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Abstract

An abstract operator theory is developed on operators of the form Ag(t) :=
et Ae=H ¢ ¢ R, with H a self-adjoint operator and A a linear operator on a
Hilbert space (in the context of quantum mechanics, Ag(t) is called the Heisenberg
operator of A with respect to H). The following aspects are discussed: (i) integral
equations for Ag(t) for a general class of A ; (ii) a sufficient condition for D(A),
the domain of A, to be left invariant by e~ for all t € R ; (iii) a mathematically
rigorous formulation of the Heisenberg equation of motion in quantum mechanics
and the uniqueness of its solutions ; (iv) invariant domains in the case where H is an
abstract version of Schrédinger and Dirac operators ; (v) applications to Schrodinger
operators with matrix-valued potentials and Dirac operators.

Keywords: Heisenberg operator; invariant domain ; Heisenberg equation of motion;
Schrodinger operator; Dirac operator.
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1 Introduction

Let ‘H be a complex Hilbert space and H be a self-adjoint operator on H. Then, for a
linear operator A on ‘H and t € IR, one can define a linear operator by

Ap(t) == e Ae™H, (1.1)

In the context of quantum mechanics, Ay (t) is called the Heisenberg operator of A with
respect to H. If H is the Hamiltonian of a quantum system S (an operator for the total
energy of S) and A is a physical quantity of S, then Ay (t) describes the time development
of A with t being the time. Therefore, in quantum mechanics, it is very important to
study Heisenberg operators. It seems, however, that there have been few mathematically
rigorous studies of Heisenberg operators in an abstract or a general form, although there



are ones in concrete models (e.g., [2, 9]). One of the reasons for this may come from
difficulties related to treatments for domains of relevant operators in the case where
H and A are unbounded. In this paper, overcoming these difficulties, we present some
operator theoretical analyses on the operator Ay (t). The point of the paper is to establish
a general theory for Heisenberg operators with mathematical rigor and to put a basis for
applications.

The present paper is organized as follows. In Section 2 we derive integral equations
for Ay (t) in the case where A is bounded. This is a preliminary version to the case
where A is unbounded. In Section 3 some integral equations for Ag(t) are derived in
the case where A is a densely defined closed linear operator. In particular, we show
that, under some conditions, the domain D(A) of A is an invariant domain of e~*# for
all ¢ € IR. Section 4 is concerned with the so-called Heisenberg equation of motion with
respect to H. In this case too, some difficulty arises in treating it with mathematical rigor
if H is unbounded. But we present a mathematically rigorous form for the Heisenberg
equation of motion and discuss the uniqueness of its solutions. In Section 5, using a Weyl
representation of the canonical commutation relations with a finite degree of freedom, we
introduce an abstract version of Schrodinger operators with matrix-valued potentials and
Dirac operators, and prove a theorem on invariant domains and an integral equation for
a Heisenberg operator. The last section is devoted to applications of the methods or the
results established in the preceding sections to Schrodinger operators with matrix-valued
potentials, including relativistic ones, and a class of abstract Dirac operators. As for
the Schrodinger operators, we derive a mathematically rigorous version of the “quantum
Newton equation” of motion for the position operator. On the other hand, considerations
of the abstract Dirac operators clarify a general mathematical structure behind the usual
Dirac operator acting in L?(IR*; C*) ([9, Chapter 4]). Applications to models in quantum
field theory will be discussed in a separate paper.

2 Integral equations for Ay(¢) in the case where A is
bounded

Let H and A be as in Introduction. By the definition of the domain of operator products,
we have

D(Ag(t)) = {¢ € H|e "y € D(A)}. (2.1)

To treat properly domain problems arising in the analysis of Ag(t) in the case where
H and A are unbounded, we use some approximation methods. For this purpose we
introduce a class of functions:

Definition 2.1 Let f be a real-valued Borel measurable function on IR. We say that f
is in the class F 1(IR) if it is continuous on [0, c0) and

fo)=1. (22)
sup A|f(A\)| < oc. 2.3
A>0



It is easy to see that

£l = sUp|FOV)]| < 00,V € Fra(IR) (24

We denote by (-, -) and || - || the inner product and the norm of H respectively. The
Banach space of all the everywhere defined bounded linear operators on H is denoted
B(H). The operator norm of B € B(H) is written ||B]|.

Let S be a densely defined closed linear operator on H. Then, by von Neumann’s
theorem, S*S is a nonnegative self-adjoint operator (e.g., [8, Theorem X.25]). Hence, for
e>0and f € F.1(IR), we can define an operator S. by

ST = Sf(e]S]), (2.5)
where |S| := (5*9)'/2.
Lemma 2.2 Let S be as above. Then :

(i) SY € B(H) and
lim 57y = Sy, (2.6)

for all € D(95).
(ii) If S is self-adjoint, then S! is self-adjoint and

s 111%(5;’ —2)t=(S -2 VzeC\R, (2.7)
s- hH(l) eits? — ™.Vt e R, (2.8)

where s-1im means strong limit.

Proof. (i) By the polar decomposition, we have S = U|S| with U a partial isometry
(e.g., [4, p.334], [7, Theorem VIII.32]). It follows from the functional calculus and (2.3)
that |S|f(e|S|) is boudned with D(|S|f(e|S])) = H. Hence S/ € B(H). For all ¢ €
D(S) = D(|S]), we have

114 = Syl = 111S]flShw — ISI¥]l. (2.9)

Using the continuity of f on [0, c0) together with (2.2), (2.4) and the Lebesgue dominated
convergence theorem, one can easily show that the right hand side of (2.9) converges to 0
as e — 0.

(i) The self-adjointness of S7 follows from that S is self-adjoint and S/ = ¢(S) with
g(A) = Af(e|A]), A € R. Formulas (2.7) and (2.8) respectively follow from a simple
application of a general convergence theorem (e.g., [7, Theorem VIII.25(a), Theorem
VIIL21]). "

For two linear operators A and B, we set
[A,B] .= AB— BA (2.10)

with D([A, B]) := D(AB) N D(BA).
The following lemma is easily proven.



Lemma 2.3 For all B € B(H), By(s) = ¢*# Be™H s in B(H) and strongly continuous
ms.

By this lemma, we can define for all B € B(H) and ¢) € H the strong Riemann integral
vesH Be~sHyds € H, t € IR.

