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Reports on experiments recently performed in Vienna [Erhard et al., Nature Phys. 8, 185 (2012)] and Toronto

[Rozema et al., Phys. Rev. Lett. 109, 100404 (2012)] include claims of a violation of Heisenberg’s error-

disturbance relation. In contrast, we have presented and proven a Heisenberg-type relation for joint measurements

of position and momentum [Phys. Rev. Lett. 111, 160405 (2013)]. To resolve the apparent conflict, we formulate

here a general trade-off relation for errors in qubit measurements, using the same concepts as we did in the

position-momentum case. We show that the combined errors in an approximate joint measurement of a pair

of ±1-valued observables A,B are tightly bounded from below by a quantity that measures the degree of

incompatibility of A and B. The claim of a violation of Heisenberg is shown to fail because it is based on

unsuitable measures of error and disturbance. Finally we show how the experiments mentioned may directly be

used to test our error inequality.

DOI: 10.1103/PhysRevA.89.012129 PACS number(s): 03.65.Ta, 03.67.−a

I. INTRODUCTION

Heisenberg’s error-disturbance relation [1] for measure-

ments of incompatible quantities has recently become a

popular subject of attack and proposed “correction” [2–9].

Thus it appears as if one of the fundamental tenets of quantum

mechanics is called into question; if the challenge proved

tenable, it would have far-reaching ramifications for the status

of the Heisenberg limit in precision measurements studied in

the booming field of quantum-enhanced metrology [10,11]. In

contrast, in Ref. [12] we presented a Heisenberg-type error-

disturbance relation for position and momentum. This result

appears to contradict claims of an experimental violation of

Heisenberg’s relation made in Refs. [2–5]. A direct comparison

is made difficult by the fact that the experiments were

performed on qubits rather than continuous variable systems.

Therefore, we will describe here the qubit variant of Ref. [12].

The apparent conflict is then resolved by analyzing the

meaning of the quantity, εNO, proposed by Ozawa (e.g.,

Ref. [13]), and adopted by the authors of Refs. [2–5]

and others. This quantity is defined suggestively as the

square root of the expectation of a squared noise operator.

However, we will see that it does not meet its intended

purpose of representing state-specific experimental errors but

something else. Therefore εNO provides no basis for claims
of a theoretical or experimental violation of Heisenberg-
type error-disturbance relations. Actually the experiments

confirm Ozawa’s inequality and demonstrate a violation of the

(incorrect) inequality εNO(A,ρ)εNO(B,ρ) � |〈[A,B]〉ρ |, which

is attributed wrongly to Heisenberg (who never gave a quantum

mechanical definition of measurement errors or proposed a

precise inequality of this generality).

In contrast, our approach represents measurement error as

an overall figure of merit of the measuring device, giving a
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worst-case estimate of the inaccuracy applicable to all possible

input states. Our error measure �, introduced in Ref. [12], is

an operationally significant quantum version of the classic

root-mean-square error, obtained by an adaptation of the

so-called Wasserstein distance (of order 2) between probability

distributions [14]. It can be applied seamlessly to the qubit

case, yielding our main result, a Heisenberg-type error uncer-

tainty relation (Sec. II): any joint measurement of two-outcome
observables C,D has combined approximation errors that are
constrained by a measure of the degree of incompatibility of
the target observables A,B to be approximated. Symbolically:

�(C,A)2 + �(D,B)2
� (incompatibility of A,B).

The additive form of this trade-off relations offers itself

given that an error product cannot have a nonzero bound.

This raises the question of whether the traditional uncertainty

relation for the spreads of two observables in a quantum state

can be supplemented with an additive version. We answer this

in the positive (Sec. III), with an inequality for the sum of the

variances of A,B in state ρ,

�(A,ρ)2 + �(B,ρ)2
� (noncommutativity of A,B),

where the bound is state independent and is nontrivial also for

eigenstates of A or B.

The proofs of these inequalities are based on simple

geometric considerations, which makes it possible to teach

them in a basic quantum mechanics course.

Ironically, Ozawa’s measure εNO is actually state indepen-

dent in the class of qubit measurements under consideration

here and thus overestimates badly the state-dependent errors

(Sec. V). In fact, rather than helping to prove Heisenberg
wrong, the quantity εNO itself satisfies a Heisenberg-type
trade-off inequality, with the same bound as for our quadratic

error inequality:

εNO(A,ρ) + εNO(B,ρ) �
1
2
(incompatibility of A,B).

