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HELICOIDAL SURFACES AND THEIR GAUSS MAP IN
MINKOWSKI 3-SPACE II

Miekyung Choi, Young Ho Kim∗, and Gi-Chan Park

Abstract. We classify and characterize the rational helicoidal surfaces
in a three-dimensional Minkowski space satisfying pointwise 1-type like
problem on the Gauss map.

1. Introduction

Nash’s imbedding theorem enables us to view every Riemannian manifold
as a submanifold of a Euclidean space. In that sense, one way to study a
Riemannian manifold is to apply the theory of submanifolds in a Euclidean
space. Since B.-Y. Chen ([3]) introduced the notion of finite type immersion of
submanifolds in a Euclidean space late 1970’s, many works have been carried
out in this area. Further, the notion of finite type can be extended to any
smooth functions on a submanifold of a Euclidean space or a pseudo-Euclidean
space. In dealing with submanifolds of a Euclidean or a pseudo-Euclidean
space, the Gauss map is a useful tool to examine the character of submanifolds
in a Euclidean space. For the last few years, two of the present authors and
D. W. Yoon introduced and studied the notion of pointwise 1-type Gauss map
in a Euclidean or a pseudo-Euclidean space ([4], [5], [7], [8]), namely the Gauss
map G on a submanifold M of a Euclidean space or a pseudo-Euclidean space
is said to be of pointwise 1-type if

(1.1) ∆G = F (G + C)

for a non-zero smooth function F on M and a constant vector C, where ∆
denotes the Laplace operator defined on M .

On the other hand, a helicoidal surface is well known as a kind of general-
ization of some ruled surfaces and surfaces of revolution in a Euclidean space
or a Minkowski space ([1], [2], [6]). Recently, two of the authors, H. Liu and
D. W. Yoon have classified the helicoidal surfaces with pointwise 1-type Gauss
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map in a Minkowski 3-space L3 ([5]). Then, we may have a natural question
as follows:

What helicoidal surfaces have the harmonic Gauss map, that is, ∆G = 0?
Or, what helicoidal surfaces satisfy equation (1.1) whether the function F is
non-zero or zero?

In this paper, we mainly focus on the study of the helicoidal surfaces with
harmonic Gauss map in a Minkowski 3-space and find the all solution spaces
of the so-called rational helicoidal surfaces satisfying (1.1). As a consequence,
we have the following characterizations:

Theorem A. Let M be a helicoidal surface with space-like or time-like axis in
a Minkowski 3-space L3. Then, a plane is the only rational helicoidal surface
with harmonic Gauss map.

Theorem B. There exists no rational helicoidal surface with harmonic Gauss
map which has null axis in Minkowski 3-space L3.

Theorem C. Let M be a rational helicoidal surface with time-like axis in a
Minkowski 3-space L3. Then, the Gauss map G of M satisfies the condition
∆G = F (G + C) for some smooth function F and constant vector C if and
only if M is an open part of a plane, a circular cylinder, a right cone, a right
helicoid of type II or a helicoidal surface of elliptic type in L3.

2. Preliminaries

Let L3 be a Minkowski 3-space with the Lorentz metric

〈·, ·〉 = −dx0
2 + dx1

2 + dx2
2,

where (x0, x1, x2) is a system of the canonical coordinates in R3. Let M be
a connected 2-dimensional surface in L3 and x : M → L3 a smooth non-
degenerate isometric immersion. A surface M is said to be space-like (resp.
time-like) if the induced metric on M is positive definite (resp. indefinite).
Assuming that M is orientable, we can always choose a unit normal vector
field G globally defined on M . In such a case, the unit normal vector field
G can be regarded as a map G : M → H2

+ if M is space-like and as a map
G : M → S2

1 if M is time-like, where H2
+ = {x ∈ L3 | 〈x, x〉 = −1, x2 > 0}

is the hyperbolic space and S2
1 = {x ∈ L3 | 〈x, x〉 = 1} is the de Sitter space.

