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Abstract. We describe the space ΣH of all surfaces in Rz that have
constant mean curvature HφO and are invariant by helicoidal motions,
with a fixed axis, of RΆ. Similar to the case Σo of minimal surfaces ΣH

behaves roughly like a circular cylinder where a certain generator corres-
ponds to the rotation surfaces and each parallel corresponds to a periodic
family of isometric helicoidal surfaces.

1. Introduction. 1.1. Rotation surfaces in the Euclidean space ϋ!3

with constant mean curvature have been known for a long time (Delaunay
[3]). A natural generalization of rotation surfaces are the helicoidal
surfaces that can be defined as follows.

Let R3 have coordinates (x, y, z). Consider the one-parameter sub-
group gt:R

3-> R3 of the group of rigid motions of R3 given by

9t(%> V, z) = (& cos t + y sin t, — x sin t + y cos t, z + ht) , te(—oofoo).

The motion gt is called a helicoidal motion with axis Oz and pitch h.
A helicoidal surface with axix Oz and pitch pitch h is a surface that
is invariant by gt, for all t. When h = 0, they reduce to rotation
surfaces.

The helicoidal minimal surfaces have also been known for quite a
long time (see e.g. [6] for details). It is therefore mildly surprising
that we do not find in the literature the helicoidal surfaces with constant
nonzero mean curvature; in this paper we want to determine explicitly
all of them.

Our interest in this question comes (aside its naturality) from the
fact that there are very few explicit examples of surfaces with nonzero
constant mean curvature. To understand certain aspects of such surfaces
(behaviour of the Gauss map, stability, etc.) it might prove convenient
to have at hand a reasonable supply of explicit examples. It should
be mentioned that the techniques used here can also give a complete
description of helicoidal surfaces with constant Gaussian curvature
(Remark 3.16); this is, however, very simple and probably known.
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The starting point of our paper is the following result of Lawson
(the result is actually more general than the statement below).

THEOREM (Lawson [5, Theorem 8]). Let M2 be a simply-connected
two-dimensional manifold and let f: M2 —> R* be an immersion with
constant mean curvature H. Then there exists a differentiate, 2π-
periodic, family of immersions fθ\ M2 —> R3, θ e [0, 2ττ], f0 = f, with the
same induced metric and with constant mean curvature H. Furthermore,
the family fθ contains {the extensions of) all local isometric immersions
with the given H.

The family fθ is called the associated family to / and generalizes
the well known construction of associated minimal surfaces. In the case
of minimal surfaces, the associated family to a rotation minimal surface
is a family of helicoidal surfaces (see, e.g. [6]) and this generalizes to
the above construction. Explicitly, it follows from Proposition 12.2 of
Lawson [5] that if f: M->RZ is a rotation surface, the associated family
fΘ is made up by helicoidal surfaces.

It will be convenient to rephrase Lawson's results as follows. Let
M2 be simply-connected, let the unit circle S1cR2 be parametrized by
θ, θ e [0, 2π) and set

ΣH = {/ e Imm(M2 —»RΆ); f is a helicoidal surface with a

given axis and constant mean curvature H Φ 0} .

By using Kenmotsu's version [4] of Delaunay's results, we can parame-
trize the family of rotation surfaces with constant mean curvature HφO
(and with a fixed axis) by a parameter Bo that runs in [0, oo): the point
0 corresponds to the right circular cylinder, between 0 and 1 we find
the onduloids, the point 1 represents the unit sphere, and in the interval
(1, oo) are the nodoids. By Lawson's results, the closed half-cylinder
S1 x [0, oo) represents then helicoidal surfaces, all with constant mean
curvature H. Thus, there is a natural map φ: S1 x [0, oo)—•,£# and we
are reduced to proving the following statements:

( i ) φ is a surjective map.
(ii) The map φ can be explicitly determined.
We should make precise the meaning of (ii). For that, it is con-

venient to parametrize the domain M2 of a helicoidal surace / : M2 —> Rz

by parameters (s, t), where the images by / of the ί-curves are the
trajectories of the helicoidal motions, while the s-curves are their ortho-
gonal trajectories parametrized by arclength in the induced metric; such
a local parametrization will be called a natural parametrization of the
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helicoidal surface. Notice that the first fundamental form in such
parameters can be written dσ2 = ds2 + U2dt2, were U = U(s) is a function
of s alone.

