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Heisenberg-scaling measurement of the single-
photon Kerr non-linearity using mixed states
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Jian-Shun Tang1,2, Xiao-Ye Xu1,2, Yaron Kedem4, Chuan-Feng Li1,2 & Guang-Can Guo1,2

Improving the precision of measurements is a significant scientific challenge. Previous works

suggest that in a photon-coupling scenario the quantum fisher information shows a quantum-

enhanced scaling of N2, which in theory allows a better-than-classical scaling in practical

measurements. In this work, utilizing mixed states with a large uncertainty and a post-

selection of an additional pure system, we present a scheme to extract this amount of

quantum fisher information and experimentally attain a practical Heisenberg scaling. We

performed a measurement of a single-photon’s Kerr non-linearity with a Heisenberg scaling,

where an ultra-small Kerr phase of ≃6 × 10−8 rad was observed with a precision of ≃3.6 × 10
−10 rad. From the use of mixed states, the upper bound of quantum fisher information is

improved to 2N2. Moreover, by using an imaginary weak-value the scheme is robust to noise

originating from the self-phase modulation.
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Consider a physical process that is described by an inter-
action Hamiltonian gH, which depends linearly on a small
parameter g that we want to estimate. The precision of this

estimation is ultimately limited by the Cramér-Rao bound, which
implies that1

Δg � Δgmin ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
FðρÞ~νp ; ð1Þ

where F(ρ) is the quantum Fisher information (QFI) of the final
state, ρ, and ~ν is the number of times H is used. For pure states

the QFI is equal to 4ΔH2, where ΔH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2h i � Hh i2

q
is the

standard deviation of H with respect to the initial state. Hence, by
preparing an initial pure state with a large ΔH, one may improve
the precision. The interaction can involve a large number, N, of
subsystems, and in case that there are no interactions between the
subsystems, H ¼ PN

i¼1 Hi. The scaling of the precision with
respect to N is of special importance. Previous works show that
when some quantum resources are utilized, e.g., quantum
entanglement, it is possible to have ΔH ∝N, which yields an
Heisenberg scaling (HS)2–6. Thus, a significant amount of effort
was put into generating highly entangled states, such as NOON
states7–9 or squeezed states10–13. Zhang et al. also prove that on
the appearance of photon-coupling, the QFI can also shows a
quantum scaling of N2, even without any quantum resources14.
However, as far as we know, no experimental works have been
demonstrated to extract this amount of QFI and eventually reach
a realistic HS.

Generally, for mixed states Eq. (1) does not hold; an initial
mixed state with ΔH ∝N, does not yield an HS. It has been
shown, however, that for non-linear interactions the precision can
attain HS with mixed states15. Our scheme is directly focused on
maximizing ΔH by introducing externally induced fluctuations to
the initial probe state. In order to see how to utilize these fluc-
tuations, we use the formalism of weak measurements16–22.
Consider an interaction Hamiltonian H ¼ f ðtÞP̂Ĉ, where P̂,
which is related to a probe, and Ĉ, which is related to a system,
are both Hermitian operators and f(t) is a coupling function with
a finite support that satisfies

R
f ðtÞdt ¼ g � 1. If the system is

prepared in a state ψj i before the interaction and post-selected
later to a state φj i, then P̂

� �
will be modified according to

P̂
� � ! P̂

� �þ δP, with

δP ¼ 2g ΔPð Þ2ImCw; ð2Þ

where Cw ¼ φh jĈ ψj i
φjψh i is the weak value of Ĉ, and ΔP is the standard

deviation of P̂23,24. Hence, a measurement of P̂
� �

yields a pre-
cision of Δg ∝ΔP−1. As we noted before, when P̂ pertains to N
uncorrelated systems, e.g., a coherent state, then ΔP / ffiffiffiffi

N
p

.
However, it was shown25 that Eq. (2) holds even when ΔP is due
to classical fluctuations. By taking the limit of the largest possible
fluctuations ΔP � P̂

� �
, we can significantly improve the mea-

surement precision.
Remarkably, for the metrological task of estimating a coupling

strength between a probe and a pure quantum system, our
scheme enables to utilize these classical fluctuations, i.e., mixed
states, hence the upper bound of QFI can be raised to 2N2 in
principle. Altogether with a post-selection process, our method
can extract an amount of Fisher information (FI) which is also
~N2, thus the achieved precision is close to the theoretically
optimal precision set by the QFI. We experimentally demonstrate
our scheme by measuring a single-photon’s Kerr non-linearity26,
achieving a robust HS that results in a precision of ≃3.6 × 10−10

rad.

