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Helical fields and filamentary molecular clouds ± I
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AB S TRACT

We study the equilibrium of pressure truncated, filamentary molecular clouds that are

threaded by rather general helical magnetic fields. We first apply the virial theorem to

filamentary molecular clouds, including the effects of non-thermal motions and the turbulent

pressure of the surrounding ISM. When compared with the data, we find that many

filamentary clouds have a mass per unit length that is significantly reduced by the effects of

external pressure, and that toroidal fields play a significant role in squeezing such clouds.

We also develop exact numerical MHD models of filamentary molecular clouds with

more general helical field configurations than have previously been considered. We examine

the effects of the equation of state by comparing `isothermal' filaments, with constant total

(thermal plus turbulent) velocity dispersion, with equilibria constructed using a logatropic

equation of state.

Our theoretical models involve three parameters: two to describe the mass loading of the

toroidal and poloidal fields, and a third that describes the radial concentration of the

filament. We thoroughly explore our parameter space to determine which choices of

parameters result in models that agree with the available observational constraints. We find

that both equations of state result in equilibria that agree with the observational results.

Moreover, we find that models with helical fields have more realistic density profiles than

either unmagnetized models or those with purely poloidal fields; we find that most

isothermal models have density distributions that fall off as r21.8 to r22, while logatropes

have density profiles that range from r21 to r21.8. We find that purely poloidal fields produce

filaments with steep radial density gradients that are not allowed by the observations.

Key words: MHD ± ISM: clouds ± ISM: magnetic fields.

1 INTRODUCTION

Observations have revealed that most molecular clouds are

filamentary structures that are supported by non-thermal, small-

scale magnetohydrodynamic (MHD) motions of some kind, as

well as large-scale ordered magnetic fields (cf. Schleuning 1998).

Nevertheless, virtually all theoretical models assume spheroidal

geometry. While spheroidal models are a reasonable geometry for

molecular cloud cores, these cannot adequately describe mole-

cular clouds on larger scales. The goal of this paper is to fully

develop a theory for filamentary molecular clouds including the

effects of ordered magnetic fields. It is our intent that this work

should elevate filamentary clouds to the same level of under-

standing as that enjoyed by their spheroidal counterparts (cf.

reviews by McKee et al. 1993 and Heiles et al. 1993). This is an

important step in star formation theory because filamentary

molecular clouds ultimately provide the initial conditions for star

formation. A clear understanding of the initial conditions is

necessary if we are to understand the processes by which clouds

produce their star-forming cores.

Ostriker (1964) investigated the equilibrium of unmagnetized

isothermal filaments; he found that the density varies as ,r24 in

the outer regions. However, this solution is much too steep to

account for the observed density profiles in molecular clouds. For

example, Alves et al. (1998, hereafter A98) and l use extinction

measurements of background starlight in the near infrared to find

r22 density profiles for the filamentary clouds L977 and IC 5146.

Most theoretical models for self-gravitating filaments have

featured magnetic fields that are aligned with the major axis of the

filaments. The pioneering work by Chandrasekhar & Fermi (1953)

was the first to analyse the stability of magnetized incompressible

filaments with longitudinal magnetic fields. StodoÂlkiewicz (1963)

developed a class of isothermal models in which the ratio of the

gas to magnetic pressure (b ) is constant. The magnetic field in

these models simply re-scales the Ostriker (1964) solution; thus,

the steep r
24 density profile is preserved. The structure of the

Ostriker solution is unchanged by the addition of a uniform
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86 J. D. Fiege and R. E. Pudritz

poloidal magnetic field. The stability of such models, including

the effects of pressure truncation, has subsequently been

determined by Nagasawa (1987). Gehman, Adams & Watkins

(1996) have considered the effects of a logatropic equation of state

(EOS) on the equilibrium and stability of filamentary clouds

threaded by a uniform poloidal field. Unfortunately, these models

possess infinite mass per unit length as a result.

Observations suggest that some molecular clouds may be

wrapped by helical fields (Bally 1987; Heiles 1987). There is also

some observational evidence for helical fields in H i filaments

towards the Galactic high-latitude clouds (Gomez de Castro,

Pudritz & Bastien 1997). In fact, helical fields represent the most

general magnetic field configuration allowed if cylindrical

symmetry is assumed. A few authors have previously modelled

filamentary clouds with helical fields. These models are similar to

the StodoÂlkiewicz (1963) solution in that the magnetic pressure is

proportional to the gas pressure, so that the density becomes a re-

scaling of the Ostriker (1964) solution.

Our analysis replaces the assumption of constant b with the

assumption of constant flux to mass loading for the poloidal (e.g.

Mouschovias 1976; Spitzer 1978; Tomisaka, Ikeuchi & Nakamura

1988) and toroidal fields. We show that the magnetic field in this

case has non-trivial effects on the density distribution, and in fact

results in much better agreement with the available data. We also

explore the role of the EOS by constructing models using both an

`isothermal' EOS, where the total (thermal plus non-thermal)

velocity dispersion is assumed constant, and the pure logatrope of

McLaughlin & Pudritz (1996, hereafter MP96). The effects of

pressure truncation play an important role in our analysis. By

including a realistic range of external pressures, appropriate for

the ISM, we show that the mass per unit length of our models is

significantly decreased from the untruncated value. We also apply

the virial theorem to truncated filamentary equilibria threaded by

helical fields. We use this equation to compare our models with

real filamentary clouds and to establish strong constraints on their

allowed magnetic configurations.

How would helical fields arise? All that is required is to twist

one end of a filament containing a poloidal field, with respect to

the other end. Even if molecular filaments form with an initially

axial magnetic field, a helical field is plausibly generated by any

kind of shear motion (such as subsequent oblique shocks, torsional

AlfveÂn waves, etc.) that twists the field lines.

It is not the purpose of this paper to examine how helical

fields could be generated. The main point of this work is that,

having recognized that most molecular clouds are undoubtedly

filamentary, magnetized and truncated by an external pressure, it

is of considerable importance to investigate equilibrium models

of molecular clouds that contain quite general helical fields and

pressure truncation. We employ two main approaches in our

theoretical analysis. First, we derive a general virial equation

appropriate for pressure-truncated filamentary molecular clouds,

which we use to understand the roles of gravity, pressure and

the magnetic field in the overall quasi-equilibrium of filamentary

clouds. Secondly, we develop numerical MHD equilibrium

models that can be compared with the internal structure of

real clouds.

Our virial analysis demonstrates that poloidal fields always help

to support the gas against self-gravity, while toroidal fields

squeeze the gas by the `hoop stress' of their curved field lines.

Helical fields may either support or help to confine the gas,

depending on whether the poloidal or toroidal field component is

dominant. We show, in fact, that it is very difficult to understand

observed clouds without the notion of helical fields and the

confining hoop stresses that they exert upon their molecular gas.

Having found evidence for helical fields from our virial

analysis, we construct numerical MHD models of filamentary

clouds in order to investigate the internal structure of models that

are allowed by the data. It is noteworthy that our isothermal

models with helical magnetic fields always produce density

profiles that fall off as r21.8 to r22, in excellent agreement with the

data. We show that the toroidal field component is responsible for

the more realistic behaviour, and that purely poloidal fields result

in density profiles that fall even more rapidly than r24 in our

model. We also consider the pure logatrope of McLaughlin &

Pudritz (1996) as a possible effective EOS for the gas. We find

that our logatropic models have somewhat more shallow density

profiles, but many are also in good agreement with the existing

data.

A brief outline of our paper is as follows. We first present the

results of virial analysis of self-gravitating, pressure truncated,

filamentary clouds containing both poloidal and toroidal field

(Section 2). In Section 3, we follow this up with a detailed

analysis of the equations of magnetohydrostatic equilibrium

describing self-gravitating filaments and discuss important

analytic solutions to these. A full numerical treatment of the

equations is given in Section 4 where we also constrain our 3-

parameter models with a wide variety of filamentary cloud data.

We discuss these results in Section 5 and summarize in Section 6.

2 V IR IAL ANALYSIS FOR FILAMENTARY

MOLECULAR CLOUDS

In Appendix A, we use the scalar virial theorem to construct a

virial equation appropriate for pressure truncated filamentary

clouds containing arbitrary helical fields. After carrying out the

manipulations therein, we obtain

0 � 2

�

P dV 2 2PSV �W �M ; �1�

where the gravitational energy per unit length is given by

W � 2

�

rr
­F

­r
dV : �2�

and M is the sum of all magnetic terms (including surface terms)

M � 1

4p

�

B2
z dV 2

B2
zS � B2

fS

4p

 !

V : �3�

This equation is appropriate for a non-rotating, self-gravitating,

filamentary molecular cloud whose length greatly exceeds its

radius. For the remainder of this paper, all quantities written with a

subscript `S' are to be evaluated at the surface of the filament; thus

we write that our filament is truncated by an external pressure PS

at radius RS. We further reserve calligraphic symbols for quantities

evaluated per unit length; W is the gravitational energy per unit

length since there are no external gravitational fields and V is

actually the volume per unit length, or cross-sectional area pR2
S, of

the filament. As we shall now show, W can be evaluated exactly

for a filament of arbitrary internal structure and equation of state.

