtained from coupling the two monomer
S . =8 = 1states. This spin coupling has to be done expli-
citly in the zeroth order wave functions, in addition to the
antisymmetrization. We denote the spin-projected (by Pg)
antisymmetrized (by 4 ) products by P.A¥, ¥Wy. If such
wave functions are used in some form of exchange perturba-
tion theory,”” the first order energy yields the electrostatic
and exchange interactions between the unperturbed mon-
omer charge distributions and the second order energy
yields the induction and dispersion attractions, plus some
exchange contributions as well. The second (and higher) or-
der exchange terms are usually very much smaller than the
first order exchange energy,”” and since it is the O,—O, ex-
change interaction that we wish to calculate primarily, we

confine ourselves, 1n this paper, to the first order energy,
defined as

_ (PgAYQUQIH |PoAP QW)
(PsAW W QP AV W)
—(WOIH, W) — (PQH ¥ (3)

AE(l)

The (normalized) monomer °2 ; ground state wave func-

(0)

tions ¥ and ¥y are taken as restricted Hartree—Fock

LCAO-MO functions.*® It must be understood, of course,
that for a calculation of the complete O,—O, interaction po-

tential, at least the second order (attractive) dispersion inter-
actions have to be added (compare, for instance, the ab initio

N,-N, potential*').

For closed-shell molecules, such as N,, the evaluation
of the first order energy (3) is relatively simple, because the
monomer MO’s ¢ and ¢} occurring in ¥ and ¥’ can be
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orthogonalized, without affecting the dimer wave function
P AYYWY (which is a single closed-shell Slater determi-
nant in this case, with § = 0). Next, one can simply apply the
standard Slater rules for matrix elements over determinants
with orthogonal orbitals. In the case of O,—0O,, however, the
wave functions P.AY QWY except for the quintet .S =2
state, are not invariant under general transformations of the
occupled orbitals. Let us divide the O, monomer orbitals
into two sets: the closed-shell MO’s @7} and ¢} with u,v = 1-
7, running over the occupied o orbitals and the bonding 7,
orbitals, and the open-shell MO’s ¢;* and ¢;” with 7, j = 1-2
running over the degenerate antibonding 7, orbitals. The
electron pairs occupying the latter orbitals in each monomer
are coupled toa Y [~ state. Now, it is allowed to orthogona-
lize the closed-shell orbitals ¢7; and @, among each other
and to Schmidt orthogonalize the open shells ¢:* and ¢}’ onto
the closed shells, without altering the total dimer wave func-
tions PsA¥ ¥ . The open shells ¢;* and ¢’ have to remain
nonorthogonal, however. As we have argued at the start of
this section, the explicit consideration of their overlap is es-
sential for obtaining the correct exchange coupling constant
J i

Thus, we are left with the well-known nonorthogona-
lity problem®? in calculating the expectation value over the
many-electron wave function PcA ¥ Q' Q). There are several
ways to handle this problem, as described by Lowdin,*?
Prosser, and Hagstrom®’ and by ourselves,** but here we
outline a new method, based on a second-quantized hole-
particle formalism and the generalization of Wick’s theorem
to nonorthogonal bases. This method allows us to take maxi-
mum advantage of the orthogonality between the open-shell
or particle space {@},@ ;i,j = 1-2} and the closed-shell or
hole space { @ ,@>;u,v = 1-7}. The corresponding spin orbi-

J7i
tals, spanning the hole and particle spaces, respectively, will

be denoted by {¢,; @ = 1-28} and {#,;a = 1-8}. This iden-
tification of holes and particles i1s equivalent to defining the
occupied closed-shell wave function—a single 28-electron
Slater determinant—as the Fermi vacuum state. The hole-
particle method reduces the problem of 32 electrons effec-
tively to a four-electron problem; the 28 electrons in the Fer-
mi sea enter the Hamiltonian in the form of an effective
potential, exactly as in the case of orthogonal orbitals.*>+*°

In the theory outlined below we base ourselves on a
review by Paldus and Cizek*’ and lecture notes by Paldus.*®
These works can be consulted for more details and refer-
ences to the original literature.

Assume that the one-particle overlap matrix has the
following blocked form:

S, 0) -
S=(O s ) (4)

where, in our case, the 28-dimensional hole matrx
(Sy)a g = (¥, |¥3) has the form of a unit matrix and the
eight-dimensional particle matrix (S,),, = (¢, |#,) con-
tains the overlaps between the open-shell spin orbitals which
have been first orthogonalized onto the closed-shell space.
The orthogonality between the hole and particle states 1s
essential for the present formalism, but the hole states do not

have to be orthogonal. We define the dual or biorthogonal
basis*’**®:

|‘/’a> = ;‘¢ﬁ>sﬂa,

(5a)
Y =Y [¥,)S™
b
with the overlap matrices
S*P = (8~ l)aBE(Sh— l)aﬁ’
(5b)

