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Abstract

In Sol3 space there are three 1-parameter groups of isometries. In this

work we study constant mean curvature surfaces invariant by one of these

groups. We analyze the geometric properties of these surfaces by means of

their computer graphics. We construct explicit examples of minimal surfaces

and we shall relate them with recent examples of spheres with constant mean

curvature.

1 Introduction

In recent years, the study of surfaces with constant mean curvature in homogeneous
three-manifolds is a topic of great activity, specially after the extension by Abresch
and Rosenberg of the Hopf theorem for this kind of spaces ([1]): see also [3] and
references therein. Among the eight models of the geometry of Thurston ([14]), the
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space Sol3 is the space with the smallest isometry group. As a Riemannian manifold,
the space Sol3 can be represented by R

3 equipped with the metric

⟨, ⟩ = e2zdx2 + e−2zdy2 + dz2

where (x, y, z) are the canonical coordinates of R3. The space Sol3 is a Lie group
with the operation

(x, y, z) ∗ (x′, y′, z′) = (x+ e−zx′, y + ezy′, z + z′)

and the metric ⟨, ⟩ is left-invariant with respect to the group operation.

It is natural to consider the study of curves and surfaces in Sol3 under some addi-
tional geometric conditions. For example, the geodesics of Sol3 were studied in [2],
the totally geodesic surfaces had been classified in [15], the totally umbilical invari-
ant surfaces in [13] and constant angle surfaces in [10]. The surfaces in Sol3 with
constant mean curvature have received special attention. In the search of explicit
examples, some properties on the geometry of the surface have been assumed, for
instance, to be invariant under some group of isometries ([9]) or to be a transla-
tion surface ([8]). Compact surfaces with constant mean curvature and non-empty
boundary were studied in [7] and an integral representation formula for minimal
surfaces in Sol3 were obtained in [5] and generalized to constant mean curvature
surfaces in [4].

Motivated by the extension of the Hopf theorem, an interesting problem posed
in Sol3 was whether exist closed surfaces with constant mean curvature. By the
Alexandrov reflection method, an embedded compact surface with constant mean
curvature must be of genus 0. In a first step, Daniel and Mira showed the existence
of such surfaces for each value of H with H > 1/

√
3 ([4]). Finally Meeks extended

the result for any real number H ([12]).

The main difficulty in order to obtain examples of surfaces with constant mean
curvature is that Sol3 has a small isometry group as for example, there are no
rotations. The isometry group Iso(Sol3) has dimension 3 and the identity component
is generated by the following two families of isometries (see [13]):

(x, y, z) 7−→ (±e−cx+ a,±ecy + b, z + c)

(x, y, z) 7−→ (±e−cy + a,±ecx+ b,−z + c),

where a, b, c ∈ R.

We consider surfaces invariant under a 1-parameter group of isometries. In this
ambient space, there are three types of such groups, namely, if {e1 = (1, 0, 0), e2 =
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(0, 1, 0), e3 = (0, 0, 1)} is the canonical basis of R3, each one of the above group is
determined by the left translations by tei, 1 ≤ i ≤ 3:

Gi = {p ∈ Sol3 7−→ tei ∗ p; t ∈ R}.
Constant mean curvature surfaces invariant by G1 and G2 were classified in [9]. In this
work we focus in the third group G3. Consider Lt : Sol3 → Sol3 the left translation
by te3 = (0, 0, t):

Lt(x, y, z) = (0, 0, t) ∗ (x, y, z) = (e−tx, ety, t+ z).

A set A ⊂ Sol3 will called 3-invariant if Lt(A) ⊂ A for any t ∈ R. Since we shall
work with immersed surfaces in Sol3, we need to explicit the next definition:

Definition 1.1. Let M be a surface and ψ :M → Sol3 an immersion. We say that
ψ a is 3-invariant surface if it is the set ψ(M).

When the immersion is known in the context, we identify M with ψ(M) and we
abbreviate by saying that M is a 3-invariant surface.

In this article we study 3-invariant surfaces with constant mean curvatureH. Since a
3-invariant surface is generated by a curve α = α(s), the condition H = ct expresses
as an ordinary differential equation and for any initial condition we have a solution.
However it is difficult to solve the equation H = ct in all its generality, even in the
minimal case (H = 0). Part of our study is supported in the use of a computer
to make numerical pictures of the surfaces that in our case, it has been possible by
using a symbolic program such as Mathematica. This contrast to with the minimal
surfaces invariant by the groups G1 and G2, where all solutions were done in [9].