(For a more general, detailed critique of the noise-operator

based approach of attempting to quantify measurement errors,

1050-2947/2014/89(1)/012129(7) 012129-1 ©2014 American Physical Society

http://dx.doi.org/10.1038/nphys2194
http://dx.doi.org/10.1038/nphys2194
http://dx.doi.org/10.1038/nphys2194
http://dx.doi.org/10.1038/nphys2194
http://dx.doi.org/10.1103/PhysRevLett.109.100404
http://dx.doi.org/10.1103/PhysRevLett.109.100404
http://dx.doi.org/10.1103/PhysRevLett.109.100404
http://dx.doi.org/10.1103/PhysRevLett.109.100404
http://dx.doi.org/10.1103/PhysRevLett.111.160405
http://dx.doi.org/10.1103/PhysRevLett.111.160405
http://dx.doi.org/10.1103/PhysRevLett.111.160405
http://dx.doi.org/10.1103/PhysRevLett.111.160405
http://dx.doi.org/10.1103/PhysRevA.89.012129


PAUL BUSCH, PEKKA LAHTI, AND REINHARD F. WERNER PHYSICAL REVIEW A 89, 012129 (2014)

FIG. 1. (Color online) Sequence of compatible measurements C

and D. The statistics are compared with control measurements A and

B, respectively, defining the approximation errors.

we refer the reader to our forthcoming investigation [15]; there

we also amplify on the fact that it is historically incorrect to

associate Heisenberg with the above wrong inequality.)

We finally (Sec. VI) proceed to demonstrate the possibility

of using the setups of the Vienna and Toronto experiments

to test our qubit measurement error relation. The Toronto

experiment allows the realization of the tight error bound. Im-

portantly, the experiments and their analyses reported so far are

in fact incomplete: they investigate and confirm a mathematical

relation, Ozawa’s inequality, between two quantum mechani-

cal expectation values, εNO(A,ρ) and εNO(B,ρ), and this result

is accompanied with the statement that hence the incorrect

error-disturbance relationship attributed to Heisenberg has

been tested and violated. There is no independent evaluation

of the claim that these quantities do represent approximation

errors; this assertion is adopted on faith from Ozawa. What is

required for a test of measurement error trade-off relations is

an error analysis in which the actual measurement statistics are

compared to those of (more) precise reference measurements.

II. A TRADE-OFF RELATION FOR

QUANTUM RMS ERRORS

We will consider a pair of sharp qubit observables A,B. Our

aim is to characterize positive operator-valued measurements

(observables) C, D which are compatible, that is, they can be

performed simultaneously, and which will be considered as

approximations to A and B, respectively. (We recall that two

observables are compatible or jointly measurable if there is

another, joint, observable of which they are marginals.)

The problem of measurement disturbance and simultaneous

approximation is illustrated in Figs. 1 and 2. A measurement

C as an approximation to A makes itself felt by changing the

state of the system, so that a subsequent measurement of an

observable D will be an approximation of B only with limited

accuracy if A and B are not compatible (Fig. 1). Such a scheme

is a special case of a device in which the boxes C and D are

merged, giving a truly “joint” measurement (Fig. 2). Thus,

a measure of disturbance is conceptually an instance of an

approximation error.

We use Bloch sphere notation to write the spectral pro-

jections of A as A± = Ea
± = 1

2
(1 ± a · σ ), and similarly for

B, where a,b are unit vectors. To be specific, we scale these

FIG. 2. (Color online) Scheme of a joint measurement of com-

patible observables C,D, each being used as an approximation of

A,B, respectively.

measurements such that their outcomes are ±1, so that, for

example, the observable C is given as a map ±1 �→ C±, with

the positive operators C+ = 1
2
(c01 + c · σ ), C− = 1 − C+.

(Positivity is equivalent to ‖c‖ � min{c0,2 − c0} � 1.)

The first task is to specify an error measure to quantify the

quality of such approximations. We follow the choice made in

Ref. [12]. For a pair of observables E : ±1 �→ E± with E+ =
1
2
(e01 + e · σ ) and F : ± �→ F±, F+ = 1

2
(f01 + f · σ ), a state-

dependent distance that scales with the values and quantifies

the difference between the probability distributions Eρ and

Fρ (where ρ denotes the state) is given by the Wasserstein

distance:

�(Eρ,Fρ) =
[

inf
γ

∫∫

(x − x ′)2 dγ (x,x ′)

]
1
2

,

where the infimum is taken over all couplings γ of Eρ,Fρ (i.e.,

all joint distributions with marginals Eρ,Fρ). By maximizing

the state-dependent error over all states ρ one has the worst-

case error estimate, �
(

E,F
)

= supρ �
(

Eρ,Fρ

)

.