The mass per unit length m of the filament is obtained by simply

integrating the density over the cross-sectional area

m � 2p

�

rr�r� dr: �4�
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Poisson's equation in cylindrical coordinates takes the form

1

r

d

dr
r
dF

dr

� �

� 4pGr: �5�

By integrating, we find that the mass per unit length interior to

radius r can be written as

m�r� � 1

2G
r
dF

dr

�

�

�

�

r

: �6�

Using this result in equation (2), the gravitational energy per unit

length can be transformed into an integral over the mass per unit

length

W � 22G

�m

0

m 0 dm 0 � 2m2G: �7�

It is remarkable that the gravitational energy per unit length takes

on the same value regardless of the equation of state, magnetic

field, or internal structure of the cloud. The only requirements are

those of virial equilibrium and cylindrical geometry. McCrea

(1957) gave an approximate formula for the gravitational energy

per unit length as W � 2am2G (where a is a constant of order

unity) based on dimensional considerations; thus, our exact result

gives a � 1 for all cylindrical mass distributions.

By considering a long filament of finite mass M and length L,

we find that the gravitational energy scales quite differently for

filaments and spheroids:

Wcyl � 2
GM2

L

W sphere � 2
3

5
a
GM2

R
; �8�

where a depends on the detailed shape and internal structure for

spheroids. It is of fundamental importance that the gravitational

energy scales with radius for spheroids, but not for filaments.

McCrea (1957) used this point to argue that filaments possess

stability properties quite contrary to those of spheroidal equilibria.

For spheroids, which best describe molecular cloud cores, the

gravitational energy scales as ,R21. As long as the core is

magnetically subcritical, there always exists a critical external

pressure beyond which the gravitational energy must dominate

over the pressure support. The equilibrium is unstable to

gravitational collapse past this critical external pressure. On the

other hand, the gravitational energy of a filament is unaffected by

a change in radius. Thus, the gravitational energy remains constant

during any radial contraction caused by increased external

pressure. If the filament is initially in equilibrium, gravity can

never be made to dominate by squeezing the filament; all

hydrodynamic filaments initially in equilibrium are stable in the

sense of Bonnor (1956) and Ebert (1955).

In Appendix B, we consider the Bonnor±Ebert stability of

magnetized filaments. Beginning with a discussion of uniform

filaments, we show that a uniform filamentary cloud with a helical

field, that is initially in a state of equilibrium, cannot be made to

collapse radially by increasing the external pressure. We also give

a more general proof which extends the argument to non-uniform

filaments of arbitrary EOS. Thus, we conclude that all filamentary

clouds, that are initially in a state of equilibrium, are stable against

radial perturbations.

The virial theorem for filaments (equation 1) is best used to

study the global properties of filamentary molecular clouds. It is

useful to define the average density, pressure, and magnetic

pressure within the cloud as

krl � m

V

kPl �
�

V
P dV

V

kPmagl �
1

8pV

�

V

B2
z dV : �9�

Quite generally, we may write the effective pressure inside a

molecular cloud as P � s2r, where s is the total velocity

dispersion. We emphasize that all of our models take s to

represent the total velocity dispersion, including both thermal and

non-thermal components. It is particularly important to note that

when we describe an equation of state as `isothermal', we really

mean that the total velocity dispersion is constant. The average

squared velocity dispersion is defined simply as

ks2l � kPl

krl
�
�

V
s2rdV
�

V
rdV

; �10�

where the average has been weighted by the mass as in MP96.

With the above definitions, we easily derive a useful form of

our virial equation (equation 1)

PS

kPl
� 12

m

mvir

12
M

jW j

� �

; �11�

where M and W are the total magnetic and kinetic energies per

unit length defined in equations (2) and (3), and mvir is the virial

mass per unit length defined by

mvir �
2ks2l

G
: �12�

We note that mvir is analogous to the the virial mass

Mvir �
5Rks2l

G
�13�

normally defined for spheroidal equilibria. Using the definition of

the average magnetic pressure given in equation (9), we may write

the total magnetic energy as

M � 2�kPmagl2 Pmag;S�V : �14�

Using this result, along with the expression for the gravitational

energy per unit length (equation 7) in equation (11), we obtain

another useful form of the virial equation after some algebraic

manipulations

PS

kPl
� 12

m

mvir

� kPmagl2 Pmag;S

kPl

� �

; �15�

where Pmag,S is the total magnetic pressure evaluated at the

surface of the cloud

Pmag;S �
B2
zS � B2

fS

8p
: �16�

Equation (15) makes two important points. First of all, the

poloidal component of the magnetic field contributes to the

magnetic pressure support of the cloud through kPmagl. Secondly,

the toroidal field enters into equation (15) only as a surface term,

through Pmag,S, regardless of the internal distribution of Bf

throughout the filament. This `pinch effect' is well known in

toroidal field confined plasma, where the mean internal pressure is

q 2000 RAS, MNRAS 311, 85±104

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/3
1
1
/1

/8
5
/9

9
0
5
2
9
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



88 J. D. Fiege and R. E. Pudritz

determined only by the toroidal field at the surface of the plasma

[See Jackson (1975) equation 10.45 and the following discussion.]

All magnetic fields, whether poloidal, toroidal, or of a more

complex geometry, are associated with currents that flow within

molecular clouds and the surrounding ISM. For a filamentary

cloud wrapped by a helical field, the toroidal field component

implies the existence of a poloidal current that flows along the

filament. A natural question is whether a return current outside of

the filamentary cloud completes the `circuit', or whether the

poloidal current connects to larger scale structures in the ISM. The

answer to this question will likely depend on the mechanisms by

which filaments form, which might be addressed by future

analysis. If the current returns as a thin current sheet flowing along

the surface of the filament, the toroidal field at the surface would

be nullified, and so would its confining effects. As we show in

Section 2.4, this would make the available data very difficult to

understand, indeed. However, in the more general case that the

return current is diffuse and extended throughout the surrounding

gas, as in the case of protostellar jets (Ouyed & Pudritz 1997),

there would be a net magnetic confinement of the filament.

In Appendix C, we derive the virial relations for filamentary

molecular clouds analogous to the well-known relations for

spheroidal clouds (ChieÁze 1987; Elmegreen 1989; MP96). We

show that the two geometries result in differences only in factors

of order unity. Most importantly, we use our virial equation 1 to

show that Larson's laws (1981) are also expected for magnetized

filamentary clouds of arbitrary EOS. The reader may consult

Table C1 to compare expressions for m, R, krl, and S for

spheroidal and filamentary clouds.

2.1 Unmagnetized filaments

From equation (11), we see that unmagnetized clouds obey the

following linear relation

PS

kPl
� 12

m

mvir

: �17�

This equation is exact for any unmagnetized filamentary cloud in

virial equilibrium regardless of the underlying equation of state or

details of the internal structure. Since equation (17) contains only

quantities that are observable, we have derived an important

diagnostic tool for determining whether or not filamentary clouds

contain dynamically important ordered magnetic fields.

We can use equation (17) to obtain the critical mass per unit

length mh for unmagnetized filamentary clouds. Consider

gradually adding mass to a self-gravitating hydrostatic filament.

As the mass per unit length increases, the compression owing to

self-gravity drives the filament to ever increasing internal

pressures, while the external pressure remains constant. This

process continues until the cloud is so highly compressed that

PS=kPl ! 0, beyond which no physical solution to equation (17)

exists. By equation (17), this happens when m � mvir; thus, the

virial mass per unit length plays the role of the critical mass per

unit length mh for unmagnetized filamentary clouds.

For a prescribed EOS, this procedure leads to an unambiguous

determination of the value of mh. Depending on the EOS, the mass

per unit length either approaches mh asymptotically as PS=kPl ! 0,

or achieves mh at some finite radius where PS vanishes.

There is, however, one subtle point that needs to be made. For

an isothermal equation of state, we can unambiguously write that

mh � mvir. However, the velocity dispersion varies with density

for non-isothermal equations of state. Thus, ks2l and hence mvir

(by equation 12) may vary as the cloud is compressed by self-

gravity. The critical mass per unit length mh is the final value that

mvir takes before radial collapse ensues, while mvir is a quantity

that applies equally well to non-critical states.

2.2 Magnetized filaments

When there is a magnetic field present in a filamentary molecular

cloud, the critical mass per unit length mmag is significantly

modified from the result obtained for unmagnetized clouds in the

previous section. Using the same argument as presented above, a

magnetized cloud achieves its critical configuration when

PS=kPl ! 0:

mmag �
mvir

12M =jW j ; �18�

where M and W are the total magnetic and gravitational energies

per unit length given by equations (14) and (7). We recall that M

may be either positive or negative, depending on whether the

poloidal or the toroidal field dominates the overall magnetic

energy. In general, we find that poloidal fields increase the critical

mass per unit length beyond mvir for hydrostatic filaments, while

toroidal fields reduce the critical mass per unit length below mh.

Physically, the reason for this behaviour is that the poloidal field

helps to support the cloud radially against self-gravity, thus

allowing greater masses per unit length to be supported. The

opposite is true for the toroidal field component, which works

with gravity in squeezing the cloud radially.

We may constrain the critical mass per unit length for a

filamentary cloud if we have additional information regarding the

strengths of the poloidal and toroidal field components. For a

nearly isothermal EOS, the magnetic critical mass per unit length

is given by

mmag < mh 1� kPmagl2 Pmag;S

kPl

� �� �

: �19�

Since molecular clouds are in approximate equipartition between

their magnetic and kinetic energies (Myers & Goodman 1988a,b;

Bertoldi & McKee 1992), kPmagl is not likely to greatly exceed

kPl. Therefore, it is unlikely that the magnetic critical mass per

unit length mmag would exceed the hydrostatic critical mass per

unit length mh by more than a factor of order unity.

2.3 Surface pressures on molecular filaments

Molecular clouds are surrounded by the atomic gas of the

interstellar medium (ISM). Like the molecular gas itself, the

total pressure of the ISM is dominated by non-thermal motions.

