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HEISENBERG GROUPS AND HOLOMORPHIC VECTOR
BUNDLES OVER A COMPLEX TORUS

YOZO MATSUSHIMA

Let V be a complex vector space of dimension 7n,L a lattice of V
and F = V/L a complex torus. Let H be a Hermitian form on V. We
introduce a multiplication in L X C* by

(057 a’)(ﬁ) b) = (05 + ‘By (eXp ﬂ'H(Ofy ﬁ))a’b) ’

where a, 8¢ L and a,beC*. Then L x C* becomes a complex Lie group
Gy(L) whose identity component is C*. We call Gxz(L) the Heisenberg
group associated with a Hermitian form H and a lattice L in V. 1In
general Gy (L) is non-abelian. The group Ggz(L) acts on the complex
manifold V x C* from the right by the rule

(u, a)(8, b) = (u + B, (exp zH(u, p))ab) ,

where ueV,BeL and a,becC* The action of Gy(L) is holomorphie
and free and we can identify the quotient space with the complex torus
E. Thus V x C* is a principal fibre bundle over E with structure group
Gg(L). If we vary the Hermitian form H, we obtain infinitely many
principal holomorphic bundle structures over E in this manner.

The purpose of this article is to study the class of holomorphic
vector bundles over E associated with holomorphic representations of the
Heisenberg groups Gg(L).

If a representation of Gyx(L) is trivial on {0} X C*, the representa-
tion is nothing but a representation of the lattice L. The vector bundles
over E associated with representations of L have been studied in our
previous paper [2]. In this paper we shall show first that every holo-
morphic line bundle over E is always associated with a holomorphic
representation of degree 1 of the Heisenberg group Gyz(L) for a suitable
Hermitian form H. This result is nothing but an interpretation of the
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“normalized” theta factor associated with a line bundle. Then we show
that if the Heisenberg group Gy(L) admits an irreducible holomorphic
representation which is not trivial on {0} x C*, the imaginary part A of
H, which is an alternating form on V, is rational valued on L. If A
is integral valued on L, the group Gz(L) is abelian and so holomorphic
irreducible representations are of degree 1 and the associated bundles
are line bundles. However if A is not integral valued but rational
valued on L, there are holomorphic irreducible representations of Gyz(L)
of degree greater than one. In the sections 5 and 6 we classify the
holomorphic irreducible representations of the Heisenberg group G;(L)
assuming that the imaginary part A of H is rational valued on L. To
achieve this classification we introduce another multiplication on L X C*
by

(o, (B, b) = (@ + B, (exp 7iA(a, f)ad) .

Then L X C* becomes also a complex Lie group G,(L) with respect to
this new multiplication. We call also G,(L) the Heisenberg group as-
sociated with A and L. It is easy to show that Gx(L) and G (L) are
isomorphic (see §2) and consequently there is a one-to-one correspondence
between holomorphic representations of Gyz(L) and those of G(L). We
classify holomorphic irreducible representations of G,(L) in the sections
5 and 6. Among the holomorphic irreducible representations of the
Heisenberg group G,(L) there is a distinguished representation D, which
we call the Schrodinger representation. The representation D, of G4(L)
which corresponds to D, is also called the Schrédinger representation
of G4(L). In the section 7 we shall show that a holomorphic vector
bundle over E associated with a holomorphic irreducible representation
of Gyz(L) is isomorphic to a holomorphic vector bundle associated with
a representation of G,;(L) of the form ¢ ® Dy, where ¢ is a 1-dimen-
sional representation of the lattice L, D,y is the Schrédinger represen-
tation of G.xz(L) and k is a suitable integer.

In the section 8 we study some properties of the vector bundle F
agssociated with the Schriédinger representation D,. The vector bundle
F is simple and hence indecomposable. We study the mechanism to
construct the vector valued theta functions associated with F. It will be
shown for example, that if the Hermitian form H is positive (= 0),
then the number of linearly independent theta functions is given by
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ﬁ ei(ei’ d)._1 ’
i=1

whereas the rank of the vector bundle F is
£
at T] (e;, 7,
i=1

where d is the smallest positive integer such that dA is integral valued
on L and e, ---, ¢, are non-zero elementary divisors of the integral alter-
nating form dA on L.

In the final section we study the properties of tensor products of
vector bundles associated with indecomposable holomorphic representa-
tions of Gy(L) for variable H and we compute Chern classes. We shall
see that, if F', and F, are vector bundles associated with the Schrodinger
representations of Gy (L) and Gy,(L), then we have the splitting F,Q F,
=F,ers® - OF,gp,, where H = H, + H,, Dy is the Schrodinger rep-
resentation of Ggx(L), o, ---,0, are 1-dimensional representations of L
and F,gp, denotes the vector bundle associated with the representation
0, Q Dy of Gy(L).

The group G.(V) appeared already in a paper of Murakami [8] in
a similar context as ours and this article is also closely related with the
works of Morikawa [3] and Oda [5]. The author wishes to thank J.
Hano for his useful comments. J. Hano also proved recently that the
class of vector bundles studied by Morikawa and Oda is identical with
the one associated with irreducible representations of G (L).

§ 1. The nilpotent Lie group Gp.

Let V be a finite dimensional vector space over R and B a complex
valued bilinear form on V. We define a multiplication in the product
V X C* by

1.1) (u, a)(w, b) = (u,'v,e{éB(u, v)}ab) ,

where #,ve V and a, b e C* and
e(2) = exp 2riz

for all zeC.
With respect to the multiplication (1.1) V x C* forms a Lie group
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which we shall denote by Gz. The element (0,1) is the identity element
and the inverse of (u,a) is given by the formula

1.2) (4, @)~ = (——u, e{_;_B(u, u)}a") .

Let B= S8 + A, where S(u,v) = %{B(u, v) 4 B(v,w)} is a symmetric

bilinear form and A(u, v) = %{B(u, v) — B(v,w)} is an alternating bilinear
form. From (1.1) we get the following commutation rule:
1.3 (u, a)(v, b) = (v, b)(u, a)(0, {A(u, v)}) .

The subset {0} X C* form a closed normal subgroup contained in the
center of Gz and the quotient of Gz by {0} X C* is an abelian Lie group
isomorphic to V. Hence Gz is a connected nilpotent Lie group and G
is not abelian unless A = 0.

We can also define a nilpotent Lie group G, by introducing another
multiplication in V x C* by

1.4) (4, D), b) = (u i 'v,s{—;-A(u, v)}ab) .

We can prove easily the following lemma.

LEMMA 1.1, The map ¢ from Gp onto G, given by

1
(U, 0) = (u, s{—zB(u, u)}a)
18 an isomorphism of Gp onto G,.

§ 2. The Heisenberg group G(L).
We now assume that V is a complex vector space of complex dimen-
sion n and let H be a Hermitian form on V. Let

H(u,v) = S(u,v) + iA(u,v) ,

for u,veV, where S(u,v) and A(u,v) are the real part and the imagi-
nary part of H(u,v). Then S is symmetric and A is alternating, both
are R-bilinear on V. Let
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B=1m
1

and we define the nilpotent Lie group Gz as in §1 which we shall denote
by Gg. Thus the multiplication in the group G is defined by

2.1 (u, a)(v, b) = (u, v, e{%H(u, 'u)}ab) s

where u,veV and a,bc C*.

