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Abstract

Background

Accumulating evidence shows that Helicobacter pylori protects against some metabolic

and immunological diseases in which the development of these diseases coincide with tem-

poral or permanent dysbiosis. The aim of this study was to assess the effect of H. pylori

eradication on the human gut microbiome.

Methods

As part of the currently on-going ESSAY (Eradication Study in Stable Adults/Youths) study,

we collected stool samples from 17 H. pylori-positive young adult (18–30 years-old) volun-

teers. The same cohort was followed up 6, 12 and 18 months-post H. pylori eradication. The

impact of H. pylori on the human gut microbiome pre- and post-eradication was investigated

using high throughput 16S rRNA gene (V3-V4 region) sequencing using the Illumina Miseq

followed by data analysis using Qiime pipeline.

Results

We compared the composition and diversity of bacterial communities in the fecal micro-

biome of the H. pylori-positive volunteers, before and after H. pylori eradication therapy.

The 16S rRNA gene was sequenced at an average of 150,000–170,000 reads/sample. The

microbial diversity were similar pre- and post-H. pylori eradication with no significant differ-

ences in richness and evenness of bacterial species. Despite that the general profile of the

gut microbiome was similar pre- and post-eradication, some changes in the bacterial
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communities at the phylum and genus levels were notable, particularly the decrease in rela-

tive abundance of Bacterioidetes and corresponding increase in Firmicutes after H. pylori

eradication. The significant increase of short-chain fatty acids (SCFA)-producing bacteria

genera could also be associated with increased risk of metabolic disorders.

Conclusions

Our preliminary stool metagenomics study shows that eradication of H. pylori caused per-

turbation of the gut microbiome and may indirectly affect the health of human. Clinicians

should be aware of the effect of broad spectrum antibiotics used inH. pylori eradication regi-

men and be cautious in the clinical management of H. pylori infection, particularly in immu-

nocompromised patients.

Introduction

The human body routinely harbors approximately 100 trillion bacteria which outnumber our

human cells by 10 to 1 [1]. This bacterial population constitutes the microbiota and the major-

ity of them living in the lower part of gastrointestinal tract. The human gut microbiota is an

intricate and dynamic ecosystem that has coevolved with human for millions of years [2]. It

has been regarded as a metabolically active “organ” located within the human gastrointestinal

tract [3, 4] as it has developed metabolic traits that complement host’s metabolism [5–8]. A

healthy gastrointestinal system relies on a balanced commensal biota to regulate processes such

as energy metabolism [9–12], elimination of pathogens [13–15] and influences the signaling

pathways that range from modulation of the mucosal immune response [16] to development

of metabolic diseases [9–11, 17, 18]. Accumulating evidence suggests that dysbiosis, or an

abnormal microbiota, has been associated with an increasingly long list of diseases, including

inflammatory bowel disease, obesity, and atopic diseases such as eczema and asthma [13, 19].

Helicobacter pylori is a Gram-negative, spiral-shaped, microaerophilic bacterium that colo-

nizes the gastric mucosa of humans and non-human primates naturally. More than half of the

world’s population is infected with H. pylori and its prevalence is as high as 80% in some popu-

lations [20]. In a minority of those infected,H. pylori can cause peptic ulcers (10%), gastric can-

cer (1–2%), and rarely mucosa-associated lymphoid tissue (MALT) lymphoma [21].H. pylori

is believed to colonize the stomach of humans at least since the initial migration of our ances-

tors from East Africa approximately 60,000 years ago [22]. It has been postulated that H. pylori

may be part of the human indigenous microbiome. However, due to socioeconomic develop-

ment, modern hygienic practices and the advent of the antibiotics, the human gut microbiota is

changing and H. pylori is gradually disappearing. There is an increasing number of epidemio-

logical and experimental evidence for the protective effect of H. pylori infection on the develop-

ment of obesity [23–25], childhood asthma [26], allergies [27], inflammatory bowel diseases

[28], in which the development of these diseases coincide with either temporal or permanent

dysbiosis.

Thus, in this study, we hypothesize that the eradication of H. pylorimay cause perturbation

of the GI microbiome, which can indirectly affect the health of human host. We investigated

the effect of H. pylori eradication on the human gut microbiome using 16S rRNA gene ampli-

con metagenomics sequencing up to 18 months post-eradication.

The Effect of H. pylori Eradication on Human Gut Microbiome
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Materials and Methods

Study Population

Our study is part of the currently on-going ESSAY (Eradication Study in Stable Adults/Youths)

study in Malaysia, New York and an European Center. In Malaysia, it was conducted at the

University of Malaya Medical Centre (UMMC) between June 2012 and May 2014. Healthy

young adults between the ages of 18–30 years old were first screened to assess study eligibility.

The exclusion criteria for the study were diabetes, hyper or hypothyroidism, prior gastric or

bariatric surgery, prior documented treatment of H. pylori, antibiotic use within 4 weeks of

enrollment, steroid or other immunomodulating drugs use within 4 weeks of enrollment,

recent vaccination and Charlson weighed comorbidity index<2. The study protocol was

reviewed and approved by Medical Ethics Committee at UMMC (Ref No. 877.1). Written

informed consent was obtained from qualified volunteers prior to study participation. H.

pylori’s status of the qualified candidates was determined as previously described [29].

