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Helical temperature perturbations associated with tearing modes 
in tokamak plasmas 

Richard Fitzpatrick 
Institute for Fusion Studies. The University of Texas at Austin. Austin. Texas 78712 

(Received 12 September 1994; accepted 28 November 1994) 

An investigation is made into the electron temperature perturbations associated with tearing modes 

in tokamak plasmas. It is found that there is a critical magnetic island width below which the 

conventional picture where the temperature is flattened inside the separatrix is invalid. This effect 

comes about because of the stagnation of magnetic field lines in the vicinity of the rational surface 

and the finite parallel thermal conductivity of the plasma. Islands whose widths lie below the critical 

value are not destabilized by the perturbed bootstrap current, unlike conventional magnetic islands. 

This effect may provide an explanation for some puzzling experimental results regarding error 

field-induced magnetic reconnection. The critical island width is found to be fairly substantial in 

conventional tokamak plasmas, provided that the long mean-free path nature of parallel heat 

transport and the anomalous nature of perpendicular heat transport are taken into account in the 

calculation. © 1995 American Institute of Physics. 

I. INTRODUCTION 

Oscillatory low mode number helical perturbations of 

the magnetic field, temperature, and density are often ob

served in tokamak plasmas, especially during the current 

ramp-up and ramp-down phases. I
-

3 These perturbations are 

usually identified as a type of filamentation instability of the 

plasma current known as a "tearing mode.,,4 A saturated 

tearing mode is expected to form a magnetic island structure 

that locally flattens the plasma temperature and density pro

files, thereby degrading the overall energy and particle 

confinement.5
•
6 In general, the island rotates in the laboratory 

frame due to the presence of a radial electric field in the 

plasma. Diamagnetic effects also give rise to island rotation. 

The uncontrolled growth of tearing islands with different he

licities is predicted to give rise to rapid stochastization of the 

magnetic field, with an associated catastrophic loss of 

confinement.7•
8 For many decades, tearing mode theory has 

provided a fairly good qualitative explanation for most large

scale instabilities observed in tokamak plasmas.9 Unfortu

nately, no conclusive quantitative comparison between 

theory and experiment has ever been performed, mainly be

cause of the great difficulty of accurately measuring the in

ternal (i.e., inside the plasma) structure of tearing modes. 

Magnetic pickup coils located outside the plasma yield 

little detailed information about the internal structure of tear

ing instabilities. lo Generally speaking, the equilibrium cur

rent profile is not known to sufficient accuracy to permit the 

projection of edge measurements back into the plasma with 

any degree of certainty. 

The internal structure of tearing modes can be investi

gated more directly using soft X-ray (SXR) emission dataY 

Unfortunately, SXR observations are generally restricted to 

the plasma core (i.e., well inside the q = 2 surface) and are, 

of course, chord averaged. Tomographic reconstruction of 

the emission profile is possible, but, in practice, extremely 
difficult to achieve. 12

,13 

An electron cyclotron emission (ECE) detector gives a 

direct localized measurement of the electron temperature at a 

known and adjustable position inside the plasmay,13 Clearly, 

this diagnostic has far greater potential for probing the inter

nal structure of tearing instabilities than either a magnetic 

pickup coil array or a SXR detector. The aim of this paper is 

to establish the relationship between the magnetic structure 

of a saturated tearing mode and the associated helical pertur

bation of the electron temperature profile. It is demonstrated 

in Sec. III that this information can be used, in conjunction 

with experimental ECE data, to determine the structure 

throughout the plasma. It is also shown that a temperature 

flattened magnetic island possesses a unique ECE signature. 

The heat flow pattern around such an island is calculated in 

Sec. IV. The effect of the perturbed bootstrap current on is

land stability, taking into account the finite parallel thermal 

conductivity of the plasma, is investigated in Sec. V. In Sec. 

VI we discuss the implications of some of the results ob

tained in this paper for Ohmically heated tokamaks. Finally, 

some important conclusions are drawn in Sec. VII. 

II. BASIC TEARING MODE THEORY 

A. The plasma equilibrium 

The analysis is performed in cylindrical geometry with 

the usual right-handed polar coordinates (r, O,z). The equi

librium magnetic field is written as B==[O,Bo(r),BzL where 

B z is the constant "toroidal" field strength. The equilibrium 

"toroidal" current density takes the form /Lolz(r) 

== (r B 0) , / r, where ' denotes d/ dr. It is convenient to define 

the "safety factor" q(r)=rB/RoBo, where 27TRO is the as

sumed periodicity length in the z direction (Ro is the simu

lated major radius). The standard large aspect ratio tokamak 

orderings, B of B z ~ 1 and rI R 0 ~ 1, are adopted. 14 

B. The outer region 

Consider a saturated tearing instability with m periods in 

the poloidal direction and n periods in the "toroidal" direc-
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Hon. The perturbed magnetic field is written in the usual 

manner as bB = V 1\( ifli) =. V I/Il\i. where the perturbed poloi

dal flux 1/1 takes the general form 

I/ICr. (J.z.t) = I/I(r)cos ~. (1) 

Here, 

Z It f f ~=m(J-n -- w(t )dt 
Ro 

(2) 

is the helical phase angle of the mode, and w(t) is its instan

taneous rotation frequency. 

According to ideal magnetohydrodynamics (MHD) (i.e., 

linearized force balance in an incompressible, inviscid, mass

less, perfectly conducting fluid). the magnetic perturbation 

obeys 

1 d ( d 1/1) m
2 

fLoJ; 
;: dr r dr -71/1- B e(1-qlqs) 1/1=0 (3) 

in cylindrical geometry, where qs=.q(rs)=mln defines the 

position of the "rational" flux surface. IS In ideal MHD 

theory, a tearing mode is simply an incompressible helical 

displacement g of the equilibrium magnetic flux surfaces. 

The radial displacement is written as 

(4) 

where 

(5) 

C. The magnetic island 

In the vicinity of the rational surface. 

I/I(r)=qt (6) 

for tearing instabilities, where '1'>0 is termed the "recon

nected flux." Equation (6) is equivalent to the well-known 

"constant-I/I" approximation.4 In principle, if '1'*0, both 

Eqs. (3) and (5) become singular as r-+r,. Unphysical be

havior is averted by the formation of a magnetic island. 

It is convenient to define the "helical flux," 16 

x(r,~)= - fr( 1- ~)Be dr+ I/I(r)cos r 
rs qs 

(7) 

It is easily demonstrated that (B+bB)·VX=O, so the con

tours of X map out the perturbed magnetic flux surfaces. 