Results
Heisenberg-scaling metrology. The general idea of our scheme is
shown in Fig. 1. The intuition arising from this picture, is that
‘stretching’ the state can, in a particular case, have a similar effect
as squeezing27. Increasing the total uncertainty is possible when
external noise/modulations are added.

Consider the setup shown in Fig. 1a. The interaction is
described by U ¼ e�ign̂Ĉ , where n̂ is the photon number operator
on the probe and Ĉ is the ‘which path’ operator acting on a single
photon going through the interferometer. If the photon is in a
superposition of the two arms, i.e., not in an eigenstate of Ĉ, the
QFI of the joint system-probe state after the interaction is ∝N2,
where N ¼ n̂h i14. However, using a probe that is initially in a
coherent state, a measurement of any other quadrature, cannot
extract this information, since HS arises only in the post-selection
process itself14,25,28. In this experiment, we measured the photon
number, for a given post-selection. When the probe is initially in
a statistical ensemble with a wide distribution, i.e., the standard
deviation is proportional to N, the classic Fisher information29 for
this choice is also ∝N2, regardless of the particular form of the
distribution (see Supplementary Note 2).

If the system is prepared in a state ψj i and post-selected later to
φj i, one can approximate the impact of the interaction as
φh je�ign̂Ĉ ψj i ’ e�ign̂Cw . A coherent state would transform

a b

Δ

g

Im (�)

g
Re(�)

��

|�|

Fig. 1 Strategies for precision measurements. a The scheme: a single-photon goes through an interferometer, where in one arm it interacts with a coherent
state and a phase is acquired, while in the other nothing happens. At the exit port the two paths interfere so the probability of the photon coming out there
depends on the phase it acquired by the interaction, and thus, also on the number of photons in the probe. Post-selecting the probe pulses accordingly
induces a shift in the average photon number, from which the interaction strength can be estimated. b The principle of our method: a statistical ensemble of
αj i (only a few are drawn), showing the two paths for each member: blue with the phase and magenta without. Due to the probability of postselection, Eq.
(3), the ensemble is shifted in the radial direction. The shift in photon number, Eq. (5), δn∝ (Δn)2∝ N2 so the shift in αj j is ∝N3/2. The uncertainty in n can
be fluctuated to be ∝N. The ratio between the uncertainty and the shift is ∝1/N, resulting in the Heisenberg scaling
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according to αj i ! eigCwαj i, which implies a tangential shift of
g αj jReCw and a radial shift of g αj jImCw, yielding a precision
/ 1=

ffiffiffiffi
N

p
. In our method, we use a statistical mixture of number

states or an ensemble of coherent states, as illustrated in Fig. 1b.
The probability of post-selection when the probe has n photons is
given by (see Supplementary Note 2)

pφjn ¼ φjψh ij j2 1þ 2gImCwnð Þ þ oðngÞ2: ð3Þ

States with a higher photon number entail larger (smaller)
probability if ImCw> 0 (ImCw< 0); therefore the photon-number
distribution is shifted. This change in the average photon number
is given by δn = 2g(Δn)2ImCw, where Δn is the standard deviation
of the initial distribution. Obtaining δn experimentally entails a
measurement error ∝Δn, and thus, the estimation g = δn/(2(Δn)
2ImCw) yields a precision Δg ∝ 1/Δn (other contributions to the
estimation error are O(δn/Δn) � 1). A coherent state αj i has an
uncertainty of Δn ¼ αj j ¼ ffiffiffiffi

N
p

, but adding classical fluctuations
one can produce a distribution with a large deviation, Δn ∝N,
where N is the average photon number of the distribution. One
can separate the uncertainty to a component coming from the
quantum state and another coming from the statistical distribu-
tion. In our case the latter is much larger so the former can be
neglected. Note that the precise form of the distribution is
insignificant for this result; it depends only on the mean value
and the variance of the distribution (see Supplementary Note 2).