The map G is also called the Gauss map of the surface M . For the matrix
g̃ = (g̃ij) consisting of the components of the induced metric on M , we denote
by g̃−1 = (g̃ij) (resp. G) the inverse matrix (resp. the determinant) of the
matrix (g̃ij). The Laplacian ∆ on M is, in turn, given by

∆ = − 1√
| G |

∑

i,j

∂

∂xi

(√
| G | g̃ij ∂

∂xj

)
.

Let e be a non-zero vector in L3 and S(e) the set of screw motions fixing
e in L3. In particular, if e is non-null, the screw motions fixing e belong to
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O(e), the set of orthogonal transformations with positive determinant. Then,
a helicoidal motion around the axis in the e-direction is defined by

gt(x) = A(t)xT + (ht)e, x = (x0, x1, x2) ∈ L3, t ∈ R, A ∈ S(e),

where h is a constant and xT is the transpose of the vector x.
Let γ : I = (a, b) ⊂ R→ Π be a plane curve in L3 and l a straight line in Π

which does not intersect the curve γ. A helicoidal surface M with the axis l and
pitch h in L3 is a non-degenerate surface which is invariant under the action
of the helicoidal motion gt. Depending on the axis being space-like, time-like
or null, there are three types of screw motions. If the axis l is space-like (resp.
time-like), then l is transformed to the x1-axis or x2-axis (resp. x0-axis) by the
Lorentz transformation. Therefore, we may consider x2-axis (resp. x0-axis) as
the axis if l is space-like (resp. time-like). If the axis l is null, then we may
assume that the axis is the line spanned by the vector (1, 1, 0).

We now consider the helicoidal surfaces in L3 with space-like, time-like or
null axis respectively.

Case 1. The axis l is space-like.
Without loss of generality we may assume that the profile curve γ lies in the

x1x2-plane or x0x2-plane. Hence, the curve γ can be represented by

γ(u) = (0, f(u), g(u)) or γ(u) = (f(u), 0, g(u))

for smooth functions f and g on an open interval I = (a, b). Therefore, the
surface M may be parameterized by

(2.1) x(u, v) = (f(u) sinh v, f(u) cosh v, g(u) + hv), f(u) > 0, h ∈ R
or

(2.2) x(u, v) = (f(u) cosh v, f(u) sinh v, g(u) + hv), f(u) > 0, h ∈ R.

Case 2. The axis l is time-like.
In this case, we may assume that the profile curve γ lies in the x0x1-plane.

So the curve γ is given by γ(u) = (g(u), f(u), 0) for a positive function f = f(u)
on an open interval I = (a, b). Hence, the surface M can be expressed by

(2.3) x(u, v) = (g(u) + hv, f(u) cos v, f(u) sin v), f(u) > 0, h ∈ R.

Case 3. The axis l is null.
In this case, we may assume that the profile curve γ lies in the x0x1-plane

of the form γ(u) = (f(u), g(u), 0), where f = f(u) is a positive function and
g = g(u) is a function satisfying p(u) = f(u)− g(u) 6= 0 for all u ∈ I. Under
the cubic screw motion, its parametrization has the form

(2.4) x(u, v) =
(

f(u) +
v2

2
p(u) + hv, g(u) +

v2

2
p(u) + hv, p(u)v

)
, h ∈ R.
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3. Helicoidal surfaces with time-like axis in Minkowski 3-space

In this section, we study the helicoidal surfaces with harmonic Gauss map
which has time-like axis in Minkowski 3-space L3.

Suppose that M is a helicoidal surface in L3 with time-like axis parameter-
ized by (2.3) for some smooth functions f and g.

First, if f is constant, the parametrization of M can be written as

x(u, v) = (g(u) + hv, a cos v, a sin v), h ∈ R
for a non-zero constant a. By a straightforward computation, we see that the
Laplacian ∆G of the Gauss map G satisfies ∆G = 1

a2 G. Hence, M does not
have the harmonic Gauss map. In fact, it has non-proper pointwise 1-type
Gauss map of the first kind ([5]). Therefore, we may assume that f is not
constant. Then, we may put f(u) = u and thus M is parameterized by

(3.1) x(u, v) = (g(u) + hv, u cos v, u sin v), u > 0, h ∈ R.

