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HELICOIDAL SURFACES AND THEIR GAUSS MAP IN
MINKOWSKI 3-SPACE II

MIEKYUNG CHOI, YOUNG HO KiM™, AND GI-CHAN PARK

ABSTRACT. We classify and characterize the rational helicoidal surfaces
in a three-dimensional Minkowski space satisfying pointwise 1-type like
problem on the Gauss map.

1. Introduction

Nash’s imbedding theorem enables us to view every Riemannian manifold
as a submanifold of a Euclidean space. In that sense, one way to study a
Riemannian manifold is to apply the theory of submanifolds in a Euclidean
space. Since B.-Y. Chen ([3]) introduced the notion of finite type immersion of
submanifolds in a Euclidean space late 1970’s, many works have been carried
out in this area. Further, the notion of finite type can be extended to any
smooth functions on a submanifold of a Euclidean space or a pseudo-Euclidean
space. In dealing with submanifolds of a Euclidean or a pseudo-Euclidean
space, the Gauss map is a useful tool to examine the character of submanifolds
in a Euclidean space. For the last few years, two of the present authors and
D. W. Yoon introduced and studied the notion of pointwise 1-type Gauss map
in a Euclidean or a pseudo-Euclidean space ([4], [5], [7], [8]), namely the Gauss
map G on a submanifold M of a Euclidean space or a pseudo-Euclidean space
is said to be of pointwise 1-type if

(1.1) AG = F(G +C)

for a non-zero smooth function F on M and a constant vector C, where A
denotes the Laplace operator defined on M.

On the other hand, a helicoidal surface is well known as a kind of general-
ization of some ruled surfaces and surfaces of revolution in a Euclidean space
or a Minkowski space ([1], [2], [6]). Recently, two of the authors, H. Liu and
D. W. Yoon have classified the helicoidal surfaces with pointwise 1-type Gauss
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map in a Minkowski 3-space L? ([5]). Then, we may have a natural question
as follows:

What helicoidal surfaces have the harmonic Gauss map, that is, AG = 07
Or, what helicoidal surfaces satisfy equation (1.1) whether the function F' is
NON-Zero or zero?

In this paper, we mainly focus on the study of the helicoidal surfaces with
harmonic Gauss map in a Minkowski 3-space and find the all solution spaces
of the so-called rational helicoidal surfaces satisfying (1.1). As a consequence,
we have the following characterizations:

Theorem A. Let M be a helicoidal surface with space-like or time-like axis in
a Minkowski 3-space L. Then, a plane is the only rational helicoidal surface
with harmonic Gauss map.

Theorem B. There exists no rational helicoidal surface with harmonic Gauss
map which has null azis in Minkowski 3-space 3.

Theorem C. Let M be a rational helicoidal surface with time-like axis in a
Minkowski 3-space 2. Then, the Gauss map G of M satisfies the condition
AG = F(G + C) for some smooth function F and constant vector C if and
only if M is an open part of a plane, a circular cylinder, a right cone, a Tight
helicoid of type II or a helicoidal surface of elliptic type in L3.

2. Preliminaries

Let L3 be a Minkowski 3-space with the Lorentz metric
<', > = —d$02 + d.’L‘12 + dSL’QZ,

where (zg,21,72) is a system of the canonical coordinates in R®. Let M be
a connected 2-dimensional surface in > and z : M — L? a smooth non-
degenerate isometric immersion. A surface M is said to be space-like (resp.
time-like) if the induced metric on M is positive definite (resp. indefinite).
Assuming that M is orientable, we can always choose a unit normal vector
field G globally defined on M. In such a case, the unit normal vector field
G can be regarded as a map G : M — H? if M is space-like and as a map
G: M — S} if M is time-like, where H2 = {2 € L3 | (z,z) = —1,z5 > 0}
is the hyperbolic space and S? = {x € L? | (x,2) = 1} is the de Sitter space.
The map G is also called the Gauss map of the surface M. For the matrix
G = (gi;) consisting of the components of the induced metric on M, we denote
by g7 = (g¥) (resp. G) the inverse matrix (resp. the determinant) of the
matrix (g;;). The Laplacian A on M is, in turn, given by

1 o 0

Let e be a non-zero vector in > and S(e) the set of screw motions fixing
e in L3. In particular, if e is non-null, the screw motions fixing e belong to
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O(e), the set of orthogonal transformations with positive determinant. Then,
a helicoidal motion around the axis in the e-direction is defined by

gi(z) = At)xT + (ht)e, = (0, x1, 22) €L, t R, A € S(e),

where h is a constant and =7 is the transpose of the vector z.

