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Liquid crystalline systems exhibiting both macroscopic chirality and smectic order experience

frustration resulting in mesophases possessing complex three-dimensional order. In the twist-grain-

boundary phase, defect lattices mediate the propagation of twist throughout the system. We propose a

new chiral smectic structure composed of a lattice of chiral bundles as a model of the helical nanofilament

(B4) phase of bent-core smectics.

DOI: 10.1103/PhysRevLett.103.257804 PACS numbers: 61.30.Mp, 64.70.M�

The chiral nature of bulk liquid crystalline textures is

accompanied by a form of inherent frustration as the local

preferred configuration is often incompatible with global,

or topological, requirements [1]. In such cases, the chirality

leads to spectacular mesophases, for example, the choles-

teric blue phases [2] or the twist-grain-boundary (TGB)

phase [3], involving the proliferation of topological defects

to relieve the frustration. The expression of macroscopic

chirality does not always result from molecular chirality,

but can also arise from a spontaneously broken symmetry

in achiral bent-core liquid crystals [4–7]. A number of

novel, intricate textures form in these bent-core systems,

such as the opposite handed domains of the dark conglom-

erate phase and, of particular focus here, the recently

discovered helical nanofilament (HN) phase, also known

as the B4 phase [8]. The hierarchical structure of the HN

phase is built upon helical bundles, each comprised of

roughly five layers, which independently nucleate, all

with the same handedness, and coalesce to form a bulk

texture of parallel, coherently rotating nanofilaments, re-

sulting in homochiral domains that appear on the scale of

tens of microns. Remarkably, the texture of the HN phase

does not correspond to the traditional TGB phase, suggest-

ing the existence of a new class of solutions in the vener-

able problem of chiral smectics [9]. In this Letter, we

propose a new class of solutions, consistent with the ob-

served structures and appropriate when the intrinsic chi-

rality is high.

We begin by reexamining the Landau–de Gennes theory

as a means of describing the macroscopic chirality. The

free energy is given by the minimal coupling of the com-

plex smectic order parameter c ¼ c 0e
iqsm� to the liquid

crystal director n [10]

F ¼
Z

d3x

�

Cjðr � iqsmnÞc j2 þ ðt� tcÞjc j2 þ u

4
jc j4

þ K1

2
ðr � nÞ2 þ K2

2
½n � ðr � nÞ þ q0�2

þ K3

2
½ðn � rÞn�2 þ fG

�

(1)

where a ¼ 2�=qsm is the layer spacing, q0 is the chirality,
the Ki are Frank elastic constants, and the bending energy

of the layers due to Gaussian curvature K is fG ¼ ��r �
½ðN � rÞN�Nðr �NÞ�, where �� is the bending modulus

and N is the layer normal. The coupling term decomposes

into gradients in the magnitude of the order, which are

neglected in the London limit, and the layer compression

energy, B
2
jr�� nj2, where B ¼ 2Cq2smc

2
0
is the compres-

sion modulus. It is important to note that the Gaussian

curvature energy is typically neglected as it is a boundary

term; however, additional boundaries caused by defects in

the system make this term relevant.

Much of the phenomenology of chiral smectics follows

from de Gennes’ observation that the gaugelike nature of

the coupling term leads to a formal analogy between

smectics and superconductors [10] and, indeed, the equi-

librium phases are in close correspondence. The nature of

the equilibrium textures is controlled by the ratio of the

penetration depth � ¼ ðK2=BÞ1=2 to the correlation length

� ¼ ðC=jtc � tjÞ1=2. In a type I material, �
�
< 1ffiffi

2
p , the only

low temperature phase is the smectic-A in which the layers

are flat and the chirality is fully expelled up to a thermo-

dynamic critical value qth ¼ ð 2

K2u
Þ1=2jtc � tj, at which there

is a first order transition to the cholestericN� phase. In type
II materials, �

�
> 1ffiffi

2
p , it becomes possible for the twist to

penetrate at least partially in defect proliferated states

analogous to the Abrikosov flux vortex phase in super-

conductors [11].

