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Helical self-similarity of tip vortex cores1
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3

Q2
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2Kutateladze Institute of Thermophysics, SB RAS, Novosibirsk 630090, Russia5

(Received 11 April 2018; revised 21 September 2018; accepted 17 October 2018)6

The present work investigates local flow structures and the downstream evolution of7

the core of helical tip vortices generated by a
∧
three-bladed rotor. Earlier experimental8

studies have shown that the core of a helical tip vortex exhibits a local helical9

symmetry with a simple relation between the axial and azimuthal velocities. In the10

present study, a self-similarity scaling argument further describes the downstream11

development of the vortex core. Self-similarity has up to now only been investigated12

for longitudinal vortices and it is the first time
∧
that helical vortices have become the13

subject of such an analysis. Combining symmetry arguments from previous studies14

on helical vortices with novel experiments and knowledge regarding the self-similarity15

evolution of the core of longitudinal vortices, a new model describing what is referred16

to as ‘helical self-similarity’ is proposed. The generality of the model is verified and17

supported by experimental data. The proposed model is important for fundamental18

understanding of the
∧
behaviour of helical vortices, with a range of applications in both19

industry and nature. Examples of this are tip vortices behind aerodynamic devices,20

such as vortex generators, and fixed and rotary aircraft, and in combustion chambers21

and cyclone separators.22

Key words: aerodynamics, flow–structure interactions, vortex flows, vortex dynamics, wakes,23

wakes/jets24

Q3

1. Introduction25

Helical vortices appear both in nature and in connection with various fluid dynamic26

applications, and many flow visualizations have shown that the flow
∧
behaviour in the27

near wake of rotors essentially
∧
is determined by concentrated helical vortices. This28

includes vortices emanating from the blade tips of wind turbines (Vermeer, Sørensen29

& Crespo 2003), helicopters (Leishman 2006)
∧
and propellers (Felli & Camussi 2011;30

Sørensen 2011). Assuming ideally that the
∧
shapes of the helical tip vortices are31

kept unchanged when progressing into the wake, it is possible to derive analytical32

solutions describing the flow field (Okulov & Sørensen 2010; Okulov, Sørensen &33

Wood 2015b). These vortex solutions together with a simplification of the rotor as an34

actuator
∧
disc enabled appropriate approximations for blade design, leading to classical35

design proposals (see Van Kuik, Sørensen & Okulov 2015 or Sørensen et al. 2016).36
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2 V. L. Okulov and others

Further downstream in the wake, however, the helical vortices become unstable and 37

break down into turbulence (Felli & Camussi 2011; Quaranta, Bolnot & Leweke 38

2015; Sarmast et al. 2015).Q4 To understand and predict the stability properties of 39

helical vortices and their subsequent transition to turbulence, it is important to be 40

∧
able to describe the flow structures of the undisturbed vortices (Sørensen et al. 2014). 41

Widnall (1972) and Gupta & Loewy (1974) were the first to utilize a Rankine 42

vortex model (constant-vorticity core) as a basis for studying the stability of helical 43

vortices. Fukumoto & Miyazaki (1991) later extended this work by including an axial 44

flow component along the vortex core. Recently, Quaranta et al. (2015) experimentally 45

discovered and improved the models by introducing a more realistic Gaussian vorticity 46

distribution with an additional axial flow in the core. The proposed scaling
∧
behaviour 47

and the concept of helical self-similarity including both the axial and the azimuthal 48

velocity profiles in the helical vortex core
∧
are expected to provide a more correct basis 49

for future studies on vortex instability. 50

A main problem associated with
∧
near-wake studies is to understand the downstream 51

evolution of the tip vortex core, where the continuous growth in the vortex core 52

strongly affects the global vortex stability. A classic example of this is the self-similar 53

temporal growth of the Lamb–Oseen vortex (Saffman 1992), for which a
∧
time–spatial 54

relation for the downstream development is established using a molecular diffusion 55

model. Ali & Abid (2014) paid particular attention to the swirling form of the helical 56

tip vortex to investigate the degree of resemblance between the helical vortex core and 57

the Lamb–Oseen vortex. For this purpose, they applied a numerical solution of the 58

