
1SCIENTIFIC REPORTS | 7: 7392  | DOI:10.1038/s41598-017-07907-0

www.nature.com/scientificreports

Helical and skyrmion lattice 
phases in three-dimensional chiral 
magnets: Effect of anisotropic 
interactions
J. Chen1, W. P. Cai1, M. H. Qin1, S. Dong2, X. B. Lu1, X. S. Gao  1 & J.-M. Liu  3

In this work, we study the magnetic orders of a classical spin model with anisotropic exchanges and 
Dzyaloshinskii-Moriya interactions in order to understand the uniaxial stress effect in chiral magnets 
such as MnSi. Variational zero temperature calculations demonstrate that various helical orders can 

be developed depending on the interaction anisotropy magnitude, consistent with experimental 
observations at low temperatures. Furthermore, the uniaxial stress induced creation and annihilation of 
skyrmions can be also qualitatively reproduced in our Monte Carlo simulations. Our work suggests that 

the interaction anisotropy tuned by applied uniaxial stress may play an essential role in modulating the 
magnetic orders in strained chiral magnets.

In the past years, the nontrivial magnetic orders observed in chiral magnets such as MnSi1–3, Fe1−xCoxSi4 and 
FeGe5, 6 have been attracting continuous attention due to the interesting physics and potential applications for 
future memory technology. Speci�cally, a helical order with a single ordering wave vector k (point along the[111] 
axis in MnSi, for example) is developed at low temperatures (T) under zero magnetic �eld (h), resulting from the 
competition between the ferromagnetic (FM) exchange interactions and the Dzyaloshinskii-Moriya (DM) inter-
actions7, 8. When a �nite h is applied, the helical order is replaced by a conical phase to save the Zeeman energy. 
More interestingly, a skyrmion lattice phase9 (a vortex-like spin con�guration where the spins projected on a 
sphere point radially) is stabilized in a certain (T, h) region, and is proposed to be potentially used for data encod-
ing because of its e�cient modulation by ultralow current density10, 11 (~105–106 A m−2, orders of magnitude 
smaller than that for domain-wall manipulation) and its topological stability. �eoretically, the cooperation of the 
energy competition (among the FM, DM, and Zeeman couplings) and thermal �uctuations is suggested to stabi-
lize the skyrmion lattice phase12 in bulk chiral magnets, and the Rashba spin-orbit coupling in two-dimensional 
materials is believed to further enhance the stability of skyrmions13.

Subsequently, a number of theoretical simulations searching for e�ective methods for manipulating skyrmi-
ons have been performed in order to develop related spintronic devices. It is suggested that skyrmions in bulk 
and/or thin �lm systems could be controlled by external stimuli such as electric currents14, magnetic �elds15, and 
thermal gradients16, 17. As a matter of fact, some of these manipulations have been experimentally con�rmed18, 
although it is very hard to create and annihilate skyrmions using these methods19, 20.

Most recently, the dependence of magnetic orders on uniaxial stress in MnSi has been investigated experimen-
tally in details21, 22. �e wave vector of the helical order at zero h is reoriented from the111 axis to the stress axis 
when a uniaxial stress is applied. More importantly, the T-region of the skyrmion lattice phase can be extensively 
modulated by stress, demonstrating an additional method to manipulate the skyrmion structure in this system. 
Speci�cally, the extent of skyrmion lattice phase is strongly enhanced when stress is applied perpendicular to 
magnetic �eld, and this extent is gradually reduced under stresses parallel to the �eld. So far, the microscopic 
mechanism for the stress e�ect remains vague, and urgently deserves to be uncovered in order to understand the 
physics and even speed up the application process23.
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Fortunately, some spin models were proposed and the ordered phases found in experiments on bulk MnSi 
have been successfully reproduced, allowing one to explore the stress e�ect based on such models12. Usually, uni-
axial stresses may lead to lattice distortion, and in turn modulate exchange anisotropies in a magnetic system24, 25.  
For example, the exchange anisotropy has been proven to be very important in strained manganite thin �lms26, 27  
and in strained iron pnictides28, 29. Furthermore, the DM interaction in chiral magnets along the compressive 
axis is found to be largely enhanced when a pressure is applied, as revealed in earlier experiments (on FeGe thin 
�lms)25 and �rst-principles calculations (on Mn1−xFexGe)30. �us, it is essential to clarify the role of interaction 
anisotropy in modulating the magnetic orders in order to understand the strain e�ect in chiral magnets. More 
importantly, such a study may provide useful information about magnetic ordering in similar magnets with ani-
sotropic interactions.

