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Abstract — This paper introduces Heli4 a new 4 degree-of-

freedom parallel robot. It is inspired by the Delta architecture, 

but was designed to overcome its limitations, using an articulated 

traveling plate. Unlike most articulated traveling plates, Heli4’s 

traveling plate is very compact. Among other positive aspects is 

its symmetrical design. This paper gives the geometrical models, 

and particularly the forward position relationship which can be 

obtained in a closed form. In a third part, a detailed study of the 

robot singularities is made by taking into account the not-so-

classic internal singularities. 
 

Keywords — PKM (Parallel Kinematic Machines), articulated 

traveling plate, Scara motions, internal singularities, closed-form 

geometrical models. 

I. INTRODUCTION 

The idea of parallel mechanisms resorting to a non-rigid 
moving platform (which includes passive joints) and dedicated 
to Scara motions has been introduced recently and a few 
academic prototypes have already demonstrated the 
effectiveness of this principle [1-4]. Indeed, the 4 dof (degrees 
of freedom) of Scara motions are well adapted to pick-and-
place tasks: 3 translations to carry an object from one point to 
another, plus one rotation for the orientation, around a given 
axis in world coordinates. Robots inspired from Delta [5] 
architecture encountered a real commercial success achieving 
this task, because of their high dynamics. This is due to the 
lightweight (actuators are fixed on the base) parallel (having 
closed kinematics chains) design. However, the RUPUR 
kinematic chain (R stands for Revolute, U for Universal, P for 
Prismatic, bold letter stands for actuated joint), that transmits 
the rotational motion using a telescopic leg from a revolute 
actuator fixed on the frame to the end-effector, may become a 
weak point (this is particularly true for Delta with huge 
workspace or, even more, with linear Delta). Most of recent 
researches in that field have proposed different designs for 
obtaining Scara motions; some of them are parallel 
mechanisms, like Kanuk [6], some others have non-fully-
parallel designs [7]. Other four-dof parallel mechanisms have 
been studied in the past, but they are dedicated to different 
applications such as Koevermans’ flight simulator [8] and 
Reboulet’s four-dof wrist [9]. Among recent work on 4-dof 
PKM dedicated to pick-and-place, we have focused our efforts 
on various solutions, such as H4 [1] (introducing the concept 
of articulated traveling plate), I4 [2] (with a Translation-to-
Rotation transformation device to obtain a symmetrical design 
and very simple models), Par4 [3] (with a π  joint, a RRRR 
planar parallelogram, to mimic the I4’s P joint, but with better 
reliability when subject to high loads) and Dual4 [4] (having 

an unlimited rotation capability). Not only did we study those 
machines in detail but we also tested them intensively. From 
those studies and tests, we have learned that each previous 
solution offered some advantages, but we also realized how 
important the simplicity of design (for reliability) and the 
compactness of the traveling plate (for performances) are. We 
have then decided to search for a simpler design with a smaller 
traveling plate. 

In this paper, such a new solution is described, and the way 
to achieve the desired rotation is discussed. Then, geometrical 
models are derived. A nice feature of this robot is that the 
forward geometrical model can be written in a closed form. 
Afterward, a kinematic modeling able to testify to all the 
singularities of the robot is established: this is based on a 
detailed modeling of the so-called “spatial parallelograms” 
which are described here for what they really are (two SS 
chains). From all this, the geometrical condition that must be 
validated in order to get the desired motions, shows up. 
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Figure 1. Heli4’s joint-and-loop graph; lines represent parts, boxes represent 

joints (gray boxes mean actuated joints); S stands for Spherical, R for 
Revolute and H for Helical. 