Sample Collection

As we reported earlier, 57 (9.9%) of the 573 volunteers screened in the ESSAY study were tested

positive for H. pylori using both non-radioactive 13C Urea Breath Test (UBT) and detection of

anti-H. pylori antibodies and were considered as H. pylori-positive. However, only 32 agreed

and consented to participate in the study [29]. Of these 32H. pylori positive volunteers, we

only managed to collect stool samples from 17 of them. Treatment with a 7-day twice daily reg-

imen and a proton pump inhibitor as current standard of care (amoxicillin 1000 mg, clarithro-

mycin 500 mg, and pantoprazole 40 mg) was given to the volunteers and approximately 6

weeks after completing the treatment protocol, H. pylori eradication were ascertained using

UBT. The volunteers were subsequently followed up at 6, 12, and 18 months post-H. pylori

eradication. Stool samples were collected during each visit and frozen immediately at -80°C

until DNA extraction.

Nucleic Acid Extraction from Stool Samples

Nucleic acid extraction was done using MoBio PowerSoil DNA Isolation Kit (Mo Bio Labora-

tories, Carlsbad, CA). The DNA extraction protocol was adopted from Section 7.9 Specimen

Processing For Extraction of Bacterial Genomic DNA taken fromManual of Procedures for

Human Microbiome Project: Core Microbiome Sampling Protocol A (HMP Protocol #07–

001), Version 12.0 (http://www.hmpdacc.org/tools_protocols/tools_protocols.php) with slight

modification [30]. Instead of pre-processing the stool specimen with MoBio lysis buffer,

approximately 100–200 mg of stool sample was added directly into PowerBead Tubes and vor-

texed to dispense the sample. The subsequent steps in the manufacturer’s protocol were fol-

lowed accordingly.

16S rRNA Gene Amplification and Sequencing

The V3-V4 region of the bacterial 16S rRNA gene sequences were amplified using the primer

pair 338F� (50-NNNNCCTACGGGAGGCAGCAG-30) and 1061R (50-GACTACHVGGGTA

TCTAATCC-30) containing the complete Illumina adapter [31, 32].

Briefly, each 50 μL of polymerase chain reaction (PCR) reaction contains 10 ng of fecal

genomic DNA as template, 25 μL NEBNext High-Fidelity 2x PCRMaster Mix (New England

Biolabs, Ipswich, MA) and 1 μL of 10 μM of each primer. PCR reactions were carried out using

the following protocol: (1) for the stool samples, an initial denaturation step performed at 98°C

for 30 sec followed by 30 cycles of denaturation (98°C, 10 s), annealing (60°C, 10 s) and
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extension (72°C, 30 sec), and a final elongation of 1 min at 72°C. PCR products ~600 bases in

size were gel-excised and purified using QIAquick Gel Extraction Kit (QIAGEN, Hilden, Ger-

many). The libraries were quantified using KAPA library quantification kit (KAPA Biosystems,

Capetown, South Africa), normalized, pooled and sequenced (2 x 250 bp paired-end read set-

ting) on the MiSeq (Illumina, San Diego, CA) located at the Monash University Malaysia

Genomics Facility.

Bioinformatics Analysis

Sequence pre-processing and quality filtering. Demultiplexing and generation of raw

fastq files for each individual library was performed on-board by the MiSeq Reporter Software.

The forward and reverse 16S primer sequence located at the 5’ end of the forward and reverse

reads, respectively, were trimmed using FASTX-Toolkit [33]. The trimmed paired-end reads

were subsequently overlapped using PEAR: Illumina Paired-End reAd mergeR (default setting)

[34].

Analysis of quality filtered reads using Qiime. The merged paired-end reads were ana-

lyzed using the Quantitative Insights into Microbial Ecology (Qiime) [35] pipeline. To perform

detection and clustering of 16S rRNAs, an open-reference Operational Taxonomic Units

(OTUs) picking approach was used. pick_open_reference_otus.py is the primary interface for

open-reference OTU picking in QIIME, and includes taxonomy assignment, sequence align-

ment, and tree-building steps. In this open-reference OTU picking process, reads were firstly

clustered against a Greengenes 13_8 reference sequence collection [36] (available at http://

qiime.org/home_static/dataFiles.html) through closed-reference OTUs picking. Subsequently,

0.1% of the reads which failed to hit the reference sequence collection were randomly subsam-

pled and clustered de novo using UCLUST [37], with an OTU cluster defined at a sequence

similarity of 97%. Each cluster centroid was then chosen as a “new reference sequence” for

another round of closed-reference OTU picking. OTU assignments for read that failed to hit

the reference database were picked by an additional round of de novo clustering. The PyNAST

alignment algorithm [38] was used to align the OTU representative sequences against the

Greengenes core reference alignment [39] with a minimum identity of 75%, and then a phylo-

genetic tree was built using FastTree [40]. Finally we generated a OTU table (biom summarize-

table) for downstream diversity analysis by excluding the sequences that had failed to align by

PyNAST. We also used the generated OTU table to summarize microbiome communities by

taxonomic levels (by default: phylum, class, order, family, genus) based on different time-

points (summarize_taxa_through_plots.py).

Statistical methods. The raw data of the taxonomy summary results (.txt file) were

exported to SPSS software version 20.0 (SPSS Inc., Chicago, IL) for statistical analysis. The

mean abundance in percentage (%) and the 95% confidence interval (95% CI) for the phyla of

stool microbiome at different time-points were calculated. Parametric paired-samples t-test

was performed to compare the genera of the stool microbiome between Baseline vs. 6 months,

Baseline vs. 12 months, and Baseline vs. 18 months post-H. pylori eradication; a two-tailed p-

value of< 0.05 was considered significant. Pearson’s Correlation Coefficient was also per-

formed to investigate the relationship between the phylum Bacteroidetes-to-Firmicutes ratio

and the Body Mass Index (BMI) of the subjects across different time-points; a two-tailed p-

value of< 0.05 was considered significant.