The article is organized as follows. Section 2 takes up the most part of the article
where we study 3-invariant surfaces with zero mean curvature. We shall obtain ex-
plicit examples and some geometric properties. At the end of Section 2, we will relate
some of these minimal surfaces with spheres of Sol3 with constant mean curvature.
In Section 3, we consider surfaces with non-zero constant mean curvature. Due to
the difficulty of the mean curvature equation, we give some graphics of such surfaces,
showing by numerical computations the existence of generating curves that are sim-
ply closed curves. Last Section 4 is devoted to give explicit examples of constant
Gauss curvature surfaces in Sol3.

2 Minimal surfaces

Let ψ : M → Sol3 be a 3-invariant surface. The orbit of a point (x, y, z) of Sol3
is the curve {Lt(x, y, z); t ∈ R}, which acroses once the plane z = 0 (at the time
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t = −z). Therefore M parametrizes by the set of orbits of a curve α contained
in the plane z = 0. This curve is called the generating curve of the surface. Let
α(s) = (x(s), y(s), 0), s ∈ I ⊂ R, be a parametrization of such curve. By the
expression of Lt, the surface M has a single surface patch ψ given by

ψ(s, t) = (e−tx(s), ety(s), t), s ∈ I, t ∈ R. (1)

Remark 2.1. The isometries ϕ(x, y, z) = (±e−cy,±ecx,−z + c), where c is a real
parameter, carry 3-invariant surfaces into new 3-invariant surfaces. In fact, if α is
the generating curve of a 3-invariant surface M , then ϕ◦α generates the 3-invariant
surface ϕ(M). This is because Lt ◦ ϕ = ϕ ◦ L−t.

We compute the mean curvature of a given 3-invariant surface ψ. First, we recall
that in Sol3 there exists a left-invariant orthonormal frame {E1, E2, E3} given by

E1 = e−z
∂

∂x
, E2 = ez

∂

∂y
, E3 =

∂

∂z
.

The Riemannian connection
∼

∇ of Sol3 with respect to this frame is

∼

∇E1
E1 = −E3

∼

∇E1
E2 = 0

∼

∇E1
E3 = E1

∼

∇E2
E1 = 0

∼

∇E2
E2 = E3

∼

∇E2
E3 = −E2

∼

∇E3
E1 = 0

∼

∇E3
E2 = 0

∼

∇E3
E3 = 0.

Consider N a Gauss map of M . The mean curvature H of ψ with respect to a local
parametrization ψ = ψ(s, t) is

H =
1

2

eG− fF + gE

EG− F 2
,

where, as usually, {E,F,G} and {e, f, g} stand for the coefficients of the first and
second fundamental form, respectively, that is:

E = ⟨ψs, ψs⟩, F = ⟨ψs, ψt⟩, G = ⟨ψt, ψt⟩.

e = ⟨N,
∼

∇ψs
ψs⟩, f = ⟨N,

∼

∇ψs
ψt +

∼

∇ψt
ψs⟩, g = ⟨N,

∼

∇ψt
ψt⟩.

We point out here the difference of the coefficient f with respect to the Euclidean
setting because the Lie bracket [ψt, ψs] does not vanish necessarily in Sol3.
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Without loss of generality, we assume that α is parametrized by the arc length. This
means that if α′ = (x′, y′, 0) = x′E1 + y′E2, then x

′2 + y′2 = 1. Let θ = θ(s) be a
differentiable function such that

x′(s) = cos θ(s), y′(s) = sin θ(s). (2)

The first derivatives of the parametrization ψ are:

ψs = (−e−tx′, ety′, 0) = cos θE1 + sin θE2

ψt = (−xe−t, yet, 1) = −xE1 + yE2 + E3.

The first fundamental form is

E = 1, F = −x cos θ + y sin θ, G = 1 + x2 + y2.

Denote W = EG− F 2 the determinant of the first fundamental form. Then

W = 1 + A2, A = x sin θ + y cos θ.

Using the covariant derivatives
∼

∇Ei
Ej, we have

∼

∇ψs
ψs = −θ′ sin θE1 + θ′ cos θE2 − cos(2θ)E3

∼

∇ψs
ψt = (x cos θ + y sin θ)E3

∼

∇ψt
ψt = −xE1 − yE2 + (y2 − x2)E3

A unit orthogonal vector field to M is

N =
1√
W

(sin θE1 − cos θE2 + AE3) .