Lemma 2.4 Assume that H and A are in B(H). Then, for allt € R and ¢ € H,
t .
Ap(t) = A + / i H, Ale=M4) ds, (2.11)
0

Proof. Let 1) € HO Then, under the present assumption, Ay (t)y is strongly differen-

tiable in ¢ with p
A () = ie"[H, Al

Integrating this equation, we obtain (2.11). |

The main result of this section is as follows:

Theorem 2.5 Let A € B(H). Then, for all v, ¢ € D(H),

(6, An(0)) = (6, A0) + i [ {(HO, An(s)0) — (6, An(s)HO)} ds.  (212)
Proof. Applying Lemma 2.4 with H replaced by H! (f € F,1(IR)), we have
<¢, eitHgAeitng>

= (¢, AY)
+1 /Ot {<ng—isH!¢’ Ae_iSHg¢> — <A*e_iSHggz§, ng_“Hff¢>} ds (2.13)

for all ¥, ¢ € H and t € IR. Applying Lemma 2.2 with S = H, we have for all ¥» € H and
ne D(H),

s- lim eitHgAe’itng =Ag(t)Y, s lim Ae*iSH!qp = Ae sy,
s-lim A%e ™y — Aoy, g lim H o™y = ey,
e— .
Moreover, we have for all ¢, ¢ € D(H)

—isHI —1is
(mleom o, aco )| < | H AN
* _—1S S —18 S *
(et by ) < Aol H]

Hence we can apply the Lebesgue dominated convergence theorem to the integral on the
right hand side of (2.13) to obtain (2.12). |

Formula (2.12) may be viewed as an integral equation for Ag(t) in a weak sense.
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Corollary 2.6 Let A € B(H). Then, for allyp € D(H) andt € R, [{ Ay(s)yds € D(H)

and

Au(t)d = Av +iH (/Ot Au(s)0 ds> _ @'/Ot Au(s)Ho ds. (2.14)

Proof. Let n(t) := [¢ Ay(s)yds and x(t) := f¢ Ag(s)He ds. Then, by (2.12), we have
forall p € D(H) (Ho,in(t)) = (¢, Au(t)y — Ay +ix(t)). This implies that in(t) € D(H)
and H(in(t)) = Au(t)y — Ay + ix(t)0 Thus the desired result follows. ]

3 Integral equations for Apy(t) with A in a general
class and the asymptotic behavior of Ae " as |t| —
00

In this section, we consider the case where A is not necessarily bounded. We define a
subspace Dy 4 by A
Dy 4= {¢ € H|e" Ty € D(A),vt € R} (3.1)

Obviously
Dya C MierD(An(t)) C D(A).

Let A be a densely defined closed linear operator on H. Then, for every ¢ > 0, t € IR
and f € F, 1(IR), we can define a sesquilinear form ¢/, : D(H) x D(H) — C by

dio.w) = i {(He g, ALem ) — ((AD) e, He w1y ds,
o, € D(H), (3.2)
where A/ is defined by (2.5) with S = A.

Theorem 3.1 Let A be a densely defined closed linear operator on H and f € F,1(IR).
Then, for allt € R, ¢ € D(H) and ¢ € Dy a,

a:(,¢) = limal,(6,4) (3.3)

exists independently of f and
(6, Au(t)Y) = (6, Av) + q:(6,)). (3.4)

Proof. By (2.12), we have
(¢, ™M Alem M) — (6, ALY = gl (¥, ) (3.5)

for all ¢, € D(H) and t € R. Let n € Dy 4. Then, by Lemma 2.2, we have

S- lir% Alei™n = Ae'™y Yr € R.

Hence the left hand side of (3.5) converges to <¢, e“HAe_“Hw> — (¢, Av) as € — 0. Thus
the desired assertion follows. 1

In some cases, the sesquilinear form ¢; may have more explicit representations.
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Theorem 3.2 Let A be a densely defined closed linear operator on H. Suppose that there
ezists a subspace D C D(H) N Dy a N Dy a« such that

sup [|[AFe " Hg| < 00, VT >0,Y¢ €D, (3.6)

0<|s|<T
where A% denotes either A or A*. Then, for all ¢,9 € D and t € IR,
[t isH isH isH isH
(b, A () = (6, Ad) + i /0 [{(He1g, Aemsy) — (Are Mg, He )} ds. (3.7)
Proof. Under the present assumption, we have for all ¢, € D and s € IR
hl’I(l) Age_iSH@/J — Ae_iSH@/}, 111%(Ag)*6_ZSH§Z5 _ A*e_iSH¢.

Let Cp1 (1) == supyc g7 A1 and Cra(¢) := supgcsj<r [[A%e 7 ¢||. Then, for all
|s| < T,

[(He g, ALe™4)) | < [HO||| A ]| flloo < Cra (W) IHANIS 1
((ADy e g, He ™) | < [|HY[|A"e 3] f oo < Cra(@IHE]f -

Hence, by the Lebesgue dominated convergence theorem, we have for |t| < T
t
3 f — —isH —isH . * —isH —isH
lim gl (6,0) = i [ {(He ™o, Ae™ly) — (Ao, ey} ds.

This fact and Theorem 3.1 yield (3.7). ]

Formula (3.7) can be written as

(6, An(t)0) = (6, 40) + i [ {(Ho, Au(s)0) — (Au(s)'0, HO)}ds, 6.0 €D, (35)

This shows that Ay(t) is a solution of the integral equation

¢
(6, X(0)0) = (6, AV) +i | {(Ho,X(s)u) = (X(s)'6. HY)} ds, 6,0 €D, (39)

for an operator-valued function : ¢t — X (¢) with X (0) = A.

Corollary 3.3 Let A be a densely defined closed linear operator on ‘H. Suppose that, for

some a € [1,00), A and A* are |H|*-bounded, i.e., D(|H|*) C D(A) N D(A*) and there

exist constants a; > 0,b; > 0 (j =1,2) such that

[AY]| < an[[[H[*P]| + 0|9l AN < aol[[H[*P] + bal[90ll, Voo € D(IH[). (3.10)

Then, for all ¢, € D(|H|*) and t € R,

(6, Ag()0) = (¢, A + i /0 t {<He*isH¢, Ae*isH@ - <A*e*isH¢, He’i“”Hw>} ds. (3.11)



Proof. By the present assumption, we have D(|H|*) C D(H)NDy aNDpy a-. Moreover
condition (3.10) implies that, for all v € D(|H|*) and |s| < T,s € R (T > 0)

[Ae™* | < arll|H1" [ + bul[pll, A" || < aof|[H|*]| + ba]|].