Since H is Hermitian, the multiplication in G is holomorphic in
the variable %, a and b and anti-holomorphic in the variable v. Hence
Gy is not a complex Lie group.

The alternating part of B = l H is equal to the imaginary part A
7

of H and by Lemma 1.1. the map ¢: Gz — G, defined by
2.2) oy, a) = (u, e{—%H(u, u)}a)
)

is an isomorphism of G, onto G,.
Let L be a lattice of V and we define

Gu(l) =L X C*.

Then Gz(L) is a closed subgroup of Gy and Gy(L) is a complex Lie
group with the identity component isomorphic to C*.
Analogously

GuL) =L x C*

is also a subgroup of G, and G,(L) is also a complex Lie group. More-
over the isomorphism ¢ of Gy onto G, defined by (2.2) maps G4(L) onto
G4(L) and induces an isomorphism of complex Lie group.

We call Gyz(L) (resp. G,(L)) the Heisenberg group associated with
a Hermitian form H and a lattice L (resp. A and L).

§ 3. Principal bundle structures over a complex torus associated with Heisenberg
groups.

Since Gx(L) is a subgroup of Gp, it acts on Gy = V X C* freely
by right multiplication



166 YOZO MATSUSHIMA

(u, a)(B, b) = (u + ﬁ,e{%’zﬂ(u, ﬁ)}ab) ,

where ue V,8e L and a,be C*. This is a holomorphic and free action
of the complex Lie group Ggz(L) on the complex manifold V x C* and
we can identify the quotient space canonically with the complex torus

E=V/L.

Thus L X C* is a holomorphic principal fibre bundle over the complex
torus E with the structure group Gg(L).
A Gg-theta factor J of rank m is a holomorphic map

J:Gyu(L) X V X C* — GL,(C)
such that
j(rrla g) = j(r; T;—'g)j(rly g)

for 7,7 e Gy(L) and geV X C*, where we define T,g = g-77".

For instance a holomorphic representation p of the complex Lie group
Gy(L) is a Gy-theta factor.

Given a Gjy-theta factor J of rank m, we define a holomorphic free
action of Gxz(L) on the complex manifold V x C* X C™ by

9,91 = (1, JG™, 98,

where geV X C*,ye Gx(L) and £eC™ The quotient space of V X C*
X C™ has a structure of a holomorphic vector bundle F; of rank m
over the complex torus E.

On the other hand, a theta factor J of rank m for the lattice L is
a map

J:L XV — GL,(C)

such that

1) J(a,u)(xe L,ucV) is holomorphic in «,

2) J+ B,u) = J(, B + WJ(B,w
for @,pe L, and ueV.

We define also a holomorphic free action of the lattice L on V x C™
by

(u; E)a - (’I,l, + a, J(“; 'LL)E) ’
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where ue V,aeec L and £ e C™

The quotient of V X C™ is a holomorphic vector bundle F; of rank
m over the complex torus E. It is well-known that every holomorphic
vector bundle over E is obtained in this way.

LEMMA 3.1. Let J be a Gg-theta factor of rank m. For acL and
ueV let

T, 1) = j[(——a{, e{%i(ﬂ(u, ® + H(a, oz))}), (, 1)] :

Then J s a theta factor for the lattice L and the holomorphic vector
bundles F'z and F; are isomorphic.

Proof. We ecan verify readily that J(«,u) is a theta factor for L.
We define a map + from V X C™ into V X C* X C™ by

v(u, &) = (%, 1), 8)

for all ueV and £cC™. We say that two points of V X C* X C™ are
equivalent if they belong to the same orbit of Gn(L). Two points +-(u, &)
and (v, are equivalent if and only if there exists («,a)e Gyx(L) such
that

(@, (e, @), J 1, )7, (1, DI = (v, ), 7) .

Since (u, D(a, @) = (u + a,e{%H(u, oc)}a), we get
)

3.1) V=uU+ «
and

o J1
(3.2) 4t = s{Z—iH(u, 0()} .

Then we get from (1.2) and (3.2), (a, a)~! = <—a,e{2ii(ﬂ(u,a) + H(a, a))})
and so
3.3 7 = J(a, W& .

Thus if (u,&) and (v, are equivalent, then we have (3.1) and (3.3)
and this means that (u, &)-a = (v, ), that is, (%, £) and (v, ) are equivalent
according to the action of L on V x C*.
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Conversely let (u,&)a = (v,7), where e L. Then defining a by (3.2),
we get (u,&(a, ) = y(v,7). Hence we have shown that (u,&) and
w(v,7) are equivalent if and only if (w,% and (v,y) are equivalent.
Therefore  defines an injective homomorphism v of F, into F;. The
homomorphism + is surjective. For, let ((u,a),&’) be an arbitrary ele-
ment of V X C* x C™. Then (0,07 Y e Gx(L) and ((u,a),&)0,a"") is of
the form ((u,1),%) and hence the orbit of ((u,a),§’) contains an element
of the form v (u,£) and this proves that ¥ is surjective.

As a special case of Lemma 3.1 we get the following Proposition
3.1.

PRrROPOSITION 3.1. Let p be a holomorphic representation of the
Heisenberg group Gg(L). Then the holomorphic vector bundle F, over
the complex torus E = V /L associated with p is isomorphic to the holo-
morphic vector bundle associated with the thete factor J for the latiice
L, where J is given by

3.4 T, u) = p<o, e{zliH(u, @) + %H(a, oz)})lff(a) ,
where
3.5) V() = p(O,e{%H(cx, oc)})p(—oz, 1.

From the definition of + we get

T(a + p) = ma)m)p(o, s{%A(ﬁ,a)D

for a,fe L.

THEOREM 3.1. Ewery holomorphic line bundle over E = VL is as-
soctated with o holomorphic representation of degree 1 of the Heisenberyg
group Gg(L) for a suitable Hermition form H.

Proof. A line bundle over F is associated with a theta factor j of
rank 1 and we may assume that j is in the normalized form (see [6]):

i, w) = «lf(a)e{zliH(u, @) + %H(a, a>} ,

where H is a Hermitian form on V such that the imaginary part A of
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H is integral valued on L and + is a semi-character of L, that is, +
is a map L—C# ={ze C||z| =1} such that y(a + f) = «p(a)«[f(ﬁ)e{%A(a, ﬁ)}
for a,fec L. We define p: Gyx(L) — C* by

3.6) ola, @) = \[f(-a)e{——%H(oz, oz)}a .

It is easily verified that p is a holomorphic representation of the
Heisenberg group Gy(L) of degree 1. It follows from (3.4) and (8.5)
that the theta factor for L corresponding to p is precisely equal to j.
Then the line bundle is isomorphic to the line bundle associated with the
representation p of Gy(L).

4, Holomorphic representations of G (L) and G(L).

Let H be a Hermitian form on V and A the imaginary part of H.
Then ¢: Gy — G, defined by (2.2) induces an isomorphism of G;(L) onto
G,(L). Hence there is a one-to-one correspondence between the set of
holomorphic representations of G,(L) and that of Gy(L). 1If p, is a
holomorphic representation of G,(L), then py = p,°¢ is the correspond-
ing holomorphic representation of Gn(L) and we have

4.1) o, @) = pA<oz,s{—4liH(a, ae)} -a) .