Then the mean curvature of ψ computed with this choice of N is

H =
sin(2θ)(−x cos θ + y sin θ)− (1 + x2 + y2)θ′

2W 3/2
. (3)

Proposition 2.2. The generating curve α of a 3-invariant minimal surface is ob-
tained by a solution of the differential equations (2) and

θ′ = sin(2θ)
−x cos θ + y sin θ

1 + x2 + y2
. (4)
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The solutions are obtained provided we give initial conditions:

x(0) = x0, y(0) = y0, θ(0) = θ0. (5)

We will denote the solution curve as α(s; x0, y0, θ0). A first geometric properties of
the generating curve are:

Proposition 2.3. Let α(s; x0, y0, θ0) be a generating curve of a 3-invariant minimal
surface. Then the domain of α is R. Moreover, a 3-invariant minimal surface can
extend to be complete.

Proof. The first assertion is a consequence that the derivatives x′, y′ and θ′ are
bounded. For the second statement, we point out that W = 1+A2 ≥ 1. The metric
on the surface is the pullback ψ∗(⟨, ⟩) of the metric ⟨, ⟩ of Sol3 by the parametrization
ψ. As ψ can extend to R

2, we compare ψ∗(⟨, ⟩) with the Euclidean metric ds20 of R
2

by
ds20 = (ds)2 + (dt)2 ≤ ψ∗(⟨, ⟩).

This proves that the length of any divergent curve is unbounded, in particular, the
surface is complete.

Once obtained the expression of the minimality condition of a 3-invariant surface,
we begin obtaining solutions of (4). The first examples of such surfaces are the
hyperbolic planes P of equation y = 0 and Q given by x = 0. These surfaces are
invariant by the group G3 because

P = G3(α(s)), α(s) = (s, 0, 0).

Q = G3(α(s)), α(s) = (0, s, 0).

Other examples of 3-invariant minimal surfaces appear by choosing θ a constant
function, such it occurs for the planes P and Q.

Proposition 2.4. Given x0, y0 ∈ R, we have the next solutions of (2)-(4):

1. α(s; x0, y0, 0) = (s, 0, 0) + (x0, y0, 0). Here θ(s) = 0 (type I).

2. α(s; x0, y0, π/2) = s(0, 1, 0) + (x0, y0, 0). Here θ(s) = π/2 (type II).

Moreover (see Fig. 1):

1. The surfaces generated by the curves of type I (resp. type II) are invariant by
the group G1 (resp. G2).

6



2. Both family of surfaces are ruled surfaces in the sense that they are generated
by a 1-parameter family of geodesics.

3. There are two foliations of the Sol3 space by 3-invariant minimal surfaces.

Proof. We only do the proof for the surfaces of type I. It is immediate that if
θ0 = 0, then x(s) = s+x0, y(s) = y0 and θ(s) = 0 is a solution of (2)-(4) with initial
conditions (5). The parametrization of a such surface is ψ(s, t) = (e−t(s+x0), y0e

t, t),
which can reparametrized as

ψ(u, v) = (u, y0e
v, v) = (0, y0e

v, v) + u(1, 0, 0), u, v ∈ R.

As a consequence, the surface is invariant by the 1-parameter group G1 because the
isometries of G1 are the maps (x, y, z) 7−→ (x + t, y, z), t ∈ R. It is also trivial that
the straight-lines u 7−→ ψ(u, v) are geodesics of Sol3.

Finally, the foliations by 3-invariant minimal surfaces are generated by the family
of curves {α(s; 0, λ, 0);λ ∈ R} and {α(s;λ, 0, π/2);λ ∈ R}.

The generating curves of type I (resp. type II) are straight-lines parallel to the x-axis
(resp. y-axis). In particular, the curve α(s; 0, 0, 0) (resp. α(s; 0, 0, π/2)) generates
the plane P (resp. the planeQ). On the other hand, the surfaces of type II can obtain
from the ones of type I after isometries of Sol3, exactly, by ϕ(x, y, z) = (y, x,−z).
We recall that all minimal surfaces in Sol3 invariant under 1-parameter groups G1

and G2 were obtained in [9]. Besides the surfaces of type I and II, the classification
completes with the horizontal planes z = ct.

We continue obtaining more solutions of (2)-(4). Again, we assume that θ is a
constant function.

