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Abstract. We prove that any regular integral invariant of volume-preserving
transformations is equivalent to the helicity. Specifically, given a functional I
defined on exact divergence-free vector fields of class C1 on a compact 3-
manifold that is associated with a well-behaved integral kernel, we prove that I
is invariant under volume-preserving diffeomorphisms if and only if it is a
function of the helicity.

Significance statement: Helicity is a remarkable conserved quantity that is fun-
damental to all the natural phenomena described by a vector field whose evolution
is given by volume-preserving transformations. This is the case of the vorticity of
an inviscid fluid flow or of the magnetic field of a conducting plasma. The topo-
logical nature of the helicity was unveiled by Moffatt, but its relevance goes well
beyond that of being a new conservation law. Indeed, the helicity defines an inte-
gral invariant under any kind of volume-preserving diffeomorphisms. A well-known
open problem is whether there exist any integral invariants other than the helicity.
We answer this question by showing that, under some mild technical assumptions,
the helicity is the only integral invariant.

1. Introduction

Incompressible inviscid fluids are modeled by the three-dimensional Euler equa-
tions, which assert that the velocity field u(x, t) of the fluid flow must satisfy the
system of differential equations

∂tu+ (u · ∇)u = −∇p , div u = 0 .

Here the scalar function p(x, t) is another unknown of the problem, which physically
corresponds to the pressure of the fluid.

It is customary to introduce the vorticity ω := curlu to simplify the analysis of
these equations, as it enables us to get rid of the pressure function. In terms of the
vorticity, the Euler equations read as

(1) ∂tω = [ω, u] ,

where [ω, u] := (ω · ∇)u− (u · ∇)w is the commutator of vector fields and u can be
written in terms of ω using the Biot–Savart law

(2) u(x) = curl−1 ω(x) :=
1

4π

∫

R3

ω(y)× (x− y)

|x− y|3
dy ,

at least when the space variable is assumed to take values in the whole space R
3.

The transport equation (1) was first derived by Helmholtz, who showed that the
meaning of this equation is that the vorticity at time t is related to the vorticity at
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initial time t0 via the flow of the velocity field, provided that the equation does not
develop any singularities in the time interval [t0, t]. More precisely, if φt,t0 denotes
the (time-dependent) flow of the divergence-free field u, then the vorticity at time t
is given by the action of the push-forward of the volume-preserving diffeomorphism
φt,t0 on the initial vorticity:

ω(·, t) = (φt,t0)∗ ω(·, t0) .

The phenomenon of the transport of vorticity gives rise to a new conservation law
of the three-dimensional Euler equations. Moffatt coined the term helicity for this
conservation law in his influential paper [18], and exhibited its topological nature.
Indeed, defining the helicity of a divergence-free vector field w in R

3 as

H(w) :=

∫

R3

w · curl−1 w dx ,

it turns out that the helicity of the vorticity H(ω(·, t)) is a conserved quantity for
the Euler equations. In fact, helicity is also conserved for the compressible Euler
equations provided the fluid is barotropic (i.e. the pressure is a function of the
density).

It is well known that the relevance of the helicity goes well beyond that of
being a new (non-positive) conserved quantity for the Euler equations. On the one
hand, the helicity appears in other natural phenomena that are also described by a
divergence-free field whose evolution is given by a time-dependent family of volume-
preserving diffeomorphisms [17]. For instance, the case of magnetohydrodynamics
(MHD), where one is interested in the helicity of the magnetic field of a conducting
plasma, has attracted considerable attention. On the other hand, it turns out
that the helicity does not only correspond to a conserved quantity for evolution
equations such as Euler or MHD, but in fact defines an integral invariant for vector
fields under any kind of volume-preserving diffeomorphisms [3]. Let us elaborate
on this property, which is perhaps the key feature of the helicity. Notice that
conserved quantities of the Euler or MHD equations (e.g., the kinetic energy and
the momentum) are not, in general, invariant under arbitrary volume-preserving
diffeomorphisms.

Helicity is often analyzed in the context of a compact 3-dimensional manifold M
without boundary, endowed with a Riemannian metric. The simplest case would be
that of the flat 3-torus, which corresponds to fields on Euclidean space with periodic
boundary conditions. To define the helicity in a general compact 3-manifold, let
us introduce some notation. We will denote by X

1
ex the vector space of exact

divergence-free vector fields on M of class C1, endowed with its natural C1 norm.
We recall that a divergence-free vector field w is exact if its flux through any closed
surface is zero (or, equivalently, if there exists a vector field v such that w =
curl v). This is a topological condition, and in particular when the first homology
group of the manifold is trivial (e.g., in the 3-sphere) every divergence-free field is
automatically exact.