The external pressure is extremely important to our analysis

since it both truncates molecular clouds at finite radius and

helps to confine the clouds against their own internal pressures

(see equation 11). Boulares & Cox (1990) have estimated the

total pressure (with thermal plus turbulent contributions) of the

interstellar medium to be on the order of 104Kcm23. However,

some molecular clouds are associated with H i complexes,

whose pressures are typically an order of magnitude higher than

the general ISM (Chromey, Elmegreen & Elmegreen 1989).

Therefore, we will be absolutely conservative by assuming that

the external pressure on molecular clouds is in the range of

104±5Kcm23. This assumption almost certainly brackets the real
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Helical fields and filamentary molecular clouds ± I 89

pressure exerted on molecular clouds by imposing the total

(thermal plus turbulent) pressure of the ISM as a lower bound, and

the pressure of large H i complexes as the upper bound.

While the above pressure estimate is appropriate for most

filamentary clouds, which are truncated directly by the pressure of

the surrounding atomic gas, we note that a second type of filament

exists, in which a dense molecular filament is deeply embedded in

a molecular cloud of irregular or spheroidal geometry. The best

example of this type of filament is the
�

-shaped filament in the

Orion A cloud. In such cases, the external pressure must be

estimated using the density and velocity dispersion of the

surrounding molecular gas.

2.4 Comparison with observations

We have seen that the magnetic field affects the global properties

of filaments only through the dimensionless virial parameter

M=jW j. The virial quantity M=jW j provides a very convenient

index of whether a cloud is poloidally or toroidally dominated and

to what degree. For clouds with positive M=jW j, the net effect of
the magnetic field is to provide support and the field is poloidally

dominated (cf. equation 11). When M=jW j is negative, the net

effect of the field is confinement by the pinch of the toroidal field,

and the field is toroidally dominated. Since M is directly

compared to the gravitational energy jW j, the magnitude of our

virial parameter provides an immediate indication of the

importance of the ordered field to the dynamics of the cloud. In

Fig. 1, we have used equation (11) to draw contours of constant

M=jW j as a function of m/mvir and PS=kPl. The M=jW j � 0

(dotted) line represents all helical field configurations, including

the unmagnetized special case, which have a neutral effect on the

global structure of the cloud. Thus, we see that the diagram is

divided into poloidally dominated (dashed lines) and toroidally

dominated (solid lines) regions.

Since both m/mvir and PS=kPl are observable quantities, we

can constrain our models by locating individual filamentary

clouds on this diagram. However, we must first compute m/mvir

and PS=kPl for each cloud by the following steps. For each

filament, we have found values for the mass, length, radius, and

average linewidth from molecular line observations in the

literature (see Table 1 for references). The mass per unit length

m is obtained by dividing the mass of the filament by its length

allowing for inclination effects by conservatively assuming all

filaments to be oriented within 458 of the plane of the sky. Since

the emitting molecule (usually 12CO or 13CO) is always much

more massive than the the average molecule in molecular gas,

the observed linewidth must be corrected by applying Fuller &

Myers' (1992) formula:

Dv2tot � Dv2obs � 8 ln�2�kT 1

�m
2

1

mobs

� �

; �20�

where mobs is the mass of the emitting species, mÅ is the mean

mass of molecular gas, and T is the kinetic temperature of the

gas. For a normal helium abundance Y � 0:28; �m � 2:33. We

have assumed a temperature of 20K for the gas; the exact

temperature chosen makes only a small difference in Dvtot since

the turbulent component of the linewidth always dominates on

any scale larger than a small core. The velocity dispersion may
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Figure 1. Helical field models are compared with the observed properties of

real filaments. Curves are shown for various values of the virial parameter

M=jW j. Positive values, corresponding to the dashed curves, indicate that

the poloidal field is dominant, while negative values, corresponding to solid

curves, indicate that the toroidal field is dominant. The dotted line represents

all solutions that are neutrally affected by the helical field (including the

unmagnetized solution). The
�

-shaped filament appears twice, because we

have used two independent data sets in our analysis.

Table 1. We have compiled data on filamentary molecular clouds from several
sources. References: 1. Bally (1987), 2. Loren (1989a), 3. Maddalena et al. (1986), 4.
Murphy & Myers (1985), 5. Tatematsu et al. (1993). Notes: 1. Little star formation. 2.
Dense cores, star formation. 3. Deeply embedded in Orion A cloud. 4. Associated
stars.

Cloud Region M L RS s Ref. Notes
(M() (pc) (pc) (kms21)

L1709 Rho Oph 140 3.6 0.23 0.479 2 1
L1755 171 6.3 0.152 0.526 2 1
L1712-29 219 4.5 0.156 0.534 2 1
DL 2a Taurus 600 6.4 0.5 1.08 4 4R
-fil.b Orion 5 � 103 13 0.25 1.41 1 2,3

± ± 0.35 1.13 5
NFc 1:55 � 104 87.3 2.25 1.54 3 1
SFd 3:65 � 104 300 2.25 1.29 3 1

aDark lane in Taurus including B18. See Mizuno et al (1995) for a more detailed map.
bThe

R
-shaped filament in Orion A.

cNorthern filament in Orion (see reference).
d Southern filament in Orion (see reference).
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90 J. D. Fiege and R. E. Pudritz

be obtained from equation (20) by

s � Dvtot
�����������

8 ln 2
p : �21�

We identify s with ks2l
1=2

as defined by equation (10), since

this velocity dispersion is obtained from an average linewidth for

the entire cloud. With ks2l known, we compute mvir from

equation (12), which directly gives us m/mvir. Obtaining the

average radius RS directly from maps, and hence the cross-

sectional area V, the average density and internal pressure are

then easily obtained using equations (9) and (10). All that

remains to deduce M=jW j from equation (11) is to estimate the

external pressure. Most of the filamentary clouds in our sample

are surrounded by atomic gas. Therefore, we conservatively

assume the total external pressure to be in the range 104±

105Kcm23, as discussed in Section 2.3. In fact, the only

exception is the
�

-shaped filament of Orion A, which is deeply

embedded in molecular gas. In this case, we have estimated the

external pressure from measurements of the density and

linewidth in the Orion A cloud (See Table 2 for references).

Fig. 1 demonstrates that most filamentary clouds reside in a part

of parameter space where

0:11 & m=mvir & 0:43

0:012 & PS=kPl & 0:75; �22�

which is indicated by the shaded box in Fig. 1. Thus, we find that

filamentary clouds range considerably in their virial parameters.

However, it is remarkable that most of the clouds in our small data

set appear to reside in the part of the diagram where M=jW j , 0.

Thus, our virial analysis infers that the magnetic field in at least

several filamentary clouds is probably helical and toroidally

dominated. Gravity and surface pressure alone appear to be

insufficient to radially bind the clouds in our sample. While this

means that filaments must be quite weakly bound by gravity, we

note that similar results have also been obtained by Loren (1989b)

and BM92.

It is natural to wonder to what extent these conclusions could

be affected by uncertainties in the observational results. The

dominant sources of uncertainty in Fig. 1 are probably the

uncertainties in mass per unit length surface pressures.

However, we have assumed very conservative ranges for the

surface pressures and inclination angles of the clouds. We also

note that including some rotational support of the filament

would necessarily lead to the same conclusion of a helical

field.

3 MAGNETOHYDROSTATIC MODELS OF

FILAMENTARY STRUCTURE

The virial treatment of the previous section is perhaps the simplest

and most illuminating way to understand the physics and global

properties of filamentary molecular clouds. While the virial

equations 1 and 15 are convenient to use, and are in fact exact

expressions of magnetohydrostatic equilibrium, the analysis can

say nothing of the internal structure of the clouds. This is the

importance of the exact analytic and numerical models developed

in this section.

3.1 The poloidal and toroidal flux to mass ratios

We postulate that the magnetic field structure corresponds to that

of constant poloidal and toroidal flux to mass ratios Gz and Gf .

The meanings of the flux to mass ratios are illustrated in Fig. 2,

and are defined in the following way. Consider a bundle of

poloidal field lines passing through a small cross-sectional area of

the filament dV. The magnetic flux passing through the surface is

BzdV, while the mass per unit length is rV. Thus, the ratio of the

q 2000 RAS, MNRAS 311, 85±104

Table 2. We have reduced the data of Table 1 to obtain m/mvir and PS=kPl; for each filament.
We assume an external pressure PS of 104:5^0:5 Kcm23 for all filaments except the

R
-shaped

filament of Orion A, which is deeply embedded in molecular gas. We also assume that all
filaments are oriented within 458 relative to the plane of the sky. We only give central values in
the table, but the corresponding error bars are shown in Fig. 1.

Cloud m mvir m/mvir kPl PS PS=kPl
(M( pc21) (M( pc21) (104Kcm23) (104Kcm23)

L1709 35.9 107 0.34 24.3 3.2 0.13
L1755 25.1 129 0.20 46.8 3.2 0.068
L1712-L29 45 132 0.34 82.4 3.2 0.038
DL 2 86.6 547 0.16 63.6 3.2 0.050
�

-fil. 355 925 0.38 1:77 � 103 64.8a 0.037
647 590 1.1 1:05 � 103 64.8 0.062

NF 164 1:11 � 103 0.15 12.1 3.2 0.26
SF 112 777 0.15 5.8 3.2 0.55

aDetermined from Bally's (1987) density estimate and the 12CO linewidth given by Maddalena
et al. (1986).