Proposition 2.5. Given x0 ∈ R, the next curves generate 3-invariant minimal
surfaces:

1. α(s; x0, x0, π/4) = s(1, 1, 0) + (x0, x0, 0), where θ(s) = π/4 (type III).

2. α(s; x0,−x0,−π/4) = s(1,−1, 0) + (x0,−x0, 0), where θ(s) = −π/4 (type IV).

Moreover both surfaces are ruled, namely, the curves s 7−→ ψ(s, t) are geodesic for
any t.
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Figure 1: (left) A surface of type I parametrized ψ(u, v) = (u, ev, v); (right) a surface
of type II given by ψ(u, v) = (e−u, v, u)

In fact, the curve of type III (resp. type IV) is the straight-line y = x (resp. y = −x)
in the plane z = 0. The corresponding parametrizations of the surfaces are:

ψ(s, t) = (se−t, set, t), s, t ∈ R (type III).

ψ(s, t) = (se−t,−set, t), s, t ∈ R (type IV).

Proof. We only consider the surfaces of type III. Again, x(s) = s+x0, y(s) = s+x0
and θ(s) = π/4 solve (2)-(4) with θ0 = π/4. It is also direct that the coordinate
curve t = ct are geodesics in the ambient space Sol3 hence the surface is ruled.

The surfaces of type IV are obtained by the ones of type III after the isometry
ϕ(x, y, z) = (y, x,−z). Except for those points of the z-axis, the surface of type III

(resp. IV) is the Euclidean graph of the function z = 1
2
log

∣

∣

y
x

∣

∣ (resp. z = 1
2
log

∣

∣

∣

x
y

∣

∣

∣
):

see Fig. 2.

Remark 2.6. The surfaces of type I, II, III and IV are the only ones that are
obtained by choosing θ a constant function in the solutions of (4).

From now, we consider now that θ′ ̸= 0 at some point.

Proposition 2.7. Let {x, y, θ} be a solution of (2)-(4). Then, up 2π multiple, the
function θ never attains the values 0, π or ±π/2 unless that α is of type I or type
II. In particular, the generating curve is both a graph in the x-axis as in y-axis.
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Figure 2: The surface of type III parametrized as ψ(s, t) = (se−t, set, t).

Proof. We only do the proof in the case that θ takes the value 0 at some point s0 ∈ R.
Define the functions {x(s0) + (s − s0), y(s0), 0}. This is a solution of (2)-(4) such
that at s = s0 the initial conditions are {x(s0), y(s0), 0}. Because the same occurs
for the functions {x, y, θ}, the uniqueness of ODE implies x(s) = x(s0) + (s − s0),
y(s) = y(s0) and θ(s) = 0 around s = s0. Since this occurs in the maximal interval
of definition, we conclude that the curve α is parallel to the x-axis, that is, a curve
of type I.

Except for the curves of type II and II, the functions x′(s) and y′(s) never vanish in
the domain of α, which means that α is a graph on the x axis as well as a graph on
the y-axis.

If α is a graph on the axis x, α(x) = (x, y(x), 0), a direct computation gives that
the minimality condition (4) of the corresponding 3-invariant surface generated by
α writes as:

y′′ = 2y′
yy′ − x

1 + x2 + y2
. (6)

From this result and with appropriate isometries of Sol3, we can assume, without
loss of generality, that the initial velocity vector α′(0) of the generating curve lies in
the first quadrant, that is, θ(0) = θ0 ∈ (0, π/2). This condition on θ0 will assumed
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throughout the rest of the section.

The study of the solutions of (4) (or equivalently (6)) depends on the initial con-
ditions. We have obtained good numerical pictures of solutions for many initial
values. We carried out our graphics using Mathematica and the function NDSolve

which numerically solves ordinary differential equations. On the basis of our com-
puter pictures, the following result is illustrated in Figs. 3 and 4.

Experimental result 1. Depending on the initial solutions and besides the surfaces
I–IV, the graphics of solutions of (4) are of two types.

1. (Type A) The curve α is asymptotic to a quadrant of the plane z = 0 de-
termined by two orthogonal Euclidean straight-lines parallel to the coordinate
axis.

2. (Type B) The curve α is asymptotic to two straight-lines which are both parallel
to the x axis or both parallel to the y-axis.