Hence the assumption of Theorem 3.2 is satisfied with D = D(]H|*). Thus the desired
result follows. ]

We next consider conditions under which the integrand of the integral on the right
hand side of (3.7) can be written in a simpler form.

Definition 3.4 Let S and T be densely defined linear operators on a Hilbert space H
and D be a subspace of H such that D C D(S) N D(T) N D(S*) N D(T*). Suppose that,
there exists a linear operator W with D(W) = D such that, for all ¢, ¢ € D

(59, To) — (T™, S¢) = (¥, W) .
Then we say that the pair (S,7") has a weak commutator W on D and write
W =[S,T.

Remark 3.1 Since D is dense, the weak commutator W (if it exists) is uniquely deter-
mined.

For a subset & of ‘H, we denote by L(S) the subspace algebraically spanned by the
vectors in S.

Theorem 3.5 Let A be a densely defined closed linear operator on H. Suppose that there
ezists a dense subspace D C D(H) N Dy a N Dy a« such that the pair (H, A) has a weak
commutator on the subspace

&= L({e Y]y € D,s € RY), (3.12)

(note that &€ is dense in ‘H) and (3.6) holds . Assume that the mapping: R > s —
[H, AJ¢ e=sHq) is strongly continuous for all ) € D. Then

t .
Aty = Ap + i / GSHH, Al e Hypds, e R, ¢ € D. (3.13)
0

Moreover, if

My(p) := sup [|[H, Al5e ™ y|| <oo, VE>0,Y¢ €D (3.14)

0<s<t

i addition, then

Az @9l < |A[| + My (P)[t], ¥t € R, Vi € D. (3.15)



Proof. Under the present assumption, for all ¢ € D, the mapping : s +— e*?[H, A]¢
e~y (1 € D) is strongly continuous. Hence we can define a linear operator by

Kty =i / t M, A e *Hopds, 1 €D

0

in the sense of strong integral. Then, by Theorem 3.2, we have

(¢, Ag(t)Y) = (¢, AY) + (¢, K(t)Y), ¢, € D.

Since D is dense by the present assumption, (3.13) follows.
Let (3.14) be satisfied. Then, for all ¢ € D,

It .
IOl < [ IH, Afe™ | ds < My ()]t

Hence (3.15) follows.

Theorem 3.5 implies the following theorem:

Theorem 3.6 Let A be a densely defined closed linear operator on H. Suppose that there
ezists a dense subspace D C D(H)N Dy aN Dy a« having the following properties (1) —(iv):

(i) The pair (H, A) has a weak commutator on the subspace E.
(ii) (3.6) holds.

(iii) D is a core of A.

(

iv) [H, A€ is bounded.

Then '
e ™ D(A) = D(A), VteRR (3.16)

and

1A @Il < 1A| + IH, ANt vt e R, Vi € D(A). (3.17)

Proof. By condition (iv), for all v € D, [H, Al e~} is strongly continuous in s and
My (¢) < Cl|¢|,Vt € R with C := ||[H, A% |. Hence we can apply Theorem 3.5 to the
present case. In particular, (3.15) implies that

[Ae™ 9|l < [|A¥] + Cllvlllt], ¢ € D. (3.18)

Since D is a core of A by condition (iii), a limiting argument using this inequality shows
that, for all v € D(A), e~y € D(A) and (3.18) extends to all ¢p € D(A). Thus the
desired reslut follows. [

Theorem 3.6 tells us the following: Under the assumption of Theorem 3.6, D(A) is an
invariant domain of e~ for all t € IR. We remark that this type of theorem has been
established in [3, Lemma 2] under a different assumption.

Asymptotic behaviors of Ae™ 1y (v» € D(A)) as |t| — oo can be derived from Theorem
3.6:



Corollary 3.7 Under the same assumption as in Theorem 3.6,

—itH

w- lim

[t|—o0

=0, Ve D(A), (3.19)

where w-1im means weak limit.
Moreover, for all compact operators C' on 'H,
C A —itH
Jim %w =0, Ve D(A). (3.20)
Proof. The idea of proof is same as that of the proof of [9, Corollary 8.7]. By (3.17),
we have for all ¢ € D(A) .
[ A~ 4|
I

with co := [|Av|| + ||[H, A |||¢]l. Let ¢ € H. Then, for every e > 0, there exists a vector
¢e € D such that ||¢. — ¢|| < e0 We have

<co, [t|>1

Afz'tH 1
(o250 < et el o), =1

Ae_ithﬁ
<¢7 75> i

Since € > 0 is arbitrary, (3.19) follows. Formula (3.20) follows from the well-known fact
that a compact operator maps a weakly convergent sequence to a strongly convergent one.
|

Hence

lim sup

[t|—o0

4 Generalized Heisenberg equations of motion

Let H be a self-adjoint operator on a Hilbert space H as before and D be a dense subspace
of H. Then the Heisenberg equation of motion for an operator-valued function : IR > t —
X(t) (X(t) is a linear operator on H) with respect to (H, D) is defined by

dX (t)¢
dt

with the condtion that D C Nier D(H X (¢)) N D(X(t)H) and X (t)1 is strongly differen-
tiable in ¢.

In the case where H and X () are both in B(H), this definition has no problems
and it is easy to see that a B(H)-valued solution X (¢) of (4.1) with the initial condition
X(0) = A € B(H) and D = 'H is unique and given by X (¢) = e"*# Ae=". But, in the case
where at least one of H and X () is unbounded, the treatment of (4.1) becomes somewhat
difficult because of the domain problems and the regularity problem (the non-triviality of

strong differentiability of X (¢)). To overcome this difficulty, we propose a weak version
of (4.1).