As is well known, the reason to consider exact fields in this context is that,
on exact fields, the curl operator has a well defined inverse curl−1 : X1

ex → X
1
ex.

The inverse of curl is a generalization to compact 3-manifolds of the Biot–Savart
operator (2), and can also be written in terms of a (matrix-valued) integral kernel
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k(x, y) as

(3) curl−1 w(x) =

∫

M

k(x, y)w(y) dy ,

where dy now stands for the Riemannian volume measure. Using this integral
operator, one can define the helicity of a vector field w on M as

H(w) :=

∫

M

w · curl−1 w dx .

Here and in what follows the dot denotes the scalar product of two vector fields de-
fined by the Riemannian metric on M . The helicity is then invariant under volume-
preserving transformations, that is, H(w) = H(Φ∗w) for any diffeomorphism Φ of
M that preserves volume.

In view of the expression (3) for the inverse of the curl operator, it is clear that
the helicity is an integral invariant , meaning that it is given by the integral of a
density of the form

H(w) =

∫

G(x, y, w(x), w(y)) dx dy .

Arnold and Khesin conjectured [3, Section I.9] that, in fact, the helicity is the only
integral invariant, that is, there are no other invariants of the form

(4) I(u) :=

∫

G(x1, . . . , xn, u(x1), . . . , u(xn)) dx1 · · · dxn

with G a reasonably well-behaved function. Here all variables are assumed to be
integrated over M .

Our objective in this paper is to show, under some natural regularity assump-
tions, that the helicity is indeed the only integral invariant under volume-preserving
diffeomorphisms. To this end, let us define a regular integral invariant as follows:

Definition. Let I : X1
ex → R be a C1 functional. We say that I is a regular integral

invariant if:

(i) It is invariant under volume-preserving transformations, i.e., I(w) = I(Φ∗w)
for any diffeomorphism Φ of M that preserves volume.

(ii) At any point w ∈ X
1
ex, the (Fréchet) derivative of I is an integral operator

with continuous kernel, that is,

(DI)w(u) =

∫

M

K(w) · u ,

for any u ∈ X
1
ex, where K : X1

ex → X
1
ex is a continuous map.

In the above definition and in what follows, we omit the Riemannian volume
measure under the integral sign when no confusion can arise. Observe that any
integral invariant of the form (4) is a regular integral invariant provided that the
function G satisfies some mild technical assumptions.

The following theorem, which is the main result of this paper, shows that the
helicity is essentially the only regular integral invariant in the above sense. The
proof of this result is presented in Section 2, and is a generalization to any closed
3-manifold of a theorem of Kudryavtseva [15], who proved an analogous result for
divergence-free vector fields on 3-manifolds that are trivial bundles of a compact
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surface with boundary over the circle, which admit a cross section and are tangent
to the boundary. Kudryavtseva’s theorem is an extension of her work on the unique-
ness of the Calabi invariant for area-preserving diffeomorphisms of the disk [14]. We
observe that our main result does not imply the aforementioned theorem because
we consider manifolds without boundary.

Theorem. Let I be a regular integral invariant. Then I is a function of the
helicity, i.e., there exists a C1 function f : R → R such that I = f(H).

We would like to remark that this theorem does not exclude the existence of other
invariants of divergence-free vector fields under volume-preserving diffeomorphisms
that are not C1 or whose derivative is not an integral operator of the type described
in the definition above. For example, the KAM-type invariants recently introduced
in [11] are in no way related to the helicity, but they are not even continuous
functionals on X

1
ex.

Other type of invariants that have attracted considerable attention are the as-
ymptotic invariants of divergence-free vector fields [2, 8, 10, 4, 5, 1, 13]. These
invariants are of non-local nature because they are defined in terms of a knot in-
variant (e.g., the linking number) and the flow of the vector field. In some cases,
it turns out that the asymptotic invariant can be expressed as a regular integral
invariant, as happens with the asymptotic linking number for divergence-free vector
fields [2], the asymptotic signature [8] and the asymptotic Vassiliev invariants [5, 13]
for ergodic divergence-free vector fields. In these cases, the authors prove that the
corresponding asymptotic invariant is a function of the helicity, which is in perfect
agreement with our main theorem.