Let v : I = (a,b) C R — II be a plane curve in L and [ a straight line in IT
which does not intersect the curve . A helicoidal surface M with the axis [ and
pitch h in L3 is a non-degenerate surface which is invariant under the action
of the helicoidal motion g;. Depending on the axis being space-like, time-like
or null, there are three types of screw motions. If the axis [ is space-like (resp.
time-like), then [ is transformed to the x1-axis or xs-axis (resp. zo-axis) by the
Lorentz transformation. Therefore, we may consider zs-axis (resp. xg-axis) as
the axis if [ is space-like (resp. time-like). If the axis [ is null, then we may
assume that the axis is the line spanned by the vector (1,1,0).

We now consider the helicoidal surfaces in L3 with space-like, time-like or
null axis respectively.

Case 1. The axis [ is space-like.
Without loss of generality we may assume that the profile curve ~ lies in the
x1T9-plane or xgxo-plane. Hence, the curve  can be represented by

Y(w) = (0, f(u), g(u)) or y(u) = (f(u), 0, g(u))

for smooth functions f and g on an open interval I = (a,b). Therefore, the
surface M may be parameterized by

(2.1) x(u,v) = (f(u)sinhv, f(u)coshv, g(u)+ hv), f(u) >0, heR
(2.2) x(u,v) = (f(u)coshv, f(u)sinhwv, g(u)+ hv), f(u) >0, heR.

Case 2. The axis [ is time-like.

In this case, we may assume that the profile curve  lies in the xgx1-plane.
So the curve v is given by y(u) = (g(u), f(u),0) for a positive function f = f(u)
on an open interval I = (a,b). Hence, the surface M can be expressed by

(2.3) z(u,v) = (g(u) + hv, f(u)cosv, f(u)sinv), f(u) >0, h€R.

Case 3. The axis [ is null.

In this case, we may assume that the profile curve « lies in the xgx;-plane
of the form v(u) = (f(u), g(u), 0), where f = f(u) is a positive function and
g = g(u) is a function satisfying p(u) = f(u) — g(u) # 0 for all u € I. Under
the cubic screw motion, its parametrization has the form

2 2

(24) z(u,v) = (f(u) + %p(u) + hv, g(u) + %p(u) + hv, p(u)v) , heR.
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3. Helicoidal surfaces with time-like axis in Minkowski 3-space

In this section, we study the helicoidal surfaces with harmonic Gauss map
which has time-like axis in Minkowski 3-space L3.

Suppose that M is a helicoidal surface in L3 with time-like axis parameter-
ized by (2.3) for some smooth functions f and g.

First, if f is constant, the parametrization of M can be written as

x(u,v) = (g(u) + hv, acosv, asinv), h € R

for a non-zero constant a. By a straightforward computation, we see that the
Laplacian AG of the Gauss map G satisfies AG = a—gG. Hence, M does not
have the harmonic Gauss map. In fact, it has non-proper pointwise 1-type
Gauss map of the first kind ([5]). Therefore, we may assume that f is not
constant. Then, we may put f(u) = u and thus M is parameterized by

(3.1) x(u,v) = (g(u) + hv, wcosv, usinv), u >0, h € R.

If M is space-like, that is, u? uzg’2 h? > 0, then the Gauss map G and
its Laplacian AG are obtained as follows:

G = \/ﬁw(—u, —ug' cosv + hsinv, —ug’ sinv — hcosv)
and
AG = —-—L—(D(u), A(u)sinv+B(u) cosv, —A(u) cosv+B(u) sinv),

(u27u2g’27h2)%
where we have put
A(’LL) _ h{2h4*4h4g ( 7h4 / I/) (*2}124’2}12 12 *h4 72 h4 / ///) 2
(8h2 ’ //+h2 13 //)u +(3h2 /2 //2 h2 3 ///+2h2 72 +2h2 / ///) 4

1

2
+(=g'g" + 9"’ + (—¢"* = 34"

72 /i //l) }

- 99 +99

B(u) = —3hS5¢" + (—6h*g’ + 8h*q’® — hSg" \u + (Th*g" + Th*g"* ¢ )u?
+ (Th%g — 12h%¢"° + 5h2g"° + 4h*q' g + 3h*g" — hig* " )u?
+(=5h%g" — 6h%g"%g" + 2n%g"* 9”)u +{—g'(1—g%)* - 8hgg"
— 3h%g" + 2% g Yl +(g" — g9 o +(—g g”’+4g’g” +g"")u’
and
D(u) = uf{—2h* + 4h*g"> + (Th*g'g"u + (202 — 2h%¢"* + h*¢"* + h'g g Y
+ (=8h2g " — h2g" " P + (—3h2g"g"% + W3¢ — 2h2g"?
—2h%g'g"ut +(g'g" — g 9"’ + (9" + 399" + 9" — g 9" us}.