Diversity analysis. We evaluated samples for alpha diversity (microbial diversity within

samples) and beta diversity (community diversity between samples) analysis using Qiime.

Alpha diversity analysis (alpha_rarefaction.py) involves rarefaction analysis by subsampling

OTU table on the basis of a minimum rarefaction depth value that is chosen depending on the
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minimum number of sequences/sample obtained. For our study, the rarefaction depth value

for the comparison of Baseline and 6 months post-eradication was set as 82,536, the rarefaction

depth value for the comparison of Baseline and 12 months post-eradication was set as 84,177,

whereas the rarefaction depth value for the comparison of Baseline and 18 months post-eradi-

cation was set as 84,333. The alpha diversity was then calculated using both “non-phylogeny-

based” (observed species, chao1, Shannon index) and “phlogeny-based” (PD whole tree) matri-

ces for each rarefied OTU table. We compared the alpha diversity between different groups

(time-points) of the samples by non-parametric two-sample t-test (compare_alpha_diversity.

py).

Beta diversity between our samples was calculated using the default beta diversity metrics of

weighted and unweighted UniFrac [41] (beta_diversity_through_plots.py) on even subsampled

OTU table. The resulting UniFrac distance matrices were used to perform Principal Coordinate

Analysis (PCoA) to determine the similarity between groups of samples/time-points. The

PCoA plots in three dimensions were visualized using the Emperor tool [42]. Non-parametric

statistical analysis ANOSIM was performed via QIIME (compare_categories.py—method ano-

sim) to test the statistical significance between different time-points (Baseline vs. 6 months

post-eradication and Baseline vs. 12 months eradication).

Results

Demographics of the Study Cohort

Stool samples from 17H. pylori-positive healthy young Malaysian with a mean age of 25 years

were collected. The volunteers were followed up after they were givenH. pylori eradication

therapy. Only 17, 10, and 6 stool samples were successfully collected at 6, 12, and 18 months

post-eradication, respectively. All the 16S rRNA sequences were deposited in MetaGenome

Rapid Annotation using Subsystem Technology (MG-RAST) under the accession numbers as

shown in Table 1.

Characterization of Stool Microbiome

A total of 5,834,726 quality-filtered reads were obtained from Baseline vs. 6 months post-eradi-

cation group with an average of 171,610 ± 58,372 (standard deviation, SD) reads per sample,

whilst, a total of 3,077,037 quality-filtered reads were obtained from Baseline vs. 12 months

post-eradication group with an average of 153,852 ± 32,306 reads per sample. For Baseline vs.

18 months post-eradication group, a total of 2,000,505 quality-filtered reads with an average of

166,709 ± 69, 793 reads per sample were obtained. These reads were clustered into 45,875

unique OTUs at 97% sequence similarity in Baseline vs. 6 months post-eradication group with

an average of 1349 OTUs per sample. In Baseline vs. 12 months post-eradication group, these

reads were clustered into 31,351 unique OTUs at 97% sequence similarity with an average of

1568 OTUs per sample. In Baseline vs. 18 months post-eradication group, they were clustered

into 28,157 unique OTUs at 97% sequence similarity with an average of 2346 OTUs per

sample.

For the comparison of microbial biodiversity within Baseline and 6 months post-eradication

stool samples, alpha diversity analysis was performed after rarefaction to 82,536 sequences/

sample (minimum sampling depth). For the comparison of microbial diversity within Baseline

and 12 months post-eradication stool samples, alpha diversity analysis was performed after rar-

efaction to 84,177 sequences/sample. Whereas, for comparison of microbial diversity within

Baseline and 18 months post-eradication stool samples, alpha diversity analysis was performed

after rarefaction to 84,333 sequences/sample. We used several “phylogeny-based” and “non-

phylogeny-based”matrices to calculate alpha diversity, including PD whole tree, chao1,

The Effect of H. pylori Eradication on Human Gut Microbiome
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Table 1. Accession number of the 16S rRNA sequences deposited in MG-RAST.

Accession number Time-point Sample code

4562320.3 Baseline C002

4562322.3 Baseline C003

4562324.3 Baseline C005

4562326.3 Baseline C008

4562328.3 Baseline C009

4562330.3 Baseline C017

4562332.3 Baseline C019

4562334.3 Baseline C020

4562340.3 Baseline C033

4562342.3 Baseline C034

4562344.3 Baseline C037

4562346.3 Baseline C039

4562348.3 Baseline C041

4562350.3 Baseline C042

4562352.3 Baseline C048

Accession number Time-point Sample code

4562354.3 Baseline C050

4562356.3 Baseline C053

4562321.3 6 months post-eradication C002

4562323.3 6 months post-eradication C003

4562325.3 6 months post-eradication C005

4562327.3 6 months post-eradication C008

4562329.3 6 months post-eradication C009

4562331.3 6 months post-eradication C017

4562333.3 6 months post-eradication C019

4562335.3 6 months post-eradication C020

4562341.3 6 months post-eradication C033

4562343.3 6 months post-eradication C034

4562345.3 6 months post-eradication C037

4562347.3 6 months post-eradication C039

4562349.3 6 months post-eradication C041

4562351.3 6 months post-eradication C042

4562353.3 6 months post-eradication C048

4562355.3 6 months post-eradication C050

4562357.3 6 months post-eradication C053

4626552.3 12 months post-eradication C003

4626553.3 12 months post-eradication C009

4626556.3 12 months post-eradication C017

4626557.3 12 months post-eradication C033

Accession number Time-point Sample code

4626558.3 12 months post-eradication C034

4626560.3 12 months post-eradication C037

4626562.3 12 months post-eradication C039

4626564.3 12 months post-eradication C041

4626567.3 12 months post-eradication C048

4626568.3 12 months post-eradication C053

4626559.3 18 months post-eradication C034

(Continued)
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observed species for microbial richness and the Shannon index for microbial evenness. When