The so-called higher order helicities [6, 16, 12] are also invariants under volume-
preserving diffeomorphisms. However, they are not defined for any divergence-free
vector field, but just for vector fields supported on a disjoint union of solid tori.
This property is, of course, not even continuous in X

1
ex, so these functionals do not

fall in the category of the regular integral invariants considered in this paper.

Our main theorem is reminiscent of (and somehow complementary to) Serre’s
theorem [19] showing that any conserved quantity of the three-dimensional Euler
equations that is the integral of a density depending on the velocity field and its
first derivatives,

I(u) :=

∫

R3

G(u(x, t), Du(x, t)) dx ,

is a function of the energy, the momentum and the helicity. From a technical point
of view, the proof of our main theorem is totally different to the proof of Serre’s
theorem, which is purely analytic, only holds in the Euclidean space, and is based on
integral identities that the density G must satisfy in order to define a conservation
law of the Euler equations.

Even more importantly, from a conceptual standpoint it should be emphasized
that Serre’s theorem applies to conserved quantities of the Euler equations, while
our theorem concerns the existence of invariants under volume-preserving diffeo-
morphisms, which is a much stronger requirement. In particular, the energy and
the momentum are invariant under the evolution determined by the Euler equations
(which corresponds to the transport of the vorticity under the velocity field) but
they are not invariant under the flow of an arbitrary divergence-free vector field.
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In particular, the fact that the energy and the momentum are not functions of the
helicity but this does not contradict our main theorem.

It is worth noticing that one can construct well-behaved integral invariants of La-
grangian type that are invariant under general volume-preserving diffeomorphisms
but which are not functions of the helicity. These functional arise in a natural
manner in the analysis of the Euler or MHD equations especially when one consid-
ers integrable fields, that is, fields whose integral curves are tangent to a family of
invariant surfaces. In this context, if f is any well-behaved function (e.g., a smooth
function supported on a region covered by invariant surfaces) which is assumed to
be transported under the action of the diffeomorphism group, the functional

F(f, w) :=

∫

M

f w · curl−1 w dx

is invariant under volume-preserving diffeomorphisms (and it is not a function of
the helicity). The key point here is that the assumption that f is transformed in
a Lagrangian way means that the action of the volume-preserving diffeomorphism
group is not the one considered in this paper (which would be Φ · F(f, w) :=
F(f,Φ∗w)), but the one given by

Φ · F(f, w) := F(f ◦Φ−1,Φ∗w) .

In this sense, this new action is defined on functionals mapping a function and a
vector field (rather than just a vector field) to a number, so it does not fall within
the scope of our theorem.

2. Proof of the main theorem

We divide the proof of the main theorem in five steps. The idea of the proof,
which is inspired by Kudryavtseva’s work on the uniqueness of the Calabi invari-
ant [14], is that the invariance of the functional I under volume-preserving dif-
feomorphisms implies the existence of a continuous first integral for each exact
divergence-free vector field. Since a generic vector field in X

1
ex is not integrable,

we conclude that the aforementioned first integral is a constant (that depends on
the field), which in turn implies that I has the same value for all vector fields in
a connected component of the level sets of the helicity. Since these level sets are
path connected, the theorem will follow.

Step 1: For each vector field w ∈ X
1
ex, either curlK(w) = fw on M\w−1(0) for

some function f ∈ C0(M\w−1(0)) or the field w admits a nontrivial first integral
(that is, ∇F · w = 0 for some nonconstant function F ∈ C1(M)). We first notice
that the flow φt of any divergence-free vector field u is a 1-parameter family of
volume-preserving diffeomorphisms, so the functional I must take the same values
on w and its push-forward (φt)∗w, i.e.

I((φt)∗w) = I(w)

for all t ∈ R. Taking derivatives with respect to t in this equation and evaluating
at t = 0, we immediately get

(5) 0 =
d

dt
I((φt)∗w) = (DI)w([w, u]) =

∫

M

K(w) · [w, u] .
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D0

D1

p0

p1

U

Figure 1. A flow box for the vector field w.

The identity [w, u] = curl(u×w) for divergence-free fields allows us to write the
integral above as

∫

M

K(w) · [w, u] =

∫

M

K(w) · curl(u× w)

=

∫

M

curlK(w) · (u × w)

=

∫

M

u · (w × curlK(w))

where we have integrated by parts to obtain the second equality. Hence Eq. (5)
implies that for each pair of vector fields u,w ∈ X

1
ex we have

∫

M

u · (w × curlK(w)) = 0 .