For instance, if + :L — C* is a semi-character of L (see the proof
of theorem 3.1), then p,(a, @) = ¥(—a)-a defines a holomorphic represen-
tation of G,(L) and the corresponding representation py of G,(L) is the
one given by (3.6) in the proof of Theorem 3.1.

We remark here that an irreducible holomorphic representation ¢ of
the group C* is always of degree 1 and of the form

o(a) = a*

for all a e C*, where k is an integer (cf. proof of Lemma 9.1 in §9).

Let p be a holomorphic irreducible representation of G,(L). Then,
since {0} X C* is in the center of G, (L), every p(0,a) is represented by
a scalar operator by Schur’s Lemma and hence

4.2) p0,a) = a*-1
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for every acC*, where k is an integer and 1 is the identity operator.
We call a holomorphic representation p of G,(L) is homogeneous of order
k if the equation (4.2) holds for all a e C*. Every holomorphic irreduc-
ible representation of G,(L) is thus homogeneous.

PROPOSITION 4.1. Suppose that the Heisenberg group G (L) has o
holomorphic homogeneous representation p of order k with k = 0. Then
the alternating form A is rational valued on the lattice L.

Proof. We have
@ DG, D = @+ ,D(0,¢{ L A p) )
and hence
o, Do(p, 1) = ol + B, De{ £ AGa, p)

by (4.2). Then we get

det ole, 1)- det p(8, 1)(det pler + B, 1)~ = s{ ”;’“ nes ,B)} :

where m is the degree of p. Since the left hand side is symmetric in
a and B and A is alternating, we should have ¢{mkA(a, H} =1 for all
a,fe L. Then mkA(a,p) is an integer for every « and g in L and
mk # 0. Hence A is rational valued on L.

We assume henceforth that A is rational valued on L and we always
denote by d the smallest positive integer such that dA is integral valued
on L.

We denote by N the subgroup of L consisting of all « ¢ L such that
Ale, p) is an integer for every fe L.

Then we have

dLC N

and hence L/N ig a finite abelian group of exponent d. In particular,
N is also a lattice of V. From the commutation rule (1.3) we get

(Ol, a)(ﬁ; b) - (ﬁ, b)(a’ a)(oy E{A(O{, 18)}) .

It follows from this that («,a) commutes with every (8, b) if and only
if «e N. Thus
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G4N) =N x C*

is the center of G,(L).

It follows then that G, (L) is abelian if and only if N = L. Now
we have N = L if and only if A is integral valued on L. Thus we get
that the Heisenberg group G,(L) and hence Gyz(L) is abelian if and only
if A is integral valued on the lattice L.

Let p, be a holomorphic homogeneous representation of G,(L) of
order k& and py the corresponding representation of Gy(L). Then the
theta factor J corresponding to py in Proposition 3.1 is of the form

T, w) = e{l,kﬂ(u, ® + LEH(, a)}e{l,kﬂ(a, ae)} pu(—a,1) .
21 44 43
However we have
1
ou(—a, 1) = pA<—a,6{——.H(a, or)})
44
1
= o[~ pFH@ D pu(~a D
44
and so we obtain

*.3) J(a, w) = s{%kﬂ(u, @) + %kH(a, oz)}pA(——oz, 1.

§5. Construction of irreducible representations of G ,(L).

In the sections 5 and 6 we denote by A any R-bilinear alternating
.form on a complex vector space V of complex dimension n which is
rational valued on a lattice L of V. We do not assume that A is the
imaginary part of an Hermitian form H. We denote by d the smallest
positive integer such that dA is integral valued on the lattice L. There
exists a basis

{601, "'rwmw{, "':(D;L}

of L such that dA(w;, w;) = dA(w}, o}) =0 and dA(w;, o)) = €0;; @, 7 =1,
...,m), where e, ---,¢,6€,., --,e, are integers such that ¢,,, = --- = ¢,
=0,e, >0 (A1 D),ele,, 0=12,...,4—1).

These integers are called the elementary divisors of the integral
alternating form d4 on the lattice L. We have then
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Aoy, o)) = d0,d7", Aoy, 0)) = Ao}, 0) = 0.

Since d is the smallest positive integer such that dA is integral valued
on L and e,]e; for all indices 4,d and e, have to be relatively prime.
Let

(5~1) di = d(ei’ d)—l ’ (7' = 1’ 27 ) Z) ’

where (e;, d) denotes the greatest common divisor of e; and d. Then d,
is the smallest positive integer such that d,e;d~' is an integer and we
have d, =d and d;,,|d; (1 =1,2,..-,4 —1).

Let N be the subgroup of L consisting of all « e L such that A(a,p)
is an integer for every fe L. Then

’ ;g /
{dlwb crty dawu Wyyys ***y Wyy d1CU1’ ttty dewu Wyp1y * %y wn}

is a basis of N.
Let L, and L{ be the subgroups of L generated by {w,,---,®,} and
{w}, - - -, o} respectively and let

N,=L NN, Ni=L,NN.
Then N, and N; are the subgroups of N generated by
{diwy, - dywsy 0gyy + 00} and {dal, « -+, Ayl Wfyyy -+, @)
respectively and we have |
(5.2) L=L®L, N =N,®Nj;
and
L/N = L,/N,® L{/Nj .

Let

K=L/N, K,=1L/N,, K,=L{/Nj.
Then K, K, and K/ are finite abelian groups and we have

K=K ®K;, K =K.

Let
(5.3) m = dd, ---,d,.

Then m is the order of K, and {d,, ---,d} are the invariants of the
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finite abelian group K,. We shall denote by C(K) the vector space of
all complex valued functions on K,. Then C(K,) is an m-dimensional
complex vector space. C(K,) is not only a vector space but also has an
algebra structure and C(K,) is called the group algebra of the finite
abelian group K,. We shall denote by R the regular representation of
K,. R is a representation of K, defined by

(5.4) EBDS)R) = fh + 9)

for all g,he K, and fe C(K).

For each 1¢e L, we shall denote by 1 the image of 2 in K = L/N.
In particular if aeL,(a’c L}, then @@) belongs to K,(K). We now
consider e{A(«, )}, wherea e L,and o’ € L;. Wehave ¢{A(a, o)} = {A(B, §)}
whenever # = f and @ = . For we have then « — e N and «’ — feN
and hence A(e — B,«’) and A(8, &’ — B) are integers, whence

(Ala, o)) = e(A(B, a) = «(A(B, B)) .
Therefore we can define a pairing of abelian groups K, and K} by
(5.5) 9,9 = e{Ala, )}, 9eK,, g'eKi,

where g =@ and ¢’ = &',
For any ge K, and g'e K{,{g,¢9"> is a d-th root of unity and we
have

<g + h’ g/> = <gy g,><h’ g/> ’ <g’ g/ + h'/> = <g’ g’><g, h,> .