In this work, we study the classical Heisenberg spin model including anisotropic FM exchange and DM inter-
actions on a three-dimensional lattice by combining variational zero-T calculations with Monte Carlo (MC) 
simulations to understand the stress induced magnetic orders in bulk MnSi. �e experimentally reported reorien-
tation of wave vector of the helical order and the stability of skyrmion lattice phase in experimentally determined 
phase diagrams under uniaxial stress are qualitatively reproduced when the interaction anisotropies are taken 
into account.

Model and Methods
In this work, the classical Heisenberg spin model taking account of the DM interaction and anisotropic exchange 
applicable to strained MnSi is considered and its Hamiltonian is given by:
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where Si represents the Heisenberg spin with unit length on site i, (x̂, ŷ, ẑ) are the basis vectors of the cubic lattice 
considered here. �e �rst term is the anisotropic FM exchange between the nearest neighbors with interaction 
constant Jµ (µ = x, y, z). �e second term is the anisotropic DM interaction with prefactor Dµ (µ = x, y, z). �e last 
term is the Zeeman coupling with magnetic �eld h along the [001] direction. For simplicity, Jx, Jy, the lattice con-
stant, and the Boltzmann constant are set to unity. In this work, the ground states are obtained using an analytical 
approach, and the �nite-T phase diagrams are estimated by MC simulations. It is noted that the system size stud-
ied in this work is much larger than that of skyrmion, and the demagnetization energies which are important in 
nanostructures31, 32 can be safely ignored with respect to the DM interaction and FM exchange33.

In the isotropic bulk system under zero h, the ground state is a helical order with wave vector8 k = arctan(D/ 3  
J) (1, 1, 1) and its orientation is usually related to the weak magneto-crystalline anisotropy34, 35. Furthermore, 
uniaxial anisotropy also can e�ciently modulate the magnetic states in chiral magnets36, 37 and other magnetic 
materials38, 39. However, an exact solution of the model further considering the magneto-crystalline anisotropy is 
hard to access using the variational method. �us, such an anisotropy is not considered here in order to help one 
to understand the e�ect of interaction anisotropy, and our physical conclusions are not a�ected by this ignorance. 
Interestingly, when an interaction anisotropy is considered, the ground-state is still a single-k helical order with 
k = (kx, ky, kz), to be explained latter. Without loss of generality, we set the rotation axis vector R and initial spin 
S0, respectively, to be:
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�en, the spin vector Si, the energy per site E, and the e�ective �eld fi, can be calculated respectively by:
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By optimizing for k and (θ, ϕ), we obtain the following set of equations:
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Here, the last two equations ensure Si × fi = 0, con�rming that the single-k helical order is the ground state. �en, 
we can uncover the ground-state of the system at zero h for given Dµ and Jµ.
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In addition, the �nite-T phase diagram under various h is also calculated by MC simulations. Following earlier 
work12, a compensation term is considered in the model Hamiltonian to minimize the discretization errors in the 
simulations, which can be given by:
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�e simulation is performed on an N = 243 cubic lattice with period boundary conditions using the standard 
Metropolis algorithm40 and the parallel tempering algorithm41. We take an exchange sampling a�er every 10 
standard MC steps. Typically, the initial 6 × 105 steps are discarded for the equilibrium consideration and addi-
tional 6 × 105 steps are retained for the statistic averaging of simulation. Occasional checks are made on a larger 
lattice of up to N = 403 to ensure that the �nite-size e�ect never a�ects our conclusion. We characterize the spin 
structures by performing the Fourier transform
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and then calculating the intensity pro�le |〈Sk〉|2. Furthermore, we also calculate the longitudinal susceptibility χz, 
and the uniform chirality χ
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to estimate the phase transition points8.