In the present case of ±1-valued qubit observables it is

straightforward to write all possible couplings and determine

this infimum (Appendix A). Writing the states as ρ = 1
2
(1 +

r · σ ), one obtains

�(Eρ,Fρ)2 = 2|e0 − f0 + r · (e − f)|.

By maximizing this over all states ρ one has the worst-case

error estimate

�(E,F )2 = 2|e0 − f0| + 2‖e − f‖.

We pause to emphasize that one could use the state-

dependent error measure for the study of precision mea-

surements in which one is interested in an error-disturbance

trade-off in a specific state. However, for an assessment of

the quality of a joint measurement device, it is also important

to note that one can always arrange for situations where the

state-dependent errors are both zero: for example, one can

take C and D both sharp and identical, with c = d in the plane

spanned by a,b. Then for a state ρ with r perpendicular to that

plane one has �(Aρ,Cρ) = �(Bρ,Dρ) = 0.

We could also have chosen different distance measures for

the comparison of two observables. For comparison we note

the distance induced by the total variation norm (also known as

1-norm), which was used in Ref. [16] for a similar purpose and
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turns out to be given as D
(

E,F
)

= 1
4
�

(

E,F
)2

in this special

qubit situation.

The Heisenberg-type joint measurement error trade-off

relation that we present here gives a tight lower bound for

the sum of the squared approximation errors: for any pair of

observables C and D that are jointly measurable, their errors

of approximation relative to A and B are tightly bounded as

follows:

�(C,A)2 + �(D,B)2
�

√
2[‖a − b‖ + ‖a + b‖ − 2]

=
1

√
2

[�(A,B)2 + �(A,B(−))2 − 4].

(1)

Here B(−) is the observable obtained from B by swapping the

outcomes ±1. We will see that the lower bound represents the

incompatibility of A and B.

The proof procedure (which we sketch in Appendix B)

follows the same steps as that of the position-momentum

case [12]. First, one reduces the inequality to the special

case where the estimating observables are covariant under

value translations (swaps). For such estimators we can then

directly give a simple geometric proof of the tight bound. We

find this bound by minimizing the left-hand side of (1) under

the constraint of compatibility of the covariant approximators

C± = 1
2
(1 + c · σ ), D± = 1

2
(1 + d · σ ), a criterion of which is

given by the following inequality [17] (see also Appendix C):

‖c − d‖ + ‖c + d‖ � 2. (2)

For an incompatible pair of observables A,B, it is thus natural

to define their degree of incompatibility by the (positive)

number ‖a − b‖ + ‖a + b‖ − 2.

According to (2), compatibility does not require commuta-

tivity. It is only when at least one of the observables is sharp

(projection valued) that compatibility implies commutativity.

The lower bound in (1) reaches its minimal value zero exactly

when the sharp observables A,B are compatible. (For a pair of

compatible unsharp observables this number can be negative.)

The bound reaches its maximum 2(2 −
√

2) when a,b are

orthogonal unit vectors; then equality in (1) is achieved for the

covariant observables C,D with c = a/
√

2 and d = b/
√

2. In

all other cases, the optimal approximations are obtained for

vectors c,d that are not collinear with a,b.

We will show in Sec. IV that the covariant estimators C,D

are smearings of their sharp counterparts, and analysis of

the smearing operation shows that the error trade-off can be

reduced to a form of preparation uncertainty relation. This

observation, which was also made in the position-momentum

case, corroborates an intuition held by the pioneers of quantum

mechanics: the possibilities of measurement cannot exceed the
possibilities of preparation.

We thus see how inequality (1) limits the combined

approximation accuracies, and the tight bound is given by the

incompatibility degree of the target observables A,B being

approximated. The minimum is taken under the constraint

of joint measurability of the approximating observables. The

incompatibility degree is determined by the average of the

squared distances between A,B and A,B(−), respectively,

reflecting the fact that compatibility is independent of the

choice of scaling of the outcomes.

We can also give a somewhat different error trade-off

relation that is closer in form and spirit to the position-

momentum inequality of Ref. [12]. Note that one has

�(C,A)2 = 2[|c0 − 1| + ‖c − a‖]

� 2(1 − ‖c‖) � 1 − ‖c‖2 ≡ U (C)2,

and similarly �(D,B)2 � U (D)2, where U (C) is a measure

of the degree of unsharpness of the covariant observable C,

that is, its deviation from being projection valued. A simple

calculation [16] shows that the compatibility condition (2) is

equivalent to

U (C)2U (D)2
� ‖c × d‖2 = 4‖[C+,D+]‖2. (3)

This inequality says that two noncommuting (covariant)

observables are compatible if and only if they are sufficiently

unsharp. Sharpness of one of them forces commutativity. Thus

we also obtain a bound for the error product:

�(C,A)2 �(D,B)2
� 4‖[C+,D+]‖2. (4)

Here we see how the noncommutativity of the compatible
approximators limits the accuracies. However, one may choose

to approximate A,B using commuting observables C,D. In

this case the approximation will not be optimal but the bound

for the error product vanishes. This highlights the relative

strength of the bound (1) for the sum of squared errors.

