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Non-centrosymmetric transition metal monopnictides, including TaAs, TaP, NbAs, and NbP,
are emergent topological Weyl semimetals (WSMs) hosting exotic relativistic Weyl fermions. In
this letter, we elucidate the physical origin of the unprecedented charge carrier mobility of NbP,
which can reach 1 × 107 cm 2V−1s−1 at 1.5 K. Angle- and temperature-dependent quantum os-
cillations, supported by density function theory calculations, reveal that NbP has the coexistence
of p- and n-type WSM pockets in the kz=1.16π/c plane (W1-WSM) and in the kz=0 plane near
the high symmetry points Σ (W2-WSM), respectively. Uniquely, each W2-WSM pocket forms a
large dumbbell-shaped Fermi surface (FS) enclosing two neighboring Weyl nodes with the opposite
chirality. The magneto-transport in NbP is dominated by these highly anisotropic W2-WSM pock-
ets, in which Weyl fermions are well protected from defect backscattering by real spin conservation
associated to the chiral nodes. However, with a minimal doping of ∼1% Cr, the mobility of NbP is
degraded by more than two order of magnitude, due to the invalid of helicity protection to magnetic
impurities. Helicity protected Weyl fermion transport is also manifested in chiral anomaly induced
negative magnetoresistance, controlled by the W1-WSM states. In the quantum regime below 10
K, the intervalley scattering time by impurities becomes a large constant, producing the sharp and
nearly identical conductivity enhancement at low magnetic field.

Topological Weyl semimetals (WSMs) are regarded as
the next wonderland in condensed matter physics [1–
4] for exploring fascinating quantum phenomena [5–10].
Unlike Dirac semimetals (DSMs) [11, 12], band crossing
points in WSMs, i.e. Weyl nodes, always appear in pair
with opposite chirality, due to the lifting of spin degen-
eracy by breaking either time reversal symmetry [1] or
inversion symmetry [3, 4]. Fermi surfaces (FSs) enclos-
ing the chiral Weyl nodes are characterized by helicity,
i.e. the spin orientation is either parallel or antiparallel to
the momentum. Such helical Weyl fermions are expected
to be remarkably robust against non-magnetic disorders,
and may lead to novel device concepts for spintronics and
quantum computing.
The recent proposed non-centrosymmetric TaAs, TaP,

NbAs and NbP, have stimulated immense interests, due
to the binary, non-magnetic crystal structure. The ex-
istence of Weyl nodes has soon been discovered in TaAs
by angle-resolved photoemission spectroscopy (ARPES)
[13, 14], and by quantum transport measurements of
NMR and a non-trivial Berry’s phase (ΦB) of π [15, 16].
Transport studies of NbAs [17] and NbP [18] also show ul-
trahigh mobility and non-saturating MR, but no convinc-
ing evidence on the existence of Weyl fermions in these
two compounds. However, ARPES resolves tadpole-
shaped Fermi arcs on the (001) surface of both NbAs [19]
and NbP [20]. It also shows pronounced changes in the
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electronic structures of NbAs and NbP compared to TaAs
[19], mainly due to weaker spin-orbital-coupling (SOC) in
the former two and shifting in the band crossing energy
relative to the Fermi energy (EF ). In TaAs, the dominant
WSM electron pockets are enclosing the eight pairs of
Weyl node 1 (W1) in the kz=1.18 π/c plane, while WSM
pockets surrounding Weyl node 2 (W2) in the kz=0 plane
near the four Σ points are negligible [15, 16]. For NbAs,
W2 becomes 36 meV below the nearly neutral W1 [19]. It
is thus expected that charge transport in NbAs and NbP
would notably differ from TaAs, because the W2-Weyl
cones are highly anisotropic in k-space compared to the
relatively isotropic W1-Weyl cones [3, 14, 19]. Intrigu-
ingly, the carrier mobility of NbP (5 × 106 cm2V−1s−1)
[18] is one order of magnitude higher than TaAs and
NbAs [15–17]. Such striking mobility could either be
due to significantly lower concentration of lattice disor-
ders in NbP compared to TaAs and NbAs, or indicate
a protection mechanism that effectively suppresses the
backscattering of charge carriers [12, 21–24].