Kerr non-linearity measurement. Let us apply this method in
the task of measuring the Kerr non-linearity of a single photon. A
strong pulse (probe) and a single photon (system) overlap inside a
fiber where the dependence of the refractive index on the inten-
sity of light induces both a self-phase modulation (SPM) and a
cross-phase modulation (XPM). The effective Hamiltonian is30

H ¼ ~gSn̂2 þ ~gĈn̂, where n̂ now refers to the photon number in
the probe, Ĉ is the photon number in the system, and ~gS ~gð Þ is the
coupling due to the SPM (XPM). Integrating along the fiber yields
the coefficient gS (g) for the SPM (XPM), such that the evolution
is given by U ¼ e�igSn̂2�igĈn̂. The XPM represents an interaction
involving a single photon, and thus, measuring g is highly
important for many applications31,32. An experiment to achieve
this was recently performed by Matsuda et al.26, using the stan-
dard approach as described above. The main limitation in their
setup came from the additional noise introduced by the SPM,
which is dominant when NgS � 1. Using our scheme, as we show
below, the SPM is insignificant since the intensity is measured
instead of the phase.

We now show, in detail, how to measure g using our method
and analyze the resulting precision. The system photon is sent
into an interferometer, with one arm containing the fiber, such
that its initial state is ψj i ¼ 1j i þ 0j ið Þ= ffiffiffi

2
p

where 1j i and 0j i are
eigenstates of Ĉ with eigenvalues 0 and 1, respectively. The probe
is in a coherent state αj i, but by modulating the power of the laser
we obtain a distribution of α, which can be written as a mixed
state, ρp ¼

P
α pα αj i αh j, where pα is the probability of having a

coherent state αj i. After the probe goes through the fiber, we
measure its average photon number. However, only the trials
when the system photon is found in a specific exit port are taken
into account; we post-select the state of the system as
φj i ¼ 1j i � e�iε 0j ið Þ= ffiffiffi

2
p

, with the post-selection parameter
ε � 1, which is set by tuning the interferometer. The result of
the measurement on the probe is given by

n̂h i ¼
Tr n̂Uρpρ

ψ
s U

yρφs
h i

Tr Uρpρ
ψ
s Uyρφs

h i ; ð4Þ

where ρψs ¼ ψj i ψh j and ρφs ¼ φj i φh j are the pre- and post-
selected state, respectively. ρφs is inserted to represent the post-
selection and this is also the reason for the normalization
denominator. Since U ; n̂½ � ¼ 0, only the diagonal element ρn;np ¼
nh jρp nj i are significant, and we can replace the trace over the
probe states with a sum over the photon number Trρp ½�� !P

n ρ
n;n
p ½�� while replacing n̂ ! n inside the summand. The trace

over the system can be approximated as Tr UðnÞρψs UyðnÞρφs
� � ’

ε2 1þ 2n g
ε

� �
for n g

ε � 1 (see Supplementary Note 3). Therefore,
the change in the average photon number is given by (see
Supplementary Note 2)

δn ’
P
n
ρn;np n 1þ 2n g

ε

� �
P
n
ρn;np 1þ 2n g

ε

� � � N ’ 2
g
ε
ðΔnÞ2: ð5Þ

Since Cw ’ i
ε, Eq. (5) agrees with Eq. (2). In case that Δn ∝N, we

obtain an HS. To describe our scheme in a more general context,
we also present a detailed derivation for the case in which the
system and probes are qubits (see Supplementary Note 4).

Moreover, due to the usage of an imaginary weak value, the
interaction results in a shift of the average photon number rather
than a phase shift, our scheme is robust to phase noise, and in
particular, the SPM part is completely canceled.

Our method, and weak measurements in general, requires a
post-selection, and for a large weak value, the post-selection is
rare. This can diminish the precision due to a decrease in the
number of successful post-selecting events ν � ~ν φjψh ij j233,34. On
the other hand, by calculating the Fisher information directly
from Eq. (5), one obtains another amplification factor of
ε�2 � φjψh ij j�2; therefore, when using the Cramér-Rao bound
Eq. (1), the dependence on φjψh ij j cancels.