Baseline samples was compared with 6 months post-eradication samples, the rarefaction curves

generated for all four matrices showed that the stool microbiome in 6 months-post eradication

samples demonstrated greater diversity than Baseline samples (Fig 1). However, non-paramet-

ric two-sample t-test performed on the four matrices showed that there was no significant dif-

ference of the microbial diversity within baseline and 6 months post-eradication stool samples

(p>0.05). Similarly, when Baseline samples was compared with 12 or 18 months post-eradica-

tion samples, the rarefaction curves generated for all four matrices showed that the stool micro-

biome in 12 and 18 months-post eradication samples demonstrated greater diversity than

Baseline samples (Figs 2 and 3). However, non-parametric two-sample t-test performed on the

four matrices showed that the microbial biodiversity within baseline and 12 months post-eradi-

cation as well as within baseline and 18 months post-eradication stool samples also did not dif-

fer significantly (p>0.05).

The PCoA plots generated from both weighted and unweighted UniFrac distance metrics in

beta diversity analysis for Baseline vs. 6 months post-eradication, Baseline vs. 12 months post-

eradication and Baseline vs. 18 months post-eradication did not show distinct clustering

between the time-points (S1 & S2 Figs). Non-parametric statistical test analysis of similarity

(ANOSIM) also showed that the differences in bacterial communities between the time-points

were not significant (p>0.05).

The taxonomy summary of the phyla and genera of stool microbiome in healthy young

Malaysian adults pre- and post-eradication ofH. pylori were summarized in Fig 4 and Fig 5.

Before the eradication H. pylori, the most abundant phyla were Bacteroidetes (52.09%; 95% CI,

44.85%-60.07%), Firmicutes (32.91%; 95% CI, 26.67%-39.06%), Actinobacteria (6.68%; 95% CI,

4.03%-9.68%), and Proteobacteria (5.77%; 95% CI, 3.94%-8.03%) (Fig 1A). At 6 months post-

H. pylori eradication, the relative abundance of Bacteroidetes decreased to 47.82% (95% CI,

42.24%-52.94%) and Firmicutes increased to 37.82% (95% CI, 32.19%-43.71%), as compared to

Table 1. (Continued)

4626561.3 18 months post-eradication C037

4626563.3 18 months post-eradication C039

4626565.3 18 months post-eradication C041

4626566.3 18 months post-eradication C042

4626569.3 18 months post-eradication C053

doi:10.1371/journal.pone.0151893.t001

Fig 1. Alpha diversity analysis comparing between baseline and 6-months post-H. pylori eradication.
Rarefraction curve for A. chao1,B. observed species,C. PD whole tree, andD. the Shannon index
generated from alpha diversity analysis.

doi:10.1371/journal.pone.0151893.g001
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Baseline. In addition, the relative abundance of both phyla Actinobacteria (4.86%; 95% CI,

2.65%-7.27%), and Proteobacteria (3.69%; 95% CI, 2.58%-4.92%) also reduced 6 months post-

eradication. Interestingly, we also observed that the relative abundance of Verrucomicrobia

increased markedly, from 0.07% (95% CI, 0.01%-0.17%) at Baseline to 3.30% (95% CI, 0.08%-

9.53%) 6 months post-eradication (Fig 1B). At 12 months post-H. pylori eradication, Firmi-

cutes (43.53%; 95% CI, 31.66%-54.29%) replaced Bacteroidetes (36.84%; 95% CI, 26.45%-

49.26%), as the most abundant phylum in the stool microbiome. Similar patterns were

observed in Actinobacteria (8.14%; 95% CI, 3.34%-14.48%), Proteobacteria (6.75%; 95% CI,

2.93%-12.39%), and Fusobacteria (0.36%; 95% CI, 0%-1.07%) in which their relative abun-

dances higher than Baseline. The relative abundance of Verrucromicrobia (0.97%; 95% CI,

0.2%-2.1%), on the other hand, seems to be restoring to the Baseline level though its abundance

was still higher than that of Baseline (Fig 1C). At 18 months-post H. pylori eradication, both

Bacteroidetes and Firmicutes had the highest relative abundance which was approximately 38%

for both phyla. Enrichment of the relative abundance of Proteobacteria (8.40%; 95% CI, 3.77%-

13.03%) and Actinobacteria (7.96%; 95% CI, 3.11%-14.57%) were observed where their relative

abundance increased to higher than Baseline, 6 months, and also 12 months post-eradication.