Navier–Stokes equations for different low Reynolds numbers, using the actuator line 59

approximation (Sørensen & Shen 2002), to estimate the vortex core evolution due to 60

molecular diffusion as a function of vortex age. The evolution of velocity and vorticity 61

in the core of the helical tip vortex, generated by a single-bladed rotor, was compared 62

to the solution of the Lamb–Oseen vortex assuming a molecular diffusive expansion of 63

the rectilinear vortex core. The authors (Ali & Abid 2014) used appropriate similarity 64

variables and scaling to remove the local and global non-axisymmetric effect on the 65

helical vortex topology, and reached a good agreement with the axisymmetric solution 66

of the Lamb–Oseen vortex. Ultimately, the numerical investigation showed that the 67

diffusive evolution of the helical vortex core with good accuracy coincides with 68

the molecular diffusive evolution of the Lamb–Oseen vortex. However, this process, 69

depending only on kinematic viscosity, is very slow and disagrees with observations 70

of practical swirling flows, where a significantly greater expansion of the vortex core 71

takes place due to turbulent diffusion. Nevertheless, Ali & Abid (2014) demonstrated 72

the possibility of employing special variables and scaling to remove the local and 73

global non-axisymmetric effects in order to compare vortex cores of helical and 74

rectilinear vortices. 75

Recently, considering the evolution of the tip vortex core in different cross-sections 76

behind an immobile vortex generator, and by scaling the local radius of the vortex 77

core and the local helical pitch of the vortex lines filling the core, Velte, Hansen 78

& Okulov (2009) found a complete correspondence between the local axial and 79

azimuthal velocity profiles. This correlation, referred to as ‘local helical symmetry’, 80

was originally introduced by Alekseenko, Kuibin & Okulov (2007) to describe main 81

parameters of swirling flows. 82

The current study is based on experimental observations from current and previous 83

studies of tip vortices behind a
∧
three-bladed rotor (Naumov et al. 2012, 2014). 84

Rotating blades generate helical vortices at the tip of the blades (figure 1a). In 85

global terms, the helical system is described by a vortex pitch
∧
H and a tip vortex 86
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Visualization of tip vortices behind a rotor (a), horizontal
scanning of tip vortices (b) and local coordinate system (r, θ, x) of a single tip vortex (c).
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Sketch of PIV measurements in the two cross-sections of the
flume and definition of the global coordinate system (X, Y, Z).

radius
∧
R. The local coordinates (x, r, θ ) are introduced to study the development87

of the individual vortex core (see figure 1b,c).
∧
Note that ud in the figure denotes88

the deficit velocity. The objective is to deduce the possible existence of a general89

relation between the local axial velocity u and the local azimuthal velocity w in90

all cross-sections of a tip vortex, or, in other words, to investigate the possibility of91

self-similar
∧
behaviour along the vortex axis x. This procedure of combining

∧
local-scale92

similarity with the downstream development of the vortex core will in the following93

be referred to as ‘helical self-similarity’.94

2. Experimental
∧
set-up and method95

2.1. Experimental
∧
set-up and measurement technique96

The basis for the work is a series of experiments of tip vortices generated on a97

model of a horizontal axis wind turbine. The experiments were carried out in a water98

flume of length 35 m
∧
and width 3 m, and a water level of about 0.9 m (figure 2).99

The temperature of the water was 20 ◦C. The test section of the flume is equipped100

with transparent walls at a distance of 20 m from the flume inlet. The
∧
free-flow101

velocity in the test section of the flume was about U0 = 0.6 m s−1 with a water flow102

rate of 1.5 m3 s−1. The allowed deviations in the flow rate were less than 2 %. The103

small boundary layer thickness (≈ 0.2 m) and the slight level of turbulent pulsations104
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(∼2.5 %) for the undisturbed flow provide a nearly uniform incoming flow in the test 105

area in the middle of the flume, according to previous data (Okulov et al. 2014). 106