The experimental setup is shown in Fig. 2. A photon pair is
generated by spontaneous parametric down conversion. One
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Fig. 2 Experimental setup for measuring the Kerr non-linearity of a single
photon. Photon pairs (with wavelengths 785 and 815 nm) are prepared
through the spontaneous parametric down conversion process by pumping
the BBO crystal with ultraviolet pulses. The 815 nm photons serve as
triggers and the heralded 785 nm photons interact with strong probe pulses
(800 nm) in an 8m long photonic crystal fiber (PCF). The acoustic optical
modulator (AOM) is used to introduce fluctuation to the probe via
modulation in the intensity. After interaction, the state of the single photon
is post-selected and the corresponding strong pulses are measured using a
full HD oscilloscope (FHO). Analyzing the shift of average photon number
of these strong pulses yields an estimation for the interaction strength. For
more details, see the main text and Method. BBO -β-barium borate crystal,
DM dichroic mirror, SPD: single-photon detector, HWP: half wave plate,
QWP: quarter wave plate, M: mirror, FR: Faraday rotator, SF: spectral filter,
PBS: polarized beam splitter, APD: amplified photon detector, CU:
coincidence unit
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photon is used for heralding and the other enters a polarization
Sagnac interferometer (PSI), which contains a photonic crystal
fiber (PCF)35. The single-photon’s polarization is set as
Vj i þ Hj ið Þ= ffiffiffi

2
p

(V and H represent the vertical and horizontal
polarization, respectively). After entering the PSI, the photon is in
an equal superposition of clockwise and counter-clockwise
propagation. Only the counter-clockwise component can interact
with the probe pulse; hence, the system becomes
ψj i ¼ 1j iVþ 0j iH

� �
=

ffiffiffi
2

p
, where {0, 1} represents the interacting

photon number. After the PSI the system is post-selected using its
polarization. Faraday units cause the two components to have the
same polarization inside the PCF. Preparation of the probe, which
is a strong pulse, involves (i) modulating its intensity using an
acoustic optical modulator (AOM), (ii) introducing delay using a
translatable mirror and (iii) filtering the spectrum to prevent an
overlap with the spectrum of the single photon. The probe then
enters the PCF through a polarized beam splitter (PBS), where it
overlaps with one component of the single photon and the
interaction takes place. Upon exiting the PCF, through another
PBS, the intensity of the probe is measured, which depends on the
detection of both the heralding photon and the post-selected
photon from the PSI. Separating the single photon from the
strong pulse after the interaction is performed using both the

polarization and spectrum degrees of freedom (see the Methods
for more details).

Experimental results. We start by demonstrating the validity of
Eq. (5) in our system by modifying the quantities on the right
side: the interaction strength g, the standard deviation Δn and the
weak value i/ε, and by measuring δn. Tuning g is performed by
varying the temporal overlap between the probe and the single
photon. The standard deviation is controlled by changing the
modulation amplitude D in the intensity of the probe (see the
Methods for details). ε is set by choosing the post-selected
polarization state of the single photon exiting the PSI. In Fig. 3,
we plot the normalized change in the photon number δ~n ¼ δn=N
in a number of ways. The error bars are shown as the uncertainty
in δ~n, which is written as σ=

ffiffiffi
ν

p
. Here, σ is the standard deviation

of measured δ~n and ν is number of recorded probe pulses by
FHO. The results demonstrate the ability to detect the interaction
of the probe with a single photon.

We now experimentally demonstrate the precision of our
method, and, in particular, we show how the precision scales with
the average photon number of the the probe. Theoretically, the
precision can be obtained from Eq. (5), for example, by

b c
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Fig. 3 Demonstration of the validity of Eq. (5). All plots show the normalized change in the average photon number δ~n with N= 5 × 104. a A delay in the
probe controls the temporal overlap with the system inside the PCF and thus tunes the interaction strength (here with ε= 0.1). This is performed for
several magnitudes of modulation, and the results trace out Gaussian shape for non-zero modulation amplitude. However, in the absence of modulation,
the standard deviation due to the shot noise Δn ¼ ffiffiffiffi

N
p ’ 102 is too small to observe the effect of the interaction. b The standard deviation Δn is changed

by controlling the magnitude of the modulation in the intensity of the probe, with ε= 0.1. c Tuning the post-selection parameter ε, while Δn= 1.4 × 104. The
results in both (b, and c) are fitted to Eq. 5, and an estimate of g, with an error due to the fitting quality, is shown in each panel. The error bars are shown as
the uncertainty in δ~n, which is written as σ=