II. DESCRIPTION OF THE PROTOTYPE 

The main difference with the FlexPicker (which gave its 
forearms and parallelograms, see Figure 2, left hand side) is, 
of course, the use of 4 parallelograms instead of 3. More 
important, instead of being rigid, the moving platform is 
articulated and does not require the RUPUR kinematic chain 
transmitting the rotational motion to the effector. It is 
composed of two different parts (parts #1 and #2), each one 
being linked by two spatial parallelograms to the actuators, 
and by a screw (see Figure 2, right hand side). When the two 
parts move closer, the screw rotates, orientating the ending 
part. This design makes the articulated traveling plate very 
compact. The whole architecture gives a workspace similar to 
the FlexPicker’s one, a 1-meter radius, 0.2-meter high 
cylinder, but overcomes the problems due to the effector’s 



rotation. The brushless revolute actuators are associated to 
gear units with very low backlash (<1’). Moving parts are 
intended to be as light as possible: forearms and 
parallelograms are carbon fiber parts (from ABB Robotics), 
while the traveling plate is made of aluminum. The expected 
performances for this robot are above 100 [m/s2] acceleration 
and 10 [m/s] velocity (Note: It is too early to guarantee that 

such performances will be reached, even though our first tests 

are encouraging). 

 
Figure 2. Pictures of the Heli4 prototype; left hand side: view of the whole 

mechanism; right hand side: zoom on the articulated traveling plate 

III. MODELING 

A. Description of the geometry 

As it is usual for most parallel robots, both relationships, for 
position and for velocity, are computed using geometrical 
points  Aij  and Bij  defined, using respectively the joint 

coordinates, and the operational coordinates (see Figure 3 to 
locate those points). In a practical manner, these models are 
computed using points Ai  and Bi , the virtual points located at 

the center of points 1Ai  and 2Ai , respectively 1Bi  and 2Bi . 

This consideration can be done while assuming that parts #1 
and #2 of the traveling plate keep the same orientation, when 
moved  in the workspace of the robot (see Figure 2, right hand 
side). We will see in the next section how to check this 
hypothesis, or in other words how to make sure that no 
singularity occurs making the traveling plate lose its constant 
orientation. Let us now introduce the appropriate notation to 
do the modeling: 

 Each geometrical vector u
r

 (or AB
uuur

, the vector going 
from point A  to B ) will be represented by a column 
vector u  (respectively AB ) expressed in the canonic 
base ( , , )x y ze e e=

r r r
B . Moreover, each geometrical point 

P  will be represented by the column vector P  
expressed in frame O,ℜ =p fB฀ (see Figure 3). For 

example [ ]T0 0 1=ze  is the third canonic vector ze
r

. 

 
T[ ]x y z θ=x  is the generalized operational vector. 

T[ ]x y z=M  is the column vector associated to M , 

the tool controlled point, and θ  is the orientation angle 
of the tool (measured around ze

r
 , starting from  xe

r
). 

 [ ]iq=q  is the generalized joint vector. iq  are the joint 

coordinates, {1,2,3, 4}i∈  (angles measured around iv
r

 
starting from ze

r
). 

 
Figure 3. Description of the Heli4’s geometry; Top of the figure: geometry of 

the four actuators; bottom-left: geometry of the articulated traveling plate; 
bottom-right: geometry of forearm i 

 In the following we will use a cylindrical representation of 
the geometrical points, characterizing the geometry of the 
robot, as Heli4 presents a cylindrical symmetry: 

 Vector iu
r

 is introduced: 

 [ ]Tcos( ) sin( ) 0i i iα α=u , {1, 2,3, 4}i∈ , (1) 

where iα  are angles measured around ze
r

 starting from xe
r

.  

 Pi , {1, 2,3, 4}i∈ , correspond to the location of the 

actuators: 
 i iR=P u  for {1,2}i∈  and (2) 

 i iR H= + zP u e  for {3,4}i∈  (see Figure 3). (3) 

 Points Ai , {1, 2,3, 4}i∈  are derived using the Chasle 

relationship: 
 i i i= +A P L , {1, 2,3, 4}i∈  with: (4) 

 [ ]Tsin( )cos( ) sin( )sin( ) cos( )i i i i i iL q L q L qα α=L  (5) 

defined using the joint coordinates ( L  is the length of the 
bars). 