In this Letter, we unambiguously prove the existence of
chiral WSM states in NbP using angle-dependent quan-
tum oscillations of magnetoresistance, Nernst and See-
beck, compared with the density functional theory cal-
culations. We show that the unprecedented mobility of
1 × 107 cm2V−1s−1 in NbP is indeed rooted in helical
Weyl fermions, associated to four unusually large WSM
electron pockets near the Σ points in the kz=0 plane.
Each of such large WSM pockets, which are negligibly
small in TaAs, is highly anisotropic in k-space and en-
closes one pair of the W2 nodes. Robust chiral anomaly
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induced NMR, another quantum signature of WSMs, has
also been demonstrated. However, it is originating in
the coexistent p-type WSM pockets in the kz=1.16π/c
plane. In the quantum degerate regime, helicity protec-
tion of Weyl fermions leads to sharp and nearly identical
conductivity enhancement when the magnetic field and
electric field are applied in parallel.
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FIG. 1. (a) T-dependent ρ curves at B=0, showing varying
sample quality. (b) Ultrahigh carrier mobility of NbP, which
is sensitive to magnetic impurities. Inset: T-dependent Hall
resistivity from 300 to 1.5 K, showing a pronounced transition
from p-type carriers at room temperature to the co-existence
of electrons and holes below 200 K.

The detailed single crystal growth and structure anal-
ysis of NbP are described in the Supplemental Mate-
rial [25]. Figure 1a shows the characteristic temper-
ature (T)-dependent resistivity measurements at zero
magnetic field (B). The results of more than 20 single
crystals consistently show decent residual resistance ra-
tio [RRR=ρxx(300K)/ρxx(1.5K)] in the range of 70-100,
similar to the previous reports in TaAs and NbAs [15–
17]. The linear ρ above 150 K is typical for metal with
dominant electron-phonon (e-ph) scattering. However,
the quadratic behavior (Tn, n ∼ 2.8) of ρ below 150 K
can not be simply explained by e-ph scattering, but indi-
cating limiting scattering mechanism of electron-electron
(e-e) interactions. Below 30 K, ρ becomes linear again,
which will be correlated to the helicity protection mech-
anism. Using the single-band theory [26], we estimate
the electron concentration at 1.5 K from Hall signals to
be ∼ 2 × 1018 cm−3 [27]. Noticeably, the deduced elec-
tron Hall mobility at 1.5 K is very weakly dependent on
RRR.With RRR=95, the sample in Fig. 1b (red squares)
has a stunning mobility exceeding 1 × 107 cm2V−1s−1,
while a polished sample with RRR=25 showing 5 × 106

cm2V−1s−1 [25]. The ultrahigh mobility of NbP is com-
parable to DSM Cd3As2 [12], despite that RRR is nearly
two orders of magnitude higher in the latter. Since RRR
is a direct measure of defect concentrations, the obser-
vation indicates that the main charge carriers in NbP
are effectively protected from defect scattering at zero
field. To get insights into the protection mechanism, we
have synthesized ∼1% Cr- and ∼3% Zn-doped NbP sin-
gle crystals [25] to study the effects of chemical impu-
rities on the mobility. As shown in Fig. 1b, with the
presence of minimal magnetic impurities, the mobility of

Nb0.99Cr0.01P (blue circles) is degraded by almost three
orders of magnitude, while significantly higher concen-
tration of non-magnetic Zn yields comparable mobility
to pristine NbP with similar RRR. The chemical doping
experiments strongly suggest that the dominant charge
carriers in NbP are spin-polarized [28], which is consis-
tent with the existence of helical WSM pockets in NbP.