Close to the rational surface. Eqs. (6) and (7) yield 

X x
2 

0= 'I' =8 W2 + cos ~, (8) 

where x= r- rs , and 

W=4 ~ROqs ':It. 
B:ss 

(9) 

Here, s, = (rq f I q) r is the local magnetic shear, which is 
. s 

assumed to be positive. 
Figure 1 shows contours of the normalized flux surface 

label 0 plotted in (x,~) space. An island structure of maxi

mum radial width W is clearly evident. The island 0 point 
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O-Point 

Separatrix 

0-----

FIG. I. Contours of the nann ali zed flux surface label n plotted in (x,f:) 

space, where x is the radial distance from the rational surface and f: is the 

helical angle. 

lies at coordinates (0= -1, ~= 1T), the separatrix corresponds 

to the 0= 1 contour, and the X point is situated at coordi

nates (0= I, ~=O). The perturbed flux surfaces are, of 

course,. periodic in the helical phase angle ~, repeating every 

21T rads. 

III. THE PERTURBED TEMPERATURE PROFILE 

A. Introduction 

Heat flow in the plasma is governed byl7 

q=-KII VIIT-Kl. Vl.T, (10) 

where q is the heat flux, T is the (single fluid) temperature, KJI 

and Kl. is the parallel and perpendicular thermal conductivi

ties, respectively, and 

VffT=.(b.VT)b, 

Vl.T=VT-VIIT, 
(11) 

with b=B/IBI=BIB z • Note that V·b=O in a large aspect 

ratio tokamak. 

In regions of the plasma where there are no significant 

sources or sinks of heat (i.e., everywhere apart from the 

plasma core and the scrape-off layer), 

V·q=o, (12) 

so Eq. (10) yields 

Kif V[T+ K.l V~ T= 0 (13) 

(assuming that Kif and Kl. are constants, for the sake of sim

plicity), where 

V~T=.b.V(b. VT), 

(14) 

Richard Fitzpatrick 
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In the vicinity of the rational surface, 

(
nss) al 

b· V = - Rors x at; n' (15a) 

~ ~ a
2

1 

Vi =rax-r / (I5b) 

in the thin island limit W ~ r s ' so for a resonant perturbation 

(i.e., Of-I1x) the first term in Eq. (13) dominates the sec

ond whenever 

(16) 

Thus, far from the rational surface (i.e., Ixl ~ xc), the parallel 

thermal conductivity forces the temperature to be a function 

of the perturbed flux surfaces. Conversely, the temperature is 

not necessarily a flux surface function close to the rational 

surface. 

B. The outer region 

In the outer region (i.e., Ixl ~ Xc> W) a tearing perturba

tion reduces to a helical displacement of the magnetic flux 

surfaces, and the temperature remains a function of these 

surfaces. Let To(r) be the unperturbed equilibrium tempera

ture profile. It follows that the temperature perturbation as

sociated with a tearing mode is given by 

Of(r,t;) = - VTo·g= c5T(r)cos t;, 

where 

or(r) = - Tb(r)g(r). 

C. The island region 

Let 

T(r,t;) = To(rs) + f(x,t;), 

(17) 

(18) 

(19) 

in the vicinity of the island. To lowest order, the function f is 

anti symmetric about the rational surface, 

(20) 

since it satisfies the antisymmetric boundary condition, 

_ , WT; W 
T(x,t;)=Tsx+ 16 -; cos t;, (21) 

for W~lxl~rs [see Eqs. (5), (9), and (18)]. Here, T; 
== Tb( r s) is the local equilibrium temperature gradient. The 

island temperature profile is assumed to be symmetric about 

the 0 point, 

and periodic in the helical phase angle, 

f(x.t;+ 27T) = f(x.t;). 

(22) 

(23) 

Close to the magnetic island, the heat diffusion equation 

(13) is conveniently written as 

I [( W) 2 a a ] 2 _ a
2
f 

4' We sin t; ax+ X at; T+ ax2 =0, (24) 

Phys. Plasmas, Vol. 2, No.3, March 1995 

where 

x 
X=4 W ' 

c 

(25) 

Equation (13) can also be written as 

1 ( W) 4 a af a af 
- - - ..jn-cos {; -+ - ..jn-cos {; -=0. 
4 Wc at; at; an an 

(26) 

In Eqs. (25) and (26), the scale island width Wc is defined as 

We =.J8( K.l) 114(_1 ) 112 

rs KII Esssn ' 
(27) 

where Es=rJRo. Clearly, We is closely related to the quan

tity Xc defined in Eq. (16). 

D. The small island limit 

Consider the small island limit, W ~ W c' for which the 

temperature is not a function of island flux surfaces accord

ing to Eqs. (16) and (27). Suppose that 

(28) 

v=o 

where v is an integer. This automatically satisfies the sym

metry requirements (22) and (23). It follows from the expan

sion of Eq. (24) in the small parameter (W / We) 2 that 

d2fO 

dX2 =0, 

(29) 

to lowest order, where 

;: _&\ ~)2V. (30) 

Application of the boundary condition (21) yields 

(31) 

and 

(32) 

where 

(33) 

The physical constraints on the solution of Eq. (33) are f(O) 

=0, and f---+O as Iyl---+oo. Figure 2 shows fey) evaluated 

numerically in the region y ~ 0. The function reaches a maxi

mum value f max=l.44 at y=2. For y~2, 

f(y)= 1.2y, (34) 

and for y~2, 
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4 6 

FIG. 2. The function f( y) that characterizes the helical temperature pertur

bation around a thin island for which the temperature is not a flux surface 

function [see Eqs. (32)-(35)]. 

4 
j (V)=-. 

• y 
(35) 

In the small island limit, W~ We' the perturbed tempera

ture is "linear" throughout the plasma [i.e., it is everywhere 

dominated by the principal (v= 1) harmonic]. According to 

Eq. (30), the overtone harmonics (v> 1) are smaller than the 

principal harmonic by at least a factor (WIWc)2. In the outer 

region, 

oT( r,n:= T(r,~) - To(r) 

W2 , ) Ss qlqs ' 
= 16 To(r -;: qlqs-l I/J(r)cos~, (36) 

where use has been made of Eqs. (5), (9), (17), and (18). 