With the above notation, (ii) is to be understood as meaning that
we can write (φ(θ, B0))(s, t) as a function of θ, Bo, s, t.

We summarize what is to be proved in the theorem below that is
the main result of this paper.

THEOREM 1.2. There exists a surjective map φ: S1 x [0, +00)—>ΣH

such that 0(0, [0, +00)) are the rotation surfaces in ΣH, and φ(θ, Bo),
Bo e [0, +00), O<I0<;2;r, is the associated family to φ(0, Bo). Furthermore,
except for (θ, 1), the immersion φ(θ, Bo) = / : M-* R3 is given explicitly,
in a global natural parametrization of the immersion by putting together
(2.2), (3.11) and (4.12) below.

1.3. The idea of the proof is as follows. To prove that φ is sur-
jective, we must show that given an arbitrary helicoidal surface feΣH

there exists a rotation surface / e ΣH and a number θ e [0, 2π] such that

fe = /.
By a result of Bour (cf. Lemma 2.3), given a helicoidal surface,

there exists a two-parameter family of helicoidal surfaces isometric to
it; such a family includes a rotation surface, the mean curvature of
which, however, has no obvious relation with the mean curvature of
the starting surface. The point here is twofold: First, we establish a
condition for an element of Bour's family above to have constant mean
curvature; such a condition depends on one parameter (3.11). We thus
obtain a three-parameter family of helicoidal surfaces that have constant
mean curvature but are not isometric (one of these parameters can
actually be eliminated; however, the larger family is necessary for the
next step). We then show, and this is the delicate point in the proof,
that given one element of the above three-dimensional family, there
exists a closed curve of isometric immersions connecting the given element
to a rotation surface (Lemma 4.3); by Lawson's result, the immersions
in the curve constitute the associated family to the rotation surface,
and this proves the first part of Theorem 1.2. The explicit expressions
mentioned in Theorem 1.2 are obtained in the process of proving steps
one and two above (the exception mentioned in the statement comes
from the fact that φ(θ, 1) are spheres, the antipodal points of which
cannot be covered by a fixed natural parametrization).

2. Bour's lemma. 2.1. Let f\M->Rz be an immersion and let
UdM be an open set. Assume, for the time being that the inter-
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section of f(U) with some plane 77c723 containing Oz is a curve which
is a graph z = X(p) over the intersection of 77 with the plane xy. If
/ is invariant by a helicoidal motion around Oz with pitch h, the re-
striction /1U can be written as

(2.2) f(p, φ) = (p cos φ, p sin φ, X{p) + hφ) ,

where p and φ are polar coordinates in the plane xy, and the plane xy
has been rotated so that Ox is the origin of φ.

We need the following lemma that was first proved by Bour [1, p.
82, Theorem II].

LEMMA 2.3 (Bour). Given a helicoidal surface of the form (2.2),
there exists a two-parameter family of helicoidal surfaces isometric to
(2.2).

2.4. PROOF. We follow Darboux ([2, vol. I, pp. 129-130)]. The first
fundamental form of (2.2) can be written

dσ2 - (1 + p2xf\p2 + h\Yι)dp2 + (p2 + h\){dφ + hox\p2 + hlY'dpf ,

where the prime denotes the derivative in p and we have set, for
definiteness, h = h0 in (2.2). We introduce new parameters (s, t) in (2.2)
by functions s = s(p, φ), t = t(p, φ) that satisfy

<fe = (1 + ρ2X'\ρ2 + hiyψ2 , dt = φd + h0X\p2 + hlYιdp .

