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HELICOIDAL SURFACES WITH
POINTWISE 1-TYPE GAUSS MAP

MIEkYUNG CHOI, DoNG-S00 KiM, AND YOUNG HO KM

ABSTRACT. The helicoidal surfaces with pointwise 1-type or harmonic
gauss map in Euclidean 3-space are studied. The notion of pointwise 1-
type Gauss map is a generalization of usual sense of 1-type Gauss map.
In particular, we prove that an ordinary helicoid is the only genuine he-
licoidal surface of polynomial kind with pointwise 1-type Gauss map of
the first kind and a right cone is the only rational helicoidal surface with
pointwise 1-type Gauss map of the second kind. Also, we give a charac-
terization of rational helicoidal surface with harmonic or pointwise 1-type
Gauss map.

1. Introduction

Since the late 1970’s, the study of submanifolds of Euclidean space or pseudo-
Euclidean space with the notion of finite type immersion has been extensively
carried out. An isometric immersion x : M — E™ of a submanifold M in Eu-
clidean m-space E™ is said to be of finite type if x identified with the position
vector field of M in E™ can be expressed as a finite sum of E™-valued eigen-
functions of the Laplacian A of M, acting on E™-valued functions (cf. {4, 5]).
Granted, this notion of finite type immersion is naturally extended to any dif-
ferential maps defined on the submanifold M, in particular, to the Gauss map
G on M in Euclidean space ([8]). Thus, if a submanifold M of Euclidean space
has 1-type Gauss map G, then G satisfies AG = MG + C) for some A € R and
some constant vector C' (cf. [1, 2, 3, 11]). However, the Laplacian of the Gauss
map of some typical well-known surfaces such as a helicoid, a catenoid and a
right cone in Euclidean 3-space E? take a somewhat different form; namely,
AG = f(G + C) for some non-constant function f and some constant vector
C. Therefore, it is worth studying the class of solution surfaces satisfying such
an equation.
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A submanifold M of a Euclidean space E™ is said to have pointwise 1-type
Gauss map if its Gauss map G satisfies

(1.1) AG = f(G+C)

for some non-zero smooth function f on M and a constant vector C. A point-
wise 1-type Gauss map is called proper if the function f defined by (1.1) is
non-constant. A submanifold with pointwise 1-type Gauss map is said to be of
the first kind if the vector C in (1.1) is zero vector. Otherwise, the pointwise
i-type Gauss map is said to be of the second kind ([6, 9, 12, 13]).

In [9], two of the present authors characterized the minimal helicoid in terms
of pointwise 1-type Gauss map of the first kind. Also, together with B. Y. Chen,
they proved that surfaces of revolution with pointwise 1-type Gauss map of the
first kind coincides with surfaces of revolution with constant mean curvature.
Moreover, they characterized the rational surfaces of revolution with pointwise
1-type Gauss map ([6]).

On the other hand, the class of helicoidal surfaces includes surfaces of revo-
lution and ordinary helicoid. Thus, we need to consider the helicoidal surfaces
in E? with pointwise 1-type Gauss map.

In this paper, we study the helicoidal surface of polynomial kind with point-
wise 1-type Gauss map. In particular, we prove that an ordinary helicoid is the
only genuine helicoidal surface of polynomial kind with pointwise 1-type Gauss
map of the first kind. Also, we characterize helicoidal surfaces with pointwise
1-type Gauss map of rational kind. As a result, we show that a right cone
is the only rational helicoidal surface with pointwise 1-type Gauss map of the
second kind.

Here, we give examples of helicoidal surfaces with proper pointwise 1-type
Gauss map of the first kind and of the second kind, respectively.

Example 1.1. An ordinary helicoid is, up to a rigid motion, parameterized by
z(t,0) = (tcosf,tsinf, hd), h#0
with respect to a surface patch (¢,6). Then the Gauss map is given by

1 .
G = \/_T-z_;__—;z—(hslne, "hCOSH, t)
and the Laplacian AG of the Gauss map G is obtained as
2h?
(h? +t2)2 G.

Therefore, an ordinary helicoid has pointwise 1-type Gauss map of the first
kind.

AG =

Example 1.2. Consider the right cone C, which is parameterized by

z(u,v) = (veosu,vsinu,av), a>0.
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Then the Gauss map G and its Laplacian AG are respectively given by

G = ~—=—=——{(acosu,asiny, —1)

V1+ a2

1 1
26=L(a+ (0.0,2=)).
6= G+ (0,0 — )
It implies that the right cone has pointwise 1-type Gauss map of the second
kind.

and

2. Preliminaries

Let M be a surface of the Euclidean 3-space E3 (surfaces are assumed to be
smooth and connected unless otherwise mentioned). The map G : M — §2 C
E? which sends each point of M to the unit normal vector to M at the point
is called the Gauss map of the surface M, where S? is the unit sphere in E®
centered at the origin. For the matrix § = (§;;) consisting of the components
of the metric on M, we denote by ' = (§*) (resp. G ) the inverse matrix
(resp. the determinant) of the matrix (g;;). The Laplacian A on M is, in turn,
given by

1 8/ — .. @

Let (z,y,2) be the standard coordinates of E3. Consider the one-parameter
subgroup g; : E* — E3 is given by
(2, Y, z) = (zcost + ysint, —zsint + ycost, z + ht), teR,

where h is a constant.

The rigid motion gy is called the helicoidal motion with axis Oz and pitch
h. A helicoidal surface with axis Oz and pitch h is a surface which is invariant
by one-parameter subgroup g;.