—i[H,X(#), veD (4.1)



Definition 4.1 Let D be a dense subspace of H. We say that an operator-valued function
X(t) with D(X(t)) dense for all t € IR obeys a generalized Heisenberg equation of motion
with respect to (H,D) if D C MiemD(X(t)) N D(X(¢)*) N D(H) and, for all ¢,9 € D,
(¢, X (t)v) is differentiable in ¢ € IR with

d

5 (0. X)) =1 ({Ho, X(t)y) — (X(1)"¢, Hy)), teR. (4.2)

Proposition 4.2 Let A and D be as in Theorem 3.2. Then Ay(t) is a solution of (4.2)
with X (0) = A.

Proof. This follows from differentiating (3.8) in t. ]

We next consider the problem on the uniqueness of solutions of (4.2). We introduce a
class of operator-valued functions.

Definition 4.3 Let D be a dense subspace of H and
Fp = {¢|e"yp € D,Vt € R}. (4.3)

We say that an operator-valued function X (-) with D(X(¢)) dense for all ¢t € IR is in the
set Xp if the following (X.1) and (X.2) hold:

(X.1) D C NerD(X (1)) N D(X (1)) N D(H).

(X.2) For all v € Fp and t € IR, X(t + s)eH1p and X(s)*e"*¢) are strongly
continuous in s € IR or X(s)e®Hep and X (¢t + s)*e™4) are strongly continuous in

s € IR.

Theorem 4.4 Suppose that Fp is dense in H. Let Xy be a densely defined linear operator
on H such that D C D(Xo)ND(Xg). Then the solution X () of (4.2) such that X (-) € Xp
and X (0) = X is unique on D.

Proof. 1t is sufficient to prove that, if X (0)|D = 0, then X (¢)|D = 0, V¢t € R. Let
Y(t) :=e X (t)e™  t € IR and

-1
L. := p— eeR\{0}.

We first consider the case where the first condition in (X.2) is satisfied. We have for all
¢7 1/} S fD

<¢, Y(t+ 52 — Y(t)¢> _ <X(t Fe)reitroH g LgeitH77Z}>

+ <€itHLE¢,X(t + 8)€itHw>
+<€itH¢, X(t+€2_X(t)€thw>

10



This implies that (¢, Y (t)v) is differentiable in ¢ with

d . . . .
2 (0.Y () = i(X(t) e, HeMMy) —i (M He, X (D))
d y im itH
o <e o, X(s)e ¢> |s=t-
By (4.2), the right hand side is equal to zero. Hence (¢, Y (¢)1) = (¢,Y (0))) = 0. Since
Fp is dense, it follows that Y (t)i) = 0 for all b € Fp. Hence it follows from the denseness

of Fp that X(t)*¢ =0 for all ¢ € D. This implies that X (¢)|D = 0.
In the case where the second condition in (X.2) holds, we need only to rewrite

(6, e (Y (t+2) = Y(1)]Y) as

<¢7 Y(t+ 52 — Y(t)¢> _ <X(t +e)reitt g, LgeitH¢>

+ <eitHL6¢>, X(t+ g)ei(t+5)H¢>
T <€itH¢, X(t+ 2 - X(@) 6itHw>

and proceed in the same way as in the preceding case. 1

Corollary 4.5 Let A be a densely defined closed linear operator on 'H. Suppose that there
exists a dense subspace D C D(H) N Dy N Dy a+ such that the following (i) and (ii)
hold:

(i) For all ¢ € D, Ae'p and A*e™ are strongly continuous in t.
(ii) Fp is dense in H.

Then X (t) = Ag(t) is the unique solution of (4.2) such that X(-) € Xp and X (0)|D =
A|D.

Proof. Condition (i) implies (3.6) in Theorem 3.2. Hence, by Proposition 4.2, X (t) =
Ap(t) is a solution of (4.2) with X (0)|D = A|D and D C MiemD(An(t)) N D(Au(t)*) N
D(H). For all ¢ € Fp, we have Ay (t + s)etlyp = et+9H Ae=sHoyy and Ay (s)*e™Hyp =
eH A*)p. Hence Ay (t+ s)ei™ep and Ay (s)*e*Hp are strongly continuous in s. Therefore
Apg € Xp. Thus, by Theorem 4.4, the uniqueness of Ag(-) follows. |

Remark 4.1 In applications, Corollary 4.5 can be used as follows: Suppose that one
finds an operator X (¢) satisfying (4.2) with X(-) € Xp and X (0)|D = A|D and that X (¢)
has an explicit representation. Then, by Corollary 4.5, Ay (t)|D = X (t)|D, which gives an
explicit representation for Ay (t)|D. Elementary examples in quantum physics for which
this method works are as follows: (i) quantum particles in IR™ with potentials of quadratic
polynomials, including harmonic oscillators ; (ii) quasi free quantum field models. But
we do not discuss them here.
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5 Weyl Representations of canonical commutation
relations and invariant domains

In this section we show that there is a general mathematical structure for existence of
invariant domains of the strongly continuous one-parameter unitary group generated by
an abstract self-adjoint operator which is made from the Weyl representation of canonical
commutation relations (CCR) with a finite degree of freedom.

Let H be a complex Hilbert space and {Q;, P;|j = 1,---,n} be a set of self-adjoint
operators on ‘H obeying the following conditions:

(i) For all s,t € R and j,k=1,---,n

ethj eszk — eszk ethj’ it P;

e ]eiSPk — eispkeitpj

(i) For all j,k=1,---,n and s,t € R

eitQ]- ez’st — e—itséjkeist eitQ]- ) (51>
The set {Q;, Pjlj = 1,---,n} is called a Weyl representation of the CCR with n degrees
of freedom. It is well known that, if H is separable, then {Q;, P;|j = 1,---,n} is unitarily
equivalent to a direct sum of the Schrodinger representation of the CCR with n degrees
of freedom [5]. But we work with {Q;, Pj|j = 1,---,n}, since it is suitable for analysis of
general mathematical structures that the Weyl representation of CCR has.

Here we recall the definition of strong commutativity on self-adjoint operators. For a
self-adjoint operator S, we denote by Fg(-) its spectral measure.

Definition 5.1 Two self-adjoint operators .S and 7" on a Hilbert space are said to strongly
commute if their spectral measures commute, i.e., Fg(J)Er(K) = Er(K)Eg(J) for all
Borel sets J, K C IR. In this case, we say also that S strongly commutes with 7.