The three-bladed model rotor has a diameter of 0.376 m, and is equipped with 107

blades of length 159 mm consisting of SD7003 airfoil sections (Selig et al. 1995). 108

The shape and pitch setting of the blades were determined using the aerodynamic 109

design theory of Glauert (Okulov et al. 2015b) for optimum operating conditions with 110

a constant design lift coefficient along the span (CL = 0.8). The rotor was designed 111

to operate optimally at a tip speed ratio λ= 5, where λ= ΩRb/U0, with Ω being the 112

rotor angular velocity, Rb
∧
the rotor radius

∧
and U0

∧
the initial velocity in the flume. The 113

Reynolds number for all experiments was about 20 000, calculated as Re = ρbΩRb/µ. 114

Here b = 0.1 is the chord length of the blade, and ρ and µ are the density and 115

dynamic viscosity of the working fluid (tap water), respectively. 116

The rotor is located at a height of 0.5 m from the flume bottom and at a distance of 117

1.5 m from the flume walls (see figure 2), thus avoiding the influence of the boundary 118

layer, whose thickness is less 20 cm from the bottom and the walls of the flume. 119

The ratio between the rotor area (0.111 m2) and the area of the flume cross-section 120

(3 m2) is 3.7 %. Therefore, blockage effects are very small and no corrections are 121

made. The rotor was driven by a JVL Industri Elektronik MAC140 servo motor, which 122

was operated at a constant rotational speed within 1.5 % accuracy. The torque was 123

transmitted by the external gear at the axis of each rotor. 124

The global coordinate system is defined in figure 2. The origin of the coordinate 125

system is chosen as the cross-section of the rotor axis and the rotor plane, with
∧
X 126

pointing in the axial direction,
∧
Y in the wall-normal direction

∧
and Z in the spanwise 127

direction (see figure 2). The velocity
∧
components in OX, OY and OZ directions are 128

denoted
∧
U, V and W, respectively. The local coordinates (x, r, θ ) were introduced to 129

study the development of the individual vortex core (see figure 1b,c), where x follows 130

a central line of the tip vortices, and h denotes the internal tip vortex pitch with l = 131

h/2π. The tip vortices expand in the wake from the rotor blades to a radius R ≈ 132

1.22Rb (Okulov et al. 2014). The local velocity field is given as (u, v, w), with u0 = 133

u(x, 0) denoting the vortex
∧∧
centre, and ud(x, r) = (u(x, r) − u0(x)) defining the deficit 134

velocity. 135

The flow field was measured
∧
using a Dantec stereoscopic particle image velocimetry 136

(PIV) system, which gives all three velocity components (U, V, W) throughout the 137

window of the light sheet. An Nd:YAG laser was used as light source with the 138

following characteristics: 120 mJ of energy in a single pulse, a wavelength of 139

532 nm
∧
and an operational frequency of 15 Hz. A 2 mm thick vertical light sheet 140

was sent into the channel from the bottom in the same plane as the rotor axis 141

(figure 2). The processing of the images resulted in three downstream windows to 142

yield the local velocity field. The final size of the full
∧
three-dimensional velocity 143

field for investigating the helical tip vortex was
∧
1.03 m × 0.29 m. The images 144

in the measuring windows were recorded by two Dantec HiSense II cameras with 145

1344 × 1024
∧
pixel resolution. The cameras were placed perpendicularly to each other 146

on the different sides of the flume with an angle of 45◦ to the walls (figure 2). 147

Water-filled optical prisms were installed between the cameras, and the focus plane 148

was adjusted using Scheimpflug adapters. The
∧
three-dimensional velocity field in each 149

testing window was calculated using Dantec Dynamic Studio 2.21. The stereoscopic 150

PIV system was calibrated using a target with a well-defined
∧
dot pattern which was 151

translated and registered by the cameras in a number of well-defined positions at the 152

light sheet. The measuring error of stereoscopic PIV velocity measurements was at 153

the level of
∧
3 %–5 %. 154
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velocities at λ= 5.