Figure 2. A schematic illustration of the poloidal and toroidal flux to mass

ratios introduced in equations (23) and (24).
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Helical fields and filamentary molecular clouds ± I 91

poloidal flux to the mass per unit length is

Gz �
Bz

r
: �23�

Is there an analogous quantity for the toroidal component of the

field? In fact the toroidal flux has been defined and is commonly

used in plasma physics (Bateman 1978). Here, we consider a

bundle of toroidal flux lines with cross-sectional area dA that form

a closed ring of radius r centred on the axis of the filament. The

mass enclosed by the ring is 2prdA. Thus, we may define the

toroidal flux to mass ratio (per radian) as

Gf � Bf

rr
: �24�

The simplest field configuration is that of constant Gz and Gf . We

note that constant Gf results naturally if a filament of constant Gz

and length L is twisted uniformly through an angle f . Then

Bf

Bz

� rf

L
; �25�

which leads to the result

Gf � f

L

� �

Gz: �26�

We shall always assume constant Gz and Gf for the remainder of

this paper.

3.2 An idealized model: uniform magnetized filaments

As an illustrative example, it is useful to consider uniform,

isothermal filamentary clouds threaded by helical fields of

constant Gz and Gf . In this simple model, the magnetic field is

uniform within the filament, but drops to zero outside. By

equation (24), the toroidal field Bf increases as ,r within the

filament and falls off as ,r21 in the external medium. Thus, the

toroidal field is associated with a constant poloidal current density

within the filament.

With the assumption of constant density and the above

definitions of Gz and Gf , equation (15) can be expanded to give

0 � s2
2

PS

r
� G2

zr

8p

 !

2 m
G

2
�

G2
f

8p2

 !

: �27�

The critical mass per unit length is obtained by setting PS � 0:

mmag �
2s2 � G2

zr=4p

G� G2
f=4p

2
: �28�

The effects of external pressure and the magnetic field are

transparent in this simple model. Pressure and the poloidal field

cooperate in supporting the cloud. On the other hand, the toroidal

field enters into equation (27) in concert with gravity. A

filamentary cloud with a helical field would be confined jointly

by gravity, external pressure, and the pinch of the toroidal field.

Without prior knowledge of the field strength and direction (by

molecular Zeeman and polarization observations), the cloud may

appear to be unbound by gravity alone.

3.3 General equations for magnetized filamentary molecular

clouds

We consider the equilibrium structure of a non-rotating, self-gravitating

molecular cloud with a helical field of constant flux to mass ratios

Gz and Gf . We consider two possible equations of state for the gas:

(1) the `isothermal' equation of state P � s2r where s is the total

velocity dispersion and (2) the `pure logatrope' of MP96 given by

P=Pc � 1� A ln�r=rc�, where Pc and rc are the central (along the

filament axis) pressures and densities, and A is a constant. MP96

find A . 0:2 for molecular cloud cores. Although their analysis

was based only on cloud core data, we shall assume that the same

value of A might apply to filamentary clouds as well. We use these

two equations of state because they probably bracket the true

underlying equation of state for molecular clouds; MHD cloud

turbulence probably results in an EOS softer than isothermal

(MP96; Gehman et al. 1996), while the pure logatrope is the

softest EOS to appear in the literature.

It is convenient to work in dimensionless units where density

and pressure are scaled by their central values r c and Pc. We

further define the central velocity dispersion by

s2
c �

Pc

rc
: �29�

A natural radial scale is then given by

r20 �
s2
c

4pGrc
; �30�

which defines the effective core radius of the filament. Finally, we

may define natural scales for the mass per unit length and

magnetic field:

m0 � r20rc �
s2
c

4pG

B0 � P1=2
c : �31�

Thus, all quantities are written in dimensionless form as follows:

~r � r=r0

~r � r=rc

~m � m=m0

~P � P=Pc

~s � s= ~s c

~F � F=s2
c

~Bz � Bz=B0

~Bf � Bf=B0 �32�

Hereafter, we will only ever refer to Gz and Gf in their

dimensionless forms

~Gz �
������

rc
s2
c

r

Bz

r

� �

~Gf � 1
����������

4pG
p Bf

rr

� �

: �33�

For brevity, we will drop the tildes for the remainder of this

section and the next (except for where ambiguity would result); all

quantities hereafter are understood to be written in dimensionless

form unless otherwise stated.

Our basic dimensionless equations are those of Poisson

1

r

d

dr
r
d

dr
F

� �

� r �34�

q 2000 RAS, MNRAS 311, 85±104
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92 J. D. Fiege and R. E. Pudritz

and magnetohydrostatic equilibrium

d

dr
P� B2

z

8p

� �

� r
d

dr
F� 1

r2
d

dr

r2B2
f

8p

 !

� 0: �35�

In Appendix D, we construct the mathematical framework to solve

these equations numerically for both isothermal and logatropic

equations of state. We show that a solution to the dimensionless

equations is characterized by three parameters, namely the flux to

mass ratios Gz and Gf defined by equations (23) and (24), and a

third to specify the (dimensionless) radius of pressure truncation.

We express this third parameter as a concentration parameter C

defined as

C � log10
RS

r0

� �

; �36�

where r0 is the radial scale defined by equation (33). We note that

our definition of C is analogous to the concentration parameter

C � log10�rt=r0� defined for King models of globular clusters (see

Binney & Tremaine 1987). Our concentration parameter differs

only in that the tidal radius rt is replaced by the pressure truncation

radius, and our r0 is smaller by a factor of 3. While we use C

primarily as a theoretical parameter, we note that it is in principle

observable.

3.4 Analytic solutions

Before discussing numerical solutions, we derive a few special

solutions that can be expressed in closed analytic form.

Specifically, we discuss the unmagnetized isothermal solution

that was found by Ostriker (1964) (a brief derivation is given in

Appendix D). We note that this solution is a special case of a more

general magnetized solution obtained by StodoÂlkiewicz (1963);

for brevity, we shall refer to this solution as the Ostriker solution

for the remainder of this paper. We also find a singular solution for

logatropic filaments. It is unlikely that either of these special

solutions describe real filaments, which are probably magnetized

and non-singular, but they do serve as important benchmark

results to compare with our more elaborate magnetized models.

3.4.1 The Ostriker solution: unmagnetized isothermal filaments

The analytic solution for the special case of an unmagnetized

isothermal filament is easily obtained using the mathematical

framework in Appendix D. It was first given by Ostriker (1964):

r � rc
�1� r2=8r20�2

; �37�

where we have restored the dimensional units. We note that the

density decreases as ,r24 at large radii. That such steep density

profiles have not been observed could be explained by three

possibilities: (1) molecular clouds are not isothermal ± a softer

EOS would give a less steeply falling density at large radius; (2)

real clouds contain dynamically important magnetic fields that

modify the structure of the filament at large radius; (3) real

filaments are always truncated by external pressure. If the filament

is truncated before the ,r24 envelope is reached, such steep

behaviour would not be observed. We demonstrate in Section

4.1.2 that either of possibilities (1) or (2) can explain the observed

properties of molecular clouds.

3.4.2 Singular logatropic filaments

Although we have been unable to find the analogue of the Ostriker

solution for the logatropic EOS, we have been successful in

finding a singular solution. For this model, we reinterpret r c as the

density at some fiducial radius. We postulate a power-law solution

of the form

r / ra; �38�
and find that a solution can only be obtained if a � 21. The final

solution with dimensional units restored is

r

rc
�

���

A
p r

r0

� �21

: �39�

It is useful to compare our solution with the singular logatropic

sphere found by MP96:

rsphere
rc

�
������

2A
p r

r0

� �21

; �40�

where we have rewritten their solution using our definition of r0.

(Their definition of r0 differs from ours by a factor of 3. Our

definition is the customary choice for filaments.) It is remarkable

that both singular logatropic spheres and filaments obey precisely

the same power law.

We note that there is no analogous singular power-law model

for unmagnetized isothermal filaments.

4 NUMERICAL SOLUTIONS

We now turn our attention to numerical solutions of equation D20

using various values of the flux to mass ratios Gz and Gf . Many of

the solutions are shown out to very large radius but may be

truncated to reproduce any desired value of the concentration

parameter C defined in equation (36).

4.1 Numerical results

We have shown in Section 2.4 that many filamentary clouds are

probably wrapped by helical magnetic fields. However, before

considering the most general case of helical fields in Section 4.1.2,

we first separately consider the effects of poloidal and toroidal

magnetic fields in Section 4.1.1. We note that purely poloidal

fields are not allowed by our virial analysis, and purely toroidal

fields are probably unrealistic. Neverthess, this is the best way to

understand the roles of each field component in our more general

helical field models.

Equation (D20) gives the set of differential equations that we

integrate to produce our models. The integration was done in a

straightforward manner, using a standard Runge±Kutta method.

4.1.1 Models with purely poloidal and toroidal fields

Figs 3 and 4 respectively show equilibria threaded by purely

poloidal and purely toroidal fields. For both cases, we show the

density and pressure profiles, the magnetic structure, and the mass

per unit length for isothermal and logatropic filaments. We have

also included the velocity dispersion and average velocity

dispersion (given by equation 10) for the logatropic equation of

state.

On each set of figures we have shown the density, pressure, and

velocity dispersion structure of the unmagnetized solutions with

q 2000 RAS, MNRAS 311, 85±104
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Helical fields and filamentary molecular clouds ± I 93

dashed lines. For isothermal solutions, we have also drawn a line

representing the asymptotic r24 behaviour of the Ostriker solution.

Similarly, the r21 singular solution has been included on density

profiles for logatropic filaments. These power laws are meant as a

guide for interpreting the asymptotic behaviour of the solutions.

We find that our models all have a core±envelope density

structure, where the density is nearly constant in the core, but falls

off like like a power law in the outer envelope.