 Points Bi  are defined using the operational coordinates: 

 ( )i i i ir h pθ= + + + zB M u e  for {1,2,3, 4}i∈  (6) 

where  ih  and ip  are defined as follows: 

 ih h=  for {1, 2}i∈  and ih h H= +  for {3,4}i∈  (7) 

 0ip =  for {1,2}i∈  and ip p=  for {3, 4}i∈  (8) 

h  and H  are geometrical lengths and p  is the pitch of the 

helical joint (see Figure 3).  Numerical values for all the 
geometrical parameters on the built prototype are listed in 
Table 1. iα , {1, 2,3, 4}i∈  were chosen to give the machine a 

symmetrical aspect. Lengths of forearms L  and single rods l  
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were measured on the parts taken from the Flexpicker robot. 
H  was chosen equal to zero for practical reasons. Starting 
from these definitions, we will see how to derive relationships 
between x  and q  in the next section. 

TABLE 1 
NUMERICAL VALUES FOR THE GEOMETRICAL PARAMETERS 

OF THE HELI4 PROTOTYPE 

1 0α = °  351mmL =  350mmR =  

2 180α = °  800mml =  41mmr =  

3 90α = °  0 mmH =  50mm/roundp =  

1 270α = °  41mmh =   
 

B. Position relationships 

As it is common for parallel robots having rods which 
lengths are fixed, the position relationships are derived solving 
the following equality: 
 i i l=A B , {1, 2,3, 4}i∈  (9) 

using respectively the operational  coordinates for the direct 
relationship, and the joint coordinates for the inverse 
relationship. 

1) Inverse position relationship 

The resolution is derived as in [10], for robots with 
rotational actuators, and leads to: 
 cos( ) sin( )i i i i iM q N q G+ = , {1, 2,3, 4}i∈  (10) 

where: 2 ( )i i iM L= zB P .e , 2 ( )i i i iN L= B P .u , (11) 

 
22 2

i i iG l L= + −B P , i i i i= −B P P B . (12) 

( iB  is given by relation (6) when knowing the operational 

parameters). 
Making the following change of variable: 

 tan( / 2)i it q= , (13) 

leads to a second degree polynomial equation. Once solved, 
only the root corresponding to the realistic posture is kept, and 
the joint coordinates can be written as follow: 

 
2

1 4
2 tan

2
i i i i

i

i

b b a c
q

a

−
⎛ ⎞− + −
⎜ ⎟=
⎜ ⎟
⎝ ⎠

, {1, 2,3, 4}i∈  (14) 

with ia , ib  et ic  the polynomial coefficients: 

 i i ia G M= + , 2i ib N= −  and i i ic G M= − . (15) 

2) Forward position relationship 

In a general manner, it is always preferable to have the 
forward position relationship written in a closed form. In fact, 
unlike the Newton’s method, the maximum duration of 
computation can be guaranteed, and there is no trouble with 
local maximums. Such a model can be derived for the Heli4 
robot. The main reason is that operational parameters can be 
decoupled: x  and y  parameters can be derived independently 
of z  and θ . Furthermore, x  and  y  can be computed as the 
intersection of two ellipses. 

a) Decoupling operational  variables 

Developing relations (9) about the operational parameters 
leads to: (16) 

2 2 2( ) 2 ( ) 2 2 0
( ) :

{1,2,3,4}
i i i i i iz p a z p x b x y c y d

S
i

θ θ⎧ + + + + + + + + =
⎨

∈⎩
 

where: T
i ia =

z
s e , T

i ib =
x

s e , T
i ic =

y
s e ,  (17) 

 2 2
i i id l= −s , ( )i i i ir R h= − + −zs u e L . (18) 