The synchronized velocity field in each window was obtained by phase averaging155

of 200 PIV velocity realizations, which were recorded in the moment of a triggered156

signal by a light pulse for each complete rotation of the rotor.
∧
An angular encoder157

(LIKA ASR58) with angular resolution of 0.1◦, installed on the rotor hub, triggered158

a pulse when one of the blades passed through the light sheet. The stochastic errors159

vanish by this phase averaging. Moreover, this approach eliminates the drifting error160

due to non-stationary flow regimes. The time interval between consecutive PIV images161

was based on the frequency of the rotor rotation, which for λ= 5 was T = (1/2.18)
∧
s.162

2.2. Vortex core determination163

Figure 3 shows the phase-averaged distributions of the axial (U), radial (V) and164

azimuthal (W) velocity components of the flow for λ = 5. The angles of the blade165

rotation from which the synchronization was made in the experiments
∧
were verified166

in the range α = 0–105◦, with steps of 15◦. The vorticity field was calculated from167

the velocity field in all
∧
cross-sections (figures 3 and 4). The plots demonstrate that168

the tip vortices appear as regular vortex structures with clear cores. The vortex cores169

are destroyed at a distance in the range between
∧
1.8R and 3.6R due to their mutual170

interaction. The vorticity cross-section with the
∧
clearest vortex cores was used to171

determine the
∧
centres of the tip vortices (Yc, Zc) in the PIV plane. The

∧
centres of172

the tip vortices were determined from an algorithm based on the
∧
centre of mass. The173

vortex core is described in a rectangular domain, A, defined as
∧∧∧
Y − Yc ∈ [−h/2, h/2]174

and Z − Zc ∈ [−Rb/2, Rb/2]. The circulation Γ of the vortex core is determined by175

integration of the vorticity
∧
:176

Γ =

∫

A

ωx dA. (2.1)177
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The images of the tip vortex cores along the wake were from left to right numbered 178

1 to 9. Hence, the vortex cores
∧
1, 4, 7 and

∧
1′, 4′, 7′; cores 2, 5, 8 and

∧
2′, 5′, 8′; 179

cores 3, 6, 9 and
∧
3′, 6′, 9′ correspond to the cross-section of the tip vortices behind 180

the first, second and third blades, respectively. The vorticity plots also show that 181

blurring of the vortex core takes place. The first six images of the core have a strong 182

concentration of vorticity and are approximately located at equal distances from each 183

other, whereas the vorticity concentrations of
∧
cores 7, 8

∧
and 9 are seen to be less 184

dense and the cores are displaced further from each other. Based on the observations, 185

the development of the helical vortex cores will be
∧
analysed in the next section. 186

3. Helical self-similarity of the vortex cores 187

Self-similarity occurs when the velocity profile can be brought into congruence 188

by a simple scale factor. As a consequence, the dynamical equations are usually 189

reduced to a single geometrical variable in their functional. The idea of self-similarity 190

in fluid flows appears to have been applied for the first time by Blasius in 1908 191

for laminar boundary layers. Turbulent wakes are known to develop self-similarly 192

downstream sufficiently far away from the obstacles that generate them (e.g. George 193

2012 and
∧
references therein). Some vortex wakes, whose longitudinal variables achieve 194

similarity, can further be dependent on similarity conditions in the azimuthal direction 195

too. The existence of similarity between axial and azimuthal velocity fields
∧
leads us 196

in the current investigation to introduce the concept of helical self-preservation for 197

turbulent vortex wakes. 198

As a starting point for our analysis of the interior of helical vortices, we employ the 199

solution of the Lamb–Oseen vortex (Lamb 1932). This solution describes the decay of 200

the azimuthal velocity w, or the associated vorticity distribution ωx, in a longitudinal 201

vortex
∧
: 202

w(r, t) =
Γ

2π r

(

1 − exp

(

−
r2

r2
c(t)

))

or

ωx(r, t) =
Γ

π rc(t)2
exp

(

−
r2

r2
c(t)

)

, rc(t) =
√

4tνk,















(3.1) 203
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where Γ is the vortex circulation
∧
, r is the local radial coordinate from the

∧
centre of204

the vortex core
∧
, rc(t) is the radius of the vortex core

∧
and νk is the kinematic viscosity.205

A similar model was used by Ali & Abid (2014) for comparison with results from206