We further studied quantum oscillations in NbP to con-
firm the WSM origin of the spin-polarized carriers. Like
the other TaAs family members, NbP has rather com-
plex FSs due to the coexistence of multiple charge carrier
pockets. Using density functional theory (DFT) calcula-
tions [25], we found that the FSs of NbP are consisted
of p-type W1-WSM, n-type W2-WSM, and eight large
travial hole pockets along the Z−S lines. Uniquely, each
pair of W2-WSM pockets, enclosing W2 nodes with the
opposite chirality, are emerged into a dumbbell -shaped
continuous FS with an inner FS of trivial electrons, while
all W1-WSM pairs are much smaller and well separated
in k-space. Experimentally, we have analyzed the FSs
of NbP using angle-dependent Shubnikov-de Haas (SdH)
oscillations. Different from the literatures, we rotated B
in perpendicular to the electric field (E), and thus define
the rotation angle (θ) by the orientation of B and the
c-axis (Fig. 2a). Such configuration not only allows us
to get robust SdH oscillations for all θ setpoints, but also
excludes possible signals from chiral anomaly.

With θ=0◦ (B‖c), pristine NbP at 2 K is characterized
by unusually large magnetoresistance, MR=[ρxx(B) −
ρxx(0)]/ρxx(0), and extremely strong SdH oscillations
(Fig. 2a). The SdH peaks become visible once B exceed-
ing 0.5 T, and all measured crystals show non-saturating
quasi-linear MR, which can reach striking 10,000 at 15
T. Similar to the electron mobility, the amplitudes of
the SdH oscillations are also weakly correlated to RRR,
while the linear MR is rather sample dependent (Fig. 2a
and [25]). This also implies that the SdH oscillations
are controlled by the spin-polarized carriers with ultra-
high mobility, while the linear MR may require compen-
sation mechanism [29] from the large, low-mobility hole
pockets. Indeed, the chemical doping of Zn greatly sup-
presses RRR, but the SdH oscillations remain robust in
Nb0.97Zn0.03P. In contrast, quantum oscillations are com-
pletely absent in Nb0.99Cr0.01P.

By performing fast Fourier transformation (FFT),
we get four major oscillation frequencies of F0=6.8 T,
F1=13.9 T, F2=31.8 T and F3=64.4 T, respectively (Fig.
2b). Since B is applied in the direction with the four-fold
rotation symmetry, the same type of carrier pockets are
quantized equivalently. In this case, SdH oscillations de-
tect the FS cross-sections of different carrier pockets in
the kx-ky plane (Fig. 2c). By comparing the experi-
mental oscillation frequencies to the DFT calculations,
we can correlate the FFT peaks to the existing pockets,
as summarized in Table I. Note that the F3 trivial hole
pocket is surrounded by a much larger hole FS of 133 T,
thus forming the complex inner and outer FSs similar to
the case of F1 and F2 [23]. The assignment of FFT peaks
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FIG. 2. Angle-dependent SdH oscillations of NbP. (a) Extremely strong SdH oscillations in NbP, with amplitudes independent
on RRR. Inset: Schematic of the angle rotation. (b) Four major oscillation peaks of F0=6.8 T, F1=13.9 T, F2=31.8 T and
F3=64.4 T with B‖c. (c) Schematic of FS cross-sections for different pockets with B‖c. (d) SdH oscillation peaks with θ=90◦.
(e) The evolution of F0, F1, F2 and F3 as a function of θ.

have also been cross-checked by complementary magnetic
oscillations of Nernst and Seebeck coefficients as well as
the de Haas-van Alphen (dHvA) effect [25]. As shown
in Table I, all three techniques quantitatively agree with
the SdH results.

TABLE I. Quantum oscillation frequencies (T) determined by
experiments and DFT with B‖c.