The twist-grain-boundary phase represents one solution

of this kind in which locally flat layers rotate through a

fixed angle � across the boundary defined by an infinite

line of screw dislocations [3,12]. For highly chiral systems,

we show that a second solution exists that is based upon an

underlying cholesteric director field and motivated in part

by both the coherent rotation and the Bouligand texture of

the filaments observed experimentally [8].

We seek a high chirality solution in which the director

retains its high temperature cholesteric form, n ¼
cosðq0zÞex þ sinðq0zÞey, and the smectic phase field is
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then chosen to minimize the compression energy for this

choice of director. Sincer� n ¼ �q0n, there is no phase
field for which r� ¼ n everywhere; however, we can

construct a phase field that agrees on a lower dimensional

set of points. To this end, we consider the local phase field

�loc ¼ x cosðq0zÞ þ y sinðq0zÞ ¼ r cosðq0z� �Þ; (2)

where in the final equality we have employed cylin-

drical coordinates. The compression is jr�loc � nj2 ¼
q2
0
r2sin2ðq0z� �Þ and vanishes everywhere on the two-

dimensional surface of the helicoid � ¼ fq0z; q0zþ �g.
This texture, therefore, locally attains the absolute mini-

mum of the Landau–de Gennes free energy and represents

the optimum local configuration for a chiral smectic. The

smectic layers [Fig. 1(a)] are themselves helicoids, the

level sets of �loc, that intersect the zero compression

surface orthogonally. Consequently, the compression of

the layers grows quadratically with their radial size so

that they are naturally confined to a finite region; the

texture is only local and does not fill space. The free energy

per unit length of a cylindrical region of radius R is

�Bq2
0
R4=8. A comparison with the free energy per unit

length of an equal volume region of the smectic-A texture,

�K2q
2
0
R2=2, suggests a natural size of R� ¼

ffiffiffi

2
p

�.

This type of local construction is reminiscent of double

twist cylinders in the blue phases [2]: there too, the abso-

lute minimum of the free energy density is attained only

locally, on the axes of the double twist cylinders. Space

filling textures, the cubic blue phases, are constructed by

repeating this local texture in a periodic manner at the

expense of incorporating topologically required disclina-

tion lines. We seek an analogous construction for a bulk

texture of our helical smectic bundles. Just as in the blue

phases, such a state will be stable if the benefit gained from

the locally favored bundles outweighs the cost of any

associated defects.

It is natural to consider two-dimensional arrangements

of bundles since then they can all be supported by a

common underlying cholesteric director field—such a con-

struction automatically incorporates the macroscopic

phase coherence evidenced by the Bouligand texture of

the experiment [8]. The smectic phase field can be obtained

by constraining its form to match the rotation of the

director along the z direction and considering only varia-

tions with respect to x, y. The constrained Euler-Lagrange

equation is thenr? � ðc 2
0
r�Þ ¼ r? � ðc 2

0
nÞ so that in the

London approximation where c 0 is constant almost every-

where,� is harmonic in x, y; we propose the general ansatz
for the phase field � ¼ Re½�ðwÞe�iq0z�, where � is an

analytic function of w ¼ xþ iy.
The local optimum configuration, Eq. (2), is recovered

when �� w is linear. A bulk texture will therefore corre-

spond to an analytic function with a large number of simple

zeros in the complex plane, as each defines the axis of a

helical bundle. Lattice configurations of simple zeros can

be easily constructed with the aid of Jacobi elliptic func-

tions. It is convenient to introduce a dimensionless co-

ordinate � ¼ w=l, where l is the lattice constant. Our

analysis here focuses solely on a triangular lattice of

bundles [Fig. 1(b)], given by

~� hexð�Þ ¼
31=4

k

�

1þ
ffiffiffi

3
p cn2ðk�;mÞ

dn2ðk�;mÞsn2ðk�;mÞ

��1=2
; (3)

where k ¼ 2KðmÞ � 3:196 is twice the complete elliptic

integral of the first kind and m ¼ 2�
ffiffi
3

p
4

is the square of the

elliptic modulus that sets the period ratio. The zeros of
~�hex sit on a triangular lattice, and the complementary

divergences take the form of square root branch points,
~�hex � ��1=2, situated on a honeycomb lattice. Simple

zeros correspond to helicoids of the same handedness

and pitch as the cholesteric director field while the layer

structure near the divergences is that of a half-helicoid of

the opposite handedness. Adjacent bundles join together

smoothly through saddle points, at which the bulk structure

deviates significantly from the single bundle structure.