III. PRODUCTS OR SUMS OF UNCERTAINTIES?

It has become accepted wisdom that uncertainty relations

have the form of a lower bound for an uncertainty product. In

contrast, (1) gives a lower bound to a sum of uncertainties.

From the discussion above it is evident that there is no

nontrivial lower bound for the product of errors. To help

appreciate this less conventional perspective, we note here

an additive version of a preparation uncertainty relation. The

standard deviation of a sharp ±1-valued qubit observable A in

a state ρ is �(A,ρ) = [1 − (r · a)2]1/2. Then

�(A,ρ) + �(B,ρ) � ‖a × b‖ = 2‖[A+,B+]‖. (5)

The left-hand side is equal to ‖r × a‖ + ‖r × b‖, so one can

see that the bound is attained for r = ±a or r = ±b.

We can also minimize the sum of the variances:

�(A,ρ)2 + �(B,ρ)2
� 1 − |a · b| = 1 −

√

1 − ‖a × b‖2

= 1 −
√

1 − 4‖[A+,B+]‖2. (6)

Again, the bound is tight, but this time it is attained at r =
(a ± b)/‖a ± b‖ for a · b � 0 and � 0, respectively.

Inequalities (5) and (6) are stricter than the state dependent

bound for the product of the standard deviations: here we

obtain a nontrivial lower bound also when ρ is an eigenstate

of A or B. The lower bounds in both (5) and (6) vanish exactly

when A and B commute.

It is interesting to compare this situation with the case of

position Q and momentum P . Let x0 be an arbitrary positive

constant of the dimension of length. It is an easy exercise to
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show that for any value of x0 the inequality

4�
2

x2
0

�(Q,ρ)2 + x2
0�(P,ρ)2

� 2�
2 (7)

is a consequence of

�(Q,ρ)�(P,ρ) � �/2. (8)

Conversely, using the reciprocal behavior of position and

momentum under scale transformations, it can be shown that

if inequality (7) is assumed to hold for only one value of x0

and all states ρ, then it holds for all values of x0 and entails

the standard uncertainty relation (8). Inequality (7) can also be

proven directly [i.e., without making use of (8)] by observing

that finding the minimum of the left-hand side is equivalent

to finding the minimum energy eigenstate of the harmonic

oscillator Hamiltonian.

IV. ERROR BOUNDED BY UNCERTAINTY

There is a general connection between the limitations of

preparations and the limitations of measurement: the possi-

bilities of measurement should not exceed the possibilities of

preparation, and hence a limitation of the latter should entail

a limitation of the former. We can see this principle at work in

the present case of qubit measurements, in much the same way

as it played a role in the case of position and momentum [12].

We consider the case a ⊥ b. If the approximator C is a

smearing of A, so that C+ = 1
2
(1 + λa · σ ) = μ+A+ + μ−A−

for a probability distribution μ with μ+ + μ− = 1, then we

find �(A,C)2 = 2(1 − λ) = 4μ− � �(μ)2, since λ = μ+ −
μ−. Similarly we get D+ = 1

2
(1 + λb · σ ) = ν+B+ + ν−B−,

and �(B,D)2 = 2(1 − λ) = 4ν− � �(ν)2. Now we observe

that we can identify the distributions μ and ν with distributions

of A and B with one and the same quantum state ρs, with

s = λ(a + b), λ = s · a = s · b:

μ− = 1
2
(1 − s · a) = 1

2
(1 − s · b) = ν−,

so that �(μ)2 = �(A,ρs)
2 � �(A,C)2 and �(ν)2 =

�(B,ρs)
2 � �(B,D)2. Taking λ = 1/

√
2, the largest value

allowed by the compatibility of C,D, and using (6) we get

�(A,C)2 + �(B,D)2 = 4μ− + 4ν− = 2(2 −
√

2)

� �(A,ρs)
2 + �(B,ρs)

2
� 1.

Thus, if one did not know already that 2(2 −
√

2) is the

optimal bound for the combined squared errors, the uncertainty

relation for the state ρs would guarantee a bound. Moreover,

the tight bound, given above in the form 4(μ− + ν−), is itself

a characteristic of the state operator ρs.