( iL  is given by relation (5) when knowing the joint 

parameters).  
By subtracting the two first equations of this system, and 

the two last the following equalities are derived: 
 

2 1 2 1 2 1

1 2 1 2 1 2

( ) ( ) ( )

( ) ( ) ( )

b b c c d d
z x y

a a a a a a
pθ

− − −
= + +

− −
+

−
 (19)

 
4 3 4 3 4 3

3 4 3 4 3 4

( ) ( ) ( )

( ) ( ) ( )

b b c c d d
z p x y

a a a a a a
θ

− − −
+ = + +

− − −
 (20)

When merging those results into 1st and 3rd equation of 
system (16), the following system composed of two quadrics 
depending only on x  and y  is derived: 

 
2 2 0

( ) :
{1, 2}

i i i i i ix y x y x y
S

i

α β χ δ ε φ⎧ + + + + + =
′ ⎨

∈⎩
 (21) 

where iα , iβ , iχ , iδ , iε  et iφ  depend on the joint 

coordinates: 
2

2

( )
1

( )
k j

i

j k

b b

a a
α

−
= +

−
, 

2

2

( )
1

( )
k j

i

j k

c c

a a
β

−
= +

−
, 

2

( )( )

( )
k j k j

i

j k

b b c c

a a
χ

− −
=

−
, (22) 

 
2

( )( ) ( )
2 2 2

( )( )
k j k j k j

i j j

j kj k

d d b b b b
a b

a aa a
δ

− − −
= + +

−−
, (23) 

 
2

( )( ) ( )
2 2 2

( )( )
k j k j k j

i j j

j kj k

d d c c c c
a c

a aa a
ε

− − −
= + +

−−
, (24) 

 
2

2

( ) ( )
2 2

( )( )
k j k j

i j j

j kj k

d d d d
a d

a aa a
φ

− −
= + +

−−
, (25) 

with ( , , ) {(1,1,2), (2,3,4)}i j k ∈ . 

As a conclusion, starting from system (16) which merges the 
four operational parameters, a simpler system was derived 
(21) merging only two ( x  and y ) operational parameters. 

b) Computing x  and y  as the intersection of 2 ellipses 

Once operational parameters are decoupled, the focus is 
given to the resolution of parameters x  and y . They 

correspond to the intersection of two ellipses as it can be 
observed on Figure 4. The algebraic solutions of this problem 
are known [11] and consist in resolving the following 4th 
degree polynomial equation in z : 
 4 3 2

4 3 2 1 0( )P z u x u x u x u x u= + + + +  (26) 

obtained with the change of variables: 
 2

0 2 10 4u v v v= − , 1 0 10 2 7 9 3 4( ) 2u v v v v v v v= + + − , (27) 

 2
2 0 7 9 2 6 8 3 1 4( ) ( ) 2u v v v v v v v v v= + + − − −  (28) 

 3 0 6 8 2 5 1 3( ) 2 2u v v v v v v v= − + − , 2
4 0 5 1u v v v= − , (29) 

with: 0 1 2 2 1v α χ α χ= − , 1 1 2 2 1v α β α β= − , (30) 

 2 1 2 2 1v α δ α δ= − , 3 1 2 2 1v α ε α ε= − , 4 1 2 2 1v α φ α φ= − , (31) 

 5 1 2 2 1v χ β χ β= − , 6 1 2 2 1v χ ε χ ε= − , 7 1 2 2 1v χ φ χ φ= − , (32) 



 8 1 2 2 1v β δ β δ= − , 9 1 2 2 1v δ ε δ ε= − , 10 1 2 2 1v δ φ δ φ= − . (33) 

 
Figure 4. Intersecting ellipses: coordinates x and y correspond to the 

intersection of the two ellipses E and E’  

The method proposed by Cardan and Ferrari [12] gives the 
real roots of polynomial equation (26) in a closed form: it 
consists in transforming this 4th degree polynomial equation 
into a 3rd degree polynomial equation. This method presented 
numerical instabilities and a more robust formulation was 
chosen [13-15]: it consisted in finding solution either real or 
complex. In a practical manner, equation (26) has only two 
real solutions, corresponding to the one observed on Figure 4. 
So, choosing the proper solution for x  consists in keeping 
only the highest absolute real root (decided from geometrical 
considerations). 

c) Computing all other operational variables 

Once x  is determined, y  is computed using system (21). 

