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A topological electric quadrupole is a recently proposed concept that extends the theory of electric

polarization of crystals to higher orders. Such a quadrupole phase supports topological states localized on

both edges and corners. In this work, we show that in a quadrupole phase of a honeycomb lattice,

topological helical edge states and pseudospin-polarized corner states appear by making use of a

pseudospin degree of freedom related to point group symmetry. Furthermore, we argue that a general

condition for the emergence of helical edge states in a (pseudo)spinful quadrupole phase is the existence of

either mirror or time-reversal symmetry. Our results offer a way of generating topological helical edge

states without spin-orbital couplings.
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The concept of topology in electronic materials has

offered us a unique dimension to design materials with

useful properties [1–3]. Especially in topological insulators

(TIs), a dissipationless spin current flows along the edges

of a strip in the absence of charge current [4,5]. These

topological helical edge states have potential applications in

low-power electronics [6]. Realization of topological helical

edge states usually requires a spin-orbital coupling. How to

realize topological helical edge states without spin-orbit

couplings remains as a fundamental open question [7,8].

The recently proposed topological electric multipoles

such as dipoles and quadrupoles offer us a nice oppor-

tunity to attack this open question [9,10]. Topological

electric multipole is a generalization of the modern theory

of charge polarization to high dimensions [11–13], which

introduces a new class of topological materials dubbed

as high order TIs [14–18]. When a sample with finite

topological electric dipole moment is terminated with an

edge, topologically protected fractional charge will appear

on the edge [19–22]. Analogously, a finite quadrupole

upon being terminated develops both topological edge and

corner states. Experiments have observed these topologi-

cal corner states in various systems such as photonic,

acoustic crystals and circuit arrays [23–25]. Remarkably,

emergences of finite topological dipole and quadrupole do

not require spin-orbital couplings [26,27].

In previous studies of topological electric multipole

phase, (pseudo)spin degrees of freedom have not been

paid much attention. Without (pseudo)spins, electric-multi-

pole-induced edge states are topologically protected but not

helical. These edge states suffer from dissipation during

propagation. To overcome this shortcoming and gain

fundamental understanding of topological electric multi-

poles, we introduce pseudospin degrees of freedom related

to point group symmetry in a topological quadrupole phase.
For concreteness, we consider a honeycomb lattice with
Kekulé-like hopping textures. Based on this model, we
argue that a general condition for the emergences of
topological helical edge states in a (pseudo)spinful quadru-
pole phase is the existence of either mirror or time-reversal
symmetry.
Before going into details of the honeycomb lattice model,

let us introduce the topological electric multipoles such as
dipoles and quadrupoles first. In crystalline systems, electric
multipoles are related to the Berry connection in momentum
space. For example, the dipolemoment in a two-dimensional
(2D) system can be expressed as

PiðkÞ ¼
e

jPj

XNocc

n

Z
P

AnðkÞ · nidk
0; ð1Þ

where the summation is taken for all the occupied energy
bands, k ¼ ðk; k0Þ, the integration is along a straight path P
that connects two equivalentk points inmomentumspace.ni

is a unit vector along the i direction, andAn ¼ ihunkj∂kjunki
is the Berry connection with junki the periodic part of the
Bloch state of the nth energy band. Because of gauge
freedom, the dipole moment is well defined up to a lattice
constant. Since there are two independent directions in a 2D
system, the dipole moment of the nth energy band is written
as Pn ¼ ðPn

i ; P
n
j Þ in general. The independent components

of a dipole moment allow us to define a quadrupole as

Qij ¼
XNocc

n

Pn
iP

n
j=e: ð2Þ

Equation (2) clearly states that a corner state appears when
both ofPn

i andP
n
j are not zero. The derivation of Eqs. (1) and

(2) is given in Sec. A of the Supplemental Material [28].
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The honeycomb lattice with a Kekulé-like hopping

texture is displayed in Fig. 1(a) [29,30]. There are two

types of hopping parameters such as intracell hopping γ

and intercell hopping γ0 similar to the Su-Schrieffer-Heeger

(SSH) model [31,32]. Resembling the SSH model, a

topological dipole appears when jγj < jγ0j [30]. Because
of the C6v point group symmetry that dipole moment is not

zero for both b1 and b2 directions, a finite quadrupole may

exist. Here b1 and b2 are the primitive lattice vectors of

the reciprocal lattice, which form the 1st Brillouin zone as

shown in Fig. 1(b). The energy band spectrums for jγj >
jγ0j and jγj < jγ0j are displayed in Fig. 1(c). In the case of

jγj < jγ0j, band inversions happen at Γ and M. A detailed

energy bands’ evolution by changing γ=γ0 is given in Sec. B
of the Supplemental Material [28].