Sab = (S— l)ab E(Sp— l)ab'

Next we define the creation operators by their action on the
physical vacuum state |0):

.10 =), a%tjo)= [#2),
(6)

0y =1¥5); 7|0y =R

The Hermitian conjugates of these operators acting on |0)
yield the zero vector, as usual. We impose the following anti-
commutation relations: |

[na,n2]+ = [ﬂa,ﬂm] + =5aﬁ,
(7)

(775 ] + = [127""] + = 6
with all other commutators containing one upper and one
lower index vanishing. These relations show that »“ annihi-
lates a particle created by n!. Similarly n,/7%", and also
n°/n! and m,/n"", are annihilation/creation pairs. The
Fermi vacuum 1s given by

20) = (It )10} = (et s, TTn" )10
with
(Dy|DPy) =det S,. (8)

Now, we invoke the normal ordering operator with respect
to the Fermi vacuum.**° This operator N orders any pro-
duct of creation and annihilation operators in such a way
that all particle/hole creation operators precede the parti-
cle/hole annihilation operators; the sign of the reordered
product is the parity of the reordering permutation. Further-
more, we define the contraction of any pair of operators with
respect to the Fermi vacuum by |

AR

nLn® =nln? — Nnly?). (9)
From similar definitions we obtain the following nonzero
contractions:

T l'?

N2’ =015 = 846

o iy i

NN =000 = 84

(10)

lat) g __

L 5
772;773=Sa5’ eyt =S8 &
'T‘bT:_Sab.

7’-7-;'72 S Sab’ 7] 77
A general n-particle state (for the O,—O, dimer n = 4) 1s giv-
en by

772.7722---77;,, P) (11)
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and the dimer Hamiltonian, with one-electron terms /;(1)
and electron repulsion terms (1,2) = r; ', reads*’”*®

A\ A 1 - . -
H=3 (Wlh g ynyn’ + -3 WPloldommgnn’s (12)
P.gq P.q

where the indices p, g, r, s run over hole labels a as well as
particle labels a. The calculation of the many-electron ma-
trix elements follows by a straightforward application of
Wick’s theorem. This theorem, well known for orthogonal
orbitals, can be applied without modification if we use the
contractions (10). First, we rewrite the Hamiltonian (12) in
normal product form with respect to the Fermi vacuum:

N\

H=E,+H, + H,
with

Eg= S 1h [4,) + -;—g}www(l Pt ),

A\

H, = S| flY, )N (min°),

A
H,

=3 W16, 0)ON o) (13)

and where the closed-shell Fock operator 1s given by

Vo )2 (14)

F)y=h(1)+ @91 — Py

Then, we write the matrix elements over the states (11), em-
ploy the generalized Wick theorem again, and note that, as
always,*>*® only the fully contracted terms survive in the
Fermi vacuum expectation value. This yields the following
results: |

(Do| 15, 75, M5, -5, | Po) = (det S, )(det A), (15a)
<¢0|77b,, o Tp, Hl’?Z, 772 D)
= (det S,)Y (¥, | f|¥,, Y(cofacA),,, (15b)
527

<¢0|77b,,"'77b, H2772:, 772 D)

— (det$,)S S (&, 0, |01 — Ppo)[hy, 1, Y(cofacAl,,. .

i<j k<l
(15c)

The overlap matrix A is an n X n submatrix of the matrix S :

SR S S S O S R S |

A = Wy |00) ij=lowun, (16
(cofacA), ” i1s the cofactor of 4;; in (det A), and
(cofacA), 4, 44, 15 the cofactor of 4, and 4; in (det A).

Although the matrix elements (15) have the same appearance
as Lowdin’s formulas,** they differ in the important fact that
our formulas include the effect of an indefinitely large set of
closed shells. In the present case of n = 4, the cofactors oc-
curring in these formulas can easily be calculated by the La-
place formula. If the number of particles outside the Fermi
sea 1s large, however, the route via the singular-value decom-
position of A** is to be preferred.

For the O,—O, dimer the states (11) with » =4 are
Slater determinants 4¢/})'sy’ which are not yet spin project-
ed. In order to get those eigenfunctions of S * with .S =0, 1,
and 2 which can be constructed from the monomer triplet
ground states S, = 1and Sz = 1, we can take the six deter-
minants with M¢ = 0 and make linear combinations by the
usual vector coupling rules:

SN U IS e i 1
s=D]=[t o o o0 o0 -1
S=0 M. doe ¥ oodercd il
M+ Mos My - M, - [Pod
M+ M+ My - M, - |Po)
My + Moz My = My | Po?
A b oot ot ot (17)
Mair Mo Mo My |Po)

M+ Mos Mo My - |Po)

M+ M+ Ma— Mo=|Po)