Then y,.: g —<g,9’> is a character of the abelian group K,. Moreover,
if ¢’ + K, we have y, #y,. For let ¢ =o',k = p where o, ¢ L] If
Xor = Xn, then we have A(x,a’ — §) e Z for all «c L, and hence o/ — §
e Ni. Then we get @ = § and ¢’ = 1’. Since the order of Kj is equal
to the order of K, we can identify K| with the character group of K,
by the identification map ¢’ — y,.. The group G,(L) is identified with
L, x L} x C* with the multiplication

6.8 (e, a3 8,0 = (a + fiod + B e{ A §) — 4@ aN}ab) .
Then L, x {0} X {1} and {0} x L{ x {1} are subgroups isomorphic to L, and

L/ respectively and L, X {0} X C* (resp. {0} X L] X C*) is also a subgroup
isomorphic to the direct sum of L, and C* (resp. L) and C¥*).
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For each integer k, let p¥(a,a’,a) be a linear transformation of
C(K,) such that

.7 (o, o ) F)@) = ake{gA(a, o) + KA, oz’)}f(x + @

for all f e C(K) and z ¢ K,, where ¢ is an element of L, such that £ =x.
Notice that if & and » are in L, and if & =7, then & — e N and hence
e{A(E, o)} = {A(yp, «)}. Hence the right hand side of (5.7) is independent
of the choice of & such that & = x. It is easy to verify that p{ is a
holomorphic representation of G (L) and p${ is homogeneous of order k
in the sense defined in §4.

From (5.7) we get

oPw@,0,1) =1, veN,,
(5.8 eP0,v, 1) =1, v eNy,
0$(0,0,a) = a*-1, aeC*,

where 1 denotes the identity operator of C(K).

THEOREM 5.1. Let m; be the order of the subgroup kK, of K, and
ity the index of kK, in K,. Then o splits into a sum of i, inequivalent
trreducible representations p,:

kY & k
o = pPr® -+ D p, .

The degree of each irreducible representation oS, is m;. The rep-
resentation e is irreducible if and only if (k,d) = 1.

Proof. From the commutation rule
(e, 0, 1)(0, o', 1) = (0, &/, 1)(«, 0, 1)(0, 0, e{A(ex, &)})
and from (5.5) and (5.8) we obtain
(5.9) (e, 0,1)pP (0,0, 1) = <&, ka'>pP (0, o, 1)pP (e, 0, 1) .
It also follows from (5.7) that
(5.10) pP (@, 0,1)f = R@)f

for all feC(K) and aeL, Since K, is abelian, the regular repre-
sentation B decomposes into a sum of 1-dimensional representations and
each 1-dimensional representation is a character of K,. We know that
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the regular representation contains every irreducible representation and
hence R contains every characters of K,. On the other hand we have
identified K/ with the character group of K, via the pairing (5.5). Hence
C(K) is a direct sum of 1-dimensional subspaces W,.(g’ € K7) such that
that W,. consists of all ¢ e C(K,) with

oM e, 0, g = <{@, g'>¢
for all «c L,. Then we get from (5.9) that
(5.11) o0, e, VW, = Wy 10 -
Let C,, ---,C;, be distinct cosets of K] modulo kK; and let
U, = >, W, A=t .

g'eC,
The dimension of U, is equal to the order m; of kK,, because K, = Kj.
Then U, is an invariant subspace of C(K,). We show that U, is irre-
ducible. Let U; (s {0}) be an invariant subspace of U,. Then we have
0(a, 0, U, = U, for all «e L, and hence there exists a ¢’ € C, such that
W, cU,. Then by (5.11) we get W, C U, for all #’eC,. Thus U,=U,
and U, is irreducible.

Let pf%(a, «’,a) be the restriction of pP(x,a’,a) to U,. Then p¥; is
an irreducible representation of degree m; for each t=1,2,-..,%, and
obviously % decomposes into sum of these irreducible representations.
If o), and p{, were equivalent, the restriction of these representations
to element of the form («,0,1) should yield the same set of characters
of K, and if ¢ # s, this is not the case. Hence p{, are inequivalent ir-
reducible representations.

The representation p$ is irreducible if and only if K, = kK,. K, is
a direct sum of cyclic groups of order d, generated by @, =1,2,---,4)
and we have kK, = K, if and only if (k,d;)) =1 fori=1,2,..-,4. How-
ever d =d, and d;|d for ¢ = 1,2,...,4. Hence we have (k,d;) = 1 for
all 7 if and only if (k,d) = 1. This proves that p$ is irreducible if and
only if k£ and d are relatively prime.

If follows from (5.8) that p¢ is homogenous of order % and
P, 0,1) = p(0,v,1) = L,ve N;,»" e Ni.

We now prove the following lemma:

LEMMA 5.1. Let p be an irreducible representation of G (L) in a
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complex vector space U such that
0(,0,1) = p(0,v,1) =1 for veN,, v e N}
and
p0,0,a) = a*-1 for all a e C*,
Then p is equivalent to one of the irreducible representations p,.

Proof. By our condition on p, we can define a representation of K,
by & — p(a, 0, (e L). We have also
(5.12) plee, 0, D)p(0, o/, 1) = (&, ka'>p(0, o, 1>p(ct, 0,1) .
There exists ue U (u # 0) and g’ ¢ K} such that

ole, 0,1) = (@, 9">u
for all e L;. Let u; = p(0, f/, Du for all f/ e K;. Then we obtain from
(5.12) that
ple, 0, Duy = <@, 9’ + kB Huy .

Let C, be the coset of K| modulo kKj containing ¢g’. Then there is an

obvious linear map T from U, = >, W, onto the subspace of U spanned
g9’eCt

by {uz} such that T p¥(a,a’,a) = pla,a’,0) o T and as pf, and p are both
irreducible, T is bijective. Thus p and p¥, are equivalent.

§ 6. Classification of irreducible holomorphic representations of G,(L).

THEOREM 6.1. FEwvery irreducible holomorphic representation of G (L)
18 equivalent to a representation of the form

%
¢ ® % »

where o is a 1-dimensional representation of L, that is, ¢ is a 1-dimen-
sional representation of G,(L) such that ¢(0,a) = 1 for all @ e C*.

The following proof of Theorem 6.1 is due to J. Hano. The sub-
group N X C* is the center of G,(L) and hence

ple, 1) = p'(a)-1
for all @« e N, where p'(0) ¢ C*. The map p': N — C* satisfies

@@ = o + Pe{L kA )
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for «,fc N. We define a R-bilinear from & on V X V by
V(o wron + 23 Ty 2 Yaor + 25 Yioh)
= 35 Aoy, @)Y -
Then ¥ is a satellite form of A, namely A(x,y) = ¥(x,y) — T(y, x) and
letting (a) = s{%kly(a, a)}, ae N, we obtain a semi-character +, of N

with respect kA which is integral valued on N X N. That is, 4, is a
map from N to Cf = {ze C||z] = 1} such that

T DVol) = ol + .B)s{—;—kA(a, p)} .

From the definition of ¥, it is clear that

‘[’0(04) =1

if either we N, or e N,
There exists a 1-dimensional representation ¢’ of N such that

0'(@) = o'(a)ro(a)

for all «e N. We can extend ¢’ to a 1-dimensional representation ¢ of
L. Then we have (67'® p),1) = (@) /(@)1 = (@)1 for all ae N
and hence (¢7'® p)@,1) =1 for all ke N, and a«e Ni. Then by Lemma
5.1, ¢7'®p is equivalent to p{ for some ¢ and hence p is equivalent to
7 ® pf).