Comparing the unmagnetized solutions (dashed lines) in Figs

3 and 4, we observe that the density profile of the

unmagnetized logatropic filament is slightly more centrally

concentrated than the isothermal Ostriker solution, but falls off

much less steeply at large radius. Figs 3 and 4 show that

isothermal and logatropic filaments both tend to finite mass per

unit length, although they differ in that isothermal filaments

approach the critical mass per unit length only asymptotically as

q 2000 RAS, MNRAS 311, 85±104

Figure 3. Isothermal and logatropic filaments with purely poloidal magnetic field: Gz � 0 (dashed line), 5,10,25 and 50. The dot±dashed lines represent the

r24 density structure of the Ostriker solution at large radius and the r21 behaviour of the singular logatropic solution.
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94 J. D. Fiege and R. E. Pudritz

their radii tend to infinity. As discussed in Section 2, this limit

represents the critical mass per unit length mh (see Section 2.1)

beyond which no equilibrium is possible. For the isothermal

filament, it is easy to show analytically (from equation 37) and

we verify numerically that mh � 8pm0, where m0 is the mass

scale defined by equation (31). For the unmagnetized logatropic

filament, we find numerically that mh � 185:8m0. Logatropic

filaments can support a greater mass per unit length for

equivalent central velocity dispersion sc. This is easily under-

stood since the average velocity dispersion ks2l
1=2

always

exceeds the central value offering more turbulent support to the

filament.

Perhaps the most notable feature of logatropic filaments is

that they `self-truncate' at finite radius and density r �
rc exp�21=A� where the velocity dispersion and pressure vanish.

The logatropic EOS is designed to have a nearly isothermal

q 2000 RAS, MNRAS 311, 85±104

Figure 4. Isothermal and logatropic filaments with purely toroidal magnetic field: Gf � 0 (dashed line), 5,10,25 and 50. The dot±dashed lines have the same

meaning as in Fig. 3.
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Helical fields and filamentary molecular clouds ± I 95

core and a rising velocity dispersion outside of the core radius.

At some point, however, the velocity dispersion turns over and

falls to zero. The velocity dispersion could of course never

vanish in a real cloud since all real clouds are truncated by

finite external pressure. Whether the region of outwardly falling

velocity dispersion actually falls within the pressure truncation

radius in fits to real clouds is addressed in Section 4.2, where

we attempt to constrain our models using the observational

results of Table 2.

Because of the way in which we have defined Gz (equation 23),

Bz is exactly proportional to the density. The toroidal field,

however, shows a more interesting structure; Bf always vanishes

along the axis of the filament, as it must for the field to be

continuous across the axis. We note that the logarithmic radial

scale of Fig. 4 makes the vanishing of Bf at the axis difficult to

see in some cases. It also is found to decay at large radius for

isothermal filaments since Bf � Gfrr / r23. Hence, there is a

single maximum in the toroidal field structure. For logatropic

filaments, the r21 asymptotic behaviour of the density implies that

Bf � Gfrr tends to a constant value at large radius. Thus, the

toroidal field in logatropic filaments lacks the local maximum

found for isothermal filaments.

The effects of poloidal and toroidal magnetic fields on the

density structure of isothermal and logatropic filaments are

apparent in Figs 3 and 4. Compared with unmagnetized filaments,

the poloidal magnetic field results in a more radially extended

core region, and a more rapid fall-off of the density in the outer

envelope. For large Gz * 25±50, the density drops to nearly zero

at 30±40r0; the solutions shown in Fig. 3 appear to end at finite

radius because we lose track of the solutions numerically at this

point. Toroidal magnetic fields, on the other hand, pinch the core

region of the filament to smaller radial extent, and result in a more

gradual decline of the density in the envelope.

It is significant that purely poloidal fields always result in

density profiles that are steeper than the r24 behaviour of the

Ostriker solution for our models of isothermal filaments. This is

also true of logatropic filaments when the field is sufficiently

strong. Such steep density profiles have never been observed, so

our models of filaments threaded by purely poloidal fields do not

match the data. On the other hand, toroidal fields result in ,r22

outer density profiles that are much more shallow than

unmagnetized filaments. This suggests that including a toroidal

field component might result in models that better agree with the

observations.

We find that the magnetic field has a dramatic effect on the

critical mass per unit length mmag of the cloud. For either EOS, a

poloidal magnetic field increases mmag, since the poloidal field

acts to support the cloud against self-gravity. The toroidal

magnetic field works with gravity, thus decreasing the maximum

mass per unit length that can be supported. These conclusions are

in agreement with our virial results from Section 2.

Our analysis shows that all isothermal filaments that are

unmagnetized or contain a purely toroidal field tend to the same

mass per unit length mh. We note that this cannot be directly seen

in Figs 3 and 4 since the limit is approached well outside the range

of our figures. The existence of this limit is easily explained by

our virial equation (15) since the toroidal field always tends to

zero at large radius for isothermal filaments. The critical mass per

unit length mmag clearly cannot be affected, since the toroidal field

only enters the virial equation through its surface value. This is not

the case for logatropic filaments because Bf tends to a constant

value at large radius.

4.1.2 Helical field models

In Section 2.4, we provided evidence based on our virial analysis

that filamentary clouds likely contain toroidally dominated helical

magnetic fields. At this point, we shall take a further step by

comparing our exact MHD models with the observed properties of

filamentary molecular clouds. As we have noted in Section 4, a

numerical solution is completely determined by the choice of

three dimensionless parameters; the flux to mass ratios Gz, Gf , and

the concentration parameter C.

Although RS can be observed with little difficulty, obtaining an

accurate value for C is difficult because of the uncertainty in the

core radius r0. According to equation (30), the core radius depends

on both the central density and velocity dispersion along the axis

of the filament, both of which might be quite uncertain. We can,

however, estimate a rough upper bound to C using the data of

Table 1. We do not presently know whether the central (axial)

velocity dispersions of filamentary clouds are dominated by non-

thermal motions, as the bulk of the cloud certainly is, or if the

velocity dispersions are thermal, as they are in many low-mass

cloud cores. Nevertheless, we do know that that sc must be at

least the thermal value, which is 0.23 km s21, assuming a

temperature of 15K. Central densities are probably less than

about 104 cm23, which is typical of a core. Therefore, equation

(30) implies that r0 is probably not less than <0.04 pc. In Table 1,

we find that RS & 0:5 pc for most (but not all) of the filaments in

our sample. Therefore, equation (36) implies that most filamentary

clouds should have concentration parameters that are less than

approximately 1.1. This estimate should be treated with caution,

considering the uncertainties and generalizations in our calcula-

tion. In particular, we note that larger filaments, such as the

Northern and Southern Filaments in the Orion region (See Table

1) have radii that are many times larger than the value that we used

in our calculation and may, therefore, have concentration

parameters that exceed our upper bound.

Three observable quantities shall be required to constrain our

theoretical models. We have previously (Section 2.4) found the

virial parameters PS=kPl and m/mvir to be useful in showing that

toroidally dominated helical fields play an important role in the

virial equilibrium of filamentary clouds. We use these parameters,

as well as a third parameter specifying the ratio of average

magnetic to kinetic energy densities to constrain our models.

Accordingly, we define a virial parameter

X � M

K
; �41�

where M and K are the average magnetic and kinetic energy

densities within the cloud defined by

M �
�

V
�B2

z � B2
f� dV

8pV

K � 3

2
krlks2l; �42�

and V is the volume of the cloud (not to be confused with V).

Myers & Goodman (1988a,b) have provided considerable

observational evidence that the average magnetic and kinetic

energy densities are in approximate equipartition, with M < K to

within a factor of order 2. Therefore, we impose the auxiliary

constraint that

X < O�1� �43�
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96 J. D. Fiege and R. E. Pudritz

for filamentary clouds with realistic magnetic fields. This

equipartition of energy has been explained by attributing the

non-thermal motions within molecular clouds to internally

generated AlfveÂnic turbulence (BM92). Since super-AlfveÂnic

turbulence is highly dissipative, the AlfveÂn speed poses a natural

limit for the non-thermal velocity dispersion (BM92). Thus, we

expect s < vA for molecular clouds. Defining the average squared

AlfveÂn speed as

kv2Al �
�m

0
v2A dm 0

m
; �44�

it is easy to show that

X � kv2Al

3ks2l
: �45�

Therefore, X < 1 is a natural result for magnetized clouds

supported against gravity by AlfveÂnic turbulence. In the analysis

that follows, we assume that

0:2 < X < 5 �46�

for all reasonable models and that 0:5 < X < 2 is appropriate for

our most realistic models.

4.1.3 Monte Carlo exploration of the parameter space

In this Section, we perform a Monte Carlo sampling of our

parameter space in order to determine which values of Gz, Gf , and

C result in models that obey all of our constraints. The Monte

Carlo exploration is very straightforward. We simply assign

random values to the three theoretical parameters and compute

helical field models using the mathematical framework of Section

3.3. Once a solution has been obtained, we compute m/mvir,

PS=kPl, and X using equations (12), (9) and (41), from which we

easily determine whether or not the solution obeys our constraints.

Fig. 5 shows the results of our exploration for isothermal

models, while Fig. 6 shows the results for logatropic models.

Each point in these figures represents a model that obeys our

constraints on m/mvir and PS=kPl; models that fall outside of

these constraints have been discarded.