Three other linear combinations of these determinants cor-
respond with the excited '4, states of one or both O, mon-
omers. Those will not be considered in the present paper.
Theindices a; and b, label the open-shell 7, orbitals or mon-
omers A and B, respectively; the superscripts + correspond
with m; = + 1. These labels can be simply substituted into
the general formulas (15) for the matrix elements and the
integrals over the spinfunctions can be carried out. The four-
dimensional overlap matrix A 1s always 2 X 2 block diagonal,
due to the orthogonality between the spin functions. Similar
simplifications occur in the other integrals because the Ha-
miltonian A is spin independent. The final result, in terms of
spatial integrals only, 1s

(Poln, -1, -1, MM, -7, - |Po) = (det A,)(det A,) (18a)
and
(Poln, 1,1, 1, H 0.7 71, |Py) = Eo(det Aj)(det A,)
+det )] 3 (@) 7100000 Jpn )= 1+ (g lilt - Polle.,e.,) |
ij=1
+detA)| 3 (@4l T10,) (@l M= 11+ (g il — Pullg, )
I =
2 2 p St
$e 7Y o AR AR 0w P P AP @5 W BEEEET, (18b)
ij=1kil=1
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with the matrices A, and A, given by

(Al)'\i s <¢u,- Igjxj > )
(19)

Ay = (@, |,

and the label combinations x,,x,,y,,y, and u,,u,,v,,v, run-
ning over the six determinants in Eq. (17). The effect of the
closed shells 1s simply incorporated in terms of the closed
shell energy

14 Y 14 3
EO =2 z <¢a lh |¢a> =1 z<¢a¢6|{j(2 e Pl2)|¢a¢ﬁ>
a=.il a3
20)

and the closed-shell Fock operator

A A 14 A\
f)=h(1)+ > (@.(2)|0(1,2)2 — Py,)|@,(2))2  (21)
a=]

where A (1) 1s the usual kinetic energy and nuclear attraction
operator. The matrix elements (18), transformed according
to Eq. (17), yield the first order energy (3) for. S = 0,1, and 2 1f
the monomer restricted Hartree—Fock energies are subtract-
ed.

Because the splitting between the § = 0, 1, and 2 states
in the O,—0, dimer 1s primarily due to the exchange interac-
tion between the four open-shell electrons, one can try to
calculate this splitting from a simple four-electron model.
The orbitals entering this model are just the degenerate 7,
orbitals on each monomer, which can be further approxi-
mated as simple antibonding combinations of the atomic
2p, and 2p_ orbitals. The open-shell interactions can be

evaluated by using the same formulas (17) and (18), with the
closed-shell energy E, =0 and the Fock operator (21) re-
placed by the simple one-electron operator /4 (1) with
screened nuclear charges (equal to + e on each oxygen nu-
cleus). Since the closed shells are omitted completely in this
model, it is not necessary to orthogonalize the open-shell
orbitals onto the closed-shell space, as before. The calcula-
tions by this four-electron model are much cheaper than the
all-electron calculations; in Sec. IV. we compare some re-
sults. In the literature some other models have been pro-
posed,"®*° which are even simpler and, therefore, more ap-
proximate.

I1l. COMPUTATIONAL ASPECTS AND RESULTS

As the weak exchange interactions between O, mole-
cules are very sensitive to the tails of the monomer orbitals,
we have calculated the restricted Hartree-Fock MO wave
function®® for the °2 ;- ground state of the O, molecule in a
rather extensivebasis, (11s,6p,2d ) contracted to[6s,3p,2d |, of
Gaussian-type atomic orbitals (GTO’s) with relatively many
diffuse functions. This basis set is similar to one of the larger
bases tested by Van Duijneveldt et al.,**~° but with still an-
other diffuse s function added on each O atom. Moreover, we
have repeated the calculations at some points of the potential
surface with an even larger (13s,8p,2d) contracted to
[8s,4p,2d ] basis. The calculated properties of the O, mon-
omer are listed in Table I, the first order O,-0O, interactions
for the two basis sets are compared in Table II. From these

data it appears that the results are reasonably converged to

the Hartree—Fock limit (to within a few percent) already for
the smaller basis, which has been used in our further calcula-

tions.
In the four-electron model described at the end of Sec.

II, we have used 2p, and 2p, orbitals on each oxygen atom,
of single-zeta Slater type ({ = 2.2266a, ' %), each represent-

ed by a contracted set of 6 GTQO’s.””

The monomer calculations and the computation of the
dimer integrals over the partly orthogonalized molecular or-
bitals, as occurring in expression (18), have been performed
with the ATMOL package.”® Each point on the potential
surface took about 30 min NAS-9040 or 15 min CRAY-1S
CPU time. (The more symmetric points in Ref. 26 took only
7 min on the CRAY-1S.) Most of the calculations have been
done on the NAS-9040 university computer at Nijyjmegen.