Since numerical evaluation of AnðkÞ produces very

spiky function in momentum space due to the gauge

freedom of wave functions, it is difficult to obtain the

dipole moment numerically using Eq. (1). However, under

a zero Berry curvature (F ¼ ∂iAj − ∂jAi) [33], based on

Eq. (1) the dipole moment can be determined by the

eigenvalue of C2 rotation at high-symmetric k points such

as [13,30]

Pn
i ¼

1

2
ðqni modulo 2Þ; ð−1Þq

n
i ¼

ηnðMiÞ

ηnðΓÞ
; ð3Þ

where ηnðkÞ is the eigenvalue of π rotation over the z axis
at k point for the nth energy band. Then on the basis of the
eigenvalue of π rotation at Γ and Mi shown in Fig. 1(c) for

jγj < jγ0j, we obtain dipole moments e=2, 0, e=2 for the 1st
(red), 2nd (blue), and 3rd (green) occupied bands, respec-

tively. Similarly, the quadrupoles are e=4, 0, and e=4,
respectively, as Pn

1
¼ Pn

2
guaranteed by the C6v point group

symmetry. From Eqs. (1) and (2) the total dipole moment

vanishes and the total quadrupole is e=2. Thus, topological
edge and corner states appear owing to the finite quadru-

pole e=2 when jγj < jγ0j. In the following we show that by

introducing a pseudospin degree of freedom related to C6v

point group symmetry, topological helical edge states and

pseudospin-polarized corner states appear.

As shown inFig. 1(c), owing toC6v point group symmetry,

there are two pairs of doubly degenerate states at Γ, i.e.,

E1 and E2 that may be regarded as pseudospins. For E1

states, we call them jE11i and jE12i, which are given by

jE11i; jE12i ¼
P

je
�iðj−1Þρjji. Similarly, jE21i; jE22i ¼P

je
�iðj−1Þωjji. Here jji (j ¼ 1;…; 6) indicates six atomic

orbitals in a unit cell as indexed in Fig. 1(a), ρ ¼ π=6 and

ω ¼ π=3. As Ei1 and Ei2 transform into each other under

mirror reflection and also time reversal similar to real spins as

depicted in Fig. 2, we regard them as pseudospin degrees of

freedom defined as

j1↑i ¼ jE11i; j2↑i ¼ jE21i;

j1↓i ¼ jE12i; j2↓i ¼ jE22i: ð4Þ

(a) (b)

(c)

FIG. 1. (a) Schematic of the model that is characterized by two

hopping parameters γ and γ0. Within a unit cell, there are six

atomic orbitals jji, j ¼ 1;…; 6. (b) Reciprocal lattice vectors b1;2

and the first Brillouin zone. (c) Energy bands spectrum for jγj >
jγ0j and jγj < jγ0j. “�” indicates the eigenvalue of π rotation of

wave functions at Γ andM points.M refers to eitherM1 orM2 in

the 1st Brillouin zone. The first three energy bands in the case of

jγj < jγj0 are colored as red, blue, and green, respectively, for

clarifying the dipole moment of each band.

FIG. 2. Schematic of pseudospins made up by linear combi-

nation of atomic orbitals. Pseudo spin-up and -down transform to

each by either time-reversal operation or mirror reflection. Inset:

combination factors indicated in color.
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In ourmodel, there is no difference between pseudospins and

real spins, we simply call them spins from now on.