Whether than preferring one of the two equations, it is cleverer 
to subtract both equations in order to eliminate the 2y  term. It 

leads to the following expression: 

 
2

1 2 2 1 1 2 2 1 1 2 2 1

2 1 1 2 2 1 1 2

( ) ( ) ( )

( ) ( )

x x
y

x

α β α β α ε α ε α φ α φ
α χ α χ α δ α δ

− + − + −
=

− + −
 (34) 

At last, determining z  is obtained using (19), and 
determining θ  consists in solving system (20): 

 2 1 2 1 2 1

1 2 1 2 1 2

( ) ( ) ( )
/

( ) ( ) ( )

b b c c d d
x y z p

a a a a a a
θ

⎛ ⎞− − −
= + + −⎜ ⎟− − −⎝ ⎠

 (35) 

 In this section, we have seen how to compute both, forward 
and inverse, position relationships in a close form. In the next 
section we will derive velocity relationships and focus on 
singularities. 

IV.  SINGULARITY ANALYSIS AND VELOCITY RELATIONSHIPS 

 In this section we will study the singularities of Heli4. We 
will focus on the not-so-classic internal singularities. At first 
we will introduce the Group theory and explain why it is not 
adapted to the singularity analysis of our robot. The main 
reason is that parallelograms are composed of spherical joints, 
and that they can twist (they do not necessary stay planar). 
Then, using the Grübler method we will list the number of 
velocity equations and force equations required for the 
modeling of the whole kinematics of the robot. 
Simultaneously, we will check that the proposed structure is 

isostatic. Then, we will recall the singularity analysis method 
introduced in [16], and apply it to our architecture. We will 
give the mathematical condition that must be fulfilled to 
ensure that no internal singularity occurs. Simultaneously 
velocity relationships will be derived. 

A. Preliminary remarks regarding the Group theory 

According to Hervé’s notations [17] for displacements 
subgroups, { }T  stands for the subgroup of spatial translations 

and { }( )X u  stands for the subgroup of Schoenflies 

displacements (or Scara motion), where u  is a unitary vector 
collinear to the rotation’s axis. If a closed loop mechanism is 
composed of two chains producing Schoenflies displacements 
with ≠v u , then: 

 { } { } { }( ) ( )X X T=u vI  (36) 

meaning that such a mechanism will produce only three 
translations. The case of machines with RR(RR)2R chains 
(Figure 5-a) is easily handled with such a technique since 
those chains correspond to Schoenflies subgroup. The case of 
machines with R(SS)2 chains (Figure 5-b)  is more complex: 
each chain provides 5 dof, 3T-2R (3 Translations and 2 
Rotations), and does not correspond to a group. Indeed it is 
possible that the union (∪ ) of two 3T-2R chains generates a 
3T-3R motion. The following sub-sections consider precisely 
this type of R(SS)2 chains. 
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(a) RR(RR)2R (b) R(SS)2 
Figure 5. Two ways to do the modeling of parallelograms 

B. Grübler analysis 

In this section, based on the Grübler method, we list the 
number of velocity equations and of force equations required 
to run the complete analysis of the mechanism. Additionally, 
we will show that, under the assumption that no singularity 
occurs, the Heli4 architecture is isostatic. 

Using the joint-and-loop graph depicted in Figure 1 the 
following items can be listed: 

 16p =  parts 

 22n =  joints 
 5 R joints, 16 S joints, 1 H joint. 