We have calculated first order O,—O, interaction ener-
gies (3) for the three different spin states.S = 0, 1, and 2 of the
dimer. Since we have found that the splitting between these
states i1s accurately represented by the Heisenberg Hamilton-
ian (1), see Sec. IV, we present our results in terms of the
average first order interaction energy

AE =[AE'"V(S =0)+34E"(S'= 1)
+ 54E*"(S = 2)]/9 (22)
and the (average) Heisenberg parameter
J=[AE"(S=0)—AE"(S=1)]/4
+ [AEY(S'=1)— AE™(S =2}]/8. (23)

The internal coordinates describing the O,—O, poten-
tial surface are R, the distance between the molecular centers
of mass, 8,, g and ¢ = @y — @A, Where (6 5,pA) and
(0 5, ) are the polar angles of monomers A and B, respec-
tively, in a body-fixed coordinate frame with the z axis along
R. In an arbitrary frame the full distance and orientational
dependence of the interaction energies is conveniently ex-
pressed in the form of a spherical expansion®®

F(R,Q)o,, o)

— (477')3/2 2 fLA,LB.L (R )ALA.LB,L(Q’O)A’(DB) (24)

L,,LgL

with angular functions

TABLEI %X ; ground state O, properties calculated from restricted Har-

s
tree-Fock LCAQO wave functions.

— —_—

(11s, 6p, 2d) (13s, 7p, 2d) (13s, 7p, 2d)

Basis: [6s, 3p, 2d] [8s,4p, 2d] uncontracted Literature
Energy — 149.6447 — 149.6540 — 149.6556 — 149.6659"
(hartree)
Multipole

Q. (ea?) — 0.2644 — 0.2636 — 0.2609 :

+ 0.25°
Q.leay) 4.095 3.990 4.034
QOgleag) 16.26 18.00 18.12

" Estimated Hartree—-Fock limit (Ref. 51).
® Experimental values (Refs. 52 and 53).
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TABLE II. O,—O, exchange repulsion AE and Heisenberg parameter J with different basis sets at R = 6a,.

Geometry AE (K) J(K)
On,Op, @ [6s, 3p, 2d ] [8s, 4p, 2d I 6s, 3p, 2d ] [8s, 4p, 2d |
L 0% "H0%A 0" 12 137 12 303 — 121 — 124
r 90 * 050 1 601 1 642 — 23.7 — 23.7
H 902 ~905 =" 311.8 32215 — 14.1 — 14.5
X 90%,. ‘907 90° 249.1 259.1 + 2.73 + 3.42
S 26:57,:26.5% 0° 6 460 6 556 — 8.30 — 7.89
Ap 1,020, ,08) i

fLA,LB,L(R ) = gs ALA,LB,L(HA ,0p,@)

T 2
(LA B b ) 0A=0.LB=0J;=0
& MA,%B.M My, My M X F(R,0, ,05,p)d (cos 0, )d (cos Og)dp. (26)
XY m (©a)Y ar (05) Y 5 (€2). (25)

The functions Y, ,,(w) are spherical harmonics and the first

factor in Eq. (25) is a 3-j coefficient.”” The angular functions

A and the potential F, for which we can substitute AE as
well as J, depend on the polar angles of R and the molecular
axes denoted by {1, w, and wg, respectively. We can always
use the special body-fixed frame with € =(0,0),
0w, = (04,0), and wg = (0 5,pp ), because the functions (25)
are invariant under overall rotations. Due to this invariance
and the orthonormality of the functions, the expansion coef-
ficients can be written as

Just as in previous work,*' we have employed the fol-

lowing procedure. The potential F, in this case AE and J,
has been calculated for a grid of angular points (@ , ,0 5 ,9) at
each distance R. This grid was chosen such that the integra-
tion (26) can be carried out numerically. For cos 8 , and
cos 85 we have chosen the points and weights of Gauss—
Legendre quadrature and for @ Gauss—Chebyshev quadra-
ture.”® The number of quadrature points that have to be in-
cluded depends on the maximum values of L ,, L 5, and L

TABLE III. Comparison of the analytic representations of AE and J with ab initio data calculated independently.