Notice that the Jacobian d(s, t)/d(p, φ) is nonzero and that (s, t) is a
natural parametrization on UaM. By setting U2(s) = p\s) + h*09 we can
write, in the natural parametrization, dσ2 = ds2 + U2dt2.

We are now reduced to showing that, given a function U = U(s), we
can find functions p, λ and 9 of s and t that satisfy:

(2.5) ds2 = dp2 + ρ\ρ2 + hT'dX2 ,

(2.6) Udt = ±{p2 + h)υ\dφ + h{p2 + h2)~ιdX) ,

for an arbitrary constant h.
We first observe, from (2.5), that p and X do not depend on t. Then,

from (2.6), we obtain

4^ + hT'dX/ds , $2- = ± ϋ/Go2 + ft2)172 .

Thus d2φ/dtds = 0, hence t//^2 + /&2)1/2 does not depend on s. Therefore
we can set

(2.7) U/(p2 + hψ2 =l/mΦ0, m = const. ,
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and write (2.6) as

dφ = (l/m)dt — h(p2 + h^dX .

Now, from (2.7), it follows that

(2.8) p2 = m*U2U2(m2U2 - ft2)"1,

where dot denotes the derivative in s. From (2.5) and (2.8) we obtain

(2.9) (dX)2 = (m 2 t f 2 ( l - m2ί72) - h2)(m2U2 - h2)'2m2ϋ2ds2.

It follows from (2.7), (2.8) and (2.9) that the helicoidal surface (2.2),
where p, φ and λ are given by

= (m2U2 - h2)112 ,

tt2C/2(l - m2ί72) - h2)1/2(U(m2U2 - fe2))"1^ ,
(2.10)

(HmU{m2U2 - fc2)-1(m2C72(l - m2ί72) - hψ2ds ,

are all isometric with first fundamental form given by dσ2 = ds2 + U2dt2.
The constants of integration are easily eliminated by a rigid motion of
the coordinate axis and by adjusting the origin of the parameter t. Thus
there are essentially two parameters in the family described by (2.10).
This proves Bour's lemma.

REMARK 2.11. Bour's family (2.10) contains the surface we started
with for m = 1, h = h0. In particular, Bour's lemma asserts the existence
of a two-parameter family of helicoidal surfaces isometric to a given
rotation surface (m = 1, h = 0).

REMARK 2.12. So far we have worked under the restriction that
the helicoidal suraces f:M->R* can be written in an open set UaMm
the form (2.2). However, in the natural parameters (s, t), f given by
(2.10) is well defined as an immersion for all t, and all those s for which
p(s)Φθ. Notice that since Oz is a trajectory of the helicoidal motion, if
f(M) meets Oz at one point, the whole axis Oz is contained in f{M).
Thus, unless f(M) is a cylinder, the natural parametrization includes at
least that part of f(M) swept by the "rays" of the orthogonal trajec-
tories to the helices that pass through a fixed helix and start at Oz.
We will see in the next section that for surfaces with constant mean
curvature, p(s) can only be zero in a very special case. Also, we will
assume until Remark 3.14 below that f{M) is not a cylinder.

3. Helicoidal surfaces of constant mean curvature. 3.1. A surface
of Bour's family (2.10) is determined by giving a function U(s) and
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constants m, h. For convenience, let us denote it by [U, m, h].

LEMMA 3.2. [U, m, h] is a surface with constant mean curvature H
if and only if U(s) satisfies the equation

(3.3) m2UU + m2ϋ2 - 1 = 2H(m2U2)(l - m2ϋ2) - hψ2 .