In fact, if we fix the initial data x(0) and y(0) and we change the value of θ0, we
expect that there exists a critical value θ0 where the curve changes from one type to
the other one. Assume that the function y(x) describes the generating curve, that
is, y(x) is a solution of (6). For the curves of type A, the function y(x) is convex or
concave in all its domain. This would mean that the second derivative y′′(x) never
vanish. On the other hand, the curves of type B would have only one inflection
point, that is, the equation y′′(x) = 0 would have only one solution x0 and in each
one of the intervals (−∞, x0) and (x0,∞) the curve would change from convex (or
concave) shape to concave (or convex).

In what follows, we assume that the starting point of the generating curve α is the
origin (0, 0) of R2 with initial velocity θ(0) = θ0 ∈ R, that, is,

x(0) = 0, y(0) = 0, θ′(0) = θ0. (7)

In particular, the z-axis is contained in the surface because it is the curve G3(0, 0, 0).

Theorem 2.8. Let α be a generating curve of a 3-invariant minimal surface satis-
fying the initial values (7).

1. The curve α is symmetric with respect to the origin (0, 0).

2. The symmetry of α with respect to the line y = x is a generating curve of other
3-invariant minimal surface.
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Figure 3: We fix the initial values x0 and y0 in (5) and we vary the value of θ0.
Here x(0) = 1 and y(0) = 2. For θ0, we choose the values π/10, π/6, π/4 and π/3.
At the beginning, the graphic presents one inflection point and it is asymptotic to
two parallel lines. After a critical value for θ0, the shape of the curve changes to be
asymptotic to a quadrant of the xy-plane.
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Figure 4: In this figure we have fixed x0 and θ0 in (5). Here x0 = 1 and θ0 = π/8.
The value y(0) takes different values: 0, 1/4, 1/2 and 1. In the first two cases, the
graphic is asymptotic to a quadrant of the xy-plane and for the next two values of
y0, the graphic presents one inflection point and it is asymptotic to two horizontal
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Proof. Denote α(s) = (x(s), y(s), 0) a solution of (2)-(4) with initial conditions (7).

1. The functions x̄(s) = −x(−s), ȳ(s) = −y(−s) and θ̄(s) = θ(−s) are a solution
of (2)-(4) with the same initial conditions (7). Let us apply uniqueness of
ODE.

2. If θ0 = π/4, we know that α is the curve of type III, which agrees with its
symmetry with respect to the line y = x. We assume θ0 ∈ (0, π/4). The
symmetry of α is the curve ϕ ◦ α, where ϕ(x, y, z) = (y, x,−z). Now we use
Remark 2.1.

Because the curve is symmetric with respect to the origin, then the curve is of
type B depicted above, that is, the generating curve is asymptotic to two parallel
straight-lines: see Fig. 5.

By the second statement of this result, we can assume that θ0 ∈ (0, π/4).

-10 -5 5 10

-0.6

-0.4

-0.2

0.2

0.4

0.6

Figure 5: A generating curve for initial conditions x(0) = y(0) = 0 and θ(0) = π/8.
This curve is asymptotic to the lines y ≃ ±0.736872.

Theorem 2.9. Assume θ0 ∈ (0, π/4) and let y = y(x) be the function which gives
a generating curve α with initial conditions (7).

1. The function y(x) is increasing in all its domain.

2. There exists only one inflection point, namely, x = 0. If x > 0 (resp. x < 0),
then y is concave (resp. convex).

3. The curve α does not across the line y = x.

12



Proof. By the symmetry of α with respect to the origin, it suffices to do the study
of the function y(x) for x ≥ 0. As θ0 ∈ (0, π/4), then 0 < y′(0) < 1. In particular,
y′ > 0 in some interval (0, ϵ), ϵ > 0. If at some point, the derivative y′ vanishes,
Prop. 2.7 asserts that y is a constant function, which is impossible since y′(0) ̸= 0.
As a conclusion, y′ ̸= 0 and so, y′ > 0 in (0,∞).

On the other hand, we know that y′′(0) = 0. Define h(x) = y(x)y′(x)−x, which, by
(6), gives us the sign of y′′. Then h(0) = 0 and h′(0) = y′(0)2 − 1 < 0. This means
that h is decreasing in some interval (0, δ), δ > 0. From (6), y′′ < 0 in (0, δ).

Claim. The function h is negative in (0,∞). On the contrary, let x1 > 0 be the first
point such that h(x1) = 0. Then there exists x2 ∈ (0, x1) such that h′(x2) = 0, that
is,

y′′(x2) =
1− y′(x2)

2

y(x2)
.