If M is space-like, that is, u2 − u2g′2 − h2 > 0, then the Gauss map G and
its Laplacian ∆G are obtained as follows:

G = 1√
u2−u2g′2−h2

(−u, −ug′ cos v + h sin v, −ug′ sin v − h cos v)

and

∆G = − 1

(u2−u2g′2−h2)
7
2
(D(u), A(u) sin v+B(u) cos v, −A(u) cos v+B(u) sin v),

where we have put

A(u) = h{2h4 − 4h4g′2 + (−7h4g′g′′)u + (−2h2 + 2h2g′2 − h4g′′2 − h4g′g′′′)u2

+ (8h2g′g′′+h2g′3g′′)u3+(3h2g′2g′′2−h2g′3g′′′ + 2h2g′′2+2h2g′g′′′)u4

+ (−g′g′′ + g′3g′′)u5 + (−g′′2 − 3g′2g′′2 − g′g′′′ + g′3g′′′)u6} ,

B(u) = − 3h6g′′ + (−6h4g′ + 8h4g′3 − h6g′′′)u + (7h4g′′ + 7h4g′2g′′)u2

+ (7h2g′ − 12h2g′3 + 5h2g′5 + 4h4g′g′′2 + 3h4g′′′ − h4g′2g′′′)u3

+ (−5h2g′′ − 6h2g′2g′′ + 2h2g′4g′′)u4 + {−g′(1− g′2)3 − 8h2g′g′′2

− 3h2g′′′ + 2h2g′2g′′′}u5+(g′′ − g′2g′′)u6+(−g′2g′′′ + 4g′g′′2 + g′′′)u7

and

D(u) = u{−2h4 + 4h4g′2 + (7h4g′g′′)u + (2h2 − 2h2g′2 + h4g′′2 + h4g′g′′′)u2

+ (−8h2g′g′′ − h2g′3g′′)u3 + (−3h2g′2g′′2 + h2g′3g′′′ − 2h2g′′2

− 2h2g′g′′′)u4 +(g′g′′ − g′3g′′)u5 +(g′′2 + 3g′2g′′2 + g′g′′′−g′3g′′′)u6}.
Suppose that M has harmonic Gauss map, that is, its Gauss map G satisfies

∆G = 0. Then, we obtain that the functions A(u), B(u) and D(u) are all
vanishing.
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First, we consider the case that M is a helicoidal surface of polynomial kind
with harmonic Gauss map, that is, g is a polynomial in u. Then we may put

g(u) = anun + an−1u
n−1 + · · ·+ a1u + a0,

where n is nonnegative integer and an is non-zero constant.
Considering the constant terms of B(u), it is easy to see that h = 0, that

is, M is a surface of revolution. Therefore, A(u) = 0. Also, B(u) and D(u) are
reduced to respectively:

B(u) = −g′(1− g′2)3u5 + (g′′ − g′2g′′)u6 + (−g′2g′′′ + 4g′g′′2 + g′′′)u7,

D(u) = (g′g′′ − g′3g′′)u5 + (g′′2 + 3g′2g′′2 + g′g′′′ − g′3g′′′)u6.

Assume that deg g(u) ≥ 2, where deg g(u) means the degree of the polyno-
mial g(u). Then, the term −g′(1− g′2)3u5 in B(u) includes the highest degree
in u and its leading coefficient must be zero, that is, n7a7

n = 0. Thus, an = 0,
a contradiction.

Assuming deg g(u) = 1, B(u) = −a1(1 − a2
1)

3u5. Hence, a2
1 = 1, which is a

contradiction since M is non-degenerate.
If g is constant, then B(u) = 0 and D(u) = 0. Hence, the Gauss map is

harmonic. In this case, the parametrization of M in (3.1) is reduced to

x(u, v) = (a, u cos v, u sin v), u > 0

for some constant a. This means that M is part of a plane.
Conversely, it is obvious that the Gauss map of a plane is harmonic. By a

similar process as above, the same conclusion can be made in case of time-like
surface. Consequently, we have:

Theorem 3.1. Let M be a helicoidal surface of polynomial kind with time-like
axis in a Minkowski 3-space L3. Then, M has the harmonic Gauss map if and
only if M is part of a plane.