Geometry Lol Pt
9}\ 88 ¢ R AE ab initio AE mml‘l DCV. Jab initio Janulu DCV.
(deg) (o) (K) (K) (7e) (K) (K) (70)
4 891 336 867 695 2.6 — 9877 — 9757 1.2
L 5 105 857 105 540 0.3 — 1122 — 1079 3.8
6 12 137 12123 0.1 — 121 — 118 2:2
0 0 0 7 1.324.7 1 324.3 0.0 — 13.2 — 13.0 1.6
8 139.00 139.84 0.6 — 1.44 — 1.57 9.0
4 95 858 89 670 6.5 — 1467 — 1300 11
/5 5 12 833 12 808 0.2 — 192 — 191 0.8
6 1 600.8 1 599.9 B3l — 23.7 — 23.6 0.4
90 0 0 7 186.54 186.42 0.1 — 2.85 — 2.84 0.4
8 19.80 20.53 3.7 —0.33 —0.43 30
-+ 18 353 16 826 8.3 — 772 — 762 1.3
H 5 2416.1 2 393.2 0.9 — 107 — 104 3.0
6 311.82 311.63 0.1 — 14.1 — 14.0 1.1
90 90 0 7 41.62 41.69 0.2 — 1.76 — 1.75 0.6
8 7.02 1.29 3.8 — 0.20 — 0.23 11
4 13717 12 869 6.2 +70.7 £A73 75
X 5 1914.0 1 945.7 1.7 + 16.5 +15.1 8.5
6 249.13 250.75 0.7 + 2.73 + 2.60 4.8
90 90 90 7 30.81 30.78 0.1 + 0.37 + 0.36 1.6
8 3.96 4.13 4.3 + 0.04 + 0.01 71
4 328 975 338 241 2.8 — 3757 — 2926 22
S S 48 813 48 826 0.0 — 230 — 221 4.1
6 6 459.9 6 460.4 0.0 — 8.30 — 7.70 1.2
20:31.20.5 0 7 789.42 789.20 0.0 + 1.52 + 1.58 3.4
8 91.28 90.27 1.1 + 0.49 0.47 4.9
A
100 80 0 6 415.40 414.69 0.2 — 14.5 — 14.1 2.8

® Analytic representation by Eqs. (24) and (27)—(29), with the coefficients from Table IV.
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TABLE IV. Expansion coefficients.
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A. Expansion coefficients” of AE, defined by Eqgs. (24), (27), and (29): multipole interactions are given by Eq. (28).

LA Ly L® go(K) a B Y

0 0 0 1592.83 12.527 1.083

2 0 2 975.55 12.696 1.081

2 2 0 164.96 12.170 2.185

2 2 2 2252329 12.497 1.731

2 2 4 597.69 13.234 0.793

4 0 4 92.42 15.316 4.712

4 2 2 17.97 13.466 5.314

4 2 4 —27.60 14.482 4.522

4 2 6 78.15 15.875 3.580

4 4 0 0.844 11.980 6.708

4 4 2 —1.193 12.704 6.060

4 4 4 1.960 14.126 5.552

4 4 6 — 4.264 16.157 5.896

4 4 8 15.84 17.962 4.934 =

6 0 6 1.363 13.032 o — 28.159
6 2 4 1.005 17.441 18.233 o

6 2 6 — 1.349 12.488 o 7:139
6 2 8 1.880 14.204 i — 20.401
6 4 10 0.918 16.403 ks — 8.679
6 6 12 0.173 20.358 — 6.999 iy

8 0 8 —0.315 13.578 0 13.101
8 2 10 — 0.545 14.758 o 10.188

B. Expansion coefficients® of J, defined by Egs. (24) and (29). =5
L, Ly L go(K) a 5 14

0 0 0 — 44296 11.876 i — 7.702
2 0 2 — 4.4252 14.908 2.847 £

2 2 0 — 1.306 8 12.674 0.669

2 2 2 0.629 2 14.487 — 0.340

2 2 4 —3.2450 13.884 — 0.662

4 0 4 0.898 1 6.545 15.248

4 2 2 0.376 3 8.494 2.215 1o

4 2 4 0.066 2 11.217 —=32:713
4 2 6 2.379 3 10.644 1.199 S

4 4 0 —0.099 9 6.061 — 0.632 K

4 4 2 0.043 6 9.986 o 24.588
4 4 4 —0.1802 10.009 8.199
4 4 6 0.717 7 11.764 i 7.207
4 4 8 — 8.689 1 11.161 0.838 i

6 0 6 0.403 5 10.655 2.013

6 2 4 0.049 1 9.963 — 3.250 N

6 2 6 —0.0159 11.578 23.155
6 2 8 0.771 4 12.356 — 1.926 G

6 4 4 — 0.008 61 9.443 s — 11.254
6 4 6 0.013 3 10.816 — 23.285
6 4 8 0.110 8 12.689 i 11.907
6 4 10 —2.8009 12.198 —0.165

6 6 0 0.036 7 14.620 0.405

6 6 2 0.065 5 14.701 0.087

6 6 4 0.058 3 14.835 0.348

6 6 6 0.0270 15.156 — 4.066

6 6 8 0.022 7 19.269 21.686 e

6 6 10 0.022 3 13.570 eRh 19.605
6 6 12 —1.256 9 13.675 — 1.800

8 0 8 0.047 3 12.057 522399

8 2 10 0.110 2 13.905 — 4.428 cole

8 4 10 0.002 36 13.696 5 72.913
8 4 12 —0.439 4 13.321 — 1.011

8 6 2 0.009 30 15.679 —3:791

8 6 4 0.022 9 14.669 1.554

8 6 6 0.032 8 15.213 —0.916

8 6 8 0.022 4 15.422 — 0911

8 6 10 0.012 7 15.834 2.592 157

8 6 12 0.000 84 13.905 Voo 81.246
8 6 14 —0.260 8 15.120 — 3747 S

——

“Terms in the spherical expansion which are less than 1/2000 of the dominant (0, O, O) term have been omitted.
For R > 15a, the term with £ <0 should be put equal to zero.