∧
Navier–Stokes simulations of helical vortices. In their comparison they proposed to207

use the radius growth of the Lamb–Oseen vortex208

1r2
c ≡ r2

c(t) − r2
c(t0) = 4(t − t0) νk (3.2)209

as a model for the diffusion process of a helical vortex filament.210

Another important element in our model is the concept of a two-dimension helical211

symmetry, proposed by Landman (1990)
∧
and Dritschel (1991). Assuming a helical212

vortex configuration consisting of a single vortex with constant pitch (h = 2πl) and213

core radius (rc = const.), the vorticity only depends on a single variable, r, and the214

relation between the axial and azimuthal vorticity components
∧
is given simply as the215

ratio between the radial position and the helical pitch
∧
:216

ωx =
Γ

π r2
exp

(

−
r2

r2
c

)

, ωθ = rωx/l, ωr = 0. (3.3a−c)217

A partial case of an axisymmetric flow with helical symmetry of the vorticity field218

(Kuibin & Okulov 1996) is219

w =
Γ

2π r

[

1 − exp

(

−
r2

r2
c

)]

, u = u0 −
Γ

2π l

[

1 − exp

(

−
r2

r2
c

)]

, (3.4a,b)220

where u is the axial velocity component, w is the tangential component
∧
and u0 is the221

axial velocity at the
∧
centre of the vortex core. From (3.4) one gets a similar expression222

for the correlation between the velocities:223

u +
r

l
w = u0. (3.5)224

Using this expression, local helical symmetry for the average velocity has
∧
been225

found to exist in various swirling flow configurations (Martemianov & Okulov 2004;226

Alekseenko et al. 2007; Velte et al. 2009).227

At a first view, the velocity field in the form of (3.4) corresponds to the self-similar228

solution of the Batchelor vortex. For two trailing vortices located downstream from229

a wing, assuming that the core diameter is an order of magnitude smaller than the230

distance between the vortices, Batchelor (1964) proposed to replace the temporal231

dependence t in the diffusion process (3.2) via a space correlation x/B232

1r2
c ≡ r2

c(x) − r2
c(x0) = 4(x − x0)νt/B, (3.6)233

where B is a characteristic velocity and νt is the turbulent viscosity, which may be234

identical to the one of the incoming turbulence flow. Batchelor furthermore derived235

the following form of the azimuthal and axial velocity components
∧
:236

rw(x, r) = C0(1 − e−η), u(x, r) = B − De−η/8π xνt, (3.7a,b)237

where η = Br2/4xνt
∧
, the constant C0 ≡ Γ /2π represents 1/2π times the flow238

circulation
∧
and D describes the ‘drag’ of the body divided by density ρ. It should239

be mentioned that (3.7) originally was applied to an isolated longitudinal vortex.240
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In order to apply (3.7) to helical vortices, the distance between the turns of the tip 241

vortices is assumed to be large. 242

A universal solution including both helical symmetry and self-similar expansion of 243

the vortex core is still unknown for longitudinal as well as for helical vortices, but as 244

an empirical model together with (3.6), we propose a combination of (3.4) and (3.7) 245

in the form 246

w =
Γ

2π r

[

1 − exp

(

−
r2

r2
c(x)

)]

, u = B −
Γ

2π l (x)

[

1 − exp

(

−
r2

r2
c(x)

)]

. (3.8a,b) 247

248

This new model only requires empirical knowledge or experimental calibration of 249

some few flow parameters: vortex circulation, Γ , helical pitch, l = l(x), advection 250

velocity along the vortex axis, B, and growth factor of the vortex core, rc. All the 251

mentioned parameters can be determined experimentally by using PIV measurements 252

of the velocity field (figure 3) together with the reconstructed vorticity field (figure 4). 253

The last
∧
images in figure 4 show a non-circular form of the vortex cores, which 254

reveals the existence of an asymmetry of the global helix in a planar cross-section. By 255

averaging the profiles, however, these asymmetric changes of the circular vortex core 256

repeated from cross-section to cross-section have a marginal influence on the regular 257

vortex evolution. The averaging is allowed by the linear correlation between the two 258

velocities in (3.5). In accordance
∧
with this, azimuthally averaged local velocities and 259

vorticity are used in the following
∧
: 260

ωx(x, r) =
1

2π

∫ 2π

0

ωx(x, r, θ) dθ; w(x, r) =
1

2π

∫ 2π

0

w(x, r, θ) dθ;

u(x, r) =
1

2π

∫ 2π

0

u(x, r, θ) dθ.