PROOF. This follows easily by computing the second fundamental
form

eds2 + 2fdsdt + gdt2

of [U, m, h] in the parameters (s, i). We obtain from (2.2) that

(Λ /., /«) = -ί>2λ/m3 , (/„ /., fu) =

where ( , , ) denotes the determinant of the enclosed vectors and
dots denote derivatives in s. It follows that

(3.4) g = -p^m'U)-1 = -(m2U\l - m2ϋ2) - h2Yl2m~2 , / =

Furthermore, since the Gaussian curvature K is easily seen to be K =
— ΐf/U, we obtain that

(3.5) e = (m4ί73ί/ - h2){m2U\l - m2ϋ2) - hT^m^lP)"1 .

Finally, since 2H = e + g/U2, we obtain Equation (3.3), and this proves
Lemma 3.2.

3.6. Equation (3.3) is easily integrated if we make the changes of
variables: x = mU,y = (x2- x2x2 - hψ2. Then (3.3) becomes y = -2Hxx,
an integral of which is

(3.7) y = —Hx2 + a , a — const. .

Returning to the variable x, we obtain

(3.8) x2 = {x2 - h2 - {Hx2 - a2)/x2

which can be integrated by setting z = x2 to transform it into

{-H2z2 + (2Ha + l)s - (a2 + h2)}~1/2dz = 2ds .

By assuming H Φ 0 and adjusting the origin of s, we obtain from the
above

s = (2H)-1 sen~\(2H2z - 2Ha - l)((2flα + I)2 - AH\a2 + h2))~1/2) .

Since z = m2U2 we finally arrive at

(3.9) U(s)2 = (1 + 2Ha + (1 - 4EPA2 + 4Hα)1/2 sin 2Hs)/2mΉ2

that yields a one-parameter family of functions Ua such that [Ua, m, h]
is a helicoidal surface with constant mean curvature H.
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It will be convenient to set

(3.10) B = (1 - AH2h2 + AHa)1/2 Φ 0 .

in (3.9). It is easily computed that, with this notation,

U= Bcos2Hs(2mΉU)-1 ,

and

m2U\l - m2ϋ2) - h2 = (1 + Bsin2iϊs)2(4iϊ2)-1 ,

m*jj2 _ h2 = ( 1 + B2 + 2 B s i n 2Hs)(AH2)-1 ,

Thus the surface of Bour's family given by (2.10) has constant mean
curvature H Φ 0 if and only if

(p = (1 + B2 + 25 sin 2Hs)1/2(2H)~ι ,

(l + £sin2iϊs)ds
(3.11) m

= f
J

B2 + 2J3sin2.ff8)1/2(l

25sin2iίs

where 5 is given by (3.10). In particular, if we start with an arbitrary
helicoidal surface (2.2) with m = 1, h = h0, then it has constant mean
curvature H Φ 0 if and only if the functions p = p(s), ψ = <p(s, t), X =
λ(s) are given by setting m = 1, h = h0 in (3.11).

We summarize the results obtained so far.

PROPOSITION 3.12. The helicoidal surfaces of the form (2.2) that
have constant mean curvature H Φ 0 constitute a two-parameter family
with parameters B and h and are given in a natural parametrization
if we replace p, ψ and λ in (2.2) by their values obtained by setting
m = 1 in (3.11).

REMARK 3.13. By replacing in (3.11) t/m by ί, we see that the
various surfaces with different m's in (3.11) have actually the same
images with distinct parametrizations. This justifies why we do not
need a further parameter in the description of Proposition 3.12 and
can set m = 1. However, and this is a crucial point in the proof of
Theorem 1.2, we do need the larger family to define new parameters
that makes explicit the associated family to a given surface.

REMARK 3.14. It follows from (3.11) that p(s) Φ 0 for all s, except
when B = ± 1 ; even in this case singularities of the natural parame-
trization (cf. Remark 2.12) can only occur for the values of s that satisfy
sin2fls= ± 1 . We also see that cylinders can be included in (3.11) if
we allow B = 0.
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3.15. There are certain normalizations of signs that should be made
now. Since H Φ 0 is constant, we can assume that H > 0. By (3.11)
and Remark 3.14 we see, by changing s into — s, that we can assume
B ^ 0; by a similar argument, we can also assume m > 0. From now
on we will assume these normalizations without further comment.