The relative abundance of Verrucomicrobia (1.29%; 95% CI, 0%-3%) at 18 months-post eradi-

cation was still higher than Baseline whereas the relative abundance of Fusobacteria (0.11%;

95% CI, 0%-0.32%) had been restored to Baseline level (Fig 1D) (Table 2). The Bacteroidetes-

to-Firmicutes ratio at Baseline, 6 months, 12 months, and 18 months were 8:5, 13:10, 5:6, and

1:1, respectively. Despite the observed trend in Bacteroidetes-to-Firmicutes ratio, these changes

Fig 2. Alpha diversity analysis comparing between baseline and 12-months post-H. pylori eradication.
Rarefraction curve for A. chao1,B. observed species,C. PD whole tree, andD. the Shannon index
generated from alpha diversity analysis.

doi:10.1371/journal.pone.0151893.g002

Fig 3. Alpha diversity analysis comparing between baseline and 18-months post-H. pylori eradication.
Rarefraction curve for A. chao1,B. observed species,C. PD whole tree, andD. the Shannon index
generated from alpha diversity analysis.

doi:10.1371/journal.pone.0151893.g003
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across time were not statistically significant (Paired-samples t-test, p�0.05). The Bacteroidetes-

to-Firmicutes ratio were also not significantly correlated with BMI of the volunteers across dif-

ferent time-points (Person’s correlation, p�0.05).

Fig 4. Relative abundance of phyla. Relative abundance of phyla at A. Baseline,B. 6 months-post
eradication, C. 12 months-post eradication, andD. 18 months-post eradication.

doi:10.1371/journal.pone.0151893.g004

Fig 5. Relative abundance of genera. Comparison of the relative abundance of genera betweenA. Baseline vs. 6 months-post eradication, B. Baseline vs.
12 months-post eradication, andC. Baseline vs. 18 months-post eradication.

doi:10.1371/journal.pone.0151893.g005
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Table 2. Comparison of Relative Abundance of Phyla of the Gut Microbiome Pre- and Post-H. pylori Eradication.

Mean relative abundance (%) Comparison of the
relative

Comparison of the
relative

Comparison of the
relative

Phylum (95% CI*) abundance at
baseline and

abundance at
baseline and

abundance at
baseline and 18

Baseline 6 Months-
post

12 Months-
post

18 Months-
post

6 months post-
eradication

12 months post-
eradication

months post-
eradication

eradication eradication eradication (p-value)a (p-value)a (p-value)a

Firmicutes 32.91 37.82 43.53 38.17 0.31 0.12 0.42

(26.67–
39.06)

(32.19–
43.71)

(31.66–54.29) (31.53–44.66)

Bacteroidetes 52.09 47.75 36.84 38.52 0.41 0.02 0.13

(44.85–
60.07)

(42.24–
52.94)

(26.45–49.26) (33.22–43.77)

Actinobacteria 6.68 4.86 8.14 7.96 0.41 0.54 0.36

(4.03–9.68) (2.65–7.27) (3.34–14.48) (3.11–14.57)

Proteobacteria 5.77 3.69 6.75 8.40 0.17 0.85 0.69

(3.94–8.03) (2.58–4.92) (2.93–12.39) (3.77–13.03)

Fusobacteria 0.15 0.02 0.36 0.11 0.23 0.77 0.35

(0–0.41) (0–0.05) (0–1.07) (0–0.32)

Verrucomicrobia 0.07 3.30 0.97 1.29 0.31 0.12 0.21

(0.01–0.17) (0.08–9.53) (0.20–2.11) (0–3)

Euryarcheota 0.04 0.01 0.03 0.16 0.21 0.73 0.37

(0–0.11) (0–0.02) (0–0.07) (0–0.48)

Synergistetes 0.03 0.02 0.05 0.03 0.60 0.87 0.29

(0–0.07) (0–0.06) (0–0.10) (0–0.08)

Lentisphaerae 0.02 0.01 0.02 0.06 0.30 0.41 0.36

(0–0.04) (0–0.02) (0–0.05) (0–0.16)

Mean relative abundance (%) Comparison of the
relative

Comparison of the
relative

Comparison of the
relative

Phylum (95% CI*) abundance at
baseline and

abundance at
baseline and

abundance at
baseline and 18

Baseline 6 Months-
post

12 Months-
post

18 Months-
post

6 months post-
eradication

12 months post-
eradication

months post-
eradication

eradication eradication eradication (p-value)a (p-value)a (p-value)a

TM7 0.01 0.01 0.02 0.03 0.05 0.3 0.08

(0–0.01) (0–0.01) (0–0.04) (0.01–0.05)

Tenericutes 0.01 0.00 0.00 0.00 0.26 0.26 0.36

(0–0.02)

Cyanobacteria 0.00 0.00 0.00 0.01 0.39 0.24 0.10

(0–0.02)

Other 0.00 0.00 0.02 0.00 0.82 0.36 0.18

(bacteria) (0–0.04)

Other 2.2 2.51 3.27 5.26 0.23 0.17 0.05

(not assigned) (1.70–2.70) (2.05–3.06) (2.23–4.57) (4.02–6.42)

p-values< 0.05 were indicated in bold.

*Bootstrapped 95% confidence interval (CI) was based on 1000 replicates.
aPaired-Samples T Test was used in comparing baseline and post-H. pylori eradication.

doi:10.1371/journal.pone.0151893.t002
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When the genera of stool microbiome between Baseline and 6 months post-H. pylori eradi-

cation group were compared, the relative abundance of Anaerofustis, Phascolarctobacterium,

and Ruminococcus (Family: Lachnospiraceae) in the stool microbiome were found to have

increased significantly whereas the relative abundance of an unnamed genus under Candidate

Division TM7 phylum (Order & Family: unnamed)decreased significantly (Paired-samples

t-test, p<0.05) (Table 3). The relative abundance of three genera in the stool microbiome

changed significantly (p<0.05) when baseline was compared with 12 months post-eradication

groups. The relative abundance of Dialister (p = 0.033) and Helicobacter (p = 0.041) increased

while the relative abundance of Agrobacterium (p = 0.031) decreased 12 months post-H. pylori

eradication (Table 4). Agrobacterium was detected in Baseline and 6 months post-eradication

samples but disappeared in 12 and 18 months post-eradication samples. When the genera of

stool microbiome between Baseline and 18 months post-H. pylori eradication group were

Table 3. Comparison of Relative Abundance of Genera of the Gut Microbiome at Baseline and 6 Months-Post H. pylori Eradication.