As y′ is decreasing on (0, x1), y
′(x2) < 1 and so, y′′(x2) > 0. This is a contradiction

because y′′ is negative in (0, x1). This proves the claim.

Then y′′ < 0 in (0,∞) and y is concave. As a consequence, the function y′ is
decreasing in x: y′(x) < y′(0) < 1 on (0,∞). Near to x = 0 and for positive values
of x, the curve α lies in the domain determined by the lines y = x and y = 0. If the
curve α attains the line y = x, by the intermediate value theorem, y′ = 1 at some
point of the interval (0,∞), which is impossible.

Recall that the preliminary numerical graphics of the solutions with initial conditions
(7) suggest the following result:

Experimental result 2. Assume that α is a solution of (2)-(4) with initial con-
ditions (7) and θ(0) ∈ (0, π/4). Then the curve α lies between two parallel straight-
lines to the x-axis, being α asymptotic to both ones.

If the initial angle θ0 moves in the range (π/4, π/2), then α is asymptotic to two
straight-lines parallel to the y-line.

Once assumed this result, let us consider α the generating curve of a 3-invariant
minimal surface and let L1 and L2 be the two straight-lines in the plane z = 0 which
α is asymptotic to. If we apply the group G3 to L1 ∪ L2, we obtain two 3-invariant
surfaces Pi = G3(Li), i = 1, 2, which lie separated by a constant distance. Then
P1∪P2 determine a slab in Sol3. Because α lies between the strip of the plane z = 0
bounded by L1 and L2, the surface that generates lies in the slab defined by P1 and
P2. Thus we conclude

Corollary 2.10. In Sol3 there exist many minimal surfaces contained in a slab.
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This result is the version in Sol3 of the classical result of Jorge and Xavier about
the existence of complete minimal surfaces in a slab in Euclidean space ([6])

We finish this section relating the minimal surfaces of type III and IV with the
spheres of constant mean curvature and whose existence was proved in [4, 12]: see
also [11] for any metric in Sol3. For each H > 0 there exists (up left transla-
tions) a unique sphere with constant mean curvature H which is embedded. We
abbreviate by saying a H-sphere. Each one of these H-spheres admits certain sym-
metries of order 2. Exactly, at each point p ∈ Sol3 there exists an orthonormal
basis {v1(p), v2(p), v3(p)} such that the Ricci tensor diagonalizes. It is known that
the Gauss map N of a H-sphere is a diffeomorphism on the unit sphere. There-
fore in a given H-sphere there exists points where the Gauss map is a vector that
diagonalizes the Ricci tensor, that is, N(p) = ±vi(p), for some 1 ≤ i ≤ 3. In
fact, in the H-sphere there exist exactly 6 points. It is proved that the sphere is
symmetric with respect to the rotation by angle π around the normal at p (see
also [11]). At the origin (0, 0, 0), the basis that diagonalizes the Ricci tensor is
{(1/

√
2)(E1 + E2), (1/

√
2)(E1 − E2), E3}.

Take Hn a sequence of positive numbers converging to 0 and the corresponding Hn-
spheres Mn. For each Mn, there exists a point pn where the unit normal vector is
the translated of (1/

√
2)(E1 −E2). Let us do left translations of each Mn such that

pn agrees with the origin p = (0, 0, 0) of R3 and thus Nn(p) = (1/
√
2)(E1 − E2).

Then all spheres Mn are invariant with respect to the rotation by angle π around
the normal at p that fixes p. In our case, the tangent plane TpMn at p is spanned
by {(1/

√
2)(E1+E2), E3} and the isometry that fixes Nn(p) and which is a rotation

by angle π in TpMn is given by ϕ(x, y, z) = (−y,−x,−z). As Hn → 0, the sequence
Mn converges to a complete stable minimal surface M . Therefore, the limit surface,
which is a minimal surface, inherits the same symmetry, that is, it is invariant by
the action of ϕ. Of course, the normal vector of this surface at p is (1/

√
2)(E1−E2).

On the other hand, the surface of type III whose parametrization is ψ(s, t) =
(se−t, set, t), s, t ∈ R has the same tangent plane and normal vector as Mn at
the point p. Moreover, this surface is invariant by the isometry ϕ because

ϕ(ψ(s, t)) = (−set,−se−t,−t) = ψ(−s,−t).