It then follows that the vector field w × curlK(w) is L2-orthogonal to all the
divergence-free vector fields on M , and hence the Hodge decomposition theorem
implies that there exists a C1 function F on M such that w × curlK(w) = ∇F .
Then w · ∇F = 0, so F is a first integral of w.

In the case that F is identically constant, we have that w × curlK(w) = 0,
so curlK(w) is proportional to w at any point of M where the latter does not
vanish. Since curlK(w) is a continuous vector field on M because, by assumption,
K(w) ∈ X

1
ex, it follows that there is a continuous function f such that

(6) curlK(w) = fw

in M\w−1(0), as we wanted to prove.

Step 2: The function f ∈ C0(M\w−1(0)) is a continuous first integral of w. The
flow box theorem ensures that for any point in the complement of the zero set
w−1(0) there is a neighborhood U and a diffeomorphism Φ : U → [0, 1] ×D such
that Φ∗w = ∂z. Here D := {x ∈ R

2 : |x| 6 1} is the closed unit 2-disk, and
[0, 1]×D is endowed with the natural Cartesian coordinates x ∈ D and z ∈ [0, 1].
Using the notation Ds := Φ−1({s} ×D) and S := Φ−1([0, 1] × ∂D), it is obvious
from the definition of the flow box that

∂U = D0 ∪ D1 ∪ S ,

and that the integral curves of w are tangent to the cylinder S and transverse to
the disks D0 and D1. This construction is depicted in Figure 1.
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Taking the negative orientation for the surface ∂U (i.e., choosing a unit normal
vector ν on ∂U that points inward), we can compute the flux of fw across ∂U as

∫

∂U

fw · ν dσ =

∫

D0

fw · ν0 dσ −

∫

D1

fw · ν1 dσ ,

where dσ denotes the induced surface measure and νs denotes the unit normal
on Ds pointing in the direction of w (that is, w · νs > 0).

Using Eq. (6), the flux of fw can also be written as
∫

∂U

fw · ν dσ =

∫

∂U

curlK(w) · ν dσ = 0 ,

with the integral vanishing by Stokes’ theorem. Therefore we conclude that the
fluxes through the caps D0 and D1 must be equal, that is,

(7)

∫

D0

fw · ν0 dσ =

∫

D1

fw · ν1 dσ .

Suppose now that f is not constant along the integral curves of w. Then we can
take a point x0 ∈ D such that the function f takes different values at the points
ps := Φ−1(s, x0) ∈ Ds, with s = 0, 1. For concreteness, let us assume that

(8) f(p0) < f(p1) ,

the case f(p0) > f(p1) being completely analogous. By the continuity of f , we
can then take the flow box narrow enough (i.e. with D0 and D1 having very small
diameters) such that c0 < c1, where

c0 := max
x∈D0

f(x) , c1 := min
x∈D1

f(x) .

Therefore, since w · νs > 0 on Ds, we have the bound
∫

D0

fw · ν0 dσ 6 c0

∫

D0

w · ν0 dσ < c1

∫

D1

w · ν1 dσ 6

∫

D1

fw · ν1 dσ ,

where to obtain the second inequality we have used that, as w is divergence-free,
Stokes’ theorem implies that

∫

D0

w · ν0 dσ =

∫

D1

w · ν1 dσ .

This inequality above contradicts Eq. (7), so we conclude that f must be constant
along the integral curves of w, thus proving that f is a continuous first integral of w
on M\w−1(0), as we had claimed.

Step 3: There exists a continuous functional C on X
1
ex\{0} such that derivatives

of the invariant I and of the helicity H are related by (DI)w = C(w)(DH)w. Let
us start by noticing that Steps 1 and 2 imply that either w has a nontrivial first
integral F ∈ C1(M) or the function f defined in Step 1 is a continuous first integral
of w in the complement of its zero set. Now we observe that there exists a residual
set R of vector fields in X

1
ex such that any w ∈ R is topologically transitive and

its zero set consists of finitely many hyperbolic points. (We recall that a set is
residual if it is the intersection of countably many open dense sets. In particular,
a residual set is always dense but not necessarily open.) This theorem was proved
in [7] for divergence-free C1 vector fields, not necessarily exact. However, it is not
difficult to prove that the same result holds true for exact divergence free vector
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fields. Indeed, the proof of [7] consists in perturbing a divergence-free vector field
w to obtain another divergence-free vector field w̃ of the form

w̃ = w +

N
∑

i=1

vi ,

where each vi is a C1 divergence-free vector field supported in a contractible set.
Each vector field vi is necessarily exact because any divergence-free vector field
supported in a contractible set is, so the resulting perturbed field w̃ is exact too.
With this observation, the main theorem in [7] automatically applies to the class
of exact divergence-free C1 vector fields, X1

ex.