The grey-scale in Figs 5(a) and 6(a) represent different ranges

for X. The most likely range of X, with 0:5 < X < 2 is shown as

black dots. The next darkest grey dots represent a less likely, but

still possibly allowed range, with 0:2 < X < 5, while the lightest

grey dots represent models that are outside of these ranges, and

therefore have unrealistically large or small magnetic fields. It

should be noted that there is relatively little overlap between these

regions in Fig. 5(a); they map out quite distinct regions on the

diagram. From Fig. 5(a), we find that the allowed ranges for the

flux to mass ratios are approximately

5 & Gf & 25

Gz & 8 �47�

for isothermal filaments with 0:5 < X < 2. A somewhat larger

region of the parameter space is allowed for filaments with

0:2 < X < 5. Comparing with Fig. 6(a), we find that the allowed

flux to mass ratios are somewhat larger for logatropic filaments,

where we find

10 & Gf & 40

10 & Gz & 20 �48�
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Figure 5. Isothermal models. We show the results of our Monte Carlo

exploration for isothermal filaments. Each point on these figures

represents a model that obeys the observational constraints given in

equation (22); thus, we determine which ranges of Gz, Gf , and C result in

models that agree with the available observational data. (a, top panel)

The grey-scale represents different ranges for X, as defined in equation

(41). The solutions that are nearest equipartition between kinetic an

magnetic energies, with 0:5 & X & 2, are shown as black dots. The

medium grey dots have 0:2 & X & 5. The lightest grey dots represent

models that are outside of these ranges with unrealistic magnetic field

strengths. (b, middle panel) We show that X is determined mainly by Gz.

(c, bottom panel) We show the allowed ranges of the concentration

parameter C. The shading is the same as in panel (a). However, we note

that the lightest grey dots are mostly hidden `behind' the medium grey, in

this case.
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Helical fields and filamentary molecular clouds ± I 97

when 0:5 < X < 2. We note that Gz is more tightly constrained

than Gf for both isothermal and logatropic filaments.

In Figs 5(b) and 6(b), we plot the magnetic parameter X, for the

allowed models, against the poloidal flux to mass ratio Gz. We find

that X has a very strong dependence on Gz for both isothermal and

logatropic models. Moreover, we find that there is no obvious

correlation between X and Gf . Since we can regard X as nearly a

function of Gz alone, the auxiliary constraint on X directly

constrains Gz. It is for this reason that somewhat tighter constraints

are obtained on Gz in equations (47) and (48), than on Gf .

Figs 5(c) and 6(c) show the dependence of the concentration

parameter C on m/mvir and PS=kPl for models that are allowed by

the observations. We find that C may range from 0 to < 3 for

isothermal models, but C & 1:7 for most solutions where

0:5 < X < 2. Moreover, we find that C correlates rather well

with PS=kPl, with greater values of PS=kPl corresponding to

smaller values of C. We note that most filamentary clouds

probably have C & 1:1, considering our discussion in Section

4.1.2. However, we do not enforce this upper bound as a rigid

constraint, since further data on the central densities and velocity

dispersions of filamentary clouds needs to be obtained in order to

make our argument definitive. We find that C * 1 whenever

PS=kPl & 0:25; therefore, isothermal filaments with C & 1 must

be subject to external pressures that are at least one fourth of the

mean internal pressure. Such relatively high external pressures are

well within the range of pressures allowed by equation (22). The

concentration parameter C is much more restricted for logatropic

models, where C may range only from aprroximately 0.4 to 1.2.

As a general trend, we find that C increases slightly with m/mvir,

and also as PS=kPl decreases. This is a natural result, since

filaments become more radially extended, with greater C, as they

become closer to their critical configurations with vanishing

PS=kPl and maximum m/mvir.

4.2 `Best-fitting' models for magnetized filamentary clouds

In Fig. 7, we show 50 isothermal helical field models that span the

range of parameters allowed by equations (22) and (46). We see

that our allowed models possess a number of very robust

characteristics. Most importantly, we find that most of our

isothermal models have outer density profiles that fall off as

,r21.8 to r22, with some of most truncated models having

somewhat more shallow profiles. This is most clearly shown in

Fig. 7(b), where we have plotted the power-law index a �
d ln r=d ln r as a function of the dimensionless radius r/r0. We

observe that a becomes more negative with increasing radius, but

that none of our models ever have density profiles that are steeper

than r22. Thus, we find that our isothermal helical field models

have density distributions that are much more shallow than the r24

Ostriker solution. This radical departure from the Ostriker solution

is clearly as a result of the dominance of the magnetic field over

gravity in the outer regions. The overall effect of the helical field

is to modify the density structure of the Ostriker solution so that a

much more realistic form is obtained. In particular, we note that

A98 and LAL98 have recently used extinction measurements of

background starlight in the near infrared to show that two

filamentary clouds, namely L977 and IC 5146, have r
22 density

distributions. Our helical field models have density profiles that

are essentially the same as those obtained for models with purely

toroidal fields in Section 4.1.1. Therefore, we conclude that the

outer density distribution is shaped primarily by the toroidal

component of the field, in our model. We note, however, that the

toroidal field is in fact much weaker than the poloidal field

throughout most of a filamentary cloud. In all cases, the basic

magnetic structure is that of a poloidally dominated core region
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Figure 6. Logatropic models. We show the results of our Monte Carlo

exploration for logatropic filaments. The graphs are as described in the

caption of Fig. 5.
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98 J. D. Fiege and R. E. Pudritz

surrounded by a toroidally dominated envelope, where the field is

relatively weak.

In Fig. 8, we show a sample of 50 logatropic models that are

allowed by our constraints. The main difference between the

logatropic models and the isothermal models shown in Fig. 7 is

that there is a much greater variety of allowed density distributions

for the logatropes. We find logatropic filaments with density

profiles as shallow as r21 and as steep as r21.8. Unlike the

isothermal solutions, a does not decrease monotonically. Rather,

it usually reaches a minimum value somewhat less than 21 when

r=r0 < 1 to 3, and increases at larger radii. The result is that the

q 2000 RAS, MNRAS 311, 85±104

Figure 7. We show a sample of 50 isothermal models that span the range

of allowed parameters given in equations (22) and (46). (a, top panel) We

show the density profiles of the models. The dashed lines represent the r24

density profile of the Ostriker solution and an r
22 profile, which is in

agreement with the observed density profiles of filamentary clouds [Alves

et al. (1998), Lada, Alves & Lada (1998)]. (b, middle panel) We show the

how the power law index d ln r=d ln r behaves with radius. (c, bottom

panel) We show the behaviour of the poloidal and toroidal components of

the magnetic field.

Figure 8.We show a sample of 50 logatropic models that span the range of

allowed parameters given in equations (22) and (46). (a, top panel) We

show the density profiles of the models. The dashed lines represent the r24

density profile of the Ostriker solution and an r
22 profile, which is in

agreement with the observed density profiles of filamentary clouds [Alves

et al. (1998), Lada et al. (1998)]. (b, middle panel) We show the how the

power-law index d ln r=d ln r behaves with radius. (c, bottom panel) We

show the behaviour of the poloidal and toroidal components of the

magnetic field.
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Helical fields and filamentary molecular clouds ± I 99

density distribution usually contains a small region where the

density falls quite rapidly, which is surrounded by an envelope

with a more gentle power law. Many logatropic models have

density profiles that are more shallow than the A98 and LAL98

data. However, some logatropic models have density profiles that

might agree with the data. The main difference between

isothermal and logatropic models is that isothermal filaments

produce a nearly `universal' r21.8 to r22 density profile, while

logatropic filaments show a much larger range of behaviour.

5 D ISCUSS ION

We show, in Section 2.4, that most of the filamentary molecular

clouds in our sample have velocity dispersions that are too high

for them to be bound by gravity and surface pressure alone. Thus,

we find evidence that many filamentary clouds are probably

wrapped by helical magnetic fields, the toroidal components of

which help to confine the gas by the hoop stress of the curved field

lines. It is important to realize that this conclusion is based on our

virial analysis of filamentary clouds (Section 2) and is, therefore,

independent of either the EOS of the gas or the mass loading of

the magnetic field lines. We find that all of the filamentary clouds

in our sample have masses per unit length that are much lower

than the critical mass per unit length for purely hydrostatic

filaments, and that filaments are quite far from their critical

configurations, where PS=kPl ! 0 (See equation 22). Thus, star

formation in filamentary clouds must involve fragmentation into

periodic cores (cf. Chandrasekhar & Fermi 1953), rather than

overall radial collapse. We refer to the second paper in our series

for a full analysis of this process.

We construct numerical MHD models of filamentary clouds,

which we explore thoroughly in Section 4.1.3 using Monte Carlo

techniques. We show that both isothermal and logtropic models

are consistent with the available observational data. We find that

helical fields have profound effects on the outer density profiles of

filamentary clouds. While hydrostatic filaments have a density

profile that falls off as r24 (see Section 22), nearly all of our

isothermal models with helical fields have much more shallow

density profiles that fall off as r21.8 to r22. The toroidal

component of the field is entirely responsible for these shallow

density profiles. Logatropic models show a a greater variety of

behaviour, with density profiles ranging from r21 to r21.8. We

note nearly all of our isothermal models and many of our

logatropic models are in excellent agreement with the r22 density

profiles of the filamentary clouds L977 and IC 5146, which have

recently been observed by A98 and LAL98. Helical fields, rather

than the nature of the EOS, seem to explain the data by controlling

the density profiles.

The confirmation of helical fields in filamentary clouds will

ultimately require direct observations of the field structure using

sub-mm polarization and possibly molecular Zeeman observa-

tions. Unfortunately, most polarization observations of molecular

clouds have been carried out in the optical and near infrared

regions of the spectrum; Goodman et al. (1995) have demonstrated

that such measurements are likely a poor indicator of magnetic

field direction in cold dark clouds. More promising is the prospect

of observing the thermal dust grain emission of dark clouds, which

will hopefully become commonplace in the near future with

instruments like the SCUBA polarimeter. In emission, we can be

assured that any polarization is due to warm dust grains within the

cloud being observed. The observational verification of our helical

field models for filamentary molecular clouds will need to rely

heavily on such observations.

5.1 Observational signatures of helical magnetic fields

Helical magnetic fields present an interesting and unique

polarization pattern. One might expect to find polarization vectors

aligned with some average pitch angle of the magnetic field.