A similar process can do with the surfaces of type IV. As conclusion of the above
reasoning,

Corollary 2.11. The surfaces of type III and IV are candidate minimal surfaces to
be the limit of a sequence of closed Hn-spheres, with Hn → 0.

14



Therefore it is an open question if there exists a sequence ofHn-spheresMn, Hn → 0,
such that Mn converges to a surface of type III or IV.

3 Computer graphics of surfaces with constant

mean curvature

We now consider 3-invariant surfaces with constant mean curvature H and H ̸= 0.
By using the value of H in (3) and that W = 1+A2, the equation that satisfies the
angle function θ of the generating curve α is

θ′ =
1

1 + x2 + y2

(

sin(2θ)(−x cos θ + y sin θ)− 2H(1 + A2)3/2
)

.

In this case, the term 2H(1 + A2)3/2 adds extra difficulties in the study of the
geometric properties of the solution curves. By means of the computer, one can
produce approximate solutions. In Fig. 6, we present two solutions for different
initial data. In both cases, the initial angle θ0 is the same, namely, θ0 = 0.

-2 -1 1 2

-2

-1

1

2

-1 -0.5 0.5 1

-1

-0.5

0.5

1

Figure 6: Two generating curves of 3-invariant surfaces with constant mean curva-
ture: (left) H = 1 and α(0) = (0, 2, 0); (right) H = 2 and α = (0, 1, 0).

Although the variety of cases, our numerical computations give evidences, as can be
seen in the the accompanying computer graphics. What we observe is the following.
We fix the value of the (constant) mean curvature, namely, H = 1 and the initial
velocity of the curve at s = 0, θ0 = 0, that is, α′(0) is the horizontal vector (1, 0)

15



viewing the curve α in the xy-plane. With respect to the initial conditions (5), we
take x(0) = 0 and y(0) = y0, where y0 is a one real parameter. This means that
α(0) belongs to the y-axis.

The twelve curves pictured below were produced with different values of y0. The rows
correspond to the values 1/8, 1/4, 1/2 and 3/4 of the parameter y0 and the columns
correspond to the values 2, 4 and 6 of s0, where [0, s0] is the domain of the generating
curve α = α(s). We observe that as s0 increases, the trace of α begins doing a turn
in such way that α acroses the positive y-axis again, and many times as s0 goes to
∞. We have pointed in the graphic with a black small square the initial point of α,
that is, α(0), and with a black small disc the following point where α has tangent
horizontal vector (1, 0). We denote this new point as α(s1; y0) = (x(s1; y0), y(s1; y0))
where s1 indicates the time where it reaches this point and y0 the dependence on y0.
The corresponding velocity vectors at s = 0 and s = s1 appear as a non-dashed and
dashed arrow, respectively. For values s0 close to 0, x(s1; y0) < 0 and y(s1; y0) > y0.
However, as y0 increases, the function x(s1; y0) is increasing on y0 and y(s1; y0) is
decreasing on y0. The pictures indicate that we attain a value y∗0 such that

{

α(s1; y
∗

0) = α(0; y∗0)
α′(s1; y

∗

0) = α′(0; y∗0).

This would say that there exists a closed simply generating curve.
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Experimental result 3. Let H ̸= 0. Then there exists a simply closed curve in the
xy-plane which is the generating curve of a 3-invariant surface with constant mean
curvature.

Although we do not know a proof of this statement, we have carried out different
numerical graphics that seem to indicate that this result is true. Moreover, the
pictures obtained of the closed solution suggest that the curve is also symmetric
with respect to the straight-lines y = ±x. For example, in Fig. 7, the intersection
points with the coordinate points are equidistant from the origin. Recall that at
the origin of Sol3, the directions of both straight-lines together the vertical direction
(0, 0, 1) correspond with the directions where the Ricci tensor diagonalizes.
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Figure 7: The generating curve of a 3-invariant surface with H = 1. The curve is
closed. Here the initial conditions are x(0) = 0 and y(0) ≃ 0.6425. We remark the
symmetry of α with respect to straight-line y = ±x.
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Figure 8: Different views of the 3-invariant surface obtained by the generating curve
of Fig. 7.
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4 Surfaces with constant Gauss curvature

In this section we present an example of a 3-invariant surface in Sol3 with zero Gauss
curvature. Surfaces in the homogenous space Sol3 with constant Gauss curvature
have not received yet the interest of geometers. In this sense, the surfaces with
constant Gauss curvature K which are invariant by the groups G1 and G2 were
studied in [9] and the corresponding surfaces with K = 0 were all obtained. The
invariance of the surface makes that the Gauss curvature equation converts into an
ordinary differential equation which can be partially studied.