A set {S;}7-; (n € IN) of self-adjoint operators on a Hilbert space is said to be strongly
commuting if, for each pair (7, k) with j # k (j,k = 1,---,n), S; and S strongly commute.

Lemma 5.2 Let (); and P; be as above. Then:

(i) {Q;}}= is strongly commuting.
(ii) {P;}7-, is strongly commuting.
(ili) For all j,k =1,---,n with j # k, P; and Qy, strongly commute.
(iv) Forallt e R and k,j=1,---,n
¢ D(Py) = D(P) (52)

and . '
6thkPj€—thk — PJ _ jkt- (53)
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Proof. The facts of (i) and (ii) follow from a general theorem (e.g.,[7, Theorem
VIIL13]).

Formula (5.1) with j # k gives eQieiPk = ¢iFieiQi for all s, € IR. Hence, by a
general theorem ([7, Theorem VIII.13]) again, the desired result follows.

To prove (iii), let 1 € D(P;). Then, by (5.1), e@resPireisFiyy = ¢isFieiQry) for all
s,t € IR. The vector-valued function e*%i1) of s is strongly differentiable in s. Hence
the left hand side is strongly differentiable in s. Therefore the right hand side is strongly
differentiable in s. Thus €@ € D(P;) and

eitQ’“t(Sjk@/) + eitQ’“ij = Pjeitka. (5.4)
Hence €@ D(P;) C D(P;). This implies (5.2). Then (5.3) follows from (5.4). ]
By the strong commutativity of @ := {Q;}}_, [Lemma 5.2)-(i)], there exists a unique

n-dimensional spectral measure EQ, called the joint spectral measure of (), such that, for
all Borel sets Bjin IR (j=1,---,n)

Eo(By X ---x B,) = Eo,(By) - Eq, (B).

Then one can develop the functional calculus with respect to EQ. Namely, for each Borel
measurable function ' on IR", we can define a linear operator F(Q)) on H by

F(Q)= [ FNdE(). (5.5)

DF@Q) = {v e M| [ IFOPdlEq¥I? < o0 f
(6, F(Q) = [ FONd (9. Eo(Nw). ¢ € H,v € D(F(Q)).

If F'is real-valued such that Eg({\ € R"||F()\)| = +00}) = 0, then F(Q) is self-adjoint.

~

Similarly P := {F;}7_, has the joint spectral measure Ep. In what follows, we define,

using EQ and Ep, an abstract version of quantum mechanical Hamiltonians, including
the usual Schrédinger type operators with matrix-valued potentials and Dirac type ones.

For ¢ =1,---,L (L € N), let T, : R" — IR;IR" 5 XA — Ty(A) € IR be a continuously
differentiable function satisfying the following conditions (T.1) and (T.2):

(T.1) For each j = 1,---,n and £ = 1,---, L, there exist positive constants ay;, by;
such that, for all sufficiently small |¢| (¢t € IR),

|Tg()\ + tej)|2 < agj|Tg()\)|2 + bgj, Ve IR”,

j-th
where e; := (0,---,0, 1 ,0,---,0) e R" (j=1,---,n).

(T.2) For j =1,---,nand ¢ = 1,---, L, there exist positive constants cy;, dy; such
that, for all sufficiently small |¢],

10, Ty(\ + te;)|* < coj|[Te(N)|* + dij, VA € IR,
where (0;1;)(\) := 0Ty(\)/ON;.

13



Let K be a Hilbert space and {4y, B¢|¢ = 1,--+, L} be a set of bounded self-adjoint
operators on KC (Ay, B, € B(K)). Let V; (¢ =1,---, L) be a real-valued Borel measurable
function on IR™ such that Eg({\ € R"™||Vi(\)| = +0c}) = 0. Then Ty(P) and V;(Q) are
self-adjoint. We define an linear operator H acting in K ® ‘H as follows:

H = i[AzG@Tz(P) + B ® V(Q)] .- (5.6)

We set ; ;
Ho(P):=Y Ac®@Ti(P), Hy:=) Bi®V/(Q). (5.7)

Hence : )
H = Hy(P) + H;. (5.8)

We assume the following;:

Hypothesis (H)
(H.1) Each A, has a bounded inverse 4, € B(H).
(H.2) The operator H is self-adjoint.

The main result of this section is the following theorem:
Theorem 5.3 Under Hypothesis (H), the following (i) and (ii) hold:
(i) Forallte R and j =1, -+ ,n,
e D(I® Q)N D(H)=D(I®Q;)ND(H), (5.9)
where I denotes identity. Moreover, for all ¢y € D(I ® Q;) N D(H),

L t )
I Q)e ™My =10Qw+_ /0 ™ Ay ® (0,T,)(P)e” ™ ypdr, (5.10)
/=1

where the integral on the right hand side is taken in the strong sense.

(ii) If each 0;T;, (j=1,---,n, 0 =1,---,L) is bounded and D(I ® Q;) N D(H) is a
core for I ® Q; in addition, then

e "MDI®Q)=DI®Q;), VteR (5.11)
and (5.10) holds for all ¢ € D(I ® Q).

To prove this theorem, we need some lemmas. It follows from (H.2) and the closed
graph theorem that there exists a constant C' > 0 such that

[Ac @ Tu(P)Y|| < CIHYI + 1¥]]), Vi e D(H), £=1,---, L. (5.12)
Condition (H.1) implies that
I & Te(P)ell < IA N Ae @ Te(P)ll, Vi € D(A @ Ty(P)), £ =1,---, L.
Hence

11 © Tu(Pyell < A7 NCUHY [ + 10]), V¢ € D(H), (=1, L. (5.13)
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Lemma 5.4 Let U be a unitary operator from a Hilbert space Hy to a Hilbert space
Hy and R; (j = 1,---,N, N € IN) be a linear operator from H; to Hs with domain
D(R;) C Hy. Then the operator equality

N N
UIY R |U =Y URU!
j=1 J=1
holds.
Proof. We need only to show that D (U (Zj-v:l Rj) U‘1> =N D(UR;U™"). But this
is straightforward. 1

Lemma 5.5 For all t € R, e®U®%) Hie=*U2Q5) = H (operator equality).