Suppose that M has harmonic Gauss map, that is, its Gauss map G satisfies
AG = 0. Then, we obtain that the functions A(u), B(u) and D(u) are all

vanishing.
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First, we consider the case that M is a helicoidal surface of polynomial kind
with harmonic Gauss map, that is, g is a polynomial in u. Then we may put

g(u) = anun + an—lun_l +---+au+ ap,

where n is nonnegative integer and a,, is non-zero constant.

Considering the constant terms of B(u), it is easy to see that h = 0, that
is, M is a surface of revolution. Therefore, A(u) = 0. Also, B(u) and D(u) are
reduced to respectively:

B(u) _ —g’(l - 912)3u5 + <g// _ 9129//)u6 + (_g/Qg/// + 4g/g//2 + g///)u77
D(u) = (g/g// . gl3g//)u5 + (9/12 + 39129//2 + g/g/// . g/gg”I)UG.

Assume that deg g(u) > 2, where deg g(u) means the degree of the polyno-
mial g(u). Then, the term —g'(1 — ¢'*)3u® in B(u) includes the highest degree
in u and its leading coefficient must be zero, that is, n’a’ = 0. Thus, a,, = 0,
a contradiction.

Assuming deg g(u) = 1, B(u) = —a1(1 — a?)3u’. Hence, a? = 1, which is a
contradiction since M is non-degenerate.

If g is constant, then B(u) = 0 and D(u) = 0. Hence, the Gauss map is
harmonic. In this case, the parametrization of M in (3.1) is reduced to

x(u,v) = (a, ucosv, usinv), u >0

for some constant a. This means that M is part of a plane.

Conversely, it is obvious that the Gauss map of a plane is harmonic. By a
similar process as above, the same conclusion can be made in case of time-like
surface. Consequently, we have:

Theorem 3.1. Let M be a helicoidal surface of polynomial kind with time-like
axis in a Minkowski 8-space L. Then, M has the harmonic Gauss map if and
only if M is part of a plane.

Next, consider M is of rational kind, that is, g(u) is a rational function.
Suppose that M is a genuine helicoidal surface of rational kind with harmonic
Gauss map, i.e., h # 0. Then we may put

r(u)

(3-2) g(u) = p(u) + o]

where p(u) is a polynomial in u and the polynomials r(u) and g(u) are relatively
prime with degr(u) < degq(u) and degq(u) > 1. Let degp(u) =1, degr(u) =
n and degq(u) = m with n < m and m > 1 where I, m and n are some
nonnegative integers. Then, we may put

)

p(u) = aud + a1+ 4 aju + ao,
(3.3) q(u) = by u™ + by u™ - 4 byu + by,

r(u) = cpu™ 4+ cpqu" "t - cqu + co.
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Putting (3.2) in the equation B(u) and multiplying ¢'*(u) with thus obtained
equation, we get a polynomial ¢'*(u)B(u) in u.

Assume that degp(u) > 2. By an algebraic computation, we see that the
degree of the polynomial is 71 + 14m — 2 and so its coefficient [7a]bl? must be
zero. But, this is a contradiction.

Assuming degp(u) = 1, the leading coefficient of the polynomial is —aq (1 —
a?)3bL4. Tt must be zero and so a2 = 1. In this case, we can consider two cases
according to the value of m — n.

If m —n > 1, then the polynomial includes the term of the degree 14m + 1
with the coefficient 2h*a;bl?. Hence it must be zero, a contradiction.

Suppose m —n = 1. Since the Gauss map of M is harmonic, the polynomials
q'°(u)A(u) and ¢**(u)B(u) are vanishing. With the help of (3.2) and (3.3), we
have by = 0. So we may put

q(u) = bpu™ + -+ + bou? + byu, by, # 0.

Then, an algebraic computation shows that the polynomial ¢'°(u)A(u) has
the lowest degree 4 with the coefficient 4h?b$c3. Similarly, the polynomial
q**(u) B(u) has the lowest degree 5 with the coefficient —bc?. Therefore, bycy =
0.