At these saddle points, we might expect the director field

to deviate from the simple cholesteric form so as to more

closely follow the layer normal, reducing the compression

energy. Such screening effects are crucial near the lower

FIG. 1 (color online). (a) A single bundle of helicoidal layers

locally attains the absolute minimum of the chiral Landau–de

Gennes free energy. (b) As many bundles nucleate, they as-

semble into a lattice with defects.
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critical chirality of the TGB [3] and should be included

when the characteristic length scale of the structure is large

compared to the penetration depth. However, both the

compression and twist contributions are relevant to the

free energy, suggesting that we expectK2q
2
0
� B or equiva-

lently q0� * 1. In the experiment, q0l� 1 [8], suggesting

that l & � so that neglecting screening effects should be

appropriate. Working in the London limit, the free energy

per unit volume of the bulk texture becomes

F

V
¼ 2

ffiffiffi

3
p

Z

~�

d2�

�
Bq2

0
l2

4
j ~�hexj2 þ

B

2
j@� ~�hex � 1j2

� ðt� tcÞ2
u

�

; (4)

where we have integrated over the pitch direction, ðt�
tcÞ2=u is the condensation energy, and ~� is the nondimen-

sionalized domain (Fig. 2) in which smectic order is

present. The compression energy diverges at singularities

in ~�hex, forcing the smectic order to vanish, giving the bulk

texture a porous appearance. The energy within the central

region defined by the hexagon joining the midpoints be-

tween divergences is dominated by the Taylor expansion of
~�hex ¼ � � jkj6

42
ffiffi
3

p �7 þOð�13Þ about the origin. Similarly,

the energy near the defects is dominated by the Taylor

series about the singularities ~�hex ¼ cð1� iÞ��1=2 þ
Oð�5=2Þ, where c ¼ 1

2
33=8k�3=2 � 0:132, leading to an en-

ergy per unit volume of

F

V
¼ B

�

q2
0
l2
�
5

256
þ c2cosh�1ð2Þ½1� 2ð1� 	Þ1=2�

�

þ 0:052þ 6
ffiffiffi

3
p

c2½ð1� 	Þ�1=2 � 2�
�

� 	
ðt� tcÞ2

u
;

(5)

where 	 is the filling fraction and the result is valid in the

regime where adjacent bundles overlap, 	 2 ½3
4
; 1Þ [13].

For the texture to be stable, the divergence in the compres-

sion must not be more costly than the condensation energy.

Assuming the coherence length is comparable to the layer

spacing, qsm�� 1, then sets a hard upper bound for the

filling fraction of 	 < 0:91. It follows that the regions of

suppressed smectic order are substantial and occupy a

finite fraction of the unit cell.

We note that the only dependence on the lattice constant

in the free energy density, Eq. (4), is quadratic in l. Since
the coefficient is positive definite, the energy expression

would lead one to conclude that l should shrink to zero

[14]. Of course the small-scale features will be cut off by

microscopic length scales as well as additional energetic

considerations. Recalling that bent-core mesogens favor

layers with negative Gaussian curvature [8], we consider

the saddle-splay of the individual layers as the bundle size

shrinks: since the saddle-splay is the same as K [15], when

the Frank constant �� < 0 is negative, the system rewards

the negative K everywhere in each layer. The Gauss-

Bonnet theorem states that the integrated Gaussian curva-

ture is purely a topological quantity. Thus, each layer in a

bundle contributes the same free energy,
FG

V
� 9

16
��q2

0
for a

filling fraction of 	 ¼ 3=4. The lattice constant determines

the maximum number of layers in a bundle, n ¼ bl=ac. If l
becomes too small for n layers, the system loses the free

energy gain from the Gaussian curvature of that nth layer.