Hence let us take a vector field w ∈ R. Since it is topologically transitive, it has
an integral curve that is dense in M , so any continuous first integral of w must be
a constant. Accordingly, Steps 1 and 2 imply that curlK(w) = fw in M\w−1(0),
with f a first integral of w, and therefore the function f is a constant cw (depending
on w) in the complement of the zero set w−1(0). Since this set consists of finitely
many points, cw is the unique continuous extension of f to the whole manifold M .
As curlK(w) is a continuous vector field, for any w ∈ R it follows that

(9) curlK(w) = cww

in M , so curlK(w)× w = 0.

Since the kernelK is a continuous map X
1
ex → X

1
ex, the fact that curlK(w)×w =

0 for all w in the residual setR ⊂ X
1
ex implies that curlK(w)×w = 0 for all w ∈ X

1
ex.

Therefore for any w ∈ X
1
ex\{0} we can define a function f ∈ C0(M\w−1(0)) by

setting

f :=
w · curlK(w)

|w|2
,

such that

curlK(w) = fw

on M\w−1(0). In view of the expression for f , the mapping w → f is continuous
on X

1
ex\{0} due to the continuity of the kernel K : X1

ex → X
1
ex. Since f is given

by a w-dependent constant cw whenever w lies in the residual set R of X1
ex, we

conclude that this must also be the case for all w ∈ X
1
ex\{0}, so the map w 7→

− 1
2cw defines a continuous functional C : X1

ex\{0} → R. (The factor 1
2 has been

included for future notational convenience.) The continuous functionals curlK(w)
and −2C(w)w coinciding in a residual set, it stems that for any w ∈ X

1
ex\{0} one

has

curlK(w) = 2 C(w)w

in all M .

Since the curl operator is invertible on X
1
ex and C(w) is just a constant, we can

use the above equation for curlK(w) to write the derivative of I at w as

(DI)w(u) = 2 C(w)

∫

M

curl−1 w · u .

The claim of this step then follows upon recalling that the differential of the helicity
is given by

(DH)w(u) = 2

∫

M

curl−1 w · u .
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Step 4: The level sets of the helicity, H−1(c), are path connected subsets of X1
ex.

Let w0 and w1 be two vector fields in X
1
ex with the same helicity:

H(w0) = H(w1) = c .

For concreteness, let us assume that c is positive. It is easy to see that the path
connectedness of the level set H−1(c) is immediate if one can prove the existence of
a path of positive helicity connecting w0 and w1, i.e., a continuous map w : [0, 1] →
X

1
ex such that w(0) = w0, w(1) = w1 and H(w(t)) > 0 for all t ∈ [0, 1]. Indeed, one

can then set

w̃(t) :=

(

c

H(w(t))

)
1
2

w(t)

to conclude that w̃ : [0, 1] → X
1
ex is a continuous path connecting w0 and w1 of

helicity c: w̃(0) = w0, w̃(1) = w1 and H(w̃(t)) = c for all t ∈ [0, 1].

To show the existence of a path of positive helicity connecting w0 and w1, we
first observe that the curl defines a self-adjoint operator with dense domain on the
space of exact divergence-free L2 fields (see e.g. [9]), so we can take an orthonormal
basis of eigenfields {v+n , v

−
n }

∞
n=1 satisfying curl v±n = λ±

n v
±
n . Here we are denoting

by λ+
n and λ−

n the positive and negative eigenvalues of the curl, respectively.

Given any vector field v ∈ X
1
ex, we can expand v in this orthonormal basis as

v =

∞
∑

n=1

(c+n v
+
n + c−n v

−
n ) .

This series converges in the Sobolev space H1. As curl−1 v±n = v±n /λ
±
n , the helicity

of the field v can be written in terms of the coefficients of the series expansion as

(10) H(v) =

∞
∑

n=1

(

(c+n )
2

λ+
n

−
(c−n )

2

|λ−
n |

)

.

We shall denote by c±j,n the coefficients of the eigenfunction expansion corre-
sponding to wj , with j = 0, 1. Let us fix two integers nj for which the coefficient

c+j,nj
is nonzero (notice that the coefficients corresponding to positive eigenvalues

cannot be all zero because of the formula (10) for the helicity, which is positive in
the case of wj).