This statement leads to ν , the number of independent loops: 
 1 7n pν = − + =  (37) 

Additionally, the total number of dof of the mechanism is: 
 { { {

1 H joint5 R joints 16 S joints
 1 DoF 1 DoF  3 DoF

DoF 5 1 16 3 1 1 54

×× ×

= × + × + × =∑  (38) 

Hence, the number of unknown velocities KU , of velocity 

equations KE , of unknown forces SU , of force equation SE , 

are derived: 
 DoF 54KU = =∑  (39) 

Oi
r

j
r

k
r

M

1A′

R r−

4A′

2A′

2A′

x
y

1P′

2P′

4P′

3P′

E

E′



 6 42KE ν= =  (40) 

 6 DoF 78SU n= − =∑  (41) 

 6( 1) 90SE p= − =  (42) 

This statement shows that studying singularities using 
velocity relations, or the forces relations would involve lots of 
equations (42 or more). The proposed method, explained in 
next section, only relies on 8 velocity equations. 

The Grübler mobility index m  is computed: 
 12K K S Sm U E E U= − = − = . (43) 

As this value is shared between the “kinematic mobility” Cm  

and the “degree of constraint” Sm : 

 K Sm m m= +  (44) 

and as 12Km =  (8 internal motions, each rod being able to 

rotate around its own axis, plus 4 dof for the whole 
mechanism) the degree of constraint Sm  of the mechanism is 

equal to zero: 
 0Sm = , (45) 

meaning that the mechanism is isotatic. We insist on the fact 
that this relation is true as long as no singularity occurs. This 
point will be addressed in the following section. 

C. Singularity analysis 

Usually, the study of singularities depends only on the 
analysis of the standard Jacobian matrices 

x
J  and 

q
J , 

satisfying: 
 =

q x
J q J x& & , (46) 

where q&  and x&  are respectively the joint velocity vector and 

the operational velocity vector*.  But other kinds of 
singularities can occur [18]. A classification of the different 
types of singularities is proposed in Table 2. To enlighten 
them, a deeper analysis needs to be driven. At first, we will 
recall the basics of the kinematic method developed in order to 
determine singularities introduced in [16]. Then we will apply 
the method to Heli4. The geometrical constraints that must be 
fulfilled to get rid of singularities will be obtained, and it will 
be checked that, in the whole workspace of the robot, these 
constraints are satisfied.  

The proposed method is well adapted to Heli4 while only 
single bars separate actuators to the traveling plate. On the one 
hand, a 4-dof subset made of the actuators can be observed. 
On the other hand, can be found a 8-dof traveling plate: 3 for 
positioning, 3 for orientating, and 2 regarding inter-part 
motilities. Single bars equipped with spherical joints separate 
both subsets. Each implies that the distance between their 
extremities is invariant: 

 
ij l=l , {1,2,3, 4}i∈ , {1, 2}j∈ , (47) 

where ijl  is the vector joining Aij  to Bij  ( ij ij ij= −l A B ). 

Deriving this relation leads to the equiprojectivity of 
velocities of the extremities of each rod: 

                                                           
* This notation is well adapted to our study as /d dt=q q&  and /d dt=x x&  

(while [ ]Tx y z θ=x ). 

 T T
A Bij ijij ij

=v l v l , {1, 2,3, 4}i∈ , {1,2}j∈ , (48) 

where Aij
v  (respectively Bij

v ) represents the velocity of point 

Aij  ( Bij ) relatively to the ground. 