However, Carlqvist and Kristen (1997) has modelled the

polarization pattern of helical magnetic fields and demonstrated

that this assumption is incorrect. The signature of a helical field,

assuming that the polarization percent remains small and that the

cloud is optically thin, is actually polarization vectors that are

either aligned with or perpendicular to the filament axis with a

possible 908 change in orientation at some radius. The reason for

this counterintuitive behaviour is that any line of sight through the

filament intersects a given radius not once, but twice. Since the

order of polarizing elements is unimportant in the limit of small

polarization, the combination of any symmetric pair of polarizing

elements results in a cancellation of any oblique component of the

net polarization. Although Carlqvist and Kristen's model was

done for absorption polarimetry, the same reasoning holds for

emission. The overall pattern will only reflect the dominant

component of the field along any line of sight; thus, our models

predict that the innermost (poloidally dominated) regions of

filamentary clouds should be dominated in emission by polariza-

tion vectors aligned perpendicular to the filament, while the

polarization should be predominantly parallel to the filament in

the (toroidally dominated) outer regions.

There is some direct evidence that filamentary clouds contain

helical magnetic fields. Optical polarization and H i Zeeman data

are consistent with a helical field in the large Orion A filament

oriented at an approximately 208 pitch angle relative to the axis of

the filament (Bally 1989). While the reliability of the optical

polarization data is uncertain owing to the reasons discussed

above, the Zeeman observations do not suffer such ambiguity. The

line-of-sight component of the magnetic field has been observed

to reverse across the L1641 portion of the filament (Heiles 1987).

Such a reversal is very suggestive of a helical field wrapped

around the cloud. More recently, Heiles (1997) has suggested that

an alternate explanation might be that the shock front of the

Eridanus superbubble has swept past the Orion A cloud causing

field lines to be stretched over the filament, thus simulating a

helical pattern. While Heiles favours this idea, he cannot rule out

the older idea that the field is intrinsically helical. Regardless of

the true nature of the
�

-shaped filament, we observe that it is one

of the few filaments shown in Fig. 1 where our models do not

actually require a helical field for equilibrium.

6 SUMMARY

(i) We have applied the virial theorem to filamentary molecular

clouds that are truncated by a realistic external pressure and

contain ordered magnetic fields. We have collected data on

filamentary clouds from the literature. We find that most of the

filamentary clouds in our sample are constrained by

0:11 & m=mvir & 0:43

0:012 & PS=kPl & 0:75: �49�

We use these observational constraints to show that many

filamentary clouds are likely wrapped by helical magnetic fields.
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100 J. D. Fiege and R. E. Pudritz

(ii) We have used our virial equation to derive virial relations

for filaments that are analogous to the well-known relations for

spheroidal equilibria (ChieÁze 1987; Elmegreen 1989; MP96). We

find that the virial relations for filaments differ from the

corresponding relations for spheroids only by factors of order

unity.

(iii) We have studied the stability of filamentary molecular

clouds in the sense of Bonnor and Ebert. We find that all

filamentary molecular clouds, that are initially in equilibrium, are

stable against radial perturbations. Thus, a cloud that is initially in

equilibrium cannot be made to undergo radial collapse by

increasing the external pressure; the only way to destabilize a

filament against radial collapse is by increasing its mass per unit

length beyond a critical value that depends on the magnetic field.

This critical value is the maximum mass per unit length for which

any equilibrium is possible; for purely hydrostatic filaments, the

critical mass per unit length is given by mh � 2ks2l=G (See

Section 2.1). The poloidal component of the magnetic field

increases the critical mass per unit length by supporting the gas

against self-gravity. The toroidal field works with gravity in

compressing the filament; thus, the toroidal field decreases the

critical mass per unit length.

(iv) We have constructed exact numerical MHD models for

filamentary clouds in Sections 4 and 4.1. We have considered both

isothermal and logatropic equations of state, which likely bracket

the true underlying EOS for filamentary molecular clouds. The

magnetic field structure is more general than in previous studies;

we have assumed only that the poloidal and toroidal flux to mass

ratios (Gz and Gf ) are constant.

(v) Isothermal models with purely poloidal magnetic fields have

density profiles that are even steeper than the Ostriker solution; it

is unlikely that such models describe real molecular clouds.

Toroidal fields result in density profiles that are more shallow than

the Ostriker solution (typically r22 profiles), and in better

agreement with observations.

(vi) We have performed a Monte Carlo exploration of our

parameter space, in which we randomly sample our parameter

space and then determine whether or not the resulting model

agrees with the observational constraints (equations 22 and 46).

We find both isothermal and logatropic filaments that are allowed

by the data. We find that

5 & Gf & 25

Gz & 8 �50�

for isothermal filaments, and

10 & Gf & 40

10 & Gz & 20 �51�

for logatropic filaments.

(vii) Our best-fitting isothermal models have density profiles

that fall off as only ,r21.8 to ,r22, in contrast to the r24

behaviour of the Ostriker solution. These shallow profiles are

entirely owing to the effects of the toroidal component of the

magnetic field. Thus, our assumption of constant poloidal and

toroidal flux to mass ratios is consistent with the observed density

profiles for isothermal filaments. The logatropic filaments show a

greater variety of density profiles that range from r21 to r21.8.

Thus, some of the logatropic filaments may agree with the

observed r22 profiles (A98 and LAL98), while others may be

somewhat too shallow.
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APPENDIX A: DERIVATION OF THE VIR IAL

EQUATION FOR FILAMENTARY

MOLECULAR CLOUDS

The purpose of this Appendix is to derive a useful form of the

virial equation for filamentary molecular clouds (equation 1),

which we use to establish observational constraints on our models

in Section 2.4. We consider the equilibrium of a long self-

gravitating filamentary molecular cloud threaded by a magnetic

field that may contain both a poloidal and toroidal component, so

that the field lines are helical in general. We apply the usual scalar

virial theorem (cf. Spitzer 1978) to a finite cylindrical volume Vof

the filament, chosen well away from the ends and bounded by a

surface S, whose radius coincides with the radius RS of the cloud

and whose length is L:

K �M �W � 0 �A1�

where the internal energy (due to thermal plus non-thermal

motions), magnetic, and gravitational energies are respectively

given by

K � 3

�

V

PdV 2

�

Px ´d S �A2�

M � 1

8p

�

V

B2 dV � 1

4p

�

�x ´B��B ´ dS�2 1

8p

�

B2
x´dS �A3�

W � 2

�

V

rx ´7F dV : �A4�

In these formulae, P is the pressure, which is a function of

cylindrical radius, PS is the external pressure at at the radial

surface of the cloud, x is a coordinate vector, B is the magnetic

field, and F is the gravitational potential.

Considering the contributions from the radial surface and the

ends of our cylindrical volume separately, the surface pressure

term in equation A2 can be evaluated as follows:

�

Px ´ dS � 2PSV � L

�RS

0

2prP dr � 2PSV �
�

V

P dV : �A5�

Therefore, the kinetic term of equation A1 becomes

K � 2

�

V

P dV 2 2PSV : �A6�

Cylindrical symmetry requires that all derivatives with respect

to z must vanish within volume V. The gravitational energy

therefore becomes

W � 2

�

V

rr
­F

­r
dV; �A7�

which we show in Section 2 is equal to 2m
2
GL, where m is the

mass per unit length of the filament.

The second term of the magnetic energy (equation A3)

contributes only at the ends of our cylindrical volume since

B ´ dS � 0 everywhere along the sides. This term simplifies to

become

1

4p

�

�x ´B��B ´ dS� � L

4p

�RS

0

2prB2
z dr �

1

4p

�

V

B2
z dV: �A8�

Similar manipulations allow us to simplify the third term of the

magnetic energy:

1

8p

�

B2
x ´ dS � 1

4p
�B2

fS � B2
zS�V � 1

8p

�

V

B2 dV ; �A9�

where BfS and BzS are the field components evaluated at the radial

surface of the filament. Combining the three terms of the magnetic

energy, we find that

M � 1

4p

�

V

B2
z dV 2

1

4p
�B2

fS � B2
zS�V: �A10�

Inserting equations (A6) and (A10) into the virial equation A1

and dividing by the length, we obtain equation (1), which is a form

of the scalar virial theorem that is appropriate for filamentary

molecular clouds.

APPENDIX B : BONNOR ± EBERT STABIL ITY

OF MAGNETIZED FILAMENTS

We have shown, in Section 2, that all hydrodynamic filaments,

which are initially in equilibrium, are stable in the sense of

Bonnor (1956) and Ebert (1955). In this section, we examine the

Bonnor±Ebert stability of uniform magnetized filaments.

B1 Uniform clouds

We begin by considering a radial perturbation of a uniform

filament in which the mass per unit length and the velocity

dispersion are conserved. Solving equation (27) for the external

pressure, we easily obtain

PS � cf

V
� cz

V
2
; �B1�

where

cf � ms2
2 m2 G

2
�

G2
f

8p2

 !

cz �
m2G2

z

8p
: �B2�

Differentiating with respect to V and simplifying using equations

(B1), (B2), (23) and (9), we obtain

dPS

dV
� 2

1

V
�PS � Pmag� , 0 �B3�

for all choices of V and PS. We conclude that all uniform filaments

in equilibrium (having m <mag) are stable in the sense of Bonnor

and Ebert.

B2 Non-uniform clouds

We now extend the argument to general magnetized filamentary

equilibria using the mathematical framework of Section 3.3 and

Appendix D.