Pockets W1-WSM(F0)
W2-WSM Hole

Inner(F1) Outer-WSM(F2) Inner(F3) Outer
DFT 4.1 (Hole) 12.5 35.6 66.2 133.8
SdH 6.8 13.9 31.8 64.4 130.1

Nernst 6.9 14.0 31.7 63.8 127.3
Seebeck 7.1 12.2 31.6 61.7 123.8

dHvA (5T) 7.3 12.3 31.0 62.0 N.A.

Using angle- and T-dependent SdH oscillations [30], we
determined indispensable information on the anisotropy
of the individual FS and the effective mass (m∗) of the
corresponding carriers, respectively. As shown in Fig. 2d
and 2e, we have observed dramatic θ-dependent changes

in F2, which monotonically shifts up to 118 T when θ is
increased from 0◦ to 90◦ (the red dashed line in Fig. 2e),
agreeing with the highly anisotropic nature of the W2-
Weyl cones. In contrast, F0 gradually reaches a maxi-
mum frequency of 35 T at 90◦. Such isotropic FS is also
expected for the W1-WSM pockets, which are dates-like
ellipsoids [14, 16]. Noticeably, the trivial pockets of F1

and F3 are both splitting into two oscillation peaks when
θ > 30◦, which are typical for ellipsoid-shaped FSs of
parabolic energy bands. The lower frequency part of F3

is coincident with the W2-WSM peak to form the domi-
nant peak of 118 T at θ=90◦.

For WSM pockets, the linear energy dispersion results
in significantly smaller m∗ for Weyl fermions, compared
to trivial pockets. Taking the quantization condition of
~ωc/kBT ≥ 1, in which kB is the Boltzmanns constant
and ωc=eB/m∗ is the cyclotron frequency, we can expect
the SdH oscillations of WSM pockets to be persistent at
much higher T than the trivial ones. Indeed, F0 and F2

remain robust at 20 K, while F1 and F3 are not discern-
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FIG. 3. T-dependent SdH oscillations and Berry’s Phase. (a)
FFT of T-dependent SdH oscillations of S2. (b) T-dependent
SdH oscillations in the field range of 8-15 T. (c) The LK model
fitting of the 10.9 T and 13.4 T peaks. The latter is the
superposition of F2 and F3. (d) Deviation of Berry’s phase
from π due to non-ideal relativistic fermions in the W2-WSM
pockets.

able above 10 K (Fig. 3a). We have determined the effec-
tive mass m∗ for F2 and F3, using the Lifshitz-Kosevich
(LK) formula for 3D systems:

A(B, T ) ∝ exp(−
2π2kBTD

~ωc

)
2π2kBT/~ωc

sinh(2π2kBT/~ωc)
, (1)

where A(B,T) is the SdH amplitude, and TD is the Dingle
temperature. As shown in Fig. 3b, there are four promi-
nent SdH peaks in the field range of 8-15 T. The 9.4 T
and 13.4 T peaks are the superimposition of the N=3
and N=2 Landau levels (LLs) of F2 and the N=6 and
N=4 of F3, respectively. The fitting of 9.4 T and 13.4 T
peaks requires two distinct effective mass of m∗

F2
=0.1me

and m∗
F3
=0.47me, respectively (Fig. 3c). For the 10.9

T peak, which is solely contributed by F3 (N=5), single
LK fitting yields 0.45me, agreeing well with the double
LK fitting. For F0 and F1, it is difficult to extract m∗

directly from MR oscillation peaks due to the superimpo-
sition of much higher frequencies of F2 and F3. Instead,
we analyzed the T-dependent FFT amplitudes and got
m∗