Next, consider M is of rational kind, that is, g(u) is a rational function.
Suppose that M is a genuine helicoidal surface of rational kind with harmonic
Gauss map, i.e., h 6= 0. Then we may put

(3.2) g(u) = p(u) +
r(u)
q(u)

,

where p(u) is a polynomial in u and the polynomials r(u) and q(u) are relatively
prime with deg r(u) < deg q(u) and deg q(u) ≥ 1. Let deg p(u) = l, deg r(u) =
n and deg q(u) = m with n < m and m ≥ 1 where l, m and n are some
nonnegative integers. Then, we may put

(3.3)

p(u) = alu
l + al−1u

l−1 + · · ·+ a1u + a0,

q(u) = bmum + bm−1u
m−1 + · · ·+ b1u + b0,

r(u) = cnun + cn−1u
n−1 + · · ·+ c1u + c0.
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Putting (3.2) in the equation B(u) and multiplying q14(u) with thus obtained
equation, we get a polynomial q14(u)B(u) in u.

Assume that deg p(u) ≥ 2. By an algebraic computation, we see that the
degree of the polynomial is 7l + 14m− 2 and so its coefficient l7a7

l b
14
m must be

zero. But, this is a contradiction.
Assuming deg p(u) = 1, the leading coefficient of the polynomial is −a1(1−

a2
1)

3b14
m . It must be zero and so a2

1 = 1. In this case, we can consider two cases
according to the value of m− n.

If m− n > 1, then the polynomial includes the term of the degree 14m + 1
with the coefficient 2h4a1b

14
m . Hence it must be zero, a contradiction.

Suppose m−n = 1. Since the Gauss map of M is harmonic, the polynomials
q10(u)A(u) and q14(u)B(u) are vanishing. With the help of (3.2) and (3.3), we
have b0 = 0. So we may put

q(u) = bmum + · · ·+ b2u
2 + b1u, bm 6= 0.

Then, an algebraic computation shows that the polynomial q10(u)A(u) has
the lowest degree 4 with the coefficient 4h2b6

1c
4
0. Similarly, the polynomial

q14(u)B(u) has the lowest degree 5 with the coefficient −b7
1c

7
0. Therefore, b1c0 =

0.
If we assume c0 6= 0, then b1 = 0 and we have

q(u) = bmum + · · ·+ b2u
2, bm 6= 0.

By considering the coefficients of the terms with the lowest degree in q10(u)A(u)
and q14(u)B(u), we get b2c0 = 0. Hence, b2 = 0. Inductively, b3, . . . , bm−1 are
zero. So we put

q(u) = bmum, bm 6= 0.

Then, the polynomial q14(u)B(u) has the lowest degree 7m− 2 with the coef-
ficient (−mbmc0)7. It must be zero, a contradiction. Thus, we conclude that
c0 = 0. Hence, g(u) can be written as

g(u) = ±u + a0 +
r(u)
q(u)

,

where r(u) = cnun−1 + · · · + c1 and q(u) = bmum−1 + · · · + b1 with cn 6= 0
and bm 6= 0. By a similar process as above, we obtain b1, . . . , bm−1 = 0 and
c1, . . . , cn−1 = 0. Consequently, we get

g(u) = ±u + a0 +
c

u
, c 6= 0.

Hence, q14(u)B(u) has the coefficient −c7 of the lowest degree which is 5 and
it must be zero. Thus, c = 0, that is, g is a polynomial in u.

Finally, if p is constant, then the degree of q14(u)B(u) is 13m + n + 4 and
its leading coefficient is −(m − n)2(m − n + 2)b13

m cn. This must be zero, a
contradiction.
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By a similar argument as above, we lead to a contradiction in case of sur-
faces of revolution. In case of time-like surface, we have the same result. Con-
sequently, we have:

Theorem 3.2. Let M be a helicoidal surface with time-like axis in a Minkowski
3-space L3. Then, there exists no helicoidal surface of rational kind with har-
monic Gauss map except polynomial kind.

Combining the above theorems we have the following:

Theorem 3.3 (Characterization). Let M be a rational helicoidal surface with
time-like axis in a Minkowski 3-space L3. Then, M has the harmonic Gauss
map if and only if it is part of a plane.