Here, 1xr) is a solution of the cylindrical tearing mode equa

tion (3~ (for the min mode), subject to the normalizing con

dition IjJ( r;) = 1. In the vicinity of the rational surface, 

WT; W x 
oT(x,n= 1.2 -4- W W cos~, 

c c 

for Ixl~WJ2, and 

WT'W 
oT(x,~)= It ~ cos~, 

(37) 

(38) 

for Ixl ~ WJ2. Note that Eq. (36) connects smoothly onto 

Eq. (38) for WJ2~lxl~rs' 

E. The large island limit 

In the large island limit, W~ We' the temperature is a 

function of the island flux surfaces according to Eq. (26), so 

(39) 

On flux surfaces situated inside the separatrix (0< 1), Eqs. 

(20) and (39) imply that T= 0, giving the well-known result 

that the temperature is flattened within the island 

separatrix. 18 On flux surfaces outside the separatrix, Eq. (26) 

can be averaged over the helical phase angle " to give 

828 Phys. Plasmas, Vol. 2, No.3, March 1995 

d ( ,£ d, dT) 
dO j ~O-cos ~ 2 'IT dO =0, (40) 

where use has been made of the periodicity constraint (23). 

Equation (40) and the boundary condition (21) yield l9 

dT WT; / ,£ d~ 
dO = ± m j .JO-cos , 2 'IT 

'IT WT; 
=+---......,.-

-16 kE(llk 2)' 
(41) 

for 0~1, where k = .J(1 +0)/2, 

('n-/2 
E(l) = J 0 .Jl -/2 

sin
2 ex dex, (42) 

is a standard elliptic integral,20 and the ± signs denote x ~ 0, 

respectively. 

The perturbed temperature close to the island is conve

niently written as 

oT(x,l)=2: oTv(x)cos vl, (43) 

v=' 

where v is an integer. It follows from Eqs. (19) and (36) that 

,£ - dl 
oTv(x)=2 j T(x,,)cos v, 2 'IT , (44) 

where the integration is performed at constant x. Integration 

by parts gives 

_ + WT; ('c cos( v-I )~-cos( v+ 1)' 
oT,,(x)- - 16v Jo kE(lIk2) d" 

where use has been made of Eq. (41). Here, 

'c= cos-'(1- 8x2/W2) 

for Ixl < W/2, ~c= 'IT for x~ W12, and 

I , x 2 

k= \jcos
2 

2'+4 WI' 

In the asymptotic limit Ixl~ W12, Eq. (45) yields 

WT; W 
oT,(x)= 16""~, 

OTv>I(X)= wr; XC [( ~)1 
In the opposite limit, Ixl~w/2, Eq. (45) reduces to 

OTv(X)=~ wr;( ~r 

(45) 

(46) 

(47) 

(48) 

(49) 

Note that Eqs. (43) and (48) match smoothly to the outer 

solution (36), when W12~lxl~rs' 

Figure 3 shows oT,,(x) == OTv(x)IWT; for v=1-4. It 
can be seen that inside the separatrix the overtone harmonics 

(v> 1) are almost as large as the principal harmonic (v== 1). 

In this respect, the perturbed temperature is "nonlinear" in 

the island region. The overtone harmonics die away rapidly 

Richard Fitzpatrick 
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ot, 0.1 

I 
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/v=2 

0.0~---=.-~---~··-"-~-~~V~==4~~~~~V~(=:~3-·-~·:·v",--,,····~\ ~.~_._~ ... =-.-~-----, 
". '.7 -
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-0.1 "-

" " / 

-0.5 

........ -; 

/ 
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/ 
I 

I 

0.0 0.5 

FIG. 3. The potentials or v plotted as functions of the radial distance from 

the rational surface x, for jI in the range 1-4. The oT v characterize the 

helical temperature perturbation around a large island for which the tem

perature is a flux surface function [see Eqs. (43)-(45)]. 

for Ixl > W/2. Thus, the observation of a localized overtone 

harmonic content of the perturbed temperature (using an 

ECE diagnostic) is an unambiguous indication of the pres

ence of a pressure flattened magnetic island. (Recall from the 

previous section that an island that does not flatten the tem

perature profile leads to virtually no overtone harmonics con

tent of the perturbed temperature.) The radial extent of the 

region of significant overtone harmonics is a good measure 

of the island width. 

F. Discussion 

In the outer region (lxl~W,Wc)' the temperature mea

sured by an ECE diagnostic focused on plasma located at 

coordinates (r c' 8c ,zc) can be written as 

T(t) = To(rc) + OT(rJcos(m8c-nZeIRo- wt- ~o), (50) 

in the presence of a uniformly rotating (min) tearing mode. 

Here, ~o is an arbitrary (constant) phase angle. Clearly, both 

To(rc) and OTo(rc) can be determined by observing the tem

perature variations over many rotation periods. The profiles 

To(r) and OT(r) can be evaluated using an array of ECE 

detectors tuned to slightly different frequencies3 or, alterna

tively, by sweeping the cyclotron resonance position by 

slowly ramping the toroidal field strength21 (the toroidal cur

rent must also be ramped in order to keep the edge-q con

stant). According to Eq. (18) the displacement eigenfunction 

in the outer region is given by 

OT(r) 

g(r)= -Tb(r)" 

The poloidal flux eigenfunction takes the form 

I/!(r) = ll-oIp (qa _ qa) g(r) 
27Ta q qs 

(51) 

(52) 

[see Eq. (5)], where a is the plasma minor radius, q a is the 

edge safety factor, and I p is the total equilibrium "toroidal" 

plasma current. The displacement eigenfunction can clearly 

be constructed directly from ECE measurements. However, 

the construction of the flux eigenfunction requires a knowl-

Phys. Plasmas, Vol. 2, No.3, March 1995 

edge of the safety factor profile. Fortunately, the accuracy to 

which the q profile must be determined is far less than that 

needed to solve the cylindrical tearing mode (3) directly. The 

crucial point is that the direct solution of Eq. (3) requires a 

knowledge of the current gradient profile, which depends on 

the second derivative of the q profile, and is, consequently, 

extremely difficult to determine accurately from experimen

tal data. 

If the island width is much less than the scale width We 

[see Eq. (27)], then there is no flattening of the temperature 

profile, and Eq. (50) is valid in the inner region (lxl~WC>. 