§7. Vector bundles defined by irreducible holomorphic representations of the
group G (L).

In this section we assume that A4 is the imaginary part of an
Hermitian form H on V. Then there is a one-to-one correspondence
between the set of irreducible holomorphic representations py of Gy(L)
and the set of irreducible holomorphic representations p, of G.(I) and
the one-to-one correspondence is given by (4.1), that is,

(7.1) poula, o’y 0) = pA(a, a’,e{——Zl;H(a + o, + a’)}a) .
1

We denote by p{f, the irreducible holomorphic representation of G,(L)
which corresponds to the irreducible representation pf, of G,(L) con-
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structed in §5.

Consider now the Hermitian form kH. The imaginary part of kH
is kA and our decomposition L = L, @® L; of L which is defined by 4 and
which is used to define the representations pf’, is also a decomposition
of L with respect to the alternating form kA (although the sublattice
N of L defined by A could be different from the one defined by kA).
Therefore we can define the irreducible holomorphic representations p{,
of the group Gi.(L) using the decomposition L = L, ® L; and then the
irreducible holomorphic representations pgj;, of the group Gx(L).

We prove the following lemma.

LEMMA 7.1. Let F be the wvector bundle over the complex torus
E =V/L defined by an irreducible holomorphic representation p{, of
the group Ggz(L). Then F s isomorphic to a vector bundle L, &Q F’,
where the wvector bundle F' is defined by the irreducible holomorphic
representation el of the group Gixz(L) and L, is o line bundle defined
by a 1-dimensional representation p of L.

Proof. We have p{(0,0,a) = a¢*-1 and p{(0,0,a) = a-1. The theta
factors J and J’ associated with the representations p{), of G4(L) and
with the representation p{) of G..(L) are then given by (4.3) and we
have

(12) Ja+ o, u) = e{%kH(u,a o)+ %kH(a t o+ a')}
1 )

o —a, —a, 1)

and

@8 T+ o) = e[ hHOa + ) + SR+ a + o))
09(~a, —a/, 1) for «cL, and &/ c L, .
Let
la, o/, 0) = pPle, 0/, -0
for ec L, o’ ¢ Lj, a e C*.
We show that r is a representation of G,,(L). We have

(e, &', )2(B, B, 1)
= pﬁlk,)t((“, a” 1)(,Bs ,8,, 1))a’b
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- pg?,(a + B+ ‘B’,s{%A(af Yo, pt B’)})ab
= o+ frol + B, De{ LRAG + o, f + f)}ad .
On the other hand we have
@@, 06 8,0 = (a + B + B LhAG + &, + )}ad)

in the group G.4(L). Hence we have t((a, o/, )(8, 5/, D)) = pFi(a + B, 0’ +
g, 1)5{%@4(0( ol Bt ﬁ/)}ab and we get <(a, o, D2(8, §,b) = (@, &, a)

(B, B, b)). Clearly ¢ is an irreducible holomorphic representation of G, ,(L)
such that 2(0,0,a) = a-1. Then, by Theorem 6.1, we see that < is
equivalent to a representation p® p{), where p is a 1-dimensional rep-
resentation of L. Since we have p{(a,a/,1) = z(a,a’,1), we see from
(7.2) and (7.3) that the factor J is equivalent to the factor p® J’. Let
L, be the line bundle over E associated with the representation p of L.
Then we have F = L, ® F’ and this proves Lemma 7.1.

THEOREM 7.1. Let p be an irreducible holomorphic representation
of Gy(L) and F, the holomorphic vector bundle over E = VL defined
by p. Then there exist a l-dimensional representation o of L such that

F,zL ®F,q,

where k is the order of homogenuity of p in the sense of §4 and L, is
the line bundle defined by o.

Proof. By Theorem 6.1, p is equivalent to a representation of
Gy(L) of the form 7® p{f, and hence F, is isomorphic to L, ® F', where
F' is defined by pfp,. By Lemma 7.1, we have F = L, ®F,,§c}>1 , whence

F,=zL QF,n with o=7Qu.

COROLLARY 7.2. Let F be a holomorphic line bundle over E = V /L.
Then F = LU®FP2), where ¢ 18 a 1-dimensional representation of L and

H is a Hermitian form on V whose imaginary part is integral valued
on L.
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§8. Properties of the holomorphic vector bundle defined by the Schrodinger
representation of G (L).

According to Theorem 7.1, the study of holomorphic vector bundies
associated with holomorphic irreducible representations of Ggz(L) for
varying H is reduced to the study of bundles associated with the irre-
ducible representation p$. In this and following section we shall denote
the representations p{’ and p§ by D, and Dy respectively and call D,
and Dy the Schrodinger representation of G,(L) and Gz(L). The rep-
resentation D, is an irreducible holomorphic representation of G,(L) by
Theorem 5.1 and it is defined by

@®.1) (D e, 0) ) @) = a-s{%A@x, o) + AG, o/)}f(x + @)

for every f in the group algebra C(K,), where & is any element in L,
such that £ = x e K,. For each ge K, let f, be the function on K, such
that

fg(x)={(1)’ j’ng.

Then {f,} form a basis of C(K,) and we have
(8.2) So@ + 1) = fyn(®)

for any g,h e K,.

The function x — {A¢, &)}f,(x + @) is equal to the function {A(3 —
a,)}f,_. Where £ =2 and p=g. Then we get from (8.1) and (8.2)
the following formula:

(8.3) Dy o, @)y = a-e{ = Al @) + AB, )| o-a

where g is any element in L, such that g = g.

The theta factor J, associated with D, is given by (4.3) and we
get :

Tnla + o, u) = s{%H(u,a + o)+ %.H(a t e+ a')}DA(—a, —, 1)

and we obtain from (8.3):
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JH(Q + 05/, u)fg
8.4) = o[ LHa + o) + LH@ + dya + @)
21 43

.e{—%A(a, @) = AB )} e

where g = B,fe L, and ac L, e Li.
In particular we have

8.5) T, W), = {%H(u @) + ZliH("" a)}fg+a (@e Ly
and
7 1 4 1 /7 7 ' 7 14
®.6) JH(a,u)fg=e{—.H<u,a)+ —.H(a,a)}s{—A(ﬂ,a)}fg, @ el .
21 47
Let

8.7 M=N,®L|.

Then M is a lattice of V containing N = N, @ N/ and contained in L =
L, @ L; and A is integral valued on M.
Let

(8.8 vr=V/M.
Then E, is a complex torus and there is a homomorphism
[ E ¥ — E=V / L

and the kernel of ¢ is L/M which we identify canonically with K.
For each ge K, let

@9 P+ ) = e{—%A@, &) — A, a')} (9 =7 pgel)

for all v+ &’e M with veN, and &’ € L. Then 4, is a semi-character
on the lattice M, i.e. we have

ol + ) = (g, (e 2 A, )

for all m,m’ e M.
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Let
B.10) 7,00 + &y ) = Pl + a')e{zliH(u,u +a)+ %ch + v+ )

Since 7 = 0 (the zero element of K,) for ve N,, we get from (8.4)
that

(8.11) JH(V + o, u)fg = jg("’ + 05,’ u)fg

for all geK,,veN,,a’eLi. Then we conclude that j, is a theta factor
for the lattice M and that Jz( + o’,u) is the diagonal matrix whose
diagonal entries are j,(v + o/, u).