To demonstrate the existence of helical edge states, we

consider a ribbon structure extended along the a2 direction

as displayed in Fig. 3(a). By solving its corresponding

Hamiltonian, we obtain the energy spectrum of the ribbon

as displayed in Fig. 3(b). It is clear to see that there is a pair

of edge-state energy bands appearing within the band gap

in Fig. 3(b). To show that these edge states are helical,

we calculate the spin polarization defined by SP ¼
jhα↑jψij

2
− jhα↓jψij

2, where α ¼ 1, 2 and jψi is an edge

state vector. Taking k ¼ �0.2 and the lower branch of edge

states in Fig. 3(b) as an example, we show the spin-

polarization value of the edge states in Fig. 3(c). From

Fig. 3(c) we see that the edge states of same k but opposite

spins are located separately, resulting in finite spin polari-

zation. It is noted that these helical topological edge states

are also characterized by the Z2 invariant, Fu-Kane-Mele

index, which is determined by the C2 eigenvalue of

occupied wave functions at four high-symmetric k points

such as Γ, M1, M2, and M3 [34]. Because of the C6v point

group symmetry of the unit cell displayed in Fig. 1(a), the

Fu-Kane-Mele index and quadrupole moment always

coincide. A demonstration of dissipationless transport

owing to the topological helical edge states is given in

Sec. C of the Supplemental Material [28,35].

Besides edge states, corner states also emerge in a quadru-

pole phase, which is an essential signature that distinguishes

the high-order TIs from conventional TIs. We should stress

that the emergence of corner states does not require a global

band gap of edge states. To demonstrate the existence of

corner states, we consider a finite sample spanning 10 × 10

unit cells with open boundaries as displayed in Fig. 4(a). This

sample has two types of edges and also two types of corners,

i.e., zigzag and armchair. By solving its Hamiltonian, we

observe eight corner states in total as there are four corners

and also two spins. Four of the corner states have positive

energies, and the other four have negative energies. Corner

states localized at zigzag and armchair corners also have

different energies. The eigenenergies of the corner states

are located within the band gap between the bulk and edge

states, which is 0.05γ from edge states and 0.5γ from bulk

states, large enough to separate them from the continuum of

extended Bloch states of bulk and edges. For each corner

state, there is e=2 amount of charge. In Sec. D of the

Supplemental Material the detailed charge distribution of
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FIG. 3. (a) Schematic of a ribbon supporting topological helical edge states. The ribbon is periodic along the y direction. There are two
mirror planes denoted as Mx and My. (b) Energy spectrum of the ribbon for γ ¼ −1.0 and γ0 ¼ −2.0. The wave number k refers to

direction b1. Within the bulk energy gap, a pair of spin-polarized bands consisting of edge states appear. (c) Helical edge states. Because

of mirror symmetry (time reversal symmetry), edge states of the same energy must propagate oppositely—as indicated by the cross and

dot—with opposite spin polarization on the same edge.
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FIG. 4. (a) Schematic of a sample comprised of 10 × 10 unit cells supporting the corner states. We call the edge along the x direction
zigzag, while that along the y direction armchair. (b) Spin decomposition of the corner states with positive energies, blue (red) for the

spin-up (-down) component. Zigzag corner states are spin-polarized up while armchair corner states are spin-polarized down. Insets:

charge density maps for the corner states.
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corner states is given [28]. As corner states have zero

momentum, the spin-up and spin-down corner states are

degenerate due to time-reversal symmetry. Thus, the corner

states are not polarized along the z direction of spins. But

due to finite spin-spin coupling, they are polarized along the

x or y direction of spins. To see this, we redefine the spins

by jα0↑i; jα
0
↓i ¼ jα↑i � ijα↓i with α ¼ 1, 2. Then taking the

corner states with positive energies as an example, we

calculate their spin polarization according to this definition.

The result is displayed in Fig. 4(b). We see that for zigzag

corners, the corner states are spin-polarized up, whereas,

for armchair ones, the states are polarized down. The spin

polarization of each corner state is constant regardless of the

values of γ and γ0 as long as jγ0=γj > 1, testifying to their

topological nature. These spin-polarized topological corner

states may work as spinful quantum dots, with potential

applications in spintronics.