For experimental parameter values [8,16] and ��=B�
ð1 nmÞ2, the ideal bundles have diameter d� 20 nm and

contain 5 layers.

We can see directly from Eq. (5) that our bulk texture is

energetically preferred over the smectic A until a short

distance below the thermodynamic critical chirality qth;
however, its stability in relation to the TGB is less obvious.

We focus on the region close to the upper critical chirality

and argue that the TGB phase will lose stability relative to

the HN phase for sufficiently large values of q0. Within

each grain of the TGB, the compression energy locks the

director to the local layer normal with a cosine potential,

leading to a description for the twisting director field in

terms of the infinite kink chain solution of the sine-Gordon

model [17]. The width of the kinks (where the director

rotates from one angle to the next) is set by the penetration

depth �. When the chirality is weak, K2q
2
0
� B, the sepa-

ration between kinks lb is large and the rotation is confined
to narrow regions, whereas when the chirality is large,

K2q
2
0
	 B, the rotation occurs at an almost uniform rate,

reminiscent of the cholesteric director. As the transition is

mean-field continuous, the TGB structure must evolve

towards that of the high temperature N� phase as qc2 is

approached. In particular, we have that �
lb
% q0 and that the

director field crosses over from the stepwise rotation usu-

ally envisaged for the TGB phase to the uniform rotation of

the cholesteric. Within the framework of the sine-Gordon

model of the TGB director, this crossover is marked by the

FIG. 2 (color online). In the contour plot of the compression

energy density for a single hexagonal unit cell, we approximate

the region ~� where smectic order exists by the truncated

hexagon bounded by the solid red line. Within the dashed black

line, the compression energy is well approximated by an expan-

sion about the origin, while outside it an expansion about the

singularities is used.
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overlap of kinks when lb & �. In this regime, the energy

per unit volume of the TGB swiftly asymptotes to the value

corresponding to having a cholesteric director field

F

V
¼ �ðt� tcÞ2

u
þ B

�

1� sinð�=2Þ
�=2

�

þ B
sinð�=2Þ
qsmlb

ln

�
ld
�

�

; (6)

where ld is the spacing between screw dislocations within a

grain boundary. As the chirality increases the constraint

that �
lb
% q0 implies not only that the grain spacing lb

decreases but also that the rotation angle � should increase

and we can expect the high chirality limit to correspond to

� ! �
2
. For such large grain angles ld ¼

ffiffiffi

2
p

a and the

dominant energy cost is provided by the second term of

Eq. (6), taking a value �0:099B that is larger than that of

the HN phase. Thus, for chiralities larger than � �
2�
, we

expect the TGB phase to lose stability with respect to the

HN phase, at least close to the upper critical chirality. The

onset of the HN phase can be estimated from the intersec-

tion of the curves q0 ¼ �
2�
� jtc � tj1=2 and q0 ¼ qc2ðtÞ �

jtc � tj [3] and hence should occur for q0 * q� ¼
qsmð��2�Þ2, leading to the schematic phase diagram of Fig. 3.

We have proposed a new chiral organization of a smectic

liquid crystal which fills space. Like the blue phases, this

phase is stable at high chirality and is built out of smaller

building blocks, in this case helical nanofilaments. We find

that the compression energy has an instability towards ever

finer structure. The fine structure is cut off by considering

the discrete nature of the layers and their Gaussian curva-

ture. This explains the fine scale of the bundles seen in

experiment, where each bundle is only a few layers thick

[8]. Future work will examine the remarkable success of

continuum theory despite the fact that the ‘‘long’’ length-

scales are comparable to the molecular size. We will

further explore the effects of order parameter variations

and the deformations of the cholesteric texture.
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