Let L, (g e K,) be the line bundle over E, defined by the theta fac-
tor j,. Now Jy(m,u) (me M) is a theta factor for the lattice M and
the vector bundle over E, defined by this factor is the pull back ¢*F),,
where F', is the vector bundle over E associated with the Schriodinger
representation Dy.

Then we have
(8.12) ¢*Fpy = >, L, .

gEK,

If g = h, then L, and L, are not isomorphic. For we have
(8.13) T + & su) = e{ —AB — 1, )}l + o', u)

where = ¢ and 7 = h, and the representation of M defined by v + o
—e{—A(B — 7,0)} is not trivial except for the case =7 Thus two
normalized factors j, and j, for the lattice M are distinct and hence L,
and L, are not isomorphic. However they are algebraical equivalent,
namely they have the same Chern class (see [6]).

Let now

Tg:EM"‘)EM

be the translation of the complex torus E, by an element g e K, (C E,).
We show that

(8.14) T¥L, = Ly, ,

where TFL, denotes the pull-back of L, by T,. The pull-back T}L, is
defined by the factor
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1 N ,
£ 2—iH(ﬁ,v + )iy + o, w)
where § = ¢g. However

LHEGY+ )= ABy + &) + LHO + &, p)
2 21

and e{A(8,v + @)} = {A(3,@)}. Hence s{—zl—iH(ﬁ,u + a’)} — A, @)
e{zliH(v + o, ;a)}. We have also e{%ﬂ(u + o, ﬂ)} = P + v + &) /P,

where P(u) = e{%ﬂ(u, p)} Thus

8{21iH(‘B,V + a’)} - E{A(‘B’ a’)}P(u +v+ a/)/P(u)

and since P(u) is a non-vanishing holomorphic function on V,
Py + v + «)/P(u) is a trivial factor. Thus T}L, is isomorphic to the
line bundle defined by the factor {A(B, )} 7.(v0 + «’,u) which is equal
to j,., by (8.13). Thus T¥L, = L,_,.

Summing up we obtain the following theorem.

THEOREM 8.1. Let Fp, be the holomorphic wvector bundle on the
complex torus E, associoted with the Schrodinger representation Dy of
Gu(L). There exist a complex torus Ey and a homomorphism ¢: Ey —
E of E, onto E whose kernel is K, and there are holomorphic line
bundles {L,},ex, o0 Ey such that L, %2 L, for g =+ h, T¥L,=L,_, and

gD*FDH’ = Z LQ'
gEK]

Remark. Theorem 8.1 shows that Fj, is the direct images ¢,L, of
any one of line bundles L, on E,.

We consider now the vector bundle End (¥,,). Then there exists an
exact sequence

0>I—>End(F,,)—>Q—0,

where I is the trivial line bundle and @ is the quotient bundle. The
homomorphism I — End (F';,) is defined by associating to each complex
number ¢ the multiplication of each fibre of F'p, by ¢. We get then a
homomorphism of cohomologies



184 Y0ZO MATSUSHIMA

HI(E,0) - H(E,End (Fp,))

indueced by I — Fyp,.
We have the following theorem due to Oda [5].

THEOREM 8.2 (Oda). Let F be a holomorphic vector bundle on a
complex torus X. Then the following two statements are equivalent.

(1) There exist a complex torus Y and a homomorphism ¢ of Y
onto X and a line bundle L on Y such that

T)L#L forall geker(p) and ¢ L=F.

(2) The homomorphism HI(X,0) — H/(X,End (F)) induced by I —
End (F) s an isomorphism for all j.

Applying the theorem of Oda for the vector bundle ¥, , we get
from Theorem 8.1 the following corollary.

COROLLARY 8.2. We have
HI(E,0) = H/(E,End (Fp,))
for all 4. In particular we have
I'(E,End (Fp,) =C.

A vector bundle F is said to be simple if I'(E,End(F)) =C. A
simple vector bundle is indecomposable. Hence

COROLLARY 8.3. The wector bundle Fp, is simple and hence it is
indecomposable.

Moreover we have H/(F,®) = H%I(F,C) and since E is an n-dimen-

sional complex torus, dim H*/(¥,C) = (?) Thus we get
dim HY(E, End (Fp,)) = (") .
¥)

We now consider a theta function § for the factor J4;. The function ¢
is a C(K)-valued holomorphic function on V satisfying the equation

Ha + o + u) = Jgla + o, w)o(u)

for all ee L,a’ ¢ L} and uecV.
We write
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6w = >, 6,(w)f,

geEKL

and we identify 6(u) with the column vector (4,(#)) of holomorphic
functions 4,(u) on V. We see from (8.4) that the components of the
vector 4 satisfy the following equation.

O + o +u)
(8.149) = E{—l—.H(u,oz + o) + ~1—.H(oz + o0+ oc’)}
21 43

o Al @) — A )}, )
where £ = g.
If veN,, then A(y,«') is an integer and e{%A(D, a’)} = +1 and
hence e{%A(v, oc’)} = e{—-;—A(u, a’)}. Then we get from (8.10) that

O,(v + & + w) = (v + &, W)0,(w)

for ve N,o’ e L. This shows that the component 6,(x) is a theta func-
tion for the lattice M and the factor j,. In particular ¢, (0 is the zero
element of K,) is a theta function for the lattice M and the factor 7,.
Letting « = 8, ¢/ = 0 and replacing u by —f 4+ % in (8.14) we get

(8.15) 8,(w) = e{-zl—imu, B — Z%H(ﬁ, ﬁ)}ﬂo(—ﬂ + )

where p = g¢. This shows that 4, is uniquely determined by 4,.

Let h be a theta function for the lattice M and the factor j,, We
show that there exists a theta function @ for the lattice L and the fac-
tor J; such that A = 46,. To see this we firgt assert that

1 1
{2—2H<u o — HE, ﬁ)}h(~ B+ w
_ 1 1 _
= e{o- B — LG =7 + )

for any two elements g and y in L, such that 8 =7 In fact, if =7,
then we have v = g — ye N, and hence

M=y 4w =h(v— g+ w) =jv, =+ W(—B + u) .
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We have
i, —p+ 0 = o LHO = g, p— ) + LHE— 18— 1)

~ {%H(u H — %H(ﬁ, 5)}5{—%H(u, D+ %H(r, r)}

1
's{Zi(H(ﬁ, » — HG, ﬁ)} .
However, as A(8,y) =0, we have H(B,y) = H(y, f), whence
1 1 . _ 1 1
{Z_zH(u N — HG, r)}yu(u, Bt w) = s{ﬁﬂ(u, p - HE, ﬁ)}

from which our assertion follows.
We can then define ¢, for each gc K, by

®.16) 0,) = e{zliH(u, P — %H(ﬂ, ﬁ)}h(—ﬁ +

where 8 is any element in L; such that p=g. In particular letting
g =0 we have 6, = h. Then we can verify easily that the vector (4,)
satisfy the equation (8.14). Thus 0 = (4,) is a theta function for the
lattice L and the factor Jy such that 6, = h.