Mean relative abundance Comparison of relative abundance at

Genus (95% CI*) baseline and 6 months post-eradication

Baseline 6 Months-Post Eradication (p-value)a

Anaerofustis 7.70E-4% 1.87E-3% 0.016

(1.81E-4%-1.43E-3%) (9.17E-4%-2.91E-3%)

Phascolarctobacterium 0.72% 1.76% 0.038

(0.29%-1.26%) (0.82%-3.05%)

Ruminococcus 0.60% 1.25% 0.030

(Family: Lachnospiraceae) (0.37%-0.89%) (0.76%-1.88%)

Unknown 0.01% 4.22E-3% 0.027

(Phylum: TM7; (4.84E-3%-0.01%) (2.54E-3%-5.82E-3%)

Class: TM7-3)

*Bootstrapped 95% confidence interval (CI) was based on 1000 replicates.
aPaired-Samples T Test was used in comparing baseline and post-H. pylori eradication.

doi:10.1371/journal.pone.0151893.t003

Table 4. Comparison of Relative Abundance of Genera of the Gut Microbiome at Baseline and 12 Months-PostH. pylori Eradication.

Mean relative abundance Comparison of relative abundance at

Genus (species) (95% CI*) baseline and 12 months post-eradication

Baseline 12 Months-Post Eradication (p-value)a

Dialister 0.20% 0.71% 0.033

(0.06%-0.38%) (0.33%-1.13%)

Agrobacterium 4.34E-4% 0% 0.031

(1.40E-4%-7.81E-4%)

Helicobacter 0% 2.17E-4% 0.041

(4.10E-5%-3.94E-4%)

(H. pylori) 0% 2.17E-4% 0.041

(5.80E-5%-4.05E-4%)

*Bootstrapped 95% confidence interval (CI) was based on 1000 replicates.
aPaired-Samples T Test was used in comparing baseline and post-H. pylori eradication.

doi:10.1371/journal.pone.0151893.t004
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compared, genus Helicobacter (p = 0.033) and another unnamed genus under Candidate Divi-

sion TM7 phylum (Family: Rs-045) was found to have increased significantly (Table 5).

To examine for the presence of enterohepaticHelicobacter species (EHS), we used the gener-

ated OTU table to further summarize microbiome communities up to species level. The gener-

ated 16S rRNA data showed that the only Helicobacter species detected was H. pylori (Table 4,

Table 5 and S1 File)

Discussion

To our knowledge, the effect ofH. pylori eradication on the gut microbiome has yet to be inves-

tigated inH. pylori-positive healthy young Malaysian adult. H. pylori-positive volunteers were

given eradication therapy and the same cohort of volunteers was subsequently followed up for

6, 12, and 18 months post-eradication. We performed diversity analysis to study the effect of

H. pylori eradication on the gut microbial communities. The lack of significance within each

time-point group as well as between the different time-point groups demonstrated that the

microbial diversity of the gut microbiome of the volunteers was equally rich and proportional.

In addition, following the eradication ofH. pylori, the bacterial communities were not affected.

The bacterial communities were similar pre- and post-H. pylori eradication. Therefore, these

results suggested that eradication of H. pylorimay not remarkably interrupt the composition

and structure of the gut microbiome.

Irrespective of the H. pylori eradication status, the general profile of the gut microbiome of

the volunteers in our ESSAY study was in accordance with previous findings. As reported else-

where, most bacterial species in the human and mouse gut was dominated by phyla Bacteroi-

detes and Firmicutes [43]. Less abundant bacteria phyla such as Actinobacteria, Proteobacteria,

Verrucromicrobia, and as well as Euryarcheaota (mainly methanogenic archaeMethaobrevi-

bacter smithii) were also present [44, 45]. It has been reported that the general profile of the

bacteria community of an individual at different body habitats seems to be reasonably stable

over time [46].

Despite that the general profile of the gut microbiome was similar pre- and post-H. pylori

eradication, our metagenomics study revealed some changes in the bacterial communities at

the phylum and genus levels that are notable. Twelve months post-H. pylori eradication, the

Table 5. Comparison of Relative Abundance of Genera of the Gut Microbiome at Baseline and 18 Months-PostH. pylori Eradication.

Mean relative abundance Comparison of relative abundance at

Genus (species) (95% CI*) baseline and 18 months post-eradication

Baseline 18 Months-Post Eradication (p-value)a

Helicobacter 0% 5.90E-4% 0.033

(2.37E-4%-9.27E-4%)

(H. pylori) 0% 5.86E-4% 0.033

(2.05E-4%-9.04E-4%)

Unknown 2.02E-4% 1.28E-3 0.036

(Phylum: TM7; (0%-4.3E-4%) (6.13E-4%-1.86E-3%)

Class: TM7-3;

Order: I025;

Family: Rs-045)

*Bootstrapped 95% confidence interval (CI) was based on 1000 replicates.
aPaired-Samples T Test was used in comparing baseline and post-H. pylori eradication.

doi:10.1371/journal.pone.0151893.t005
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relative abundance of Bacteroidetes in the stool microbiome of the volunteers decreased 15%

with relative increase in Firmicutes, as compared to stool microbiome at Baseline. There are

growing evidences that indicated the inverse relationship between H. pylori prevalence and rate

of overweight/obesity. Hence, the gradual decrease of theH. pylori colonization that has been

observed in recent decades could be causally related to the human epidemic obesity [47]. Stud-

ies in human and mice have shown that obesity is associated with changes in the composition

of the gut microbiome. An early study reported that genetically obese ob/ob mice had a 50%

reduction in the abundance of Bacteroidetes and proportional increase in Firmicutes [43].