Again we consider a radial perturbation of a filamentary cloud

in which the mass per unit length m is conserved. Following

MP96, we shall also require that the central velocity dispersion sc

remain unchanged. Referring to equations (31) and (33), we may

write

~m � m

m0

� 4pGm

s2
c

: �B4�

Thus, we see that the dimensionless mass per unit length mÄ is also

conserved during the perturbation. Since mÄ is implicitly a function

of rÄ alone, the dimensionless radius RÄ S must remain fixed during

the perturbation. Therefore, we find that the radial perturbation

q 2000 RAS, MNRAS 311, 85±104
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takes the form of a simple rescaling of the dimensionless solution

with none of the dimensionless variables perturbed whatsoever.

With this result in hand, we write

PS � Pc
~PS � s2

crc ~PS

RS �

����������

s2
c

4pG

s

r21=2
c

~RS; �B5�

where sc, PÄ S, and RÄ S all remain fixed during the perturbation.

Eliminating r c, we obtain the result

RS �

����������

s4
c

4pG

s

� ~PS
~R2
S�1=2P

21=2
S : �B6�

Since RS / P
21=2
S , we find that

dRS

dPS

, 0 �B7�

for all external pressures PS. Therefore, we conclude that all self-

gravitating filaments that are initially in a state of equilibrium

(which requires m<mmag by equation 18), are stable in the sense

of Bonner and Ebert.

APPENDIX C: V IR IAL RELATIONS AND

LARSON'S LAWS FOR FILAMENTS

We derive the virial relations for filamentary molecular clouds

analogous to the well known relations for spheroidal clouds

(ChieÁze 1987; Elmegreen 1989; MP96). Using equation (7) in our

virial equation for filamentary clouds (equation 1), we write

0 � 2mks2l2 2PSV 2 am2G�M �C1�

We have shown in Section 2 that the constant a is exactly unity for

any filament but we retain the constant in order to more directly

compare with the corresponding expressions for spheroidal

clouds. Equation (C1) can be rewritten as

amag ; a
12M =jW j
12 PS=kPl

� mvir

m
�C2�

where we have introduced the observable virial parameter amag

for filamentary clouds analogous to that of Bertoldi & McKee

(1992, hereafter BM92). We may also write

amag � anon 12
M

jW j

� �

; �C3�

where anon is just amag evaluated in the unmagnetized limit:

anon �
a

12 PS=kPl
: �C4�

Equations (C2) and (C4) are easily solved for the mass per

unit length m, radius RS, average density krl, and surface density

S. In order to compare with the corresponding results for

spheroidal magnetized equilibria (see MP96), we present the

results as general expressions with the coefficients written in

Table C1:

m � Cm

ks2l

amagG

R � CR

anon 2 a

anon

� �1=2
1

a
1=2
mag

ks2l

�GPS�1=2

krl � Cr
anon

anon 2 a

� �

PS

ks2l

S � CS

1

a
1=2
mag

anon

anon 2 a

� �1=2
PS

G

� �1=2

: �C5�

We have included a correction for the inclination i of the

filament with respect to the plane of the sky; this only affects the

expression for the surface density. These expressions are

remarkably similar to those for spheroidal clouds, retaining

identical functional forms and differing only by coefficients of

order unity. Of course, the mass per unit length of a filament

cannot be compared directly to the mass of a spheroid. However, if

we define an effective mass per unit length by taking

msphere � M=�2R�, the resulting expression again differs from

ours by only a numerical factor of order unity.

As long as the external pressure is approximately constant, we

find that s / R1=2 and S / constant � sec i for filaments. Thus,

Larson's laws apply to filamentary clouds, aside from a trivial

geometric correction factor to take into account the inclination of

the filament with respect to the observer.

APPENDIX D: MATHEMATICAL

FRAMEWORK

In this Appendix, we construct the mathematical framework used

to compute the numerical solutions described in Section 4. We

define the magnetic pressure of the poloidal field Pmag and a

useful quantity bf that depends on the toroidal field by

Pmag � B2
z=�8p�

bf � r2B2
f=�8p�: �D1�

Defining the effective enthalpy of the turbulent gas by

dh � dP

r
; �D2�

and introducing the magnetic potentials fz and ff

df z �
dPmag

r

df f � dbf

r2r
; �D3�

we may write equation (35) as

d

dr
�h�F� f z � f f� � 0: �D4�

We are free to specify boundary conditions for each of these

potentials along the filament axis; h � F � f z � f f � 0 at r � 0.

q 2000 RAS, MNRAS 311, 85±104

Table C1. The coefficients of the virial
relations given in equations (C5). We have
included a correction sec i for the projected
surface density of filamentary equilibria and
defined the effective mass per unit length
for a sphere as msphere � M=�2R�.

Cm CR Cr CS

filament 2
���

2
p

q

1
���

p
2

p

sec i

spheroid 5
2

5
������

3
20p

q

1

����

20
3p

q
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Thus, equation (D4) can be integrated:

h�F� f z � f f � 0: �D5�
It is useful to define a new radial variable by the transformation

s � ln�r=a�: �D6�

This transformation is really necessary only to derive a special

analytic solution in Section 3.4.1. However, this logarithmic

transformation is useful from a numerical standpoint because it

improves our ability to calculate solutions quickly and accurately

out to very large radii. Under this transformation, equations (34)

and (D4) can be combined to give

d2

ds2
�h� f z � f f� � 2C; �D7�

where

C � r2r � a2 e2s r: �D8�

To solve the differential equation D7, we must first express h,

fz, and ff in terms of s and the new quantity C. Applying

equation (D2) to the isothermal and logatropic equations of

state and integrating, we obtain the following formulas for the

enthalpies:

hiso � ln r � lnC2 2 lna2 2s:

hlog � A 12
1

r

� �

� A�12 a2 e2sC21�: �D9�

We have also used the definitions of s (equation D6) and C
(equation D8) to write the final forms of the enthalpies in terms

of these variables.

Assuming constant flux to mass ratios Gz and Gf we derive

from equations (23), (24), and (D1)

Pmag �
G2
zr

2

8p
� G2

zC
2

8pa4 e4s

bf �
G2
fC

2

8p
: �D10�

Substituting these relations into equations (D3) and integrating,

we obtain

f z �
G2
z

4p
�r2 1� � G2

z

4p

C

a2 e2s
2 1

� �

f f �
G2
f

4p
C; �D11�

where we have applied our boundary conditions that both fz and ff
vanish along the axis of the filament where r � 1 and C � 0. We

have expressed all quantities in equations (D9) and (D11) in terms

of s and C alone. Thus, equation (D7) is closed and can, at least in

principle, be solved for C. Since r , Pmag, and bf are written in

terms of C (equations D8 and D10), these quantities may be

determined. Finally, the poloidal and toroidal magnetic fields may

be obtained from equations (D1).

As a brief example, we show how equation (D7) naturally leads

to the Ostriker (1964) solution discussed in Section 3.4.1. From

equation (D7), we easily obtain

d2

ds2
�lnC� � 2C �D12�

for isothermal equilibria. This equation can be solved in closed

form; the solution is simply

C � 2 sech2 s: �D13�

Converting back to r and r , the equation takes the form

r � 8=a2

�1� r2=a2�2 : �D14�

The boundary condition at r � 0 is r � 1 in our dimensionless

units; therefore, we require that a �
���

8
p

, giving the Ostriker

solution of equation (37).

It is most convenient for numerical solutions to write equation

(D7) as a pair of first-order equations. This is best accomplished

by writing the gravitational acceleration as

g � 2
d

dr
F � 2

1

r

d

ds
F: �D15�

Then Poisson's equation (34) becomes

1

r2
d

ds
�rg� � 2r: �D16�

Note that there is no reason for numerical solutions to retain the

constant scalefactor a introduced in equation (D6). For the

remainder of this section, we will take a � 1. With the help of

equation (D5) and the definition of C (equation D8), our

numerical system becomes

d

ds
�h� f z � f f� � rg

d

ds
�rg� � 2C; �D17�

where h, fz, and ff are functions of C by equations (D9) and

(D11). Thus, equations D17 can be rewritten as differential

equations for C and g. We write these equations explicitly

below.

Denoting the derivative d/ds with a prime ( 0), we derive from

equations (D3)

f 0z �
G2
z

4p
e22s�C 0

2 2C�

f 0f �
G2
f

4p
C 0: �D18�

Using equations (D9), we must calculate h 0 separately for the

isothermal and logatropic equations of state. We note that h 0 can
be written in the general form

h 0 � H1�s;C� � H2�s;C�C 0; �D19�

where the functions H1 and H2 are given in Table D1.

q 2000 RAS, MNRAS 311, 85±104

Table D1. H1 and H2 are the functions
related to the enthalpy by equation
(D19).

H1 H2

Isothermal 22 C21

Logatropic 22Ae2sC21
Ae2sC22
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Using equations (D18) and (D19), we express our system of

equations (D17) in its final form:

C 0 �
rg2 H1 �

G2
z

2p
e22sC

H2 �
G2
f

4p
� G2

z

4p
e22s

g 0 � 2�g� e2sC�: �D20�

Since H2 is positive definite, this dynamical system is regular on

the entire interval s [ �21;1�.
These equations are now in a form that can be numerically

integrated given appropriate initial conditions at the axis of the

filament �r � 0�. The problem arises however that r � 0 occurs at

s � 21 in our transformed variable; thus, we start the integration

at a small but finite value of r. We expect that r tends to a constant

value of unity near the axis for any non-singular distribution. From

the definition ofC (equation D8), we find thatC0 < e2s0 where s0
is the initial value chosen for s (typically< 210). Recalling that g

is the gravitational acceleration, we apply Gauss's law to find the

initial value for g:

g0 < 2
r

2
� 2

1

2
es0 : �D21�

This paper has been typeset from a TEX/LATEX file prepared by the author.
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