Results and Discussion
Wave vector reorientation of helix. First, we study the cases where the FM exchange and DM interaction 
anisotropy have the same magnitude at zero h. Generally, one may de�ne an anisotropy magnitude α and a ratio 
of the DM interaction to the exchange interaction β:
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Here, Eq. (4) is updated to:
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Once the energy expression is minimized, we obtain the modulus of wave vector k and energies E in several 
speci�c cases:

(1) helical spin state with k = k(0, 0, 1)
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(3) helical spin state with k = (kx, ky, kz)
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Furthermore, it should be mentioned that the [xxz] helical state is accessed only in the region defined by 
0 < ϕ < π/2 and
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It is expected that α increases (α > 1) when a compressive strain is applied along the [110] axis. Interestingly, 
the [110] helical order will win out over the [111] helical phase for α > .1 5 , as clearly shown in Fig. 1(a) which 
gives the calculated energies for a �xed β = 1. �us, the stress-induced reorientation of the wave vector of the 
helix observed in experiments can be qualitatively reproduced in our anisotropic model. Similarly, the [111] hel-
ical order will be replaced by the [001] one for small α < 2 /2, related to the case of compressive (tensile) stress 
applied along the [001] ([110]) axis, to some extent42, 43. �e calculated ground-state phase diagram in the (α, β) 
parameter plane is shown in Fig. 1(b) which can be divided into three parameter regions with di�erent helical 
orders. It is noted that the helical propagation direction gradually turns to the stress axis (ϕ gradually changes) 
when the anisotropy magnitude is increased, well consistent with experimental observations. Furthermore, the 
α-region favoring the [xxz] helical order is seriously suppressed as β decreases, demonstrating that the helical 
order in chiral magnet with a weak DM interaction can be easily modulated by uniaxial stress44.

As a matter of fact, these helical spin orders are also con�rmed in our MC simulations. For example, the [001] 
helical order is stabilized at low T for (α, β) = (0.866, 0.577), and its spin con�guration and the Bragg intensity are 
shown in Fig. 2(a). In one in-plane (xy) lattice layer, all the spins are parallel with each other. In addition, the spins 
of the chain along the [001] direction form a spiral structure, clearly demonstrating the helical order with the 
wave vector k = (0, 0, k). For α < 1 (i.e. compressive strain applied along the [001] axis), the exchange interaction 
Jz and DM interaction Dz play an essential role in determining the ground-state, and their competition results in 
the appearance of the [001] helical order. �us, the compressive strain will tune the wave vector from the [111] 
axis to the stress axis, as reported in experiments. Similarly, the [110] helical order (Fig. 2(b)) and the [111] helical 
order (Fig. 2(c)) can be developed for (α, β) = (1.155, 0.816) and (α, β) = (1, 1), respectively. Furthermore, these 
spin orders can be also re�ected in the calculated Bragg intensities, as given in the bottom of Fig. 2.

On the other hand, it is noted that the exchange anisotropy may not have the same magnitude as the DM 
interaction anisotropy, especially in the systems where the spin-orbit coupling is anisotropic24. Without losing the 
generality, we also investigate these e�ects. We de�ne the following two parameters:
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Figure 1. (a) �e local energies as a function of α. (b) �e ground-state phase diagram in the space of (α, β).
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Similarly, the phase boundaries in the phase diagram can be rigorously obtained by comparing these energies 
of the helical orders, and the calculated ground-state phase diagram in the (γ, γ/ξ) parameter plane is shown in 
Fig. 3. It is clearly demonstrated that the helical order can be e�ectively modulated by these parameters, further 
validating the conclusion that the interaction anisotropy may be important in understanding the uniaxial stress 
dependence of ground-state in chiral magnets such as MnSi.

Effect of stress on skyrmion lattice phase. With a magnetic �eld applied along the [001] direction, 
the skyrmion lattice phase appears in a small h-T region. A transverse (longitudinal) pressure further stabilizes 
(destabilizes) the skyrmion lattice phase, resulting in the expanding (shrinking) of this T-region with this phase, 
as reported in earlier experiments on bulk MnSi21, 22. �is behavior is also captured in the present anisotropic spin 
model.