The role of the operator ρs becomes more transparent by

constructing a joint observable for the approximators C,D.

A general expression is given in Appendix C; it is easy to

see that if C,D (with c ⊥ d and c = ‖c‖ = ‖d‖ = d) are

compatible (that is, c = d � 1/
√

2), then the following is a

joint observable:

G+± = 1
4
[1 + (c ± d) · σ ],

G−± = 1
4
[1 − (c ∓ d) · σ ].

We specify Cartesian coordinates with orthogonal unit vectors

e1,e2,e3, such that c = c e1, d = d e3. Then (k,ℓ) �→ Gkℓ is

covariant under the unitary group acting on operators, with

elements

U++ = 1(·)1, U−− = σ2(·)σ2,

U+− = σ2(·)σ2, U−+ = σ3(·)σ3,

where σ1,σ2,σ3 are the Pauli operators associated with coor-

dinate axes x,y,z. This group can be cast as a representation

of a discrete Heisenberg-Weyl group, and it is straightforward

to verify that the joint observable can be given in the form

Gkℓ = 1
2
Ukℓ(ρs), ρs = 1

2
[1 + c(e1 + e3) · σ ].

This explains why the approximation errors in such a covariant

measurement are determined by the uncertainties inherent in

the state operator ρs. Further discussion of error trade-off

relations for discrete Heisenberg-Weyl covariant observables

and their mutually unbiased marginals can be found in

Ref. [18].

V. INTERPRETATION OF THE NOISE-OPERATOR-BASED

MEASURES

The Vienna and Toronto experiments make use of covariant

observables as approximators, and it turns out that the

“disturbed” observables are covariant as well. The disturbance

measure ηNO used there is in fact a variant of εNO, so that we

can use unified notation. For a covariant approximator C of

A one obtains (we are using the notation A[xn] =
∫

xn dA(x)

for the nth moment operator of an observable A):

εNO(A,ρ)2 = tr[ρ(C[x2] − C[x]2)] + tr[ρ(C[x] − A[x])2]

= 1 − ‖c‖2 + ‖c − a‖2 = U (C)2 + 1
4
�(C,A)4.

Here we see that εNO is a mix of an error contribution and

the intrinsic unsharpness of the estimator observable, which is

already accounted for in the � term; it is not hard to see that

εNO(A,ρ) � �(C,A). For approximators that are smearings

of the target observable, for which c = γ a, one has in fact

εNO(A,ρ) = �(C,A). This situation arises in the Toronto

experiment (see below).

What is most striking is that in this particular case of

covariant qubit observables, εNO has lost what the advocates

of this measure consider to be one of its virtues: its state

dependence. Thus εNO is a bad overestimate of the state-

dependent error; in particular, it cannot capture the peculiar

situation arising in both the Vienna and Toronto experiments

where the input and output distributions are identical, so that

the state-dependent error vanishes.

The inequalities (1) and (3) immediately yield similar trade-

off relations for the εNO quantities. In fact, using εNO(A,ρ) �
1
2
�(C,A)2 (and similarly for εNO(B,ρ)), then (1) gives

εNO(A,ρ) + εNO(B,ρ) �
1

√
2

[‖a − b‖ + ‖a + b‖ − 2];

and using εNO(A,ρ) � U (C), then (3) entails

εNO(A,ρ)2εNO(B,ρ)2
� ‖c × d‖2 = 4‖[C+,D+]‖2.
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Thus, not surprisingly, the quantities εNO, which comprise a

mix of contributions from error and unsharpness, are seen to

be subject to Heisenberg-type trade-off constraints.

As argued in Refs. [19,20] and elaborated further in

Ref. [15], εNO is a problematic generalization of Gauss’s root-

mean-square error into the quantum context. This quantity does

not, in general, provide an operationally significant estimate of

measurement errors in a single state. One can see this already

from the general defining expression for εNO given above: the

operator C[x] does not, in general, commute with A[x], so that

the difference C[x] − A[x] is in fact incompatible with both.

Therefore it is not evident that a comparison of the statistics

of the observables A and C can be obtained from studying

their difference operator. This apparent deficiency has been

addressed with the observation that ε2
NO

can be expressed as a

combination of expectation values of first or second moments

of the approximator observable C in three different states
instead of just one. Accordingly, in the Vienna experiment

the quantity εNO is measured using the so-called three-state

method. The fact that three distinct states are required makes

evident the impossibility of interpreting this quantity as the

error relevant to a single state. This is illustrated in the present

qubit case by the above expression for εNO, which shows it to be

state-independent and in fact related to our maximized error.