Proof. For all v € K&D(Vy(Q)) (% denotes algebraic tensor product), e*/®9) B, ®
Vi(Q)em"Ie@)y = B, @ Vy(Q)¢ (¢ = 1,---,L). Hence B, ® V,(Q) C €"'®*%)B, @
Vi(Q)e™"I®Q5) - Since the both sides are self-adjoint, we have B, ® V,(Q) = *U®%) B,
Vi(Q)e~*U®Q5) By this relation and Lemma 5.4, we obtain the desired result. |
Lemma 5.6 For allt € R, e®I®Q) [ (P)e "€ = [ (P — te;) (operator equality).

Proof. By (5.3) and the functional calculus, we have @i T,(P)e "% = T,(P — te;),
which implies that e*/®2)A, @ T,(P)e~*®%) = A, @ T,(P — te;). This relation and
Lemma 5.4 give the desired result. 1

Lemma 5.7 There exists a constant 6 > 0 such that, for all |t| <4,
DI®Ti(P—te;))=DI®Ty(P)), j=1,---,nl=1,--- L, (5.14)
and

I @ Ty(P —te;) — I @ Ty(P)W| < K[t|(|Hy| +I¢l), e DH),
j=1,nl=1--- L, (5.15)

where K > 0 is a constant independent of t.

Proof. The first half of the lemma follows from condition (T.1) and the functional
calculus. By the mean value theorem and condition (T.2), we have for all sufficiently

small ||
[ Te(A = te;) = Tu(N)* < CYRP( TN + 1),

where C] > 0 is a constant. Hence
[[Te(P = te;) = To(P)]o|| < Cilt|(|Te(P)v]l + [|9l]), ¢ € D(Tu(P)).

By this estimate and (5.13), we obtain (5.15). ]
For j =1,---,n and t € IR, we define

H,(t) = Ho(P — te;) + H. (5.16)
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Lemma 5.8 For j = 1,---,n and all sufficiently small |t|, H;(t) is self-adjoint with
D(H;(t)) = D(H) and ' '
MU®Q) [re=tI®Q0) — [1,(1). (5.17)
In particular, for allt € R, e *U®%)D(H) = D(H).
Proof. We can write
L
Hi(t)=H+> Wjl(t)
=1
where Wj(t) := Ay @ Ty(P —te;) — Ay @ Ty(P). Let ¢» € D(H). Then, by Lemma 5.7, we
obtain
Wil < Caltl (1 + ),
where Cy > 0 is a constant independent of ¢. Hence, by the Kato-Rellich theorem, for
all [t| such that LCy|t| < 1, H;(t) is self-adjoint with D(H;(t)) = D(H). Formula (5.17)
follows from Lemmas 5.5 and 5.6.
The result of the preceding paragraph implies that, for all sufficiently small |¢|,

e‘it(f@QﬂD(H) — D(H).

But, by using the group property of e */®@5) in ¢, one can show that this holds for all
t e R. ]

Lemma 5.9 Let A and B be self-adjoint operators on H such that A+ B is self-adjoint
and B is A-bounded. Then, for all ¢ € D(A) andt € R,

6—7jt(A+B)¢ —ztA¢ / i(t—s) A+B)B€_ZSA77ZJdS (518)

where the integral on the right hand side is taken in the sense of strong Riemann integral.

Proof. This lemma is probably well known. But, for completeness, we give a proof.
We first consider the case where both A and B are in B(H). Let ¢(t) = e 4y —
i Jy e”{t=8)(A+B) Be—isAy,ds. Then it is easy to show that ¢(t) is strongly differentiable in
t and

d
i56(t) = (A+ B)o(1).
Hence ¢(t) = e (A8t p(0) = e A+B)y),. Therefore (5.18) holds.
We next consider the case where A is not necessarily bounded and B € B(H). Let Af
be the operator S/ defined by (2.5) with S replaced by A. Then, by the preceding result,

we have

emitALB) y — pitaly i/t emilt=9)(4l+B) go=isal g (5.19)
0

For all ¢ € D(A), lim._o(A-+B)¢ = (A+ B)¢. Hence, by a general convergence theorem,
lim,_o e~ "AL+B)y, = e=it(A+B)y,  Moreover
. t )
||/ i(t—s) Af—I-B e—zsAgwdS_/O e—z(t—s)(A—O—B)Be—zsAl/JdSH
—isAf —1is fz s)(Af 72' —s —1s
< [T Bl =y — e hylds + [ [ D) i) ety
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Hence, using the Lebesgue dominated convergence theorem, we see that the right hand
side converges to 0 as € — 0. Thus, taking the limit ¢ — 0 in (5.19), we obtain (5.18).

Finally we consider the case where both A and B satisfy the assumption of the present
lemma. By the result of the preceding paragraph, we have

i f i [t —i(t—s ! —is
e—tATBD tAw—Z/O it (ABE) Bf o—isdyy g (5.20)

Since B is A-bounded, it follows that D(A) C D(B) and e~*4¢ € D(A) C D(B) for all
¢ € D(A) and s € R. Hence

lim Ble74) = Be™4.
E—

Using the A-boundedness of B, one can show that e~(t=9)(4+B8) Be=is44) ig strongly con-
tinuous in s € IR. Hence, in the same way as in the preceding paragraph, we can show
that taking the limit ¢ — 0 in (5.20) yields (5.18). ]

Proof of Theorem 5.3
Throughout the proof, we set Qj =1® Q.
(i) We can write
H;(s) = H+C(s)

with C(s) := Ho(P — se;) — Ho(P), where |s| (s € IR) is sufficiently small. Then, by
Lemma 5.8 and the functional calculus, we have for all Borel measurable function u on IR

eis@ju(H)e’isQf =u(H + C(s)).
Hence, taking u(\) = e~ X\ € IR, we obtain for all t € IR and sufficiently small |s|
eiste—itH _ e—z‘t(H-&-C(s))ez‘st'

Hence, for all ¢ € D(Q;) (s # 0),

e5Qi _ 1 » » . Qi _ 1 VoA —i )5 A
(€ =) iy, matro) <S) — Q) | + eTMIFCED Q)

S

o~ it(H+C(s)) _ p—itH

+ . . (5.21)
We have A
isQ; __ 1 .
lim (M - @'ij) —0.
s—0 S
Since e #H+C() is unitary, it follows that

s—0

. isQj _ 1 R
lim e~ #H+C(5)) (w _ Z'le/J) =0.
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By Lemma 5.7, C(s) is H-bounded and lim,_, C(s)n = 0 for all n € D(H). Hence, by
general convergence theorems [7, VIII.21, VIII.25(a)], we have

lim 6—it(H+C(s))¢ — e_itHgb, Qb cH.