We can now construct the desired continuous path w : [0, 1] → X
1
ex of positive

helicity connecting w0 and w1 by setting

w(t) :=















8t c+0,n0
v+n0

+ (1 − 4t)w0 if 0 6 t 6 1
4 ,

2 cos(πt− π
4 ) c

+
0,n0

v+n0
+ 2 sin(πt− π

4 ) c
+
1,n1

v+n1
if 1

4 6 t 6 3
4 ,

(8 − 8t) c+1,n1
v+n1

+ (4t− 3)w1 if 3
4 6 t 6 1 .

Notice that w(t) ∈ X
1
ex for all t because both wj and the eigenfields v+nj

are in X
1
ex

(recall that the eigenfields of curl are automatically smooth because they are also
eigenfields of the Hodge Laplacian acting on vector fields). It is also obvious that
w(0) = w0 and w(1) = w1. Furthermore, one can see that w is a path of positive
helicity. For this, it is enough to use the formula (10) for the helicity in terms of the
coefficients of the eigenfunction expansion. Indeed, since H(wj) = c, an elementary
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computation then yields

H(w(t)) =























16t
(c+

0,n0
)2

λ
+

0

+ (1 − 4t)2c if 0 6 t 6 1
4 ,

4(c+
0,n0

)2

λ
+
n0

cos2(πt− π
4 ) +

4(c+
1,n1

)2

λ
+
n1

sin2(πt− π
4 ) if 1

4 6 t 6 3
4 ,

16(1− t)
(c+

1,n1
)2

λ
+
n1

+ (4t− 3)2c if 3
4 6 t 6 1 ,

provided that n0 6= n1, so H(w(t)) > 0. When n0 = n1, the only change in the
formula above is that the value of H(w(t)) is

4
(

cos(πt− π
4 )c

+
0,n0

+ sin(πt− π
4 )c

+
1,n1

)2

λ+
n0

if 1
4 6 t 6 3

4 , which is also positive. This proves the connectedness of H−1(c) when
c > 0.

The case where the constant c is negative is completely analogous so, in order to
finish the proof of the claim, it only remains to show that the zero level set H−1(0)
is path connected too. This is immediate because two vector fields w0, w1 ∈ X

1
ex

with H(w0) = H(w1) = 0 can be joined through the continuous path of zero helicity
w : [0, 1] → X

1
ex given by

w(t) :=

{

(1− 2t)w0 if 0 6 t 6 1
2 ,

(2t− 1)w1 if 1
2 6 t 6 1 .

Obviously w(0) = w0, w(1) = w1 and H(w(t)) = 0 for all t, so the claim follows.

Step 5: The regular integral invariant I is a function of the helicity. We have shown
in Step 3 that the derivatives of the functional I and the helicity H are related by
(DI)w = C(w)(DH)w at any w ∈ X

1
ex\{0}. In particular, this implies that I is

constant on each path connected component of the level set H−1(c)\{0}. If c 6= 0,
since 0 is not contained in H−1(c), the aforementioned level set is path connected as
proved in Step 4. The level set H−1(0) of zero helicity contains the 0 vector field, so
the set H−1(0)\{0} does not need to be connected. However, since any component
of H−1(0)\{0} is path connected with 0 as shown in the last paragraph of Step 4,
the continuity of the functional I in X

1
ex implies that it takes the same constant

value on any connected component of H−1(0)\{0}, so it is constant on the path
connected level set H−1(0). We conclude that there exists a function f : R → R

which assigns a value of I to each value of the helicity, i.e., I = f(H). Moreover,
f is of class C1 because I is a C1 functional. The main theorem is then proved.

Remark. The only part of the proof where it is crucially used that the regularity of
the vector fields is C1 is in Step 3, when we invoke Bessa’s theorem for generic vector
fields in X

1
ex. To our best knowledge, it is not known if there is a residual subset

of the space X
k
ex of exact divergence-free vector fields of class Ck, with 1 < k 6 ∞,

whose elements do not admit a Ck−1 first integral. In particular, for k > 3 the
KAM theorem [11] implies that there is no a residual subset of Xk

ex whose elements
are topologically transitive vector fields, thus showing that Bessa’s theorem does
not hold for these spaces and hence it cannot be used to address the problem of the
existence of a first integral for a generic vector field. Apart from the topological
transitivity, we are not aware of other properties of a dynamical system implying
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that a vector field does not admit a (nontrivial) continuous first integral. The lack
of results in this direction prevents us from extending the main theorem to regular
integral invariants acting on X

k
ex with k > 1.
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