In our context of 3-invariant surfaces, we compute the Gauss curvature K. The
expression of K is

K = Kext +K(ψs ∧ ψt), (8)

where Kext is the extrinsic curvature of the surface and K(ψs ∧ ψt) is the sectional
curvature of the tangent plane at ψ(s, t). The value Kext is

Kext =
eg − f 2

EG− F 2

and the sectional curvature K(ψs ∧ ψt) is given by

K(ψs ∧ ψt) =
⟨
∼

∇ψs

∼

∇ψt
ψt −

∼

∇ψt

∼

∇ψs
ψt −

∼

∇[ψs,ψt]ψt, ψs⟩
W

.

From the computations of the first and second fundamental form realized in Sect.
2, we have

Kext = −A
2(x cos θ + y sin θ)2 + (θ′ + A cos(2θ)) (−x sin θ + y cos θ + A(−x2 + y2))

W 2

(9)
On the other hand,

⟨
∼

∇ψs

∼

∇ψt
ψt, ψs⟩ = −1 + cos(2θ)(y2 − x2)

⟨
∼

∇ψt

∼

∇ψs
ψt, ψs⟩ = −(x cos θ + y sin θ)2

[ψs, ψt] = 0.

Hence we have

K(ψs ∧ ψt) =
−1 + A2

W
. (10)
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Thus, by combining (9) and (10), we obtain from (8)

K =
−(θ′ + A cos(2θ)) (−x sin θ + y cos θ + A(−x2 + y2))− 1− cos(2θ)(x2 − y2)A2

W 2
.

(11)
We search 3-invariant surfaces in Sol3 with constant Gauss curvature. Assume that
θ is a constant function, θ(s) = θ0. When the value of θ0 is 0 or π/2, we obtain from
the expression of the Gauss curvature:

1. If θ0 = 0, we get K = − 1
1+y2

0

. Thus the surface has constant negative Gauss

curvature. Because θ(s) = 0, the generating curve is a straight-line parallel
to the x-axis. In the particular case that y0 = 0, the surface is the hyperbolic
plane P , which it has Gauss curvature K = −1, as it is well known.

2. If θ0 = π/2, the result is similar, but now K = − 1
1+x2

0

. Now the generating

curves are straight-lines parallel to the y-axis and when x0 = 0, the surface is
the plane Q.

These surfaces are the surfaces of type I and II that appeared in Prop. 2.4, which
we know that they are also invariant by the 1-parameter groups G1 and G2. Finally,
these surfaces appeared in the classification given in [9] of constant Gauss curvature
surfaces invariant by both groups.

More surprisingly is that we can obtain a surface with zero Gauss curvature. From
(11), if K = 0, the generating curve satisfies (2) and

(θ′+A cos(2θ))
(

−x sin θ + y cos θ + A(−x2 + y2)
)

+1+cos(2θ)(x2−y2)A2 = 0. (12)

Although Eq. (12) is a bit cumbersome, a solution of this equations is given by an
Euclidean circle in the xy-plane centered at the origin. Exactly, if r > 0, take

x(s) = r sin(
s

r
), y(s) = −r cos(s

r
), θ(s) =

s

r
.

Then it is direct that {x(s), y(s), θ(s)} is a solution of (2)-(12) with initial conditions
x(0) = 0, y(0) = −r and θ(0) = 0. A picture of the corresponding surface appears
in Fig. 9.
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Figure 9: A 3-invariant surface with zero Gauss curvature, which it is generated by
the curve α(s) = (sin(s),− cos(s), 0).
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[12] W. H. Meeks III, J. Pérez, Constant mean curvature surfaces in metric Lie
groups, Geometric Analysis: Partial Differential Equations and Surfaces, Con-
temp. Math. 570, (2012), 25–110.

[13] R. Souam, R. Toubiana, Totally umbilic surfaces in homogeneous 3-manifolds,
Comm. Math. Helv. 84 (2009), 673–704.

[14] W. Thurton, Three-dimensional geometry and topology, Princenton Math. Ser.
35, Princenton Univ. Press, Princenton, NJ, (1997).

[15] K. Tsukada, Totally geodesic submanifolds of Riemannian manifolds and
curvature-invariant subspaces, Kodai Math. J. 19 (1996), 395–437. .

22