s—0
Hence
?_]f)r(l)e t(H+C(s ZQw_Ze thQJw
By Lemma 5.9, we have

o—it(H+C(s)) _ p—itH

P = —1i /t e_i(t—T)(H+C(S))%e_m—[{wd,r.
0 s

S

By the functional calculus, we can show that, for all ¢ € D(H), lim,_qC(s)p/s =
— S Ay ® (0;T))(P)g and ||C(s)g/s|| < al|(H + 1)¢]|, where a is a positive constant
independent of s. Hence it follows that

o—it(H+C(s)) _ efitH

lim — @Z/ (=01 A,  (0,1,)(P))e ™ pdr, Vo € D(H).

s—0 S

Putting these results into (5.21), one can conclude that, for all ¢ € D(Q;) N D(H),
e”™y e D(Q;) N D(H) and

Q —th¢_ —thij_i_Z/ i(t— T)HA ®(a Té)( )) _iTH¢dT.

Hence (5.9) and (5.10) follow.

(ii) In this case, each 4y ® (8 Ty)(P) is in B(KX ® H). By using this property and
that D(Q;) N D(H) is a core of (;, one can extend, by a simple limiting argument, (5.9)
to all ¢ € D(Q]), at the same time, showing that, for all ¢ € D(Qj) and all t € IR,
e~y € D(Q;). Thus the desired result follows. ]

Remark 5.1 The operator H is symmetric in the exchange of (A, Ty(P)) and (B, Vi(Q))
(¢=1,---,L). Hence Theorem 5.3 holds with @); (resp. Ay, T;(P)) replaced by —P; (resp.
By, V,(Q)) under the assumption for (Ay, Ty(P)) (¢ = 1,---, L) replaced by (B, Vi(Q))
(¢ =1,---, L)(note that, in the present case, —P; plays the role of @); in Theorem 5.3).

6 Applications to Schrodinger and Dirac Operators

In this section we apply the results in the preceding section to Schrodinger and Dirac
operators with operator-valued potentials.
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6.1 Schrodnger operators

Let {q;, p; i—1 be the Schrodinger representaton of the CCR with n degrees of freedom, i.e.,
¢; is the multiplication operator by the j-th coordinate variable z; in z = (21, -, x,) €
R" acting in L*(R") and p; := —iD;, where D; is the generalized partial differential
operator in z; acting in L*(IR"). It is well-known (or easy to see) that {g;,p;}}_, is
a Weyl representation. In the context of quantum mechanics, ¢; and p; are called the
J-th position operator and the j-th momentum operator respectively. We consider the
following case in the notation of the preceding section:

H:LQ(RTL)’ QJZQJ7PJIPJ7 j:17"'7n7
)\2

AeZI, €:1,',L7T1()\):27’ AE]R?Z T€:O’£:2’...7L7
m

where m > 0 is a constant. Then, under the natural identification K @ L*(IR") =
L*(IR™; K), H takes the following form:

A L
Hs:= —— + S B,
S 2m+£:1 Vi(q),

where A := 377, DJQ- is the generalized Laplacian acting in L*(IR") and ¢ = (g1, -, ¢n).
This is an n-dimensional Schrodinger operator with a B(K)-valued potential. Hence Hg
is a generalization of Schrodinger operators with matrix-valued potentials.

Theorem 6.1 Suppose that Hg is self-adjoint. Then, for allt € R and j =1,---,n,
e "5 D(q;) N D(Hs) = D(g;) N D(Hs) (6.1)

and, for all y» € D(q;) N D(Hs),

00 =g+ [ P yas (6:2)

where
q] (t) = eZtHs qje—ltHS’ p] (t) = e’LtHspje—’LtHS .

In particular, q;(t)y is strongly differentiable in t € IR and

L5096 = (1) (63

Proof. By direct computations, one can easily check that the functions 7, in the
present case satisfy (T.1) and (T.2) with 0;71(\) = A;j/m and 0,7, = 0, ¢ > 2. Also
Hypothesis (H) holds. Thus Theorem 5.3 yields the desired result. ]

As for the momentum operator p;, we have the following result:
Theorem 6.2 Assume the following (i)—(iv):

(i) Hs is self-adjoint.
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(ii) For £ =1,--- L, By is bijective and B; " is bounded.

(iii) For each j = 1,---,n and ¢ = 1,---, L, there exist positive constants ay;,by;
such that, for all sufficiently small |t| (t € R),

Vi(w +te))|” < ag;|[Ve(x)[* + by, Vo € R™.

(iv) Each V, (¢ = 1,---, L) is continuously differentiable on R"™ and, forj=1,---,n
and ¢ = 1,---, L, there exist positive constants cej,dy; such that, for all sufficiently
small |t],

|aj‘/g(l' + tej)|2 S C[j|‘/g<13>|2 + dgj,‘v’x € R".

Then, for allt € R and j =1,---,n,
e D(p;) N D(Hs) = D(p;) N D(Hs) (6.4)

and, for all ) € D(p;) N D(Hs),

pi(t) = g+ [ Ei(s)uds, (65

where .
Fi(s) == = 32 ¢ By Vilgye .
=1

In particular, p;(t)y is strongly differentiable in t € R and

d
Spilt) = Fy(0)y. (6.6)
Proof. This follows from Remark 5.1 and the present assumption. |

Remark 6.1 The system of differential equations (6.3) and (6.6) gives a mathematically
rigorous form of the Heisenberg equation of motion for the pairs (g;(t),p;(t)), j=1,---,n
(a “quantum Newton equation”).

6.2 Relativistic Schrodinger operators

Let
L
Hyq :i= v —A+m? + ZBKW(q)a
=1
a relativistic Schrodinger operator with a B(K)-valued potential.