If we assume ¢y # 0, then by = 0 and we have

q(u) = bpu™ + -+ + byu?, by, # 0.
By considering the coefficients of the terms with the lowest degree in ¢*°(u) A(u)

and ¢**(u)B(u), we get bacy = 0. Hence, by = 0. Inductively, bs, ..., b, 1 are
zero. So we put

q(u) = bppu™, by, #0.
Then, the polynomial ¢'*(u)B(u) has the lowest degree 7m — 2 with the coef-
ficient (—mb,,co)”. It must be zero, a contradiction. Thus, we conclude that
¢op = 0. Hence, g(u) can be written as

g(u)z:l:u—i—ao—kM

q(u) ’
where 7(u) = c,u™ ! + -+ ¢; and q(u) = bpu™ 4 - + by with ¢, # 0
and b,, # 0. By a similar process as above, we obtain by,...,b,,—1 = 0 and

c1,-.-,cn—1 = 0. Consequently, we get
c
g(u)z:l:u—i—ao—ka , c#0.

Hence, ¢'*(u)B(u) has the coefficient —c” of the lowest degree which is 5 and
it must be zero. Thus, ¢ = 0, that is, g is a polynomial in u.

Finally, if p is constant, then the degree of ¢'*(u)B(u) is 13m + n + 4 and
its leading coefficient is —(m — n)?(m — n + 2)bL3¢c,. This must be zero, a
contradiction.
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By a similar argument as above, we lead to a contradiction in case of sur-
faces of revolution. In case of time-like surface, we have the same result. Con-
sequently, we have:

Theorem 3.2. Let M be a helicoidal surface with time-like axis in a Minkowski
3-space 3. Then, there exists no helicoidal surface of rational kind with har-
monic Gauss map except polynomial kind.

Combining the above theorems we have the following:

Theorem 3.3 (Characterization). Let M be a rational helicoidal surface with
time-like axis in a Minkowski 3-space L3. Then, M has the harmonic Gauss
map if and only if it is part of a plane.

Combining the results above and [5], we have the following characterization.

Theorem 3.4 (Characterization). Let M be a rational helicoidal surface with
time-like azis in a Minkowski 3-spaceL®. Then, the Gauss map G of M satisfies
the condition AG = F(G+C) for some smooth function F and constant vector
C if and only if M is an open part of a plane, a circular cylinder, a right cone,
a right helicoid of type II or a helicoidal surface of elliptic type in L3.

4. Helicoidal surfaces with null axis in Minkowski 3-space

In this section, we investigate the helicoidal surfaces with harmonic Gauss
map which has null axis in L3.
Suppose that M is a helicoidal surface with null axis parameterized by

x(u,v) = (f(u) + %p(u) + hv, g(u) + %p(u) + hv, p(u)v) , heR,

where p(u) = f(u)—g(u) # 0. Since the induced metric on M is non-degenerate,
(f (u)—g(w)2(f"*(u)—g"* (w))+h2(f"(u) — ¢ (u))? never vanishes and so f'(u)—
g'(u) # 0 everywhere. Thus, we may change the variable in such a way that
plu) = f(u) — g(u) = —2u.

Let k(u) = f(u) +u. Then, the functions f and g in the profile curve ~ look
like

f(u) =k(u) —u and g(u) = k(u) + u.
Thus, the parametrization of M becomes
z(u,v) = (k(u) —u — w? + hv, k(u) +u — uw? + hv, —2uv).

We now suppose that M is space-like, that is, 4u?k’(u) —h? > 0. By a direct
computation, the Gauss map G and its Laplacian AG are obtained as follows:
1
G=—————(uk'(v) + u + uv?® — vh, uk'(v) —u + uv?® — vh, 2uv —h
) (0 )
and

1
AG — — (uX +Y , —2uX +Y, 2(2uv — h)X) ,
(402 (u) — h?)

(M
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where we have put
(4.1)
X = X(u) = h* + 402K u® + 9h2 K" u? + h2E" u* — 4K k"u® + 8k ub — AK' k" uS
and
(4.2)
Y =Y (u,v)

— 10h4 K u + ThAE"u® — 3212 %03 + RAE"ud — 14h2K K" u* + 32k u5
+ 6h2K"%u5 — 612K K" W5 + 8K K" ub — 8Kk + 8K K" u” — 2h5v
— 8B3E w0 — 18R3K uBv — 2B3K utv + ShE'E" uPv — 16hE" *ubv
+ 8hk' K" uSv + 2htuv? + 8h2k uv? + 18h2E" utv? + 2h2 K" uP0v?
— S8k'E"ubv? + 16/’£”2u7v2 — 8E'K" w2,

Suppose that M has harmonic Gauss map, that is, its Gauss map G satisfies
AG = 0. Then the above equations X (u) and Y (u,v) are vanishing. Hence,
the equation Y (u,v) in (4.2) can be rewritten as