The perturbed temperature profile oT(r) is antisymmetric 

about the rational surface, reaching local extrema of ampli

tude, 

(53) 

at ro:.=rs± WJ2 (see Sec. III D). Thus, the island width W 

is given by 

(54) 

If the island width is much greater than the scale width 

We' then the temperature profile is flattened inside the sepa

ratrix and 

T( t) = To(r,) + To(rc) + L oT vcr c)cos[ v(m 8c 
v=1 

(55) 

in the vicinity of the rational surface (see Sees. III D and 

III E), where To(r)-+T;(r - rs) and oTv>l(r)loT1(r)-+0 

for r,~lr-rsl~WI2. Thus, the presence of overtone har

monics oT v> 1 localized close to the rational surface is an 

unambiguous indication of the existence of a magnetic island 

that flattens the temperature profile.22 The principal harmonic 

profile oT 1 (r) is antisymmetric about the rational surface (as 

are the overtone harmonic profiles), reaching local extrema 

of amplitude 

(56) 

at r:!:: = r;± W 12. Thus, the island width W is given by 

(57) 

The (temporal) Fourier analysis of ECE data T(t) pro

duced by a plasma containing a nonuniformly rotating tear

ing mode (e.g., a large mode in the presence of a field error) 

can produce spurious overtone harmonics? However, these 

signals can easily be distinguished from the overtones asso

ciated with temperature flattening, because they are nonlo

calized. In fact, in this case the nonlinear distortions seen on 

ECE data emanating from inside the plasma ought to match 

those seen using magnetic pickup coils. 
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IV. HEAT FLOW ACROSS A LARGE ISLAND 

A. Introduction 

The large island model outlined in the first paragraph of 

Sec. III E has been widely discussed in the literature.S
,18 Un

fortunately, as it stands, this model possesses one extremely 

unsatisfactory feature. Outside the separatrix there is a finite 

heat flux flowing across magnetic surfaces, driven by the 

cross-surface temperature gradient, whereas inside the sepa

ratrix there is zero heat flux because the temperature profile 

is flat. The model offers no explanation for how heat is trans

ported from one side of the island to the other. In the follow

ing, it is demonstrated that the heat is actually transported 

along a boundary layer located on the island separatrix, and 

flows across the rational surface in the vicinity of the X 

points. 

B. The boundary layer on the separatrix 

Consider the limit W~ We' Let 

O=1+4(iry, 
J.L = cos(() 2 ) , 

then Eq. (26) reduces to 

a af a2 f 
- (1- J.L2) - + -2 = 0, 
aJ.L aJ.L ay 

(58) 

(59) 

on the separatrix [Le., y-0'(l)], well away from the X points 

(Le., [1"7 ~ WcIW). In the region x>O, the boundary 

conditions are 

_ 1T' ,(Wc )2 
T(Y,J.L)-+"4 WTs W y, 

as y-+oo and f-+o as y-+-oo (see Sec. III E). 

Suppose that 

_ 1T' (Wc)2 A 

T(y,J.L) = "8 WT; W [y+lyl+T(y,J.L)], 

where 

T( - y,J.L)= T(y,/L), 

T(y, - J.L) = T(y,/L), 

with 

aT(y,J.L) 
----+0 

ay 

as y-+oo, and 

arc 0 + ,J.L) 
ay =-1. 

(60) 

(61) 

(62) 

(63) 

(64) 

It follows that f(y,J.L) satisfies all of the physical boundary 

conditions, plus the symmetry requirement (22), and is con

tinuous up to and including its second derivatives. 

The function T(y,J.L) satisfies Eq. (59). This equation 

can be solved by separation of variables to give the general 

expression 

830 Phys. Plasmas, Vol. 2, No.3, March 1995 

'" 
T(y,J.L)=- 2: ~21(;~-1) Q2/-I(J.L) 

/=1 

Xexp[ - ~21(21-1 )Iyl] 

'" b 

+ ~ ~21(2~+ 1) P2/(/L) 

Xexp[ - ~21(2l+ 1)lyl], (65) 

which satisfies all of the above constraints, provided 

2: [b ,P2,(J.L) - a/Q21-1 (J.L)] = 1. (66) 
1= I 

Here, the P j and the Q j are standard Legendre functions 

(where j is an integer).23 Note that Eq. (66) can be satisfied 

by choosing the a/, such that 

2: a/Q21-I(J.L)=-l, (67) 
1= I 

in which case the well-known orthogonality property of the 

P j functions yields b 1 = 0 for all [';3 1. Now,24 

fl Q21-1(J.L)P2k(J.L)dJ.L= 2(l-k- ~:2)(l+k)' (68a) 

JI P2k(/L)dW=2okO, 
-I 

so Eq. (67) reduces to 

'" 
" al 
L..; 4(l-k-1I2)(l+k) =OkO, 
1=1 

for k=O, 1,2, .... 

(68b) 

(69) 

Consider the behavior in the vicinity of the X points, 

which are located at y = 0 and J.L=::t 1. Close to IJ.LI= 1,24 

Q2I-1 (/L)= - [In [1"7+ y-In 2 + if!(2 I) J, 
(70) 

where y is Euler's constant and if! is a standard digamma 

function,zs It follows that as IJ.LI-+ 1, 

_ 1T' (Wc)2 ~ 
T(y:;::O,/L)-+"8 WT; W A(ln vl- W+ B ), (71) 

where 

00 

" at 
A=~ ~21(21-1)' 

i=1 

(72) 

Suppose that the summations in Eqs. (69) and (72) are 

truncated at l=lmax. Equation (69) then becomes an 
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FIG. 4. The points show the truncated series A and B evaluated as functions 

of the number of terms I. The curves show the fits A = 1.40 1+ 0.626 In 1 
and 8=0.296+0.482 In I. The series A and 8 characterize the asymptotic 

matching of the boundary layer on the island separatrix to the X-point re

gion [see Eqs. (71) and (72)]. 

I max X I max matrix equation that can easily be inverted nu

merically to give the a I for 1= 1 to I max' The a I can then be 

summed. with the weights specified in Eqs. (72). to give the 

parameters A and B. Figure 4 shows A and B evaluated as 

functions of [max in the range 1-50. It can be seen that to an 

excellent approximation. 

A = 1.401 + 0.626 In [max. 

B = 0.296 + 0.482 In [max' 
(73) 

Clearly. both A and B diverge with increasing lmax. implying 

a singularity in l' at the X points. In fact. unphysical behav

ior is averted because Eq. (59) is invalid close to the X 

points. Note that the series (65) always converges for y '* 0 

because of the decaying exponential terms. Figure 5 shows 

contours of 1'=-(y+iyi+T) [see Eq. (61)] plotted in 

(Y.f.L) space. where l' is evaluated from Eq. (65), with 

Imax=20 (this is sufficient to ensure convergence everywhere 

except close to the X points). The flux surfaces lying inside 

the separatrix are at y < O. the separatrix is at y = O. and the 

outer flux surfaces are at y>O. The contours of l' are con

sistent with heat flow from the X points to the outer region 

[assuming T; < 0; see Eq. (61)]. As expected. the tempera

ture profile is flat in the region y ~ - 1 • and is a flux surface 

constant with nonzero cross surface gradient in the region 

y~l. 