TABLE 2 
CLASSIFICATION OF THE DIFFERENT TYPES OF SINGULARITIES ON A SIMPLE 

PLANAR 2-DOF PARALLEL MECHANISM; FOR THE POSTURE REPRESENTED IN 

THE BOTTOM-RIGHT CELL, THE PARALLELOGRAM CANNOT ENSURE THE 

TRAVELING PLATE TO REMAIN HORIZONTAL 

  
Posture without singularity Under-mobility, serial singularity 

  
Over-mobility, parallel singularity Internal singularity 

 

As a consequence, a linear system representative of the whole 
kinematics of the mechanism can be derived when writing the 
equiprojectivity relations for the 8 bars: (49)  
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where ir  is a vector tangent to the trajectory of points Ai , 1Ai  

and 2Ai , verifying i L=r , ije  is the vector joining M  to 

Bij . xω , yω  and θ&  are the angular velocities of the ending 

part around xe
r

, ye
r

 and ze
r

 relatively to the ground, and iε& , 

{1, 2}i∈ , are the angular velocities of parts i of the articulated  

traveling plate relatively to the ending part. 
The next step of the method consists in doing elementary 

operations on this system (which do not affect the rank of the 
system) to end up with the following system: 

 
⎡ ⎤ ⎡ ⎤⎡ ⎤

= ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦⎣ ⎦

x

q x int

intint

xJ J J
q

vJ0 0

&
& , (50) 

where 
int

J  and x

int
J  are 4 4×  matrixes and 

int
v  is a velocity 

vector. This system has the particularity of being triangular by 
blocs. In this particular case, this transformation is obtained 
using the following matrixes: 

=x 0&

2 0q ≠&1 0q =&

≠x 0&

2 0q =&1 0q =&

≠x 0&

2 0q =&

1 0q =&
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=
=

M
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(51) 

and making the following computation starting from system 
(49) (this computation does not modify the rank of the 
system): 
 = -1

l r
M J q M J P P v&  (52) 

When taking into account the fact that rods 1i  and 2i  are 
parallel, computing equation (52) leads to system (50) with the 
following values: 
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 (55) 

and: 
T

1 2x yω ω θ ε θ ε⎡ ⎤= + +⎣ ⎦intv & && & . (56) 

( ie  is the vector joining M  to Bi , id  the one linking 1Bi  to 

2Bi : 2 1i i i= −d e e .) 

intJ  will testify to the “internal singularities”. In fact, if 

intJ  is not singular, system (50) implies that: 

 =intv 0 , (57) 

which means that all parts of the traveling plate always keep 

the same orientation ( 0x yω ω= =  and 1 2ε ε θ= = − && & ) and that 

coupling between velocities of the different sub-parts exists. 
Furthermore, relation: 

 = + x

q x int int
J q J x J v& &  (58) 

derived from (50) falls into the usual velocity relationship (46). 
Verifying that 

int
J  is not singular can be done by 

computing its determinant. It leads to the following 
relationship: 

 ( ) ( )( )T

1 1 2 2 3 3 4 4( ) ( ) ( ) ( ) 0× × × × × × × ≠
z

d l d l d l d l e  (59) 

By verifying that this relation is always true in the whole 
workspace, we can guarantee that no “internal singularity” 
occurs. For other types of singularities, usual Jacobian 
matrixes need to be studied: 

q
J  will enlighten “under-

mobilities” and 
x

J , “over-mobilities” [10]. It is checked that, 

for this robot, none of these types of singularities are 
encountered when being inside the workspace of the robot.  

V. CONCLUSION AND FURTHER WORK 

This paper has introduced Heli4, a new 4 Degree-of-
Freedom parallel robot. It is inspired by the Delta architecture, 
but was designed to overcome its limitations, using an 
articulated traveling plate. Unlike most articulated traveling 
plates, the one of Heli4 is very compact. Another positive 
aspect is its symmetrical design. This new robot has been 
studied in details; the calculation of geometrical models, 
which are both (forward and inverse) obtained in a close way, 
was done. Moreover, the study of singularities, using 
kinematic models, was done resulting in geometrical 
conditions that must be fulfilled to ensure the absence of 
singularities, especially the not-so-classic internal 
singularities. 

Up to date, the control of this robot is very simple (linear 
independent joint control) and will be improved in the future 
by using, for example, a dynamic controller. 
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