Y (u,v) = Y1 (u) + Ya(u)v + Y3(u)v?,

where we put

Y1 (u) =10R%K u + Th*K"u? — 3202k *u® + hAK"u® — 1402k K u* + 32k u®

+ 6h2k//2u5 —6R2K K" + 8k/2k//u6 _ 8k’k“2u7 + 8k12k///u7,
YQ(U) _ —2h(h4 +4h2klu2 +9h2k//u3 —|—h2k"’u4 _4k/k//u5 +8/€H2u6 —4k'k’”u6),
Ys(u) = 2u(h* + 402K u® + 9R2K"u® + h2K""u* — 4k'K"u® + 8K"*ub — k'K uS).
Since X (u) and Y (u,v) are vanishing, we have Y7 (u) = 0. Moreover, Y;(u) can
be written as Y;(u) = =2k uX (u) + uZ(u) and we also get Z(u) = 0, where
(4.3)
Z(u) = 120K + Th*K u — 242K *u? + hAE""u? + AR2K'K'u® + 32k u?
+6h2K Ut — AWK Kt + 8K uC

Let M be a helicoidal surface of polynomial kind with harmonic Gauss map,

that is, k is a polynomial in u. Then we may put

k(u) = apu"™ + ap_1u™ ' + -+ aju + ao,

where n is nonnegative integer and a,, is non-zero constant.
Considering the constant terms in X (u), it is easy to see that h = 0. There-
fore, the equations X (u) and Z(u) can be written as

X(u) = —4k'K"u® + 8K"*uS — 4k'K""uS and Z(u) = 32k"°u* + 8k'k"*uS.

Assume that degk(u) > 2. Considering the equation X (u), we can easily
lead to a contradiction.
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If deg k(u) = 1, then X (u) =0 and Z(u) = 32a3u*. Hence, Z(u) cannot be
zero and so we have a contradiction.

If k is constant, then X (u) = 0 and Z(u) = 0. But, in this case, it contradicts
that M is non-degenerate, i.e., 4u?k’(u) # 0. Hence, M does not have harmonic
Gauss map.

By a similar argument as above, we have the same results in case of time-like
helicoidal surface of polynomial kind with null axis. Thus, we have:

Theorem 4.1. Suppose that M is a helicoidal surface of polynomial kind with
null azis in o Minkowski 3-space L3. Then M does not have harmonic Gauss
map.

We now consider a helicoidal surface of rational kind with harmonic Gauss
map, that is, k is a rational function in u. Then we may put

where p(u) is a polynomial in w, r(u) and g(u) are relatively prime polynomials
with degr(u) < degq(u) and degq(u) > 1.

Suppose that M is a genuine helicoidal surface of rational kind, that is,
h # 0. With the help of (4.1) and (4.3), we get

W2 Z(u) — h2X (u) = (4uPk' — h?)(h* — 4h2K'u? + 212K u® + 8k"*u* + 2k"*u).
Since X (u) and Z(u) vanishes identically,
(402K — h?)(h* — 4h2K'u? + 2h2K"u® + 8K *ut + 2k"*uS) = 0.
Because M is a nondegenerate surface, i.e., 4u?k’ — h? # 0,
(4.4) bt — AR2K u? + 2Rk u® + 8K *ut + 2" ub = 0.
From the equation (4.4), we get
(2k"u® 4+ h?)? + (4u*K' — h?)? = 0.

It is easily seen that this is a contradiction because of 4u?k’ — h? # 0. Thus,
h=0.
If h = 0, the equation Z(u) in (4.3) can be reduced as

Z(u) = 8u2K (K" u* + 4u2K").

Since M is nondegenerate, k" 20t + 4u2k’* = 0, which implies k is constant, a
contradiction.

Similarly, we prove that a time-like helicoidal surface of rational kind does
not have harmonic Gauss map. Consequently, we have:

Theorem 4.2. Let M be a helicoidal surface with null azis in a Minkowski
3-space L3. Then, there exists no rational helicoidal surface with harmonic
Gauss map.
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Combining the results we obtained above and those in [5], we have the
following:

Theorem 4.3 (Characterization). Let M be a helicoidal surface of rational
kind with null azis in a Minkowski 8-space 3. Then, the Gauss map G of M
satisfies AG = F(G + C) for some smooth function F and constant vector C' if
and only if it is part of an Enneper’s surface of second kind, a de Sitter space,
a hyperbolic space, a helicoidal surface of Enneper type, a helicoidal surface of
hyperbolic type or a helicoidal surface of de Sitter type in L3.
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