®The coefficients are symmetric with respect to interchange of L , and L .

“Terms in the spherical expansion which are less than 1/1000 of the dominant term have been omitted. For

R > 15a, the terms with S < 0 should be put equal to zero.
Y The coefficients are symmetric with respect to interchange of L , and L g.
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that must be included in the expansion (24) or, in other
words, on the anisotropy of potential F. After some experi-
mentation with the results of the four-electron model, de-
scribed in Sec. II, we have found that a 5X 5 X 5 grid on the
interval 0<8 5, <7/2,0<0 g <7/2,0<@<missufficient to cal-
culate the coefficients f; , ,(R)uptoL , =8,Ly = 8, and
L = 14, inclusive. This interval has been reduced by using
the symmetry present in the O,—O, dimer; further use of this
symmetry leads to 75 “irreducible’ points. Truncation of the
expansion after the (L , ,L 5,L ) = (8,8,14) term seemed to be
allowed, even for the strongly anisotropic J surface. Thus,
the complete all-electron calculations have been performed
for a grid of 75 angular points and the expansion coefficients

(26) have been calculated for AE andJatR = 5,6, and Tag:
The final results demonstrate that the accuracy of the spheri-
cal expansion, up to (8,8,14) terms inclusive, is about 0.01%

for AE and about 1% forJ (root mean square deviation for

all grid points). Moreover, we have computed AE and J at
26 other points (see Table III), in order to make an indepen-
dent check on the accuracy of the expansions.

As the exchange interactions are related to the overlap
between the monomer wave functions, they are expected to
depend exponentially on the distance R. The average first

order energy AE contains also the electrostatic multipole—
multipole interactions, however, which decrease as R —"

These multipole-multipole interactions only contribute®® to
the spherical expansion coefficients with L = L , + L 5. So,

the expansion coefficients of AE are finally represented as
functions of R by

fLA.LB.L(R)zéLA-i-LB.LCL LBR_LA—LB—I‘FfL Y o L(R),

(27)
where the electrostatic coefficients are given by
2 (2L, + 2Lg) i
CLA,LB =(— I)L : : Qz.A QLB
(2L, + 1)(2Lg + 1)!
(28)

with the multipole moments from Table I (first column).
The exchange contributions /7" ; ,(R) are given, as
functions of the reduced distance x = (R Rgl/R,, as

s Lol R)=8r 1 r(x)

_gLA.LB. (1 + }/LA,LB,LX)

SCRpl = GV . TR 29)

For R, we take the nearest neighbor distance in solid a-O,
(3.200 A) The expansion coefficients of J are purely expo-
nential and also given by the form (29). For those coefficients

ST, (R )which change sign, we have assumed that 5 = 0;
for the positive or negative definite coefficients we have tak-

en ¥ =0. The remaining three parameters, (g,,a,y) or

(g0, ), respectively, can be exactly obtained from the calcu-
lated values of f“*(R ) at R = 5,6, and 7a,. The final expan-

3 Easlimads | gl Laslon ks | ST Pl B A
sion-parametersg,® " ,a * " Jp M M andy Y ™, which

completely determine the surfaces AE (R,Q,0,,05) and
J(R,{),», ,0y) are collected in Table IV.

IV. DISCUSSION

As mentioned already in Sec. III, we have found, in the
first place, that the splitting between the AE ‘"’ surfaces for
the three spin states .S = 0,1, and 2 of the O,—O, dimer, can
be accurately represented by the Heisenberg Hamiltonian
(1). That 1s, the triplet—quintet splitting (=4 J) is twice the
singlet—triplet splitting (=2 J). This implies that multiple
exchange interactions are negligible. Only for distances R
which are considerably smaller than the nearest neighbor
distance 1n solid a@-O, (R, = 3.2 ;\), we observe deviations
from this rule, but then the O,—-O, exchange repulsion itself
is already of the same size as the '4 ,—% ~ splitting in the O,
monomers, SO that the theory which leads to the effective

spin Hamiltonian (2) breaks down anyway. This occurs actu-
ally for the smallest distance in Table III, R = 4a,=2.117

A, where we have still given AE and J, but where one
should realize that our first order model (3) does not hold
anymore.