In higher dimensional Hilbert spaces it is not hard to

construct examples of measurements where εNO vanishes

although the input and output distributions to be compared are

not identical. There are also examples where these distributions

do coincide but the quantity εNO can be made arbitrarily large.

Similar observations apply to the use of this quantity as a

measure of disturbance, showing that these quantities are

unreliable as indicators of error or disturbance [15].

VI. PROPOSED EXPERIMENTAL TESTS

We consider first an experiment of the kind performed

in Vienna, where a projective (or von Neumann-Lüders)

measurement of a sharp observable C (with ‖c‖ = 1) is

considered as an approximate measurement of A. Such a

measurement causes the state change ρ → C+ρC+ + C−ρC−
or, equivalently, distorts an observable B into D as

B± → D± = C+B±C+ + C−B±C−

= Bρc
(±1)C+ + Bρc

(∓1)C−

= 1
2
(1 ± d · σ ), d = (c · b)c.

[Here ρc denotes a pure state with unit Bloch vector c, and

Bρc
(±1) = tr[ρcB±] = 1

2
(1 ± c · b).] This scheme defines a

joint observable M (necessarily of the product form since

C is sharp), with positive operators Mk,ℓ = CkDℓ, k,ℓ = ±,

which can be considered as an approximate joint measurement

of A and B, with the characteristic errors �(C,A) and �(D,B).

The (squared) state-dependent error and disturbance are

given by (ρ = 1
2
(1 + r · σ ))

�(Cρ,Aρ)2 = 2|r · (c − a)|, �(Dρ,Bρ)2 = 2|r · (d − b)| .

We observe that if r · a = r · c, then Cρ = Aρ , so that

the state-dependent �(Cρ,Aρ) = 0 in this case. Since

�(Dρ,Bρ) � 2, the state dependent uncertainty product

�(Cρ,Aρ)�(Dρ,Bρ) = 0 for all such states.

The maximized error and disturbance are

�(C,A)2 = 2‖c − a‖ = 2
√

2
√

1 − c · a ,

�(D,B)2 = 2‖d − b‖ = 2‖b × c‖.

These are nonzero if c �= a and b �= c, respectively.

It is straightforward to show that the following uncertainty

relation holds for this experiment:

�(C,A)2 + �(D,B)2 = 2‖c − a‖ + 2‖b × c‖
� 2‖a × b‖ = 4‖[A+,B+]‖. (9)

The minimum is achieved for c = a.

This kind of sharp measurement as an approximate joint

measurement is not an optimal joint approximation: for

example, in the case of orthogonal a,c, the lower bound is

2 > 2(2 −
√

2).

For comparison we give the squared quantities εNO:

εNO(A,ρ)2 = tr[ρ(C[x] − A[x])2] = ‖c − a‖2

εNO(B,ρ)2 = tr[ρ(D[x2] − D[x]2)] + tr[ρ(D[x] − B[x])2]

= 1 − (b · c)2 + ‖b − c(b · c)‖2 = 2‖b × c‖2.

These are state-independent, as expected.

With the choices a = (1,0,0),b = (0,1,0),c =
(cos α, sin α,0),r = (0,0,1) the above scenario is just

the experiment studied and realized by the Vienna group [2].

Then, in particular, r · a = r · b = r · c = 0, so that both

state-dependent errors become zero: �(Cρ,Aρ) = 0 and

�(Dρ,Bρ) = 0. By contrast, εNO(A,ρ) = εNO(σx,ρ) = 2 sin α
2

,

εNO(B,ρ) = εNO(σy,ρ) =
√

2 cos α; these are bad

overestimates of the state-dependent error and disturbance for

most values of α. Curiously, the experimenters do not report a

comparison of the values obtained for the quantities εNO with

an actual estimation of the error in measuring observable C

as an approximation of A; this would be of particular interest

as the target and estimator observables do not commute; yet

in the given state, the two observables are indistinguishable,

while εNO does not recognize this. This discrepancy should

show up in an error analysis.

Instead of using a projective measurement of a “misaligned”

sharp observable C as an approximator to A one may construct

an explicit measurement scheme M as an approximate A

measurement. Such a strategy was followed in the Toronto

experiment [3], which we reconstruct next. We take the param-

eters as used in that experiment. Thus, we fix a = (0,0,1) = k
and consider a measurement scheme M = (C2,σz,U,|φ〉〈φ|),
where σz is the pointer, the coupling U is the CNOT gate (in

the canonical basis of C
2 ⊗ C

2), φ = α|0〉 + β|1〉, α,β ∈ R,

α2 + β2 = 1 (again in the canonical basis). The measured

observable C is then an unsharp version of the observable

A = Ek, the spectral measure of σz,

C± = 1
2
[1 ± (2α2 − 1)σz].