C. The X-point region 

Consider the region in the vicinity of the lower X point 

(Le .• il:i~w/W). Let 

y=~c~~rz. 

l:=2(::)\. 

(74) 

then Eq. (26) reduces to 
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FIG. 5. Equally spaced contours of the temperature profile [(y,It), which 

characterizes the temperature variation across the separatrix of a large mag

netic island (see Sec. IV B). The profile increases monotonically with in

creasing y. 

1 a a1' a a1' 
--~-+-~-=O. 
4 a'll. a'll. az az 

(75) 

Equation (75) can be transformed into the small i~ limit of 

Eq. (59). provided that (WIWc)2~i'll.i~l • .JIZT. It follows 

that (59) breaks down in the vicinity of the X points when 

~ (We)2 We ~ 
,,1- f.L ~ W + W "iyi· (76) 

Note, in particular. that on the separatrix (y=O). Eq. (59) is 

invalid for {1=/lI ~ (WcIW)2. 
Suppose that26 

g=i'll.i+~. 

1]=i'll.i-~, 

then Eq. (75) transforms to 

ZT(g.1])=O. 

where 

$= ( t; !..._ 1] ~) 2 + (!..._ ~) 2 
ag ti1] ag a7] 

The symmetry requirements (20) and (22) become 

1'( g.1]) = - 1'( 1]. g) 

for 1]>0 (i.e .• inside the separatrix). and 

1'(g, 1])=1'( -1]. - g) 

(77) 

(78) 

(79) 

(80) 

(81) 

for 1]<0 (i.e .• outside the separatrix). The boundary condi

tions (60) and 1' ....... 0 as y ....... - 00 transform to 

_ 7T,( We )4 
T(g.1]) ....... -"8 WTs w g7]. (82) 
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as ~TJ-4-00, and T/~TJ-40 as ~TJ-4oo. 
It is easily demonstrated that 

:Z(~TJ)= -2, 

~[F(~)]=.2S[F( 7J)]=0, 

9:[F2(~)]= ~Fz( 7J)]=2, 

where 

F(z)=sinh- 1 Z=ln(z+ J1+i.2). 
It follows that 

(83) 

(84) 

T(~, 7J) = Tl (~, 7J) + T2(~' 7J) + C[F(~) - F( 7J)], (85) 

where C is an arbitrary constant. Here, 

for 7J<0, and 

_ 'IT , ( We) 4[ 2 l:.) 2 ] 
Tl(~,7J)--16WTs W F(.., -F(7J), 

for 7J>0, with T 2(~' 7J)/ gTJ -4 0 as IgTJI-400, and 

T2(~,7J=0)=0, 

(
BTZ) '7=0+ _ 'IT ,(Wc )4 
- ---WT-g 
BTJ '7=0- 8 S W . 

(87) 

(88) 

The function T2(~' 7J) must also satisfy the symmetry re

quirements (80) and (81). 

D. Asymptotic matching 

According to the previous section, the behavior of T on 

the separatrix (7J=0) is given by 

T(y=O,n=-l: WT;(~r{Sinh-l[(~rICI]r 

+ C sinh - 1 [ ( ~r I ci ], (89) 

close to the lower X point. Thus, the asymptotic behavior of 

the X-point solution in the limit ~ ~ (WcIW)2 be

comes 

- 'IT (Wc)4[ r;----'J T(y=O,JL)= - 16 WT.: W lnvl- JL-

+2 In(:J+2In2r 

+C[ln~+2In(~)+2In2]. (90) 

The logarithmic singularities in Eq. (90) at JL= ± 1 are re

solved for ~ ~ (Wc/W)2 in Eq. (89). The analysis of 

Sec. IV B can be corrected to take this into account by shift

ing the limits of integration in the variable JL from ± 1 to 

± 1 + C'( W / W) 4. It follows that each term on the left -hand 

side of Eq. (69) acquires a small correction of order 
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( W c/ W) 4 
In( W / We)' These corrections are cumulati ve, and 

the net correction becomes of the order of the right-hand side 

when 

(91) 

at which point the series is assumed to effectively truncate. It 

follows from Eqs. (71) and (73) that to lowest order the 

asymptotic behavior of the boundary layer solution in the 

limit 1p.1-41 is given by 

T(y=O,JL)-->i WT;( ::r X2.5 In( :J[ In~ 
+ 1.93 In( :J], (92) 

where it is assumed that In(W/Wc)~ 1. 
In the limit WIWc~ 1, the asymptotic solutions (90) and 

(92) match up, provided 

C=0.98WT;(~r In( ~). (93) 

The fact that there is only a small (3%) residual difference in 

the coefficient of In(WIWJ (inside the square bracket) be

tween the two solutions, suggests that the truncation pre

scription (91) is essentially correct. Thus, to lowest order, the 

function T reduces to 

T(g,7J)=0.98WT;(::r In( ~)sinh-l(g{l+7 

- 7J,h + e), (94) 

in the X-point region (Le., IYI~ 1 and ~ ~ 1). 

E. Summary 

The boundary layer region is sketched in Fig. 6. The 

layer is centered on the separatrix (0,= 1), attaining a maxi

mum width of order We in the vicinity of the X points, and a 

minimum width of order (WJ 2/W halfway between the X 

points. The layer expands in width as We approaches W, 

eventually allowing cross-flux surface temperature gradients 

to establish themselves inside the separatrix. The temperature 

gradients probably first appear in the X-point regions, and 

only reach the 0 points when Wc- W. Of course, for Wc~ W 
there is no flattening of the temperature profile (see Sec. 

m D). 
The net heat flux flowing around the boundary layer is 

given by 

(95) 

In the thin island limit (W ~ r s), this expression reduces to 
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FIG. 6. Schematic diagram of the boundary region that transports heat 

across a large magnetic island. Here, x is the radial distance from the ratio

nal surface and, is the helical angle. 

where use has been made of Eqs. (10), (58), and (61), and the 

upperllower signs correspond to x~O, respectively. Further 

analysis yields 

7T Kl. , 2 a foo -
QII(/L)= ±-2 - rsTs(1- /L ) -a T(Y,/L)dy, 

m /L -00 

(97) 

with the aid of Eqs. (8) and (27), where f.L=cos ~/2. It fol

lows from Eqs. (62), (65), (66), and the properties of Leg

endre functions, that 

(98) 

where D is an arbitrary constant. Thus, 

(99) 

Heat is channeled to each X-point region via two separatrix 

boundary layers, so the net heat flux flowing across a given 

X point (~=O, say) in the + r direction is 

(100) 

The net heat flux flowing across magnetic flux surfaces 

outside the separatrix is given by 

,( q. V n d ~ ,( aT d ~ 
Ql. = j Ivnl IV ~I = - Kl. j Ivnl an IV ~I' (101) 

According to the analysis of Sec. III E, the cross-surface heat 

flux attains a constant steady-state value, 

(102) 
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A comparison of Eqs. (l00) and (102) reveals that on the 

rational surface (x = 0) the whole of the cross-surface heat 

flux flows through the X-point regions. 