The structure dependence of AE andJ has been given
analytically, in the form of a spherical expansion (24) for the
orientational dependence, with coefficients (27)—(29) de-
pending on R (see Table IV). In Table III we observe from
the values given at R = 5,6, and 7a,, that the spherical ex-

pansions accurately reproduce the values of AE andJ, even
for various orientations which have not been used in deriving
these expansions. Even subtle features, such as the sign
change of J for the § geometry between R = 6 and 7a,, are
reproduced. In principle, the expansion has been continued
uptoL , =8, Lz =8, L = 14 terms inclusive. In practice,

we could neglect several lower terms, especially for AFE
which 1s much less anisotropic than J (see below). From the
values given in Table III at R = 4 and 8a,, we can see that
even the extrapolation of our results to smaller and larger
distances 1s reasonable in general. We emphasize, however,

that the physically important region lies between 5 and 7a,
(2.646 and 3.704 A). For smaller distances R the exchange

repulsion AE between the O, molecules is so large that such
distances cannot be reached in most physical processes. For
distances beyond R = 7a, the exchange interactions espe-
cially J, have almost completely died out.

The orientational dependence of the *“‘exchange repul-
sion” AE isstrong, but relatively simple (see Fig. 1). Many
of the higher terms in the spherical expansion vanish. The
behavior of this exchange repulsion can be roughly described
as an atom-atom repulsion depending exponentially on the
intermolecular atom—atom distances; it is very similar to the
N,-N, repulsion.*' The multipole-multipole interactions
have not been explicitly plotted in Fig. 1, because they are
completely negligible at R = 6a,. Note in this respect that
the O, quadrupole moment is about four times smaller than
the N, quadrupole.

The orientational dependence of J is very interesting.
Even the higher terms in the spherical expansion contribute
significantly, although at (L ,,L g,L ) = (8,8,14) the expan-
sion seems finally converged. Especially marked 1s the (4,4,8)
term, being the largest of all for R>5.5a,. In Fig. 1 we ob-
serve, for instance, that J changes sign four times for a simple
parallel rotation of two O, molecules from the linear config-
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£ (K) J (K) orientational dependence of the older semiempirical models
for J ''® is even qualitatively incorrect.
A= ba. Next we tum to the experimental data on solid oxygen.
i In agreement with all measurements,’ we find that the cou-
pling between O,—O, pairs in the parallel (H ) geometry, as
/\ they occur in the layers of « and 8 O, crystals, but alsoin O,
T U layers adsorbed on graphite,'*>”=°* is antiferromagnetic.
The strongest, intersublattice, coupling J, occurs between
EY -10 the nearest neighbors (R, = 3.200 A) in a—0,. It is not possi-
\ ble, however, to make a direct comparison between our value
\ -20 of J, calculated at R = 3.200 A, J,= —12.5 K, and the
“ experimental values, because the averaging of J over the lat-
‘ | ‘\ 10 tice vibrations can make a substantial difference. Thus we
: have found from a simple model of independent harmonic
“ | 1 oscillators®® that the averaging of J,(R ) over the translational
: 1 phonons can effectively increase J, by a factor of 2.5
‘, o (( J,) = — 30 K), which brings it in the range of recent ex-
| i perimental data: J, = — 25,'®!'"?! — 38 K.'” This increase
'l “ > 1s due to the steep exponential distance dependence of J,(R );
" & the strong orientational dependence (see Fig. 1) indicates
) “ that averaging over the librations may change the effective J,
2000 g0 as well. In Fig. 2 we have plotted explicitly the variation of J,
,' b | along the normal coordinates of some librational modes in a-
! ' -80 Q.
| \
| AE 4. g
1000 J7 (K)
-100 L+b
+ 5
-10
0 & ————— - e
o " ~o } "
e frée persl e ashvige
0°0°0° 90°,90°0° 90° 90° 90° 90° 0°0° 0° 0°0° 0 0 T
L H X T L O (degrees)
FIG. 1. Orientational dependence of AE and J. The full lines represent the
results of the all-electron calculations, the dashed line refers to the four-
electron model described in the text. The multipole contributions to AE
are not drawn explicitly because they are negligible at R = 6a,, |_+a
-5
uration (6 , = 8 = 0°) to the H structure (0 , =65 = 90’, Y
@ = 0°). Most sign changes qualitatively follow the (4,4,8) L,
term. They can be understood by considering the nodal char-
acter of the open-shell antibonding 7, orbitals on the O, -10
monomers, and remembering that (see Sec. II) for zero over-
lap between the monomer orbitals, / has to be positive
(Hund’s rule), while for “normal” overlap (i.e., overlap :
which is not specifically small because of near cancellation T ~ Ly
between positive and negative lobes of the wave functions) J
is negative. A typical example of almost zero overlap, due to -15
symmetry, isthe crossed (X )structure(8 , =05 = @ = 90’).