Figure 4(a) shows the simulated phase diagram for (α, β) = (1.155, 0.816). Even with the compensation term, 
the skyrmion lattice phase remains stable at low T, demonstrating the prominent role of the interaction anisotro-
pies in modulating the skyrmion lattice phase. �is phenomenon can be understood by analyzing the spin struc-
tures. For one spin chain along the z direction in the [110] helical order, all the spins are parallel with each other, 
and Jz interaction is completely satis�ed. �us, there is no energy loss from the Jz interaction due to the transition 
from the helical order to the tube skyrmion phase, resulting in the expansion of the T-region for the skyrmion 
lattice phase. In some extent, this behavior is similar to that of the two-dimensional system in which a rather large 
T-region for the skyrmion lattice phase has been reported both experimentally4, 5 and theoretically45 as a result of 
the suppression of the competing conical phase. In Fig. 4(b), we show a snapshot (one in-plane lattice layer) of the 

Figure 2. A plot of the spin con�gurations projected on the xy plane (up) and projected on the yz plane 
(middle). At the bottom of each �gure are the plots of the Bragg intensity from Fourier transition which shows 
the sets of helix vectors. �e parameters are (a) (α, β) = (0.866, 0.577), (b) (α, β) = (1.155, 0.816), and (c) (α, 
β) = (1, 1) at T = 0.01.
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skyrmion lattice phase and the Bragg intensity at T = 0.07 and h = 0.46. �e skyrmion phase with the hexagonal 
symmetry is clearly con�rmed. It is noted that the anisotropy magnitude may not be so large in real materials, 
and the skyrmion lattice phase at T → 0 predicted here has not been reported experimentally. However, this work 
indeed manifests the important role of the interaction anisotropy in modulating the skyrmions.

On the contrary, the stability of the skyrmion lattice phase is signi�cantly suppressed for α < 1, as shown in 
Fig. 5 which gives the phase diagram for (α, β) = (0.866, 0.5735). With the increase of Jz (α decreases), the energy 
loss from the Jz interaction due to the transition to the skyrmion lattice phase increases, resulting in the destabili-
zation of the skyrmion lattice phase. As a matter of fact, earlier experiment revealed that an in-plane tensile strain 
destabilizes the skyrmion lattice phase37, consistent with our simulations. Furthermore, it is clearly shown that 
the helical order is only stabilized at zero h, which can be explained analytically. �e spins in an in-plane layer are 
parallel with each other in the [001] helical order, exhibiting a quasi-one-dimensional property. In this case, the 
energy of the conical phase under small h can be written by

φ
φ= − −

+
− −E D k

k
J k hsin 1

2 cos

1 cos
cos cos ,

(18)
z z

z
z zcon

2

Figure 3. �e ground-state phase diagram in the space of (γ, γ/ξ).

Figure 4. (a) �e estimated phase diagram in the (T, h) plane for (α, β) = (1.155, 0.816), and (b) A plot of the in-
plane layer spin con�guration for the tube skyrmion phase. �e intensity pro�le is also given in the bottom of (b).
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where φ is the cone half-angle (for the [001] helical order, φ = π/2). Once the energy term is minimized, we obtain

φ
φ+ −

+
= .h k

k
D k(1 cos ) 1

2cos

1 cos
2 sin cos

(19)
z

z
z z

2

�us, it is clearly indicated that the [001] helical order can only be developed at zero h. In fact, earlier experiments 
have revealed that both the helical order and skyrmion lattice phase can be destabilized by the longitudinal pres-
sure21. Here, our work suggests that the conical phase will completely replace the helical one at �nite h in those 
systems with strong interaction anisotropies.

Conclusion
In conclusion, we have studied the uniaxial stress e�ects on the magnetic orders of bulk MnSi based on the spa-
tially anisotropic spin model. Several experimental observations are qualitatively reproduced by the analytical cal-
culation and Monte Carlo simulations of the model. It is suggested that the helical orders as well as the skyrmion 
lattice phase can be e�ectively modulated by the interaction anisotropy tuned by the applied pressure, especially 
for the system with a weak DM interaction. �e present work may provide new insights into the understanding of 
the magnetic orders in the strained MnSi.
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