(3.9) 261

The scaling radial similarity variable for the
∧∧
first, fourth and seventh vortex core 262

(figure 4) is determined as the value of the radius, rc. The value of rc is taken at 263

the radius value where the azimuthal velocity w attains its maximum. Therefore, the 264

scaled values of the profiles (3.9) for a fixed axial position, x, or vortex number, can 265

be recalculated by
∧

266

ω̃x(x, r/rc(x)) =
ωx(x, r/rc(x))

maxr ωx(x, r)
,

w̃(x, r/rc(x)) =
w(x, r/rc(x))

maxr w(x, r)
,

ũd(x, r/rc(x)) =
ud(x, r/rc(x))

maxr ud(x, r)
,































(3.10) 267

where maxr ud(x, r) requires a special consideration, as will be shown in the next 268

section. 269

4. Helical vortex development 270

The evolution of the local cores of the helical tip vortices was investigated through 271

velocity fields measured by stereoscopic PIV, as described in section 2. Two global 272

velocity plots with the blade oriented to the bottom at angles of 0◦ and 105◦ from 273

the vertical axis were studied. The two cross-sections reproduce seven
∧
well-visible tip 274

vortex cores, with the cores numbered by 1,
∧
1′, 4,

∧
4′, 7

∧
and 7′, respectively, to keep 275
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FIGURE 5. (a) Lines with symbols indicate the original PIV profiles of the local vorticity
in the core at different cross-sections of the tested helical vortex. (b) Comparison of
the same half profiles, scaled by (4.1), with the analytical non-dimensional solution (3.4)
shown by a solid line.

Number 1 1′ 4 4′ 7 7′

Vortex age, s 0 0.13 0.46 0.59 0.92 1.05
Distance along
global axis, X/Rb 0 0.46 1.56 1.94 3.01 3.44
Turn angle, deg. (rad) 0 (0) 105 (7π/12) 360 (2π) 465 (31π/12) 720 (4π) 825 (55π/12)
Length of vortex
central line, x/Rb 0 2.18 7.27 9.69 14.81 17.23

TABLE 1. Position of cross-sections of tip vortex cores.

track of the tip vortex trailed from the same blade (figure 4). The cross-sections may276

alternatively be described by the total angle they have
∧
travelled downstream, by their277

vortex age
∧
or by their axial position measured in rotor radii (see table 1).278

The vortex age of a section of the tip vortex is calculated via the turn angles and the279

frequency of the rotor rotation, which for λ= 5 is equal to 2.18 Hz. The coordinate280

x was calculated
∧
as in Quaranta et al. (2015). The intervals were selected to avoid281

any blade influence in the second core cross-section at the 105◦
∧
turn and to include282

the last vortex at the 825◦
∧
turn just before the helical vortex is

∧
destroyed. Indeed, the283

vortex core in the first position at 0◦ near the rotor blade is strongly influenced by284

the rotor blade and the vortex generation process. In spite of this, for further analysis285

and to complete the picture, we have included both extreme positions (1 and
∧
7′) in286

the analysis.287

As a first step, a local coordinate system, (x, r, θ ), with the origin located at the288

∧
centre of each cross-section of the tested tip vortex was introduced. Examples of289

axial vorticity profiles at cross-sections
∧
1′, 4, 7, corrected for minor asymmetries by290

azimuthal averaging (3.9), are shown in figure 5(a). The same profiles scaled by (3.10)291

are shown
∧
in figure 5(b) and compared to the analytical solution (3.3). The scaling292

parameters of the investigated vorticity and velocity profiles are presented in table 2.293

As seen in figure 6, the circulation does not change along the tip vortex (figure 6a),294

whereas the evolution of the vortex core shows an expansion (figure 6b) that follows295

the law of molecular diffusion (3.6), but at a higher rate corresponding to a turbulent296

viscosity, which is about 2000 times higher than the molecular viscosity. The relative297

error for circulation and the vortex core radius was based on PIV velocity measuring298
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FIGURE 6. Downstream distribution of circulation (a) and evolution of vortex core radius
(b) along the helical tip vortex in the different cross-sections. The lines are linear fittings.