In the above discussions, we have shown the existence of

topological helical edge states and also spin-polarized

corner states in the honeycomb model. Here we try to find

a general condition for emergence of helical edge states in a

spinful quadrupole phase. We denote the spinful quadru-

pole-induced localized states on the edge ζ with momentum

k and spin σ ¼ ð↑;↓Þ as jk; σ; ζi. Here ζð¼ L; RÞ indicates
left-side edge “L” or right-side edge “R” of a ribbon. To

obtain spin-polarized edge states, it is required that jk;↑; ζi
and jk;↓; ζi are not degenerate as shown in the honeycomb

model. To fulfill this condition, we check if there is any

symmetry connecting these two states. Here we consider

three elementary symmetries such as time-reversal T ,

mirror reflections Mx and My, and π rotation along the

z direction Rπ . Simply we have

T jk; σ; ζi ¼ j−k; σ̄; ζi;

Mxjk; σ; ζi ¼ jk; σ̄; ζ̄i;

Myjk; σ; ζi ¼ j−k; σ̄; ζi;

Rπjk; σ; ζi ¼ j−k; σ; ζ̄i;

where σ, σ̄ have opposite values, and so as ζ, ζ̄. From the

above relations, it is noticed that the above symmetric

operations change either two of these three “quantum

numbers.” Suppose that the jk;↑; Li state is j0; 0; 0i and

the jk;↓; Li is j0; 1; 0i, it seen that any single and

combinations of these symmetric operations cannot con-

nect the two edge states as these symmetric operations

conserve the summation parity of these three quantum

numbers. In other words, in a spinful quadrupole phase, the

edge states are spin polarized in general, which is a quite

unconventional result.

Finally, we discuss the relation of the proposed honey-

comb model with conventional TIs that are supported by

spin-orbital couplings. In the honeycomb model, edge and

corner states are protected by finite charge polarization,

which corresponds to a winding phase of a connection

defined by Bloch functions in momentum space as shown

in Eq. (1). The nonzero winding phase can also be

expressed as an integration of a curvature by adding one

extra dimension [20]. As discussed in Ref. [36], by

dimensional reduction a 2D TI can be mapped to a 1D

SSH model. Thus, the proposed honeycomb model that is

similar to the 2D SSH model corresponds to a new type of

3D TI. To see this, we investigate an adiabatic pumping

process of the spinful quadrupole in the honeycomb model

controlled by parameter θ. Namely, we set ðμ; γ; γ0Þ ¼
ðcos θ; 0.2; sin θÞ, where μ is a staggered on-site potential

with opposite signs on the even- and odd-numbered atomic

orbitals in a unit cell. The pumping spectrum for half period

of the finite sample of Fig. 4(a) is displayed in Fig. 5(a). It is

made up of three portions—bulk, edge, and corner states,

which are shown as black, blue, and red in Fig. 5(a),

respectively. By replacing the pumping parameter θ with a

quasimomentum kz along the third direction, we end up

with a class of 3D TIs featuring spin-polarized surface and

hinge states as shown in Fig. 5(b). To realize this type of

3D TIs, one may stack the honeycomb structure with on-site

potentials depending on the layer index and a small interlayer

hopping.

We have discussed a spinful quadrupole phase as exem-

plified on a honeycomb lattice with Kekulé-like hopping

texture. With neither spin-orbital couplings nor external

fields, topological helical edge states closely resembling

those in conventional TIs have been created plus spin-

polarized corner states. By an adiabatic pumping process

of spinful quadrupole, we have defined a new class of three-

dimensional topological insulators characterized by spin-

polarized surface and hinge states. These results are expected

to be useful for understanding the topological properties of

crystalline systems and designing novel topological materi-

als for low-power electronics.

or

(a)

x

y
z

(b)

-1

1

0

0

FIG. 5. (a) Pumping spectrum of a spinful quadrupole for a half

period. The spectrum consists of three types of states: the bulk

states (black), edge states (blue), and corner states (red). (b) By

replacing θ with a quasi wave number kz along the third direction,
a class of 3D topological insulators characterized by spin polarized

hinge states—blue for spin-up and red for spin-down—emerge.
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