Combining the results above and [5], we have the following characterization.

Theorem 3.4 (Characterization). Let M be a rational helicoidal surface with
time-like axis in a Minkowski 3-space L3. Then, the Gauss map G of M satisfies
the condition ∆G = F (G+C) for some smooth function F and constant vector
C if and only if M is an open part of a plane, a circular cylinder, a right cone,
a right helicoid of type II or a helicoidal surface of elliptic type in L3.

4. Helicoidal surfaces with null axis in Minkowski 3-space

In this section, we investigate the helicoidal surfaces with harmonic Gauss
map which has null axis in L3.

Suppose that M is a helicoidal surface with null axis parameterized by

x(u, v) =
(

f(u) +
v2

2
p(u) + hv, g(u) +

v2

2
p(u) + hv, p(u)v

)
, h ∈ R,

where p(u) = f(u)−g(u) 6= 0. Since the induced metric on M is non-degenerate,
(f(u)−g(u))2(f ′2(u)−g′2(u))+h2(f ′(u)−g′(u))2 never vanishes and so f ′(u)−
g′(u) 6= 0 everywhere. Thus, we may change the variable in such a way that
p(u) = f(u)− g(u) = −2u.

Let k(u) = f(u)+u. Then, the functions f and g in the profile curve γ look
like

f(u) = k(u)− u and g(u) = k(u) + u.

Thus, the parametrization of M becomes

x(u, v) = (k(u)− u− uv2 + hv, k(u) + u− uv2 + hv, −2uv).

We now suppose that M is space-like, that is, 4u2k′(u)−h2 > 0. By a direct
computation, the Gauss map G and its Laplacian ∆G are obtained as follows:

G =
1√

4u2k′(u)− h2
(uk′(u) + u + uv2 − vh, uk′(u)− u + uv2 − vh, 2uv − h)

and

∆G = − 1

(4u2k′(u)− h2)
7
2
(2uX + Y , −2uX + Y, 2(2uv − h)X) ,
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where we have put
(4.1)
X = X(u) = h4 + 4h2k′u2 + 9h2k′′u3 + h2k′′′u4− 4k′k′′u5 + 8k′′2u6− 4k′k′′′u6

and

Y = Y (u, v)

= 10h4k′u + 7h4k′′u2 − 32h2k′2u3 + h4k′′′u3 − 14h2k′k′′u4 + 32k′3u5

+ 6h2k′′2u5 − 6h2k′k′′′u5 + 8k′2k′′u6 − 8k′k′′2u7 + 8k′2k′′′u7 − 2h5v

− 8h3k′u2v − 18h3k′′u3v − 2h3k′′′u4v + 8hk′k′′u5v − 16hk′′2u6v

+ 8hk′k′′′u6v + 2h4uv2 + 8h2k′u3v2 + 18h2k′′u4v2 + 2h2k′′′u5v2

− 8k′k′′u6v2 + 16k′′2u7v2 − 8k′k′′′u7v2.

(4.2)

Suppose that M has harmonic Gauss map, that is, its Gauss map G satisfies
∆G = 0. Then the above equations X(u) and Y (u, v) are vanishing. Hence,
the equation Y (u, v) in (4.2) can be rewritten as

Y (u, v) = Y1(u) + Y2(u)v + Y3(u)v2,

where we put

Y1(u) =10h4k′u + 7h4k′′u2 − 32h2k′2u3 + h4k′′′u3 − 14h2k′k′′u4 + 32k′3u5

+ 6h2k′′2u5 − 6h2k′k′′′u5 + 8k′2k′′u6 − 8k′k′′2u7 + 8k′2k′′′u7,

Y2(u) = −2h(h4 +4h2k′u2 +9h2k′′u3 +h2k′′′u4−4k′k′′u5 +8k′′2u6−4k′k′′′u6),

Y3(u) = 2u(h4 + 4h2k′u2 + 9h2k′′u3 + h2k′′′u4− 4k′k′′u5 + 8k′′2u6− 4k′k′′′u6).
Since X(u) and Y (u, v) are vanishing, we have Y1(u) = 0. Moreover, Y1(u) can
be written as Y1(u) = −2k′uX(u) + uZ(u) and we also get Z(u) = 0, where
(4.3)

Z(u) = 12h4k′ + 7h4k′′u− 24h2k′2u2 + h4k′′′u2 + 4h2k′k′′u3 + 32k′3u4

+ 6h2k′′2u4 − 4h2k′k′′′u4 + 8k′k′′2u6.