REMARK 3.16. By the same token, we can use Bour's family to
determine all helicoidal surfaces with constant Gaussian curvature K.
All we have to do is to replace in (2.10) the function U — U{s) by the
solutions of the equation ΐf + KU = 0, K = const.

4. Proof of Theorem 1.2. 4.1. We now consider the family given
by (3.11) and introduce new parameters (α0, 0) by setting:

a = a0 cos 0/(1 + 2a0H(l - cos 0)) ,

(4.2) h = a0 sin 0/(1 + 2αoiϊ(l - cos 0)) ,

m2 = (1 + 2a0H(l - cos 0))"1 .

Let us denote by U(a, h, m) the expression of U given by (3.9). Notice
that for a = a09 h = 0, m = 1, we obtain in (3.11) a rotation surface, to
be denoted by /(α0), with constant mean curvature H Φ 0.

LEMMA 4.3. Fix a0 and 0, and let α, h, m be given by (4.2). Then
for all 0, 0 <: 0 <; 2ττ,

(4.4) I7(α, λ, m) = ί7(α0, 0, 1) .

Thus for each rotation surface f(a0) given by (3.11), there exists a one-
parameter family f(a0, 0) of isometric helicoidal surfaces with constant
mean curvature H Φ 0. Furthermore,

( i ) /(α0, 0), 0 ^ 0 <S 2π, is ίfeβ associated family to f(a0).
(ii) Given an arbitrary surface f of (3.11), there exists a rotation

surface f{a0) in (3.11) and a number 0, 0 ^ 0 ^ 2ττ, swcft ίfeαί / = /(α0, 0).

4.5. PROOF. The proof of (4.4) is a straightfoward verification, and
(i) follows from (4.4) and the uniqueness part of Lawson [5, Theorem 8]
(it can also be easily proved here). Thus we are left with the proof
of (ii).

Let the given surface / have parameters α, h, m and metric given
by U = U(a, h, m). The second fundamental form of / i s easily computed
to be (cf. (3.4), (3.5) and (3.7))
(4.6) e = H + aim'U2)-1 , / = ^(m2^)"1 , g = HU2 - (d/m2) .

We want to find a rotation surface /(α0) with parameters α0, h = 0, m =
1 and and metric given by U = U such that / is associated to f(a0).
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Assume for a moment that /(α0) exists, and let e0, f0 = 0, g0 be the
coefficients of its second fundamental form. By changing the parameter

S s
U^ds, we see that the parameters (σ, t) are iso-

0

thermal. We can then apply Lawson's construction [5] to obtain the
associated family to /(α0). It turns out that the coefficients of the
second fundamental form of f(a0, Θ) in the parametrization (s, t) are:

e = cos θ(e0 -H) + H, f = 2 " ^ sin Θ((go/U2) - e0) ,

g = cos θ{g0 - HU2) + HU2 .
By comparing these values with (4.6) and using the fact that U = Uf

one obtains

(4.7) eo = H + α( U2in2 cos θ)~ι , g0 - HU2 - a{m2 cos 0)"1 ,

(4.8) h— — a sin 0/cos Θ .

From (4.7) and the fact that

eo = H+ao/U2, /β = 0, go = HU2-ao,

it follows that

(4.9) α0 = α(m2 cos θ)-1 .

We claim that θ and α0 given by (4.8) and (4.9) have the property
that f(a0, θ) = f, and this will complete the proof of (ii).

To prove the claim, we use the fact that (see (3.9))

((1 + 2aH)jm2 - 1 + 2a0H,

u = u< ,
((1 - 4H2h2 + AHa)1/2/m2 = (1 + AHao)

m

By using (4.8) and (4.9), one can see that both of the above equations
are satisfied by
(4.10) 1/m2 = 1 + 2a0H(l - cos Θ) .