V. BOOTSTRAP-DRIVEN MAGNETIC ISLANDS 

A. Introduction 

One of the most important conclusions of neoclassical 

theory is that radial gradients in the plasma pressure can 

drive a noninductive "bootstrap" current parallel to the mag

netic field when the plasma is sufficiently collisioniess.27 In 

fact, substantial bootstrap contributions to the equilibrium 

plasma current have been observed experimentally.28,29 The 

perturbed bootstrap current can, in principle, profoundly af

fect the stability of tearing modes. 18,30 This effect is investi

gated in the following. 

B. Analysis 

In the vicinity of a constant-if! magnetic island, the per

turbed Ohm's law takes the forrn31 

a~ ~ 

at cos ~+b·V ~= -7]z(rs )(ojz- ojz)' (103) 

where ~ is the perturbed electrostatic potential, 7]z<r) is the 

paral,k!, resistivity, oj z is the total perturbed parallel current, 

and oj z is the noninductive part of the perturbed parallel 

current. The total current is related to the standard tearing 

stability index Ll' via 

= - ~ f :~ f~s_+ /Lo ojz cos ~ dr. (104) 

It is helpful to define the flux surface average operator ( ... ), 

where 

,( f(a,n,~) d~ 

(j(a,n,~»= j ~n-cos ~ 27T' 

for n>l, and 

(105) 

_ f27T-'0 Mf(a,n,~) + f( -a,n,~)] d~ 

(j(a,n,~»- '0 ~n-cos ~ 27T' 

(106) 

for n~l. Here, a=sgn(x), ~O=COS-l n, and f is a general 

function. It is easily demonstrated that 

(b·Vf)=O (107) 

[see Eqs. (8) and (15)]. Equations (104), (105), and (106) 

yield 

, /Lo W foe / 1 . 
Ll =-1i~ _1\2[Olz(a,n,~) 

+ c5j z{ - u,n,~) ]cos ~) dn. (108) 
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By definition, a "nonlinear" magnetic island has a much 

greater radial width than a linear layer. In conventional tok

amaks the characteristic layer width is given by32.33 

0layer _ ( rk ) 116, 

rs TVTR 
(109) 

where TH = (RoIBz)~f-top(rs)lnsS' TR=f-tor;lT/z(rs), and 

Tv= r;p(rs)1 f-t.l (rs) are the hydromagnetic, resistive, and 

viscous time scales at the rational surface, respectively. Here, 

per) is the plasma mass density, and f-t.l (r) is the (anoma

lous) perpendicular viscosity. It can be demonstrated that the 

perturbed current is a flux surface constant in the vicinity of 

a nonlinear island,16 so that 

(110) 

In fact, a viscous boundary layer of characteristic width 

~O~ye/W develops on the separatrix in order to resolve the 

current and flow patterns for O~ I (cf. Sec. IV, where a 

similar boundary layer resolves the temperature profiles on 

either side of the separatrix).34.35 Note that the perturbed cur

rent is not necessarily a flux surface function for W::S 0layer' 

It follows from Eqs. (9), (103), (107), (108), and (110) that 

the temporal evolution of a nonlinear island is governed 
by16.31 

(1lI) 

whereas in the large island limit (W~ We) Eqs. (8), (41), 

(l13), and (114) yield 

I 

(8-)= 1 46 q. Ps (I) 
'}z • r= B ' 

yEs z 
( 116) 

for 0< 1, and 

--:-' qs P; 1 qs P; ) 
(oJz)=-1.62 -:r;; B

z 
kE( lIk2 ) + 1.46 -:r;; B;: (I , 

(117) 

for O~l, where k = ~(l +0)12. Equations (tIl), (lIS), 

(116), and (117) give 

d (W) C' /3; rs W 
I,TR d- - =Ll'rs+2.88YEs - ~W 

t r, S5 e 
(118) 

in the small island limit, and 

(II9) 

in the large island limit, where 

(120) 

is a measure of the eqUilibrium pressure gradient. Note that 

f3; is typically of the order of the poloidal beta. In the above, 

use has been made of the results, 

f'" (cos ~>dO=O 
-I 

(I2l) 

where, (oj;:) + is that part of the perturbed non inductive cur-

rent that is even across the rational surface, and34 and 

(112) 

The perturbed bootstrap current satisfies36 

--:-' q s asp e 

OJ Z = - I .4 6 ---r=;::- -a-' 
vEsB z x 

(113) 

close to the rational surface, where op e(x) is the perturbed 

electron pressure. Suppose, for the sake of simplicity, that the 

density and electron temperature profiles are similar in the 

island region (i.e., the ratios of the parallel to perpendicular 

transport coefficients are about the same for density and 

temperature-a more realistic model is discussed in Sec. 

VII). It follows that 

I 

Ps 
oPe(x)= ---, oT(x), 

Ts 
(114) 

for the single fluid model adopted in this paper, where P; is 

the electron pressure gradient at the rational surface. In the 

small island limit (W~Wc), Eqs. (37), (113), and (114) im

ply that 

~ qs P; ( W)2 
(ojz)= -0.438 r= B W (cos ~>, 

yEs Z C 

(lIS) 
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f
'" (cos ~) dO 
I (T) kEel/e) =0.5054. (122) 

C. Discussion 

According to Eqs. (lI8) and (19), the nonlinear island 

width evolution equation can be written as 

(123) 

where 

C' f3; rsW 2 
Llboot(W)=4.63YEs~ WJ 1+(WIW

d
)2' (124) 

with Wd= 1.8 We [see Eq. (27)]. Clearly, for conventional 

tokamak plasma profiles (i.e., P; < 0 and ss>O), the per

turbed bootstrap current has a destabilizing effect on mag

netic islands. The destabilizing term Llboot( W) initially in

creases with island width, reaching a maximum value, 

(125) 

at W = W d' and then starts to decrease. The nonmonotonic 

behavior of the destabilizing term comes about because the 
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finite parallel thermal conductivity of the plasma effectively 

sets an upper limit on the perturbed pressure gradient in the 

island region. 