ffiffiffi
ν

p
. Here, σ is the standard deviation of measured δ~n and ν is number of recorded probe pulses by FHO
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calculating the Fisher information (see Supplementary Notes 1
and 2). Nonetheless, it is important to show that the precision can
be reached in practice, for large values of the photon number, and
that the method is indeed advantageous compared to the
alternative methods. In order to quantify the precision, we study
the dependence of the measured quantity on the varying
estimated parameter g. Each value of g is calibrated from Eq.
(5) with N = 9 × 104, ε = 0.1 and Δn ’ 0:5N , when ν ’ 9 ´ 105.
Taking into account of the uncertainty in the measurement of the
probe, we can obtain the practical precision. The results, shown in
Fig. 4, demonstrate an HS, up to values of N ≃ 105. The ultimate
precision of Δg ’ 3:6 ´ 10�10 rad is an improvement on a recent
result for the same task26. Considering a pure probe of coherent
state gives a QFI ∝N214, the bound to QFI with mixed state can
be calculated from Supplementary Eq. (3) in Supplementary
Note 1. It can be seen that the achieved precisions in our
experiment are close to the optimal values (the purple line) set by
this bound. From a theoretical point of view, increasing the
variance up to ∝N2 can give a bound that is ∝2N2, which
improves the upper bound to the QFI.

Discussion
The method we presented requires Ng � 1, which implies that it
cannot be a single-shot measurement. The information regarding
g can only be gathered from an ensemble that is large enough for
the statistical distribution of the initial probe state to be mean-
ingful. Nonetheless, at the most interesting scenario g→ 0, i.e.,
detecting the utmost miniscule effects, the scaling implies that
when g→ g = a−1g, modifying N→N = aN would maintain the
same relative precision, for any number a.

In summary, in this work a new scheme for the metrological
task of estimating a weak coupling strength between a pure
quantum system and a probe was presented. We theoretically and
experimentally demonstrated that mixed probe state, combined
with a post-selection of the pure quantum system, can be utilized
to improve the precision. Specifically, the extracted FI is close to
and scales as the QFI. We performed a measurement of the Kerr
non-linearity of a single photon with an HS. Moreover, because

an imaginary weak value was employed, our measurement was
robust to phase noise, and in particular, to SPM noise. This
enabled us to reach a precision of ≃3.6 × 10−10 rad in a mea-
surement of an ultra-small Kerr phase of ≃6 × 10−8 rad. Enhan-
cing the precision with weak measurement has been theoretically
investigated in the context of metrology28,36–38, and some other
works questioned this advantage considering the discarded
resources14,33. In our scheme, the mixed states increase the var-
iance of the Hamiltonian, and weak measurements enable the
increased variance to improve the precision. The classical noise is
not crucial from a theoretical point of view but is vital for the
practical method we used. This new technique further develops
the theoretical framework of weak measurement. The maximal
possible magnitude of fluctuations is limited by the experimental
resources, which, in our case, is the photon number. The preci-
sion scales inversely with the magnitude of fluctuations. Thus,
when the resource is scaled up, the precision improves towards
the QFI limit; in our case reaching an HS. The fact that our
scheme is based on the utilization of mixed states enables its
practical scalability (up to the limits of the scheme). Hence, our
work paves a new route for precision measurements, which can
significantly modify the vast amount of effort devoted to this task.

Methods
Preparation of system and probe. Single photons (systems) are generated by a
non-degenerate spontaneous parametric down conversion process (SPDC). At first,
130 fs laser pulses centered at approximately 800 nm are up-converted to 400 nm
by a second harmonic generation (SHG) process in a β-barium borate (BBO)
crystal. Afterwards, a second BBO crystal is pumped by the 400 nm pulses to
generate down-converted photon pairs. The cut angle of BBO crystal is designed to
generate collinear 785 and 815 nm photon pairs. The photons propagate collinearly
and are then separated by a dichroic mirror. The 785 nm photon is reflected into
the interferometer as a system pulse while the 815 nm photon is transmitted and
then detected by the first single-photon detector to herald the 785 nm photons. The
residual 800 nm laser pulse after the SHG process is attenuated as a probe pulse. A
feedback control of the probe pulse is realized by a half wave plate (HWP)
mounted in a motored rotation stage, so that the power of the probe pulse is well
stabilized. Before the probe pulse is coupled into the PCF, its amplitude, spectrum
and time domain are tuned. The amplitude modulation is performed through an
AOM placed at the confocal point of a doublet lens. The AOM is driven by an
arbitrary wave generator (Tektronics AWG 3252). The driving frequency is
200MHz to maximize the diffraction efficiency. The specific form of the driving
function is not important and only the standard deviation affects. For convenience
we apply a sine-type modulation on the driver described as V = V0(1 −Dsin(ω t)),
the photon number fluctuates around the mean N with a standard deviation
decided by D. V0 is selected where the diffraction efficiency is approximately half of
the maximum and N is determined by the incident power on AOM. The mod-
ulation frequency ω is fixed at 1 KHz. The modulation depth D can be varied from
0 to 1, as a result, Δn can be tuned to expected values according to the records from
FHO. The first diffraction order is isolated by a pin-hole and delayed to overlap
with pump photons inside the PCF. This synchronization is realized by a silver
mirror on a manual linear translation stage with the precision of ~ 10 femtosecond.
The first spectrum filter (SF1) is an optical 4-f system including two transmitting
gratings (1200 Grooves/mm) and a pair of lenses (300 mm focus length). By
aligning a silt on the confocal plane, short wavelengths below 795 nm are filtered.
Consequently the system and probe pulses can be separated in the spectrum, which
is essential when implementing post-selection on system photons.