Now if we introduce (4.8), (4.9) and (4.10) into (4.2), we conclude that
f(a09 θ) is given by the parameters

m = m , a = a , h = h ,

thereby proving our claim and Lemma 4.3.

4.11. It will be convenient to express the family given by (3.11)
explicitly in terms of the parameters θ and a0 defined by (4.2). To
maintain a manageable notation, we will replace a0 by a parameter Bo

defined as follows. By noticing that

B(a0, θ) = (1 - 4H2h2 + 4Ha)1/2 - (1 + 4α o #) 1 / 2 ( l + 2a0H(l - cos θ))~ι,
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we see that

B(a0, 0) = (1 + 4a0H)m .

We thus define Bo = B(a0, 0), hence a0 = (Bl - ΐ)/AH. It follows by a
straightforward computation that

B(B0, θ) = 2B0/(2 + (Bl - 1)(1 - cos θ)) ,

(4.12) • h(Bΰ, θ) = (Bl - 1) sin θj(2H(2 + (Bl - 1)(1 - cos θ))) ,

m\B0, θ) = 2/(2 + (Bl - 1)(1 - cos 0)) .

4.13. Lemma 4.3 together with the uniqueness part of Lawson [5,
Theorem 8] proves the first part of Theorem 1.2. To complete the
proof, the only problem that remains is to consider the case where the
natural parametrization may have a singularity, namely the case B — 1
(cf. Remarks 2.12 and 3.14). The rotation surface of the associated
family, i.e., θ = 0, is given, in this case, by Bo = 1. But then h(l, θ) =
0, B(l, θ) = m2(l, θ) = 1, for all θ. Thus Bo = 1 corresponds to the sphere,
the associated family of which is the sphere itself. In this case the
natural parametrization has actually a singularity at two points. This
justifies the exception made in the statement of Theorem 1.2 and com-
pletes the proof.

REMARK 4.14. The expressions given in Theorem 1.2 generalize
those obtained by Kenmotsu [4] for h — 0. It is easily checked that
Bo = 0 gives J5(0, θ) = 0 for all θ, and p = 1/2H. This shows that as-
sociated family to the cylinder is the cylinder itself. The cylinder and
the sphere are the only rotation surfaces of constant mean curvature
with the property that the associated family is the surface itself.

REMARK 4.15. It follows from (3.11) that

(1 - b)/2H ^ p(s) ^ (1 + B)/2H .

Thus, except for the sphere (B = 1), the helicoidal surfaces are contained
between two cylinders that depend on Bo and θ.

REFERENCES

[1] E. BOUR, Memoire sur le deformation de surfaces, Journal de Γ£cole Poly technique,
XXXIX Cahier, 1862, 1-148.

[ 2 ] G. DARBOUX, Leςons sur la theorie des surfaces, Vol. I, Paris, 1914 (Reprinted by-
Chelsea Pub. Co., 1972).

[3] C. DELAUNAY, Sur la surface de revolution dont la courbure moyenne est constante, J.
Math. Pures Appl. Series 1, 6 (1841), 309-320.

[ 4 ] K. KENMOTSU, Surfaces of revolution with prescribed mean curvature, Tόhoku Math. J.
32 (1980), 147-153.



HELICOIDAL SURFACES 435

[5] H. B. LAWSON JR. , Complete minimal surfaces in S3, Ann. of Math. 92 (1970), 335-374.
[6] W. WUNDERLICH, Beitrag zur Kentnis der Minimalscharaubflachen, Compositio Math.

(1952), 297-311.

INSTITUTO DE MATEMATICA PURA E APLICADA (IMPA)

ESTRADA DONA CASTORINA, 110

22.460 Rio DE JANEIRO, RJ
BRASIL