Suppose, for the sake of simplicity, that the variations of 

A' with island width are relatively unimportant. It is easily 

demonstrated that magnetic islands decay away to zero width 

when A' r s < - Amax . For - Amax~A ' r s < 0, there is a critical 

island width, 

W _ = W d( A. - ~) ~ W d, (126) 

where A.=Ama/( - A' rs). Islands whose widths are less than 

the critical value decay away, whereas islands whose widths 

exceed the critical value are maintained in the plasma by the 

perturbed bootstrap current and eventually attain the steady

state width, 

W+=Wd(A.+~);;;'Wd' (127) 

The scale length Wd is the minimum steady-state island 

width, which can be maintained in the plasma by the per

turbed bootstrap current. It is concluded that an intrinsically 

stable magnetic island (i.e., A' <0) cannot be destabilized by 

the perturbed bootstrap current alone (assuming, of course, 

that the calculated value of W d is significantly greater than 

the linear layer width): some other effect is required to force 

the island width above the critical value. 

In the presence of an mIn field error, the evolution equa

tion for a locked island is written35 as 

where W v is the vacuum island width associated with the 

external perturbation. Here, it is assumed that there is rela

tively little plasma current outside the rational surface. In the 

absence of bootstrap effects, the steady-state width of the 

error field-driven island is given by 

(129) 

Suppose A.~l, so that W_=WdI2A. and W+=2A.Wd.1t 

is easily demonstrated from Eq. (128) that as We is gradually 

increased from a small value, there is a bifurcation of the 

steady-state island width, from (~) W _ to W + , when 

2 
Wc;;;'( WJcrit= 3J3 W _. (130) 

Clearly, in this situation a small error field can trigger the 

growth of a large magnetic island. The final island is much 

larger than the purely error field-driven island, and is main

tained in the plasma principally by the perturbed bootstrap 

current. This effect may offer an explanation for some puz

zling experimental results recently obtained on (the Joint Eu

ropean Torus) JET.37 It is found that the critical threshold 

amplitude for the phase locking of a driven island by an error 

field (and, hence, for substantial driven magnetic reconnec

tion in the plasma) is consistent with established theory,38 but 

that after locking the final island width is much larger (by up 

to an order of magnitude) than expected. This effect is not 

observed in low f3p plasmas.39 It is speculated that the rela-

Phys. Plasmas, Vol. 2, No.3, March 1995 

tively low locking threshold expected for (the International 

Tokamak Experimental Reactor) ITER,35 coupled with the 

relatively high expected f3p (and, hence, strong bootstrap ef

fects), will lead to a stringent upper limit on the tolerable 

level of error fields (typically, berrolBz~2X 10-5). If this 

limit is exceeded, the error fields will lock the plasma and 

induce small error field-driven islands, which will then trig

ger substantial bootstrap-driven magnetic islands. This pro

cess is likely to severely degrade the plasma performance, 

and may even lead to a major disruption.37,39,40 

VI. IMPLICATIONS FOR OHMICALLY HEATED 
TOKAMAKS 

The parallel thermal conductivity takes the form l7 

(131) 

in a short mean-free path plasma, where ne is the electron 

number density, Ve is the electron thermal velocity, and A. e is 

the electron mean-free path. However, in a conventional tok

amak plasma, the mean-free path A. e typically exceeds the 

parallel wavelength A. II = 1I1klli of helical perturbations. The 

simple-minded application of Eq. (131) yields unphysically 

large parallel heat fluxes. The parallel conductivity in the 

physically relevant long mean-free path limit (A.e~A.II) is 

crudely estimated as 

(132) 

which is equivalent to replacing conduction by convection 

(i.e., nevil VIIT) in the heat flow equation (13). For a mag

netic island of width W, the typical value of A.II is nSsWIRo. 
Perpendicular energy transport in tokamaks is highly 

anomalous, probably due to the action of short-wavelength 

electrostatic drift waves.41 It is, therefore, appropriate to use 

the anomalous perpendicular transport coefficient to study 

the physics of long-wavelength (low mode number) mag

netic islands. Assuming, for the sake of simplicity, that KJ.. is 

approximately constant across the plasma, it is easily dem

onstrated that35 

(133) 

where TE is the global (anomalous) energy confinement time 

scale. 

Consider the simple scaling model for Ohmic ally heated 

tokamak plasmas outlined in Ref. 33. The aspect ratio is 

a = 0.35 R 0' the toroidal magnetic field strength scales like 

BzCT) = 1.38 Rg·7 (m), the pressure profile is parabolic, the 

central temperature is estimated by balancing the Ohmic 

heating power against anomalous losses calculated using the 

neo-Alcator energy confinement time scale,42 and deuterium 

is the fueling ion species. The central q is 0.7, the edge q is 

4.5, and the line-averaged electron number density is 2X 1019 

m-3. For the 211 mode, rs=0.66a and Ss= 1.74. Table I 

shows the ratio of parallel to perpendicular thermal conduc

tivities at the q = 2 surface, the critical island width W d (for 

the 211 mode), and the parameter Amax (for the 2/1 mode), 

estimated as functions of the major radius using this scaling 

model. 
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TABLE I. The ratio of parallel to perpendicular thermal conductivities, the 

scale island width W d' and the parameter 8 m .. , estimated as functions of 

the major radius (for the 211 mode) using a simple scaling model for Ohmi

cally heated plasmas. 

Ro (m) Kj(KJ. Wd1a 8 m .. 

0.50 6AX 106 
0.105 3.8 

0.75 2AX 107 
0.076 4.8 

1.00 6.2X107 0.060 5.6 

1.50 2.3X 108 0.043 6.9 

2.00 6.6X108 0.033 8.1 

3.00 2AX 109 0.024 9.5 

4.00 6.2X109 
0.019 10.7 

6.00 2.5X 1010 0.013 13.3 

8.00 6.0XlO tO 0.011 13.8 

It can be seen from Table I that the ratio of parallel to 

perpendicular conductivities increases rapidly with increas

ing machine size, giving rise to a corresponding reduction in 

the scale island width W d' Recall [from Eq. (27) and Sec. 