Theorem 6.3 Assume that V; € Li,(R"), £ = 1,---, L, i.e., [j,<g |Vi(2)]?dz < o0 for

loc

all R > 0, and that H.q s self-adjoint. Then, for allt € IR and j=1,---,n,

e """ D(q;) = D(q;) (6.7)
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and, for all ¢ € D(q;),

GO0 =0+ [ Bils) (s +m) s, (63

where ' ' ' '
q](t) = eZtHrelqjefltHrel’ ﬁ_] (t) — eltHrelpjefltHrel_
In partcular, q;(t)y is strongly differentiable in t € IR and
d I _
LY =P (O(B(t)* +m?) . (6.9)
Proof. In the present case T1(\) = VA2+m? Ty(\) = 0,¢ > 2,A € IR". Hence
(T.1) holds. We have 0,T1(\) = \;j/VA2+m?2, 0,y =0, ¢ > 2. Hence 0;T} is bounded.

Moreover, D(q;) N D(H,e) is a core for g;, since K&C(IR") C D(q;) N D(H,) and
Ci°(IR™) is a core for g;. Thus Theorem 5.3-(ii) yields the desired result. ]

Theorem 6.4 Assume that Hy is self-adjoint and that conditions (ii)—(iv) in Theorem
6.2 holds. Then, for allt € R and j =1,---,n,

e~ e D(p;) N D(Hyet) = D(p;) N D(H,el) (6.10)

and, for all ¢ € D(p;) N D(H,q),

Piltyw =y + [ Fy(s)uds (6.11)
In particular, p;(t)y is strongly differentable in t € IR and
d _
4500 = B, (6.12)
Proof. Similar to the proof of Theorem 6.2. 1

6.3 Abstract Dirac operators

In this subsection we consider a class of abstract Dirac operators. Let {Q;, P;|j =
1,---,n} be as in Section 5 and {I';,B|j = 1,---,n} be a set of bounded self-adjoint
operators on K satisfying

{T;,Tx} =26, {I;,B}=0, jk=1,---,n, (6.13)
B*=1, (6.14)

where {X, Y} := XY + YV X.
Let M,V,:IR" - IR ({ =1,---,N) be Borel measurable functions such that

Ep({X € RY|M(A)| = +00}) =0,  Eq({} € R"||Vi(\)| = +o0}) = 0.
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Then M (P) and V;(Q) are self-adjoint. Let Cy be a bounded self-adjoint operator on K.
Then we define

n N
Hp:=> T;®@Pj+B® M(P)+ > Cr o Vi(Q) (6.15)

j=1 =1

As is easily noted, Hp is an abstract version of the usual Dirac operator acting in
L2(IR?; C*) ([9, Chapter 4]). Let

Hy=)Y T;®P;j+B® M(P). (6.16)
j=1

Before proving the self-adjointness of Hy, we recall the notion of strong anticommuta-
tivity on self-adjoint operators:

Definition 6.5 Let {S;}}_, be a set of self-adjoint operators on a Hilbert space. We say
that {S;}7_, is strongly anticommuting if, for each pair (j, k) with j # k (j,k=1,---,n),
e%i Sy, C Spe~ % vt € R.

Remark 6.2 A posteriori one can show that the definition of the strong anticommuta-
tivity is symmetric in Sj, j =1,---,k [6, 10] and that 'S}, = Spe 5% Vit € R,j # k.

The following theorem is a fundamental result in the theory of strongly anticommuting
self-adjoint operators:

Theorem 6.6 (Vasilescu [10]) Let {S;}}_, be strongly anticommuting on a Hilbert space.
Then T :=377_, S; is self-adjoint and

We set .
Pty P
j=1
which is a nonnegative self-adjoint operator.
Lemma 6.7 The operator Hy is self-adjoint and
|How || = |1 @ (P? + M(P)*)"9||, 4 € D(Ho). (6.17)

Proof. Since {Py,---, P,, M(P)} is a set of strongly commuting self-adjoint operators
and (6.13) and (6.14) hold, it follows from a genreral theorem [1, Theorem 3.4] that
I'; ® P; strongly anticommutes with I'y ® P, (k # j) and B ® M(P). Hence we can
apply Vasilescu’s theorem (Theorem 6.6) to conclude that Hy is self-adjoint and that
Hi =" 1®P?+1® M(P)? implying (6.17). N

Lemma 6.8 Assume the following (i)—(ii):
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(i) For each ¢ =1,--- N, D(VP?) C D(V,(Q)) and there ezist positive constant &,
and by such that

V@)Wl < eel VP20 + bellbll, 4 € D(VP?).

(ii) The function M is bounded on IR".
Let
N
> 1 Bellee < 1. (6.18)
=1

Then Hy is self-adjoint with D(Hp) = D (35_, T; ® P;) = D(I © VP?).

Proof. Let W := Y0, B,Vy(Q). Then, by condition (i), we have for all ¢y € D(I ®
VP?) =D T @ F))

N n N
Wl < (Z ||Be||ee) H (er ®Pj) ol + (aneubz) 1l
—1 j=1 =1

where we have used (6.17) with the case M = 0. Hence, by the Kato-Rellich theorem,
Hy =¥ T; @ P;+ W is self-adjoint with D(H},) = D (£, T; ® P;) = D(I® VP?).
Since Hp = H, + B® M(P) and B® M (P) is a bounded self-adjoint operator under the
present assumption, it follows that Hp is self-adjoint with D(Hp) = D(H},). ]

Theorem 6.9 Suppose that the assumption of Lemma 6.8 holds and that M is continu-
ously differentiable on R"™ with 0;M being bounded on R"™ (j = 1,---,n). Then, for all
teRandj=1,---,n,

e D(I®Q;) = DI ® Q) (6.19)

and, for all ) € D(I ® Q;),
e (I ® Q))e ™y = T @ Q4 + /O "I, @ 14 B @ (9;M)(P)le* yds. (6.20)

Proof. We apply Theorem 5.3 to the following case:
L:=max{n+1,N},

Ff ;€:17"',7L, )‘Z ’621, ) T
A=< B s l=n+1, , T\ =19 M\ i l=n+1,
Ay=0 ; (£>n—+1 T, =0 ¢>n+1
- OE ; (= 17 e 7N7
Be = { 0 >N
We also note that D(I®Q;)ND(37_, I';®@P;) is a core of I®Q);, since {Qj, Pjlj = 1,---,n}
is a Weyl representation of CCR. Thus we obtain the desired result from Theorem 5.3-(ii).
]

Remark 6.3 One can also obtain a result on / ® P;. But we omit writing it down.
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