Interaction in PSI. The initial state of the system photons is prepared as
jψi ¼ Vj i þ Hj ið Þ= ffiffiffi

2
p

, where H and V represent the horizontally and vertically
polarized components, respectively. These two components counter-propagate
through the PSI, which contains an 8 m long PCF (NL-2.4-800, Blaze Photonics).
The incident light is collected into the PCF by two triplet fiber optic collimators
(Thorlabs TC12FC-780) lenses with a coupling efficiency of 20%. With a HWP
before each collimators, photon polarization is maintained after the PCF. Two
Faraday units, each consisting of a 45° Faraday rotator and a HWP, cause the two
components to have the same linear polarization in the PCF. Vertically polarized
system photons are synchronized to overlap with the probe pulses. Two internal
polarized beam splitters are used to allow the system photons to enter and exit the
PCF.

Detection apparatus. After the probe pulses are separated from the system
photons, they shine on a low-noise amplified photon detector and the waveform is
sampled by a 12-bit (4096 level) full HD oscilloscope working in the external

10–8

10–9

10–10

105

Δg
 (

ra
d)

106

N

Fig. 4 Experimentally obtained precision showing Heisenberg scaling. By
varying the interaction parameter g, via tuning of the temporal overlap of
the system and probe, we obtained s ¼ ∂δ~n

∂g (see Supplementary Note 5 for
details). The precision of the estimation procedure is then given by
Δg ¼ 2σ=s

ffiffiffi
ν

p
. We performed this using ε= 0.1, Δn ’ 0:5N, ν ’ 2:2 ´ 105

and for a number of values of N from 3 × 104 to 5 × 106. For N< 105 the
precision follows an HS, of Δg ’ 6:3 ´ 10�4N�1 rad, shown as a blue line,
obtained by fitting these points. In this regime s has a linear dependency on
N, while the uncertainty σ=

ffiffiffi
ν

p
is roughly independent of N. For higher

values of N, there is a deviation from the HS, due to the non-linearity of s.
The purple line is a bound on the precision for mixed states, taking account
the QFI for each member in the ensemble, given by
Δgmin ’ 0:95 ´ 10�4N�1 rad (See Supplementary Note 1 for details)
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trigger mode. The system photon exits the PSI from another port and is then post-
selected by a polarizer. The post-selection state φj i ¼ Vj i � e�iε Hj ið Þ= ffiffiffi

2
p

is set to
be nearly orthogonal to ψj i. The second spectrum (SF2) filter contains a 4-f system
similar to the first one, but here, only photons with wavelengths below 790 nm can
pass. As a result, probe photons leaking out of the PSI are filtered. A subsequent
10 nm band pass filter centering at 785 nm and a short-wavelength pass filter cutoff
at 790 nm reinforce this filtering. Coincidence signals are used to trigger the FHO
and post-select the probe pulses. The final recording rate of post-selected probe
pulses is mainly determined by the value of ε. When ε equals 0.1, data were
recorded for a total of 6 h, and ~ 220 K probe pulses waveforms are recorded. The
value of n is given by the root mean square (RMS) of the recorded waveform. The
uncertainty σ=

ffiffiffi
ν

p
is also estimated as the standard error of these RMS values.

Data availability. The authors declare that all data supporting the findings of this
study are available within the article and its Supplementary Information files or
from the corresponding author upon reasonable request.
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