The distortion exerted by M on the observable B = Ei (b =
(1,0,0) = i) then results in an observable D, where

D± = 1
2
(1 ± 2αβσx).

These observables can also be written in terms

of Bloch vector parametrization for φ using s =
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(sin θ cos ϕ, sin θ sin ϕ, cos θ ):

C± = 1
2
(1 ± cos θσz) = 1

2
[1 ± (s · k) k · σ ],

D± = 1
2
(1 ± sin θ cos φσx) = 1

2
[1 ± (s · i) i · σ ].

The sequential joint observable Mk,ℓ = I(k)∗(Bℓ) [here

I(k) denotes the conditional output channel associated with

the outcome k of M, and I(k)∗ its dual channel] thus realizes

an approximate joint measurements of A = Ek and B = Ei.

This gives the following expressions for the state-dependent

and maximized errors:

�(Cρ,Aρ)2 = |r · k| ‖s − k‖2
� ‖s − k‖2 = �(C,A)2,

�(Dρ,Bρ)2 = |r · i| ‖s − i‖2
� ‖s − i‖2 = �(D,B)2.

If the initial state of the system is ρ = ρj, with r = j, then,

again, both state-dependent errors vanish.

By contrast, the εNO quantities are again state-independent

and coincide, in fact, with the � errors:

εNO(σz,ρ)2 =
〈

(1 − s · k)2σ 2
x

〉

ρ
+ 1 − (s · k)2 = ‖s − k‖2,

εNO(σx,ρ)2 =
〈

(1 − s · i)2σ 2
z

〉

ρ
+ 1 − (s · i)2 = ‖s − i‖2,

again badly overestimating the state-dependent errors.

The uncertainty relation for the maximized errors becomes

here

�(C,A)2 + �(D,B)2 = ‖s − k‖2 + ‖s − i‖2

� 2(2 −
√

2).
(10)

This is the optimal lower bound of (1); it is reached with ϕ = 0

and θ = π/4, hence s = (i + k)/
√

2.

In the actual experiment [3] the numbers εNO are determined

using the weak measurement strategy suggested by Ref. [21],

thus confirming rather indirectly the quantum predictions for

the expectations of second moments of the relevant difference

observables. Again, no error analysis is reported in Ref. [3] to

check whether the εNO numbers in question reflect the actual

measurement errors.

In any case, the data that have been obtained in these

experiments or could be obtained in variations of them can

easily be used to test the error trade-off inequality (1) since

the � errors are here found to be directly related to the

corresponding εNO numbers.

VII. CONCLUSION

With the inequality (1) we have provided a general error

trade-off relation for joint measurements of qubit observables

in the spirit of Heisenberg’s ideas of 1927. The additive form of

this inequality can be matched with an additive form of prepa-

ration uncertainty relation, with a state-independent lower

bound that only vanishes when the observables commute. We

have also exhibited the true operational meaning of the quan-

tities, εNO, in the qubit context, which were taken to represent

error and disturbance in these experiments. Our analysis shows

that Ozawa’s inequality does not admit an interpretation as a

trade-off between error and disturbance for individual states.

Rather than leading to a violation of a Heisenberg bound, the

εNO quantities were found themselves to obey Heisenberg-type

trade-off relations. Finally we have identified possible tests of

our error relation that could be performed using the Vienna

and Toronto experiments. We emphasize that such tests are

not complete by simply measuring the εNO or � quantities:

a genuine test of error-error or error-disturbance trade-off

relations must compare these data with an error analysis carried

out for the joint measurements of C and D as approximations

of A and B, respectively, as indicated in Figs. 1 and 2.
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APPENDIX A: CALCULATION OF WASSERSTEIN

DISTANCE

We consider a slightly more general problem, that of

minimizing the quantity

�γ (Eρ,Fρ)2 =
∫∫

(x − y)2 dγ (x,y)

when E has values ±1 and F has values a+,a−, where we

assume a+ > a−. Our use of this will be to consider F as an

approximation to E. The Wasserstein distance should in fact

vanish when the probabilities of E and F coincide for their

corresponding values, ±1 ↔ a±.

A general coupling is given by four positive numbers:

(1,a+) �→ γ++ ≡ γ,

(1,a−) �→ γ+− = Eρ(+1) − γ,

(−1,a+) �→ γ−+ = Fρ(a+) − γ,

(−1,a−) �→ γ−− = 1 − Eρ(+1) − Fρ(a+) + γ.

It is then straightforward to obtain

�γ (Eρ,Fρ)2 = (1 + a−)2 − 4γ (a+ − a−) − 4Eρ(+1)a−

+ Fρ(a+)[(1 + a+)2 − (1 + a−)2].