No. max ωx, s−1 rc(x)/Rb Γ , m2 s−1 u0, m s−1 l/Rb max ud, m s−1

1 56.000 0.031 13.816 −0.390 0.024 0.456
1′ 50.000 0.037 13.760 −0.330 0.044 0.330
4 22.600 0.061 13.692 −0.220 0.084 0.217
4′ 15.000 0.069 13.668 −0.180 0.110 0.180
7 5.000 0.087 13.636 −0.070 0.161 0.110
7′ 4.000 0.102 13.600 −0.060 0.185 0.095

TABLE 2. Parameters of the vortex evolutions.

error and was estimated to be 12 % for the circulation and 10 % for the vortex core 299

radius. A suitable presentation of (3.6) gives the non-dimensional form of the solution: 300

301

1r̃2
c ≡ r̃2

c(x) − r̃2
c(x0) = 4(x̃ − x̃0)/ReTV, (4.1) 302

where r̃c = rc/Rb, x̃ = x/Rb and the turbulent Reynolds number
∧
ReTV(≡ BRb/νt) = 8300. 303

The latter is related to the expansion of the tip vortex core and can be determined 304

from the slope of the curve in
∧
figure 6(b). Deviations from the linear dependence 305

in figure 6
∧∧
(b) take place only at the initial vortex cross-section 1, on which the 306

blade impacts, and on
∧
7′, where the vortex

∧
loses coherence. The rate of the vortex 307

core expansion coincides with the data of Quaranta et al. (2015), with minor 308

deviations explained by the different blade designs and the influence of walls in 309

their experiments. 310

There is no direct correlation between the local velocity field (u, v, w) and the 311

measured components of the velocity (
∧
U, V, W), as the velocity field in the vortex 312

core is superposed by the motion of the helical vortex. To determine the local velocity 313

distribution in the
∧
(r, θ)

∧
plane of the vortex core, the transport velocity of the

∧
centre of 314

the vortices was measured and subtracted from the total velocity of each
∧
cross-section. 315

Figure 7(a) shows the local azimuthal velocity w in
∧
cross-sections 1′, 4, 7 after 316

removal of the transport velocity and azimuthal averaging. The scaling by (3.10) of 317

the profiles clearly indicates the existence of self-similarity of the local azimuthal 318

velocity inside the tip vortex (figure 7b). These velocity profiles show a slight 319

difference as compared to the non-dimensional self-similarity solutions (3.8) with 320

the Gaussian core reproduced by the data in table 2. This difference is most likely 321

due to wall effects, which generate a swirling flow (Alekseenko et al. 2007) that 322

creates an additional vorticity surrounding the original vortex core. The experiments 323
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FIGURE 7. (a) Lines with symbols are the original PIV profiles of the local azimuthal
velocity in the different cross-sections of the tip helical vortex. (b) The self-similar
behaviour of the same profiles scaled by (4.1). The full line is the dimensionless Gaussian
solution (3.9).
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FIGURE 8. (a) Lines with symbols are the original PIV profiles of the local axial velocity
in the different cross-sections of the tip vortex. (b) Symbols show the correlations between
the local azimuthal and axial velocities, using (3.5) to identify the pitch l.