We have shown that h — @ defines a bijective map from the vector
space of all theta functions for M and j,, which is identified with the
vector space I'(Ey, L, of all holomorphic sections of the line bundle L,
onto the vector space of all theta functions for L and J,. The latter
vector space is identified with the vector space I'(E, F'y,) of all holomor-
phic sections of the vector bundle ¥,.

Since the theta factor 7, is in the normalized form (8.10), we know
that if I'(Ey, L) #{0}, then the Hermitian form H is positive (=) and
dim I"(E, L) is equal to the reduced Pfaffian of A relative to M, that
is, the product of nonzero elementary divisors of the integral alternat-
ing form A on M (see [1],[4], [6]).

The lattice M has a basis

{dla)l, dzwz’ Ct Ty dtwe’ Wyigy * 0y * "0y Wy, (D;, DR (D;}
and we have

A(wi: wj) = A((Dg, 0);) =0
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Ao, o) = j; 5is

where ¢,,, = --- = ¢, =0 and e, ---, ¢, are non-zero (see §5). Then
Aldw;, o)) = e;-dd™!
and by (5.1) we get
Ald;0;, ) = e(e;, D)
for ¢t =1,2,...,4. Therefore ee;,d)' (¢ =1,-.-..-,4) are non-zero ele-
mentary divisors of the integral alternating form A on M and we get

dim I'(Ey, L) = dim I'(E, Fp,) = [[ ex(es ) .
i=1

Summing up we get

THEOREM 8.3. Let F, be the holomorphic vector bundle over E
defined by the Schrodinger representation of the group Gg(L). The
rank of Fp, is equal to d* ]ﬁ[ (e;, )7 and the dimension of the vector

i=1

space I'(E,Fy,.) of holomorphic sections of Fp, is nonzero if and only
if H is positive and H + 0 and if this is the case, we have

dim I'(E, Fy) = [] ee,

here d is the smallest positive integer such that dA 1is integral valued
on L, A being the imaginary part of H, and e, ---,e, denote the non-
zero elementary divisors of the integral alternating form dA on L.

For any complex torus ¥ = V/L and a theta factor J of rank r for
L, let us denote by D?(E,J) the complex vector space of all Cr-valued
differential form o of type (0,p) on V such that

(Tfa))u - J(a'y ’M)Cl)u

for every acL and eV, where T,: V — V denotes the translation of
V by « and o, is the value of » at u. Since J(a,u) is holomorphic in
%, we have d’weDP*E,J) for every weD?(¥,J). Thus DFH,J) =
>, D?(E,J) is a complex with coboundary operator d” and the cohomology
p

groups H?(E,J) of this complex is canonically identified with the
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cohomology groups H?(E, F;) of the sheaf of germs of holomorphic sec-
tions of the vector bundle F'; defined by J.

Consider now D?(E,Jp,) and let we D*(E,J,,). We can represent
@ by a column vector (w,)(g € K;) and we can show precisely as in the
proof of Theorem 8.3 that o, is an element of D?(E,,j,) and that the
map from D?(Ey,j) to D?(E,J,,) defined by v,— w is a bijective linear
map for each p commuting with d”. Thus this induces an isomorphism
of cohomologies

(8.17) H#*(Ey, L) = H*E, Fp,)

for all p.
We now have the following theorem of Mumford [4] (see also [7]).
Let E be a complex torus and F' a line bundle over E defined by a nor-

malized theta factor w(a){%H(u, a) + %H((x,a)}, where ac L,ucV with
7 7

E =V/L. Assume that the Hermitian form H is non-degenerate and
let i(H) be the number of negative eigenvalues of H. Then H?(E,F) =0
except for p = ¢{(H) and the dimension of H!¥®(E,F) is equal to the
Plaffian of the imaginary part A of H.

Applying this theorem of Mumford to the line bundle L, over E,
we obtain from the isomorphism (8.17) the following theorem.

THEOREM 8.4. The notation being as in Theorem 8.3, we assume
that H is non-degenerate and let i(H) denote the number of negative
etgenvalues of H. Then we have

HE,Fy,,)=0, p =+ i(H)

and

dim HYD(E, Fp,) = [] eles, d) .
i=1

§9. Vector bundles associated with indecomposable holomorphic representa-
tions of G (L), their tensor products and Chern classes.

In §4 we called a holomorphic representation p of G4(L) is homo-
geneous of order k, if p(0,a) = a*-1 for all a € C*, where k is an inte-
ger. Every irreducible holomorphic representation is homogeneous and
every representation of L is regarded as a homogeneous representation
of degree 0.
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LEMMA 9.1. Let p be a holomorphic:representation of G(L). Then
o splits into a sum of holomorphic homogeneous representations p, « -+,
ps having distinct orders.

As a corollary we get

COROLLARY 9.1. FEwvery indecomposable holomorphic representation
of G,(L) is homogeneous.

To prove Lemma 9.1 we first observe that every holomorphic rep-

resentation ¢ of C is of the form
3(®) = exp 2B,

where B is a complex matrix. Now let ¢: C* — GL,(C) be a holomorphic
representation and let p: C— C* be the covering homomorphism defined
by p(z) = expz. Then kerp = {2rim|me Z}. We can lift ¢ be a rep-
resentations ¢: C — GL,(C) such that () = ¢(p®)). There is a r X r
complex matrix B such that #(z) = exp zB. Then we have 1 = ¢(p(2ri))
= exp2ztB. Then t — exp 2zitB (t ¢ R) defines a representation of R/(1)
and hence we may assume that exp 2zitB are unitary for all ¢te R. Then
tB is skew Hermitian and so B is a Hermitian matrix. Again we may
assume that B is diagonal. Then as exp 2ziB = 1, the diagonal entries
My, -+, m, of B are integers and exp zB is the diagonal matrix with
diagonal entries expzm,, ---,expzm,. Since p() = expz, we see that
for each ac C*,o(0) is the diagonal matrix whose diagonal entries are
am™, .., Q™.

Let p be a holomorphic representation of G,(L) in a complex vector
space U and let o(a) = p(0,a). Then ¢(a) is a holomorphic representa-
tion of C*. We have a basis of U with respect to which every o(a) is
represented by a diagonal matrix whose diagonal entries are a™, - - ., a™.
Denote by {k,,---,k;} the set of distinet integers which appears in
{my, ---,m,} and let

U,={uecUlol@)u = a* -u for all ac C*}.
Then U=U,®---®U,. Let ueU,. Then
a(@)ole, Du = p(0, @)pla, Du = pla, 1)p(0, )u

= a*ip(e, Du. Thus we get pla, Due U;. It follows then that each U, is
an invariant subspace. Let p;(a,a) be the restriction of pla,a) to U,.



190 YOZO MATSUSHIMA

Then p; is a representation of G(L) in U, and p,(0,a) = o(@) | U, = o*.1.
Thus p; is homogeneous of order %; and p splits into the sum of o, .-,

Os-

To a holomorphic representation p of G 4(L) corresponds a holomorphic
representation py of Gy(L) and a holomorphic vector bundle over E =
V /L associated to py. In this section we shall denote this vector bundle
by F, or by F,,. According to the splitting of the representation p, F,
also decomposes into direct sum. Hence the important case is the case
where p is an indecomposable representation. By Corollary 9.1 p is
then homogeneous.