Study in human also demonstrated enrichment in Firmicutes and a corresponding reduction in

Bacteroidetes levels in the microbiota of obese individuals; after weight loss, the Bacteroidetes-

to-Firmicutes ratio normalized to the level observed in lean individuals [48].Bacteroidetes and

Firmicutes have been associated with the regulation of lipid and bile acid metabolism as well as

energy homeostasis in host [49, 50]. Essentially, it has been demonstrated that perturbations of

bile acid-mediated signaling pathway influence risk of metabolic complications such as obesity

and diabetes [51]. Eighteen months post-eradication, however, the relative abundance of Bac-

teroidetes and Firmicutes seems to be restoring to the Baseline levels with the enrichment of

Proteobacteria.

In a recent study that investigated the short- and long-term effects of clarithromycin and

metronidazole treatment, a dramatic decline in Actinobacteria in both throat and feces was

reported immediately after H. pylori eradication therapy. Although the diversity of the micro-

biome subsequently recovered to resemble the pre-treatment states, the microbiota remained

perturbed in some cases for up to four years post-treatment [52]. Correspondingly, in our

study, the relative abundance of phylum Actinobacteria decreased 6 months-post eradication,

and at 12 and 18 months post-eradication, it had increased to resemble to or higher than the

Baseline level. This result indicated that broad-spectrum antibiotics used inH. pylori eradica-

tion treatment are also capable of inhibiting a range of Gram-positive and Gram-negative

bacteria as well as other bacteria besides eradicating H. pylori [53, 54]. It was reported that

high-level colonization of the human gut by Verrucomicrobia following broad-spectrum antibi-

otic treatment [55]. Thus, the increase of phylum Verrucomicrobia 6 months post-eradication

could be also attributed to the broad-spectrum antibiotic treatment used inH. pylori eradica-

tion therapy. However, at 12 and 18 months post-eradication, it seems to be restoring to the

Baseline level.

Another interesting finding was observed for phylum Proteobacteria. The relative abun-

dance of Proteobacteria decreased 6 months post-H. pylori eradication but then it increased to

even higher than the Baseline state at 12 and 18 months post-eradication. This finding may

correlate with our observation at the genus level of the gut microbiome whereHelicobacter was

found 12 and 18 months post-eradication but not during Baseline and 6 months post-eradica-

tion. It has been reported that besides H. pylori, EHS can also colonize the mucosal surfaces of

the intestinal tract and/or the liver of humans, mammals and birds [56]. Our study showed

that the Helicobacter species detected in the stool samples at 12 and 18 months post-eradica-

tion was not EHS butH. pylori. The sole identification ofH. pylori is not due to the lack of taxo-

nomic representation forHelicobacter species in Greengenes database [36]. A study published

recently showed that 16S rRNA gene can be used to differentiate between gastric Helicobacter

and EHS although it is not sufficient to distinguish between different EHS [57].

Before theH. pylori-positive volunteers were given the eradication regimen, H. pylori was

still attached to the gastric mucosa of the stomach and therefore, it may be the reason why it

was not detected in their stool samples. Although H. pylori is generally viewed as a non-inva-

sive pathogen, some in vivo and in vitro studies have demonstrated otherwise.H. pylori was

found to reside in the vacuole in the cytoplasm, replicate on the cell membrane to form a
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microcolony, multiply in macrophages and bone marrow-derived dendritic cells, replicate in

epithelial cells, and repopulate the extracellular space after the extracellular bacterial popula-

tion has been killed by gentamicin for up to 3 days [58–63]. Chu et al. also reported that some

coccoid forms ofH. pylori were present on the plasma membrane of epithelial cells 18 hours

post-H. pylori infection [63]. All of these studies showed thatH. pylorimay be a facultative

intracellular organism [64, 65]. When theH. pylori-positive volunteers were given H. pylori

eradication therapy, most of the H. pylori colonized on the gastric mucosa may be killed, but

some of them may have invaded the gastric epithelial cells and/or antigen-presenting cells and

turned into non-culturable but viable, metabolizing coccoid forms under the stress of antibiot-

ics. The dormant coccoid form is resistant to antibiotic and can spread to infect other cells in

the absence of an effective concentration of antibiotic [63]. In addition, Tan et al. recently pub-

lished a report suggesting that even at low to moderate multiplicity of infection (MOI 10),H.

pylorimay impede the proliferation of macrophages by disrupting the cell cycle-associated

genes and such disruption may be an immunoevasive strategy utilized byH. pylori [66]. It is

likely thatH. pylori utilizes the advantage of ecological niche to replicate intracellularly and

survive the antibacterial therapy. This may explain the transient disappearance ofH. pylori

immediately followingH. pylori eradication therapy but reappeared at 12–18 months later.