In order to minimize this quantity, γ must be chosen as large as

allowed by the positivity constraints (given that a+ − a− > 0),

hence γ = min{Eρ(+1),Fρ(a+)}. Now it is easy to see that the

minimum, �(Eρ,Fρ), can only vanish for Eρ(+1) = Fρ(a+)

if a+ = 1 and a− = −1. In this case one obtains

�(Eρ,Fρ)2 = 4|Eρ(+1) − Fρ(+1)|
= 2

∣

∣e0 − f0 + r · (e − f)
∣

∣.

APPENDIX B: PROOF SKETCH FOR THE ERROR

TRADE-OFF INEQUALITY (1)

This inequality is a direct translation, here for the �

measure, of an equivalent form proven in Ref. [16] for the

D measure, using the proportionality of �2 with D. We sketch

the steps of its derivation. One first makes use of the reduction

of (1) to the case where c0 = 1 = d0. If C = 1
2
[c01 + c · σ ]

and D+ = 1
2
[d01 + d · σ ] are jointly measurable, then so

are C ′,D′ with C ′
+ = 1

2
[(2 − c0)1 + c · σ ] and D′

+ = 1
2
[(2 −

d0)1 + d · σ ]. It follows that the convex combinations of these
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FIG. 3. (Color online) Optimal compatible approximations of

sharp observables A,B by covariant unsharp observables C,D. The

compatibility of the optimal pair C,D has c,d located on the dotted

lines and the vectors c − a and d − b orthogonal to these dotted lines.

Vectors a′, b′ represent the best compatible approximators among the

“smeared” versions of A,B.

observables are also jointly measurable [16], in particular

C and D with C+ = 1
2
(C+ + C ′

+) = 1
2
(1 + c · σ ) and D+ =

1
2
(D+ + D′

+) = 1
2
(1 + d · σ ). In addition we have that the

errors do not increase:

�(C,A)2
� 2‖c − a‖ = �(C,A)2,

�(D,B)2
� 2‖d − b‖ = �(D,B)2.

This process of averaging can be understood as the transition to

observables that are covariant under the shift group ±1 �→ ∓1

acting on the set {−1, + 1} [16]. This group acts on C and

D via the unitary operator U = u · σ , with u a unit vector

perpendicular to c and d, so that the covariance UC±U ∗ = C∓
and UD±U ∗ = D∓ holds. We may therefore refer to the

observables C,D as covariant. The compatibility of these

covariant observables is equivalent to inequality (2).

A similar convexity argument shows that if c,d are not

already in the plane spanned by a,b, then their projections into

that plane define new observables which are again compatible

and no worse approximations to A,B than C,D. Hence we can

assume that c,d are in the plane spanned by a,b.

A simple geometric consideration shows that the min-

imum of the left-hand side of (1) must be attained for

approximators C,D whose vectors c,d have equal length

and are located symmetrically relative to a,b, as shown

in Fig. 3. (In fact, using once more the preservation of

compatibility under convex mixings of observables, it is

straightforward to see that any asymmetric constellation of

vectors c,d can be transformed into a symmetric one for

which the errors are not greater.) Analysis of the right-angled

triangle with vertices given by the end points of a, c and

the intersection between the vertical line through c and the

horizontal line connecting a and b (and similarly on the side

of b) immediately gives the relations 1
2
[‖a − b‖ − ‖c − d‖] =

1
2
[‖a + b‖ − ‖c + d‖] = ‖c − a‖/

√
2 = ‖d − b‖/

√
2; hence

the lower bound in (1) follows via the compatibility constraint

‖c − d‖ + ‖c + d‖ = 2.

APPENDIX C: COMPATIBILITY CRITERION

AND JOINT OBSERVABLE

Compatible observables C,D with C± = 1
2
(1 ± c · σ ),

D± = 1
2
(1 ± d · σ ) arise as marginals of the operator measure

G : k,ℓ �→ Gkℓ, k,ℓ = ±1, where

G+,± = 1
4
(1 ± c · d)1 + 1

4
(c ± d) · σ ,

G−,± = 1
4
(1 ∓ c · d)1 − 1

4
(c ∓ d) · σ .

Note the marginality relation C± = G±,+ + G±,− and D± =
G+,± + G−,±. For G to be an observable, the operators Gkℓ

must be positive, that is, 1 ± c · d � ‖c ± d‖. This implies

immediately, and is in fact equivalent to, (2). [Equivalence

follows easily via (3).] The proof of the necessity of (2) for the

compatibility of C,D is slightly more involved [17].
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