of Quaranta et al. (2015) revealed large deviations from a Gaussian vortex, which324

can be explained by wall effects, as the rotor in their experiments was located less325

than a rotor diameter from the wall.326

∧∧
Figure 8(a) shows the local axial velocity u extracted directly from the global327

azimuthal velocity
∧
W∗. A small total wake rotation exists due to the hub vortex328

generated in the
∧
centre of the rotor wake, which gives rise to a negative overshoot329

of the local axial velocity profiles (figure 8a). This, however, vanishes further330

downstream in the wake. A visual demonstration of the existence of a local axial331

motion in the
∧
centre of the tip vortex was given by Quaranta et al. (2015) using332

dye injections in the core of the tip vortex. This axial motion is generated by the333

local structure of the helical vortex lines of the tip vortices (figure 1c). However, the334

existence of an ambient wake rotation with an unknown velocity
∧
W∗(X∗, Y∗, Z∗) does335

not permit a solid conclusion regarding the actual size of the local axial velocity336

deficit B = W∗ − u0. Indeed, only u0 = u(x, 0) can be determined directly from the337

profiles in figure 8(a). This problem can be avoided if the core of the helical vortex338

has a local helical structure consisting of local vortex lines (figure 1c). In this case,339

the local helical symmetry condition (3.5) between axial and azimuthal velocities340

can be exploited with an acceptable accuracy, which only depends on measurement341

errors and disturbances from the surrounding helical vortices (including the turns of342

the investigated vortex). Furthermore, the linear velocity formulation for local helical343

symmetry (3.5) allows the usage of averaged velocity fields (3.9) to determine the344
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FIGURE 9. (a) Evolution of the local helical pitch. (b) The self-similarity behaviour of
the axial velocity deficit in the tip vortex core scaled by (4.1). The solid line is the non-
dimensional velocity deficit with the Gaussian core (3.9).

helical vortex characteristics. The good correlation of the velocity profiles (figure 8b) 345

in accordance with the formula (3.5) permits one to conclude the existence of a local 346

helical structure of the tip vortex core. Furthermore, it gives the values of the pitch 347

l of the local helical symmetry (figure 9(a) and table 2). The relative error of the 348

helical pitch l was estimated to be about 10 %. 349

As a next step, we transform the original local axial velocity profiles (figure 8a) 350

into the form ud(x, r)=[u(x, r)− u0(x)]. In order to assess the similarity of the deficit 351

profiles, the profiles are scaled with
∧
Γ /2πl. This result is shown in figure 9(b) where 352

the deficit velocity, made dimensionless by Γ /2πl, depends inversely on the axial 353

distance
∧
(1/x), as indicated by the self-similar solution (3.8). The comparisons clearly 354

indicate that the local flow distribution in the tip vortex core is Gaussian and that it 355

exhibits helical self-similarly. 356

5. Conclusions 357

Helical tip vortices generated by a three-bladed rotor were measured using 358

stereoscopic PIV measurements in a water flume, with the aim of investigating 359

possible self-similarity of the velocity profiles in the vortex core. The data were 360

∧
analysed and processed assuming different self-similarity scaling arguments. Both 361

the local azimuthal vorticity profiles and the local axial and azimuthal velocity 362

components were investigated and showed the existence of helical self-similarity, 363

which is well described by the proposed model (3.8) and (4.1). Furthermore, a good 364

correlation existed between measurements and vortex flow decay using Batchelor’s 365

vortex
∧
((3.6) and (3.7a,b)) with a Gaussian vortex core. The proposed helical 366

self-similarity scaling arguments enable further investigations of
∧
, for example, the 367

stability of helical vortex cores, where expressions of full velocity profiles along the 368

vortex axis are required. The proposed model was developed and tested for flows 369

close to the design operating condition of the wind turbine, where a clearly defined 370

vortex structure is formed. However, at flow conditions where the regular vortex 371

structure is destroyed by external disturbances, or at extreme off-design operating 372

conditions, the validity of the model may be questionable. A study of the limitations 373

of the model will be the subject for future work. 374

The achieved knowledge is important for the fundamental understanding of vortex 375

flows as well as for different practical applications in which the parametric description 376

requires the use of simplified analytical engineering expressions. Examples of this 377

are tip vortices behind aerodynamic devices, such as vortex generators, and fixed and 378

rotary aircraft, and in combustion chambers and cyclone separators. 379
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