V C] that W d is the minimum steady-state island width that 

can be maintained in the plasma by the perturbed bootstrap 

current. For island widths less than W d, bootstrap effects 

attenuate rapidly because the finite parallel thermal conduc

tivity of the plasma limits the perturbed pressure gradient 

that can develop in the vicinity of the island. In particular, 

there is no flattening of the plasma pressure inside the sepa

ratrix for W ~ W d' In small tokamaks W d is typically about 

10% of the minor radius, suggesting that only large magnetic 

islands are capable of flattening the temperature profile. Con

versely, in large tokamaks W d falls to a few percent of the 

minor radius, suggesting that small to medium islands can 

modify the temperature profile. The quantity Amax, which is 

the peak destabilizing bootstrap contribution to the Ruther

ford island equation [see Eq. (125)], increases slowly with an 

increasing major radius, but is significant for both large and 

small devices. 

VII. CONCLUSIONS 

The electron temperature perturbations associated with 

tearing modes are investigated for typical tokamak plasma 

parameters. It is found that there is a critical island width W d 

below which the conventional scenario where the tempera

ture is flattened inside the island separatrix breaks down due 

to the stagnation of magnetic field lines (Le., b· V -0) in the 

vicinity of the rational surface and the finiteness of the 

plasma parallel thermal conductivity. The critical width is 

easily estimated as the distance from the rational surface at 

which the two terms in the heat diffusion equation (13) bal

ance. Thus, 

KII(b. V)2_ K.L (V .L)2, 

giving [see Eqs. (15)] 

KII(ns s I Rors)2( W d)2- K.L I( W d)2, 

and so 

836 

W ( ) 114( 1 ) 112 

r: -:~ € ss sn ' 
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where Ro is the plasma major radius, rs is the minor radius 

of the rational surface, €s = r sf Ro is the local inverse aspect 

ratio, s s is the local magnetic shear, and n is the toroidal 

mode number. The critical width is non-negligible in conven

tional tokamak plasmas (see Table I). Islands whose widths 

are much less than W d give rise to no local flattening of the 

electron temperature profile. Such islands have very different 

ECE signatures to conventional magnetic islands. In prin

ciple, it should be possible to differentiate the two types of 

magnetic island using ECE data and, thereby, determine W d 

experimentally. It should also be possible to map out the 

outer ideal MHD eigenfunctions using ECE temperature 

measurements. 

Nonzero temperature gradients inside large magnetic is

lands have recently been observed on the Rijnhuizen toka

mak RTP.43 Furthermore, a mismatch between the island 

width deduced from magnetic data and that obtained from 

electron temperature measurements has been seen on the 

Wendelstein VII-A stellarator.44 In both cases, these effects 

are plausibly explained in terms of field line stagnation and a 

large, but finite, ratio of parallel and perpendicular thermal 

conducti vities in the plasma. 

Islands whose widths are much less than W d are not 

significantly destabilized by the perturbed bootstrap current, 

unlike conventional magnetic islands. It seems, therefore, 

unlikely that bootstrap effects alone could destabilize an in

trinsically stable (a' <0) magnetic island. Some other effect 

is required to force the island width above W d • In principle, 

the growth of bootstrap-driven islands could be triggered by 

coupling to other modes (via toroidicity and flux surface 

shaping) or interaction with external perturbations. Such 

coupling or interaction is known to destabilize tearing 

modes, but becomes ineffective below a certain threshold 

mode amplitude due to the naturally occurring differential 

rotation present in tokamak plasmas.35
,45 It is concluded that 

under normal circumstances (i.e., in the absence of mode 

locking) intrinsically stable tearing modes (Le., virtually all 

tearing modes) are not unduly affected by the perturbed 

bootstrap current. However, once mode locking has occurred 

(triggered, for instance, by the growth of an intrinsically un

stable mode, an increased error field amplitude, or a reduc

tion in the plasma viscosity due to a fall in plasma density) 

the growth of bootstrap-driven islands could be enabled (see 

Sec. V C). This mechanism offers a plausible explanation for 

some recent JET results, in which mode locking induced by 

a static error field (triggered by a drop in the plasma density) 

give rise to the formation of unexpectedly large static mag

netic islands.37 There are no islands present in the plasma 

prior to mode locking, and, in most cases, island formation 

eventually leads to a major disruption. Similar undesirable 

behavior can probably only be avoided in the proposed ITER 

device if the level of field errors is kept well below the criti

cal value required to induce mode locking (Le., 
berro/B z

$2X 10- 5).35 

In this paper it is assumed that the island lies in a region 

where there are no significant sources (or sinks) of heat, so 

that V·q =0. This is a reasonable assumption, but there are, 

nevertheless, situations in which it is not appropriate. For 

instance, when electron cyclotron radio frequency heating 
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(ECRH) is tuned so that the resonance lies close to the ratio

nal surface. Localized heating of the island region gives rise 

to two quite separate effects. The first effect is due to local 

modification of the equilibrium current profile, and can be 

either stabilizing or destabilizing.46 The second, and far 

stronger, effect is due to the interaction of the localized 

power input with the helical structure of the island, and de

pends crucially on the temperature being a flux surface func

tion in the vicinity of the island.3l For islands whose width is 

much less than the critical width W d, the second effect dis

appears, whereas the first effect persists. 

Finally, it should be noted that the arguments used in this 

paper to investigate energy transport could just as well be 

applied to particle transport. For example, by analogy with 

Eq. (13), a particle diffusion equation can be written as 

DII Vijne+D.L vIne=o. 

Thus, all of the results of Sec. II onward also apply to the 

density perturbations associated with tearing modes, pro

vided that KIV K.L is replaced by Dill D.L in the analysis. In 

particular, there is a critical island width, 

Wd, (D.L) l/4( I ) 112 

rs DII Esssn ' 

below which the density profile is not flattened inside the 

separatrix. In conventional tokamak plasmas, neD.L ~ K.L and 

neDIl ~ ~melmiKII' where me is the electron mass and mi 

the fueling ion mass.S
•
17 In fact, in the long mean-free path 

regime neDII~(melmi)3/2KII because of the dependence of 

DII and 1<11 on island width-see Eq. (132). For the Ohrnically 

heated tokamak plasmas investigated in Table I (with deute

rium as the fueling ion species) DIIID.L ~4.2XI0-3 KIVK.L' 

which implies that W d' ~ 3.9 W d' It follows from Table I 

that flattening of the density profile by magnetic islands is 

only likely to occur for relatively large islands in big toka

maks, and is unlikely to occur at all in small tokamaks. Note 

that only the largest magnetic islands, with W ~ W d' or W d, 

experience the full destabilizing influence of the perturbed 

bootstrap current. Medium-sized islands, W d' ~ W~ W d , 

only experience that part of the bootstrap effect that is due to 

perturbed temperature gradients, and small islands, W <'.i W d 

experience no effect whatsoever. 
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