Let M be a helicoidal surface of polynomial kind with harmonic Gauss map,
that is, k is a polynomial in u. Then we may put

k(u) = anun + an−1u
n−1 + · · ·+ a1u + a0,

where n is nonnegative integer and an is non-zero constant.
Considering the constant terms in X(u), it is easy to see that h = 0. There-

fore, the equations X(u) and Z(u) can be written as

X(u) = −4k′k′′u5 + 8k′′2u6 − 4k′k′′′u6 and Z(u) = 32k′3u4 + 8k′k′′2u6.

Assume that deg k(u) ≥ 2. Considering the equation X(u), we can easily
lead to a contradiction.
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If deg k(u) = 1, then X(u) = 0 and Z(u) = 32a3
1u

4. Hence, Z(u) cannot be
zero and so we have a contradiction.

If k is constant, then X(u) = 0 and Z(u) = 0. But, in this case, it contradicts
that M is non-degenerate, i.e., 4u2k′(u) 6= 0. Hence, M does not have harmonic
Gauss map.

By a similar argument as above, we have the same results in case of time-like
helicoidal surface of polynomial kind with null axis. Thus, we have:

Theorem 4.1. Suppose that M is a helicoidal surface of polynomial kind with
null axis in a Minkowski 3-space L3. Then M does not have harmonic Gauss
map.

We now consider a helicoidal surface of rational kind with harmonic Gauss
map, that is, k is a rational function in u. Then we may put

k(u) = p(u) +
r(u)
q(u)

,

where p(u) is a polynomial in u, r(u) and q(u) are relatively prime polynomials
with deg r(u) < deg q(u) and deg q(u) ≥ 1.

Suppose that M is a genuine helicoidal surface of rational kind, that is,
h 6= 0. With the help of (4.1) and (4.3), we get

u2Z(u)− h2X(u) = (4u2k′ − h2)(h4 − 4h2k′u2 + 2h2k′′u3 + 8k′2u4 + 2k′′2u6).

Since X(u) and Z(u) vanishes identically,

(4u2k′ − h2)(h4 − 4h2k′u2 + 2h2k′′u3 + 8k′2u4 + 2k′′2u6) = 0.

Because M is a nondegenerate surface, i.e., 4u2k′ − h2 6= 0,

(4.4) h4 − 4h2k′u2 + 2h2k′′u3 + 8k′2u4 + 2k′′2u6 = 0.

From the equation (4.4), we get

(2k′′u3 + h2)2 + (4u2k′ − h2)2 = 0.

It is easily seen that this is a contradiction because of 4u2k′ − h2 6= 0. Thus,
h = 0.

If h = 0, the equation Z(u) in (4.3) can be reduced as

Z(u) = 8u2k′(k′′2u4 + 4u2k′2).

Since M is nondegenerate, k′′2u4 + 4u2k′2 = 0, which implies k is constant, a
contradiction.

Similarly, we prove that a time-like helicoidal surface of rational kind does
not have harmonic Gauss map. Consequently, we have:

Theorem 4.2. Let M be a helicoidal surface with null axis in a Minkowski
3-space L3. Then, there exists no rational helicoidal surface with harmonic
Gauss map.
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Combining the results we obtained above and those in [5], we have the
following:

Theorem 4.3 (Characterization). Let M be a helicoidal surface of rational
kind with null axis in a Minkowski 3-space L3. Then, the Gauss map G of M
satisfies ∆G = F (G+C) for some smooth function F and constant vector C if
and only if it is part of an Enneper’s surface of second kind, a de Sitter space,
a hyperbolic space, a helicoidal surface of Enneper type, a helicoidal surface of
hyperbolic type or a helicoidal surface of de Sitter type in L3.
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