THEOREM 9.1. Let H, and H, be Hermitian forms on V such that
the tmaginary parts A, and A, are rational valued on L. Let p,, and
o4, be indecomposable representations of G, (L) and G.(L) of order K
and k, respectively. Let

H=kH, + kH,, A=FkA +kA,.

Then there exists a holomorphic representation p, of G.(L) which is
homogeneous of order 1 such that

FPA1®FPA2 = FPA .
Proof. Let

o(@) = pa(a, 1) ® py(e, 1)

for all e e L.
Then we have

o(@a() = s{%A(a, Plota + ) -

Put
pala, ) = o(@)-a .

Then p, is a holomorphic representation of G, (L) homogeneous of order
1. The theta factor J corresponding to p, is given by

J(e, u) = e{ﬁlgﬂ(% @) + %H(a, oz)}pA(~a, 1

(see (4.3)).
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We can write this in the form
J(a,u):Jl(ae,u)®J2(a,u), (OfeL)’

where
1 1
T (e, u) = s{z_ikjﬂj(u, @) + leH e, oz)} oaf—a 1)

for j =1,2. Then J, is the theta factor corresponding to p,,. This
proves that F,, = F,,, ® F,,,.

To prove the next theorem we observe that L, X L] X U,; is a sub-
group of G (L), where U,, denotes the group of all 2d-th roots of unity.
For, we have

(oz,O,l)-(O,a’,l):<a,a’,e{%A(a,a’)}) and dA(w, o) e Z .

Moreover the image of this group by the Schrédinger representation D,
is a finite group, because we have D,(,0,1) = D,(0,v,1) = 1 for ve N,,
v/ € N.. Therefore we may assume that D,(w,a’,1) are unitary trans-
formations of C(K,) (for a suitable inner product) for all ac L,,a’ ¢ L.

THEOREM 9.2. Let H, and H, be Hermitian forms on V such that
the imaginary parts A, and A, are rational valued on L. Let p,, and
04, De irreducible holomorphic representations of G, (L) and G4(L)
respectively and let k, and k, be the orders of homogenuity of p,, and
pa,r Let

H=FkH, + kH,, A=EKA + LkA,.
Then there exist 1-dimensional representation g, ---,0, of L such that
Fory®F,, =L, QFp )@ - L, QFp),
where L, denotes the line bundle associated with a;.

Proof. By Theorem 7.1., F,,, =L, ®F,, , and F, =L, QF,,,
and hence F,, @ Foy, = Lo, ® Fp, , @ Fp, ,. Let

o(a) == Dy 4,(a, 1) @ Dy, 4,(a, 1) for all wc L
and

oala, @) = o(a)-a .
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Then as in the proof of Theorem 9.1, p, is a homogeneous representa-
tion of G4(L) of order 1 and we have Fp, , ® Fp,,,, = F,,. Since Dy, 4 (e, 1)
and Dy, ,(«,1) are unitary for all «e L as we have seen above, o(e) is
also unitary for all «c L. Then the representation p, is completely
reducible and we have o, = p,® - - - @ p,, where each p; is irreducible and
homogeneous of order 1. Again by Theorem 7.1, we have F,, = L, ® Fp,.
Then

FDk141®FDkgAg§ (L11®FDA)® A @(Lh@FDA) .

Letting 0, =, ® 7, ® 2, for ¢ =1,2,..-,5s we get F,, QF,, = (L,,®Fp)
@ v @(L03®FD4)'

Remark. From the proof of Theorem 9.2 we obtain the following
rather strange results. Let m(H) be the degree of the Schridinger
representation Dy of Gyx(L). Then m(H, + H,) divides m(H,) - m(H,).

To compute the Chern classes, let #: V — E = V/L be the covering
map. We choose an open covering {U;} of E with the following prop-
erty: U, are connected and each connected component of = YU,) are
mapped homeomorphically onto U, by =. For each U,;, choose a connected
component U, of =~%(U,). Then we have = (U, = LeJL T.07,, where

T.,:V—V ig the translation of V by ac L. Let
9.1) p: U — U,

be the inverse of the homeomorphism z: U, — U,.
For each pair (¢,7) of indices such that U, N U; is non-empty, there
exists a unique o € L such that

9.2) @) = p4(®) + 0y

for all xe U; N U,.
Let J be a GL,(C)-valued theta factor for the torus E and let

9.3) 9:.4(x) = J(o, p(2)

for all zxe U, N U;. Then g,;: U, N U; — GL,(C) is a holomorphic map
and {g,;} is a system of transition functions of the vector bundle F' over
E associated with the factor J.

A connection of the vector bundle F is defined by a connection form
o = {w;}. Here each w, is a r X r matrix whose entries are 1-forms
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defined on U, and they satisfy the condition
9.9 0; = 97149 + 957e:9,;, on U, NU,.
We assume that J is of the form

(9.5) J(et, u) = e{-zl—iH(u, af)}C(a) ,

where C(x) is a constant matrix depending on ec L. Notice that the
theta factor associated with a homogeneous representation of G,(L) has
this form. Take a basis of V and identify V with C* and write

H(u, a) = Z habua&b .
a@,5=1

Then J(a, %) = exp {n‘ 5T h,z,,u,,a,,} C(w) and
ab

Q'ij(x) =exp{r >, hab“a(ﬂj(x))(a)b}c(ﬂji) .

Let

zn(zi) = Ug 0 p;
for each ¢. Then {z{”, - .., 2%} are local coordinates of E' on U, and from
(9.2) we get

dz) =dz? on U, NU;,.

Let ¢, be the holomorphic 1-form on # such that =*¢, = du,. Then we
have

Lo = dzt(zi)

on each U,.
We get

g;jldgij = <”§ kab(a;:)bCa)'lr

where 1, is the r X 7 unit matrix.
Let

0 = —(z % habzf?ca) 1,

on each U;. Then it is easy to verify that o = {w;} is a connection
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form. The curvature form 2 = {2;} is the system of 2-forms such that
Qi=dwz+w1/\wz on Ui'

However we have w; A @; = 0 and hence 2, = do;. Then we get
0, = (n’ 3 haska A z,,)-l, on U,

and since the left hand side is globally defined we have

9.6) Q= (71: 3 haska A C,,)-1,

globally.
The total Chern class C(F) is defined by

C(F) = det (1, + Lg) .
2T
Since £ is of the form (9.6) we get
CEY = (1 + & T hata AG) -
Thus we have
Cy(F) = (T)<‘Z‘ 20 hasla N Zb)s .
S, 2 a,b
In particular we have
mm=§;mgAa
and
am=l@mm.
rS\s

Now let F,, be the vector bundle associated with a holomorphic represen-
tation p, of G4(L) homogeneous of degree k. Then the theta factor is
of the form

Tat, ) = s{zlikﬂ(a, u)} Clw)

and we get the following theorem.
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THEOREM 9.3. Let F,, be the vector bundle over E = V|L associated
with a holomorphic representation p, of degree r of G(L) which is
homogeneous of order k. Let H be the Hermitian form whose imaginary
part is A and let

H(’M, ’U) == Z h’abua?_)b
a,b

for w,veV. Let {, be the holomorphic 1-form on E whose pullback to
Visdu, (@a=1,2,---,n). Then we have

CFp) = ke L 52 sk A Gy CuF,) = l(’;) «(F,) .

7,.8
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