F0
=0.06me and m∗

F1
=0.29me [25]. Like F3, F1 also

becomes vanishingly small when T is above 10 K, sup-
porting its origin in the inner trivial electron FS of the
W2-WSM pockets. Distinctively, the SdH oscillations of
NbP at 20 K are characterized by strong second harmonic
peaks of F0 and F2, a manifestation of low m∗ and small
TD of Weyl fermions [25].
Nontrivial Berry’s phase of π is the quantum signature

of the liner energy bands [31] in DSMs and WSMs. We
have determined the ΦB of the W2-WSM state, using the
Landau fan diagram extracted from the SdH peaks from

six different samples. Surprisingly, a simple linear fitting
with the constraint frequency of F2 gives an odd Onsager
phase of γ ∼ 0.3 [25], which is considerably exceeding the
geometrical correction factor for a 3D FS, following the
Lifshitz-Onsager relation of γ = 1/2−ΦB/2π+δ [23, 32].
A detailed examination of the experimental data reveals
that for high LL index N > 5, linear fitting of the the
LL fan diagrams produces γ ∼ 0.13, which gradually
shifts to the odd number of 0.3 as N approaching the
ultra-quantum limit. Such deviation is a manifestation
of the non-ideal relativistic fermions [33] in the W2-WSM
pockets, which have non-negligible m∗

F2
= 0.1me and rel-

ative low Fermi velocity of vF ∼ 1.8 × 105m/s. Using
the method proposed by Taskin et al [33], we are able
to simulate the systematic changes in γ(N), as shown by
the red solid line in Fig. 3d.
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FIG. 4. Robust chiral anomaly induced NMR in NbP as a
function of T, showing T-independent NMR below 10K and
strong T dependence above 30 K.

With the presence of chiral Weyl node pairs in NbP,
NMR induced by the Adler-Bell-Jackiw anomaly [5]
would be expected when B‖E. Surprisingly, we have
observed very robust NMR in NbP far above the quanti-
zation temperature regime. As shown in Fig. 4, the MR
curves form a sharp negative dip below 2 T with T <50
K. The overall MR change at 1.5 K is about -80%, in con-
trast to -30% reported in TaAs [16]. The NMR becomes
weaker and broader when T increases, but persists up to
150 K. Considering that each W2-WSM pockets are con-
tinuous FSs enclosing one W2 pair, an extra chiral cur-
rent channel between different W2 nodes is not allowed.
In contrast, each pair of the W1-WSM pockets are well
separated in k-space. Using F0 and m∗ = 0.06me, we
estimated the EF is ∼ 15 meV below the W1 nodes.
By taking the thermal activation energy of 13 meV (150
K) into account, the results qualitatively agree with the
DFT calculations which suggest a dome structure of 25
meV below the W1 nodes along the internode direction.
It is distinctive that the NMR effects are identical below
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20 K. In this quantum regime, the longitudinal chiral
conductivity is expressed by

△σc ∝
B2v3F
E2

F

τ(EF ), (2)

where τ(EF ) is the elastic intervalley scattering time
by impurities [34]. In this regime, Weyl fermions are
strictly protected by helicity from the scattering of non-
magnetic impurities. It leads to large constant τ and
thus identical NMR behavior. At elevated temperatures
above 20 K, however, the intravalley inelastic scatter-
ing between electrons cannot be ignored, and the chi-
ral anomaly induced conductivity enhancement becomes

△σc ∝
B2v3

F

T 2 τT , in which the T-dependent τT is modified
by electron-electron inelastic scattering τe [34]. Such T-
dependent NMR behavior is consistent with the zero-field
resistivity measurements in Fig. 1a.
Our discovery not only proves the existence of ex-

otic WSM states in NbP, but also provides unambigu-
ous evidence in correlating the ultrahigh mobility to
the spin conservation of helical Weyl fermions. Unlike
the pseudo-spin in graphene, which is vulnerable to lat-

tice defects and atomic-scale disorders, the helical spin-
textures in NbP are topologically protected by the non-
centrosymmetric symmetry, thus, are remarkably robust
against non-magnetic disorders. For pristine NbP, the
doping is nearly intrinsic despite that there are small
amounts of excessive P in crystals (P:Nb=50.5:49.5±3%
[25]). Nevertheless, a strategy to continuously tune the
doping level in NbP would be highly desirable, and may
open enormous opportunities for exploring various topo-
logical quantum phenomena and spin device concepts.
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