To further strengthen our findings, we performed proteomics analysis on these stool sam-

ples using LC-MS approach. Consistent with the detection of H. pylori 16S rRNA in these stool

samples, H. pylori proteins were also detected (S1 Table) confirming the presence of the bacte-

rium and their viability. In addition, we also managed to call back the volunteers (whom stool

samples were detected with Helicobacter 16S rRNA) for UBT at 18 months post-H.pylori eradi-

cation. However, all of them were found to be negative for H. pylori by UBT (data not shown).

Negative UBT results at 18 months post-H. pylori eradication ruled out the possibility of recru-

descence or reinfection of H. pylori in the volunteers. A previous report showed that coccoid

forms ofH. pylorimay give false negative result for UBT [67] as they produced low level of ure-

ase as compared to spiral forms [68, 69]. These may explain the negative UBT results of these

volunteers despite detection of H. pylori DNA and proteins in their stool samples. Our finding

has also shown that there is a possibility ofH. pylori can be shed through feces and supported

the notion that H. pylorimay be transmitted through fecal-oral route via contaminated water

or food [70].

The genus Anaerofustis was proposed and classified as A. stercorihominis sp. nov. under

phylum Firmicutes and class Clostridia to accommodate a phylogenetically distinct Gram-posi-

tive, strictly anaerobic, catalase-negative, rod-shaped organism isolated from human feces. It

was found to produce acetate and butyrate as end products of glucose fermentation [71]. The

significant increment of the relative abundance of Anaerofustis 6 months-post eradication

could be attributed to the anti-inflammatory and antimicrobial properties possessed by buty-

rate-producing bacteria [72] that may play a role in restoring the delicate balance between

human host and the perturbed gut microbiome. Butyrate producing bacteria produce SCFA

such as acetate, butyrate, and propionate [19] through fermentation; the presence of SCFA is

believed to be associated with reduced inflammation [73] and has an important effect on

colonic health [74, 75]. At 12- & 18 months-post eradication, the relative abundance of Anae-

rofustis was returned to Baseline level after human gut microbiome was restored.

Interestingly, the relative abundance of another SCFA-producing bacteria genus, Phasco-

larctobacterium, also showed significant increment 6 months-post eradication. Phascolarcto-

bacterium is also a genus of Firmicutes bacteria classified within the class of Clostridia. P.

succinatutens sp. nov. isolated by Watanabe and co-workers recently from human feces. P. suc-

cinatutens sp. nov. is distributed broadly in the gut as subdominant members that may adapt

to the intestinal environment by specializing to utilize the succinate generated by other
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bacterial species to produce propionate [76], which may also act as a health-promoting micro-

bial metabolite in the human gut [77] post-H. pylori eradication to aid in the restoration of the

perturbed microbiome. On the side note, SCFA was also reported to stimulate the release of

hormone PYY and GLP-1 from rodent enteroendocrine L cells via activation of the G-protein-

coupled free fatty acid receptor (FFAR) 2 [78–80]. Of the SCFA produced by colonic fermenta-

tion of dietary fibre, propionate has the highest affinity for FFAR 2 [81, 82]. Recently, the first-

in-human study also demonstrated that direct delivery of propionate to the colon acutely

increases the release of PYY and GLP-1 [83]. In a study reported recently by our group has also

shown that H. pylori eradication was associated with long term elevation of active amylin, PYY,

and GLP-1 in the serum [29]. By this mechanism of SCFA-linked G-protein-coupled receptor

activation, the gut microbiota may contribute markedly to increased nutrient uptake and depo-

sition, contributing to the development of metabolic disorders [84]. Hence, there is a possibility

that eradication of H. pylorimay cause dybiosis which in turn influence the human energy

metabolism and lead to the development of obesity.

The genus Ruminococcus belongs to phylum Firmicutes and corresponds to 5–15% of the

total bacterial population in the colon [85, 86]. Currently, the genus Ruminococcus is divided

into two phylogenetically separate groups which are categorized under two separate families

Ruminococcaceae [87] and Lachnospiraceae [88] with numerous misclassified Ruminococcus

species [89]. Thus, although the relative abundance of this genus was found to have increased

significantly 6 months-post eradication, we could not decipher the effect of H. pylori eradica-

tion on this bacteria genus. Similarly, genus TM7 is a recently described candidate division of

the domain Bacteria, which is currently known only from environmental 16S ribosomal DNA

sequence data [90]. Candidate division TM7 is found in a diverse range of environment habi-

tats [90–93] and human body sites [93–97]. These microorganisms have been suggested to play

an important role in the early stages of inflammatory mucosal processes, probably by modify-

ing growth conditions for competing bacterial populations [93, 94]. However, we could not elu-

cidate the effect of H. pylori eradication on these organisms in relation to health diseases

because they have been uncultivable, with no pure-culture representatives.

In addition toHelicobacter, genera Dialister and Agrobacterium were also found to have

changed significantly 12 months post-H. pylori eradication. Although the clinical significance

of Dialister spp. and Agrobacterium associated with any disease or infection following H. pylori

eradication remains unknown for the time being, it is noteworthy that the significant changes

of the relative abundance of these genera 12 months-post eradication.

Our preliminary stool metagenomics study has shown that the eradication ofH. pylori

caused perturbation of the gut microbiome and may indirectly affect the health of human. Cli-

nicians should be aware of the effect of broad spectrum antibiotics used inH.pylori eradication

regime and be more cautious in the clinical management ofH. pylori infection, particularly

patients from the immunocompromised group. Nonetheless, high throughput experimental

approaches such as whole genome shotgun sequencing and metatranscriptomics with bigger

sample size is required to verify the observation of this study and also to reveal the complex

gene repertoire of the gut microbiome and consequences ofH. pylori eradication in modulating

human health.
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