The J values from the simple four-electron model ex-

plained at the end of Sec. II show the same slow convergence
of the spherical expansion. Qualitatively they follow the
orientational dependence of the all-electron J values (see Fig.
1); quantitatively they are quite inaccurate, however. The

FIG. 2. Variation of the (intersublattice) exchange coupling parameter J,
between the nearest neighbors in solid @-O, along some normal coordinates
of libration. The labels a and b refer to librations around the crystalaand b
axes, respectively, (Ref. 1); the + and — signs denote in-phase and out-of-
phase librations of the molecules on different sublattices.
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The distance dependence of J (R ) which we find from
our calculations i1s roughly exponential, cf. Eq. (29), with the
exponents varying between 11 and 15R ; ' (3.4and 4.7 ArH
for the leading terms in the spherical expansion. This agrees
well with the exponential (exponent =4.3 A~' Ref. 22)and
R~ " laws (n = 10, Ref. 21, n = 12 to 15,''® n = 14'°) ob-
tained from pressure and temperature dependent measure-
ments on «, 3, and ¥ O,. Also the ratio J,/J, between the
intrasublattice (R = 3.429 A) and intersublattice (R = 3.200
A) coupling in a-O,, which we calculate (8, = 65 = 90",
@ =0°):J,/J, =0.42,1s 1n good agreement with experiment:
J./J, =0.41 to 0.43,'>'7 0.5 4+ 0.1.*!

From the preliminary calculations*® we have found that

the coupling between the nearest O, pairs (R = 4.186 /3;) In
adjacent layers of a-O, 1s very weak, but ferromagnetic
(/53> 0). The latter result, which was obtained by keeping the
O, molecules in a shifted-parallel (S') geometry (6, = O g
= 26.5°, @ = 0) at R = 4.186 A, is contrary to experiment.
In Fig. 1 we observe, however, that the (small) positive value
of J; just occursin anarrow ( + 4°)rangeof 6 , and 6 g angles
around 20°; also at smaller distance (R = 3.175 1&) J5 for
6, =605 =26.5 1s negative again (see Table III). So it 1s
clear that the angular and distance averaging of J; may easily
change its sign. It will still remain small, though, as found
from recent experiments.'®'”*'

Finally, we like to make some remarks pertinent to O,—
O, dimers. Such dimers have been prepared 1n supersonic
molecular beams both at higher (7= 50 to 100 K)?*’ and low
(T = 2 K)*® temperature. The amount of dimers that could
be magnetically defected was practically zero at low tem-
perature and about 70% at higher temperature. The infor-
mation which can be inferred from these data is that the O,—
O, dimer has a singlet or antiferromagnetically coupled
ground state, with the triplet and quintet states lying some-
what higher. All states are about equally populated at
T'= 50to 100 K. In other words, the effective (vibrationally
averaged) exchange parameter J 1s negative for the ground
state and not larger than about 10 K 1n absolute value. Our
calculations show, see Fig. 1, e.g., that many possible dimer
geometries could satisfy this requirement, one of them being
the parallel (A ) structure which occurs for the neighbors in
solid @ and O, and which has been proposed also for O,-O,
dimers in the gas phase®” and in rare gas matrices.”’ More
precise measurements, which will be performed soon,*® in
combination with our calculated results, can yield more de-
tailed information.

V. CONCLUSION

From ab initio calculations which we believe to be fairly
accurate in the range of the van der Waals minimum, we
have obtained the full anisotropic potential surface for the
exchange repulsion, the electrostatic interactions, and the
Heisenberg exchange coupling between a pair of ground
state (°2 .~ ) O, molecules. The dispersion interactions have
still to be added in order to construct a complete O,-0O,
potential, but these mainly long range interactions will hard-
ly change the magnetic (exchange) coupling in which we are
primarily interested. The results are all presented in analytic
form (Table 1V) so that they can be directly used, for in-

stance, in scattering calculations. calculations of the rovibra-
tional states of O,—O, dimers, and lattice dynamics calcula-

tions on solid O,.

In particular for solid O,, which appears to be a system
of great interest,' > our results seem to be in agreement with
the experimental data available. The strength of our data is,
however, that they provide complete information on the
structure dependence of the coupling parameter J o 1n the
Heisenberg Hamiltonian (1), which determines the magnetic
order in the low-temperature a and / phases, as well as the
transition between them. We have found that this coupling
depends very sensitively on the orientations of the O, mole-
cules in the solid even more so than the exchange repulsion;
it is also a steep function of the intermolecular separations.
This indicates that the differences in J values obtained from
different type of measurements' may be (partly) due to a
different averaging sensed by the experiments. It also points
to a potentially strong coupling between the magnetic lattice
excitations (magnons) and the phonons (both translational
and vibrational). Our results for the structure dependence of
the J ,5 are in the form needed for inclusion of this coupling
in lattice dynamics calculations, via the Heisenberg Hamil-

tonian. Such calculations are in progress.®*

Furthermore, our data will be helpful for interpreting

the existing and forthcoming experimental results*’—' on

0,-0, dimers.
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