The helicoidal surface M in E® is then parameterized by

(2.2) x(p, ) = (pcosp, psin g, a(p) + he),

where {p, ) is the polar coordinates in the zy-plane with the origin of ¢ as
z-axis and the curve z = a(p) determines the profile of the surface M.

In such a case that p in the above parametrization is not constant, the
helicoidal surface M can be parameterized by

z(t,0) = (tcos@,tsinf, A(t) + ho)

in terms of the adapted coordinates (¢,6) for some function A of . If h = 0,
then M is the surface of revolution. For this reason the helicoidal surface except
the surface of revolution, that is, & # 0, is called the genuine helicoidal surface.
Furthermore, a helicoidal surface M is said to be of polynomial kind if A(t)
is a polynomial and of rational kind if A(t) is a rational function. A helicoidal
surface of rational kind is simply called a rational helicoidal surface (cf. [7}]).
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From now on, we handle non-trivial helicoidal surfaces, i.e., p is not constant
in (2.2) unless otherwise stated.
3. Helicoidal surfaces with pointwise 1-type Gauss map
We now consider a helicoidal surface M in E3 parameterized by
(3.1) z(t,0) = (tcosb,tsinf, A(t) + h)

for the adapted coordinate system (¢,6). A direct computation shows that the
Gauss map G of M is given by

(3.2) G= ! (hsin@ — tX\'(t) cos§, —~h cos @ — tX'(t)siné,t)
\/h2 + (14 N2(1))t2
and the Laplacian AG of the Gauss map G satisfies
(3:3)
AG = — ! (A(t) cos§ + B(t)sin, A() sinf — B(z) cos, D(2)),

z
2

(h2 + (1 + XN2(1))t2)
where we have put
(3.4)
A() = — 3RON + (RN + 8RN — RON")t + (TRANZ N — ThAA" )¢
+ (TREN +12h2X° + 512X — BRAN" + ARAN X" — RN A" )3
+ (=5h2X" + 6RINZX" 4 2h2 XNt
+ (BREN N 4+ X(1 4+ N?)3 — 3RZN" — 2R2NZAM)EE — (N + N 2Nyt
+ (AN NTZ N NN
(3.5)
B(t) = — 2h% — 4RSN'® — TREXN X't — (283 + 2h3X% + RON'? + KON X" )2
+ (B3NN — 8RN ")
+(3R3NZN"Z — 2R3N N — 2h3N"? — BANEAA
— (RX'X" + hAPAYE 4 (BRNZA"Z — RA"2 — RA'A" — BAP A,
(3.6)
D(t) = (—2h* — 4h*X?)t — TRANN"E2 — (282 + 2R2N'% + RAN"? 4+ RAN X3
+ (RENPN" — 8RZX XYt
+ (BRANZN"2 — 2RZN N — 2R2N"? — RENE XY
— (VA NN 4 (BNZATE — AT VAT = NPT,

‘We now prove
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Lemma 3.1. Let M be a helicoidal surface in E3. If the Gauss map G of
M satisfies the equation AG = f(G + C) for some smooth function f and a
constant vector C, then either the Gauss map is harmonie, that 1s, AG = 0 or
the function f defined by (1.1) depends only on t and the vector C in (1.1) is
parallel to the axis of the helicoidal surface.

Proof. 1f M has pointwise 1-type Gauss map, then (1.1) holds for some function
f and some vector C. When the Gauss map is not harmonic, (1.1), (3.2) and
(3.3) imply that f depends only on ¢, that is, f is independent of the parameter
8. Moreover we obtain

(3.7

Aty = FIN@(R? + (L+ N2@)t2) and  B(t) = —fh(R2 + (1 + N2 (t)2).
It implies that the first two components of C are zero, that is, C' = (0,0, c) for
some constant c. a

Now we suppose that M is a genuine helicoidal surface in E* with pointwise
1-type Gauss map, i.e., h # 0. Then, (3.3) and Lemma 3.1 give

(38) D) = (B + (1 + X*0)F) (¢ + e /B 4+ (1L N2 ()2).

By direct computation, (3.5), (3.6), (3.7) and (3.8) imply

fc(h2 +(1+ )\'Q(t))t2>% =0

on an open set U = {p € M | f(p) # 0}. Since h? + (1 + N>(t))t* # 0, we
conclude that the third component of the constant vector C is zero, i.e., c=0
and so C is zero vector. Thus we have

Theorem 3.2. Let M be a genuine helicoidal surface in Buclidean 3-space E3.
If M has pointwise 1-type Gauss map, then it is of the first kind, that is, it
satisfies the condition AG = fG for some smooth function f.

By using Lemma 5.1 in [13] and calculating the Laplacian of the Gauss map
G, we get

Proposition 3.3. Let M be a surface in Euclidean 3-space E®. Then, the

Gauss map G is of pointwise I-type of the first kind or harmonic if and only if
M has constant mean curvature.

Thus, we have

Corollary 3.4. Let M be a genuine helicoidal surface in Euclidean 3-space.
Then, M has pointwise 1-type or harmonic Gauss map if and only if M has
constant mean curvature.

Remark. A helicoidal surface with constant mean curvature was studied by
M. P. do Carmo, M. Dajczer, and W. Seaman (cf. [10, 14]).
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We now consider the case of a genuine helicoidal surface with pointwise
1-type Gauss map, that is, h # 0. Applying (3.7) and Theorem 3.2, we have

B(t)
h
i/(\) ;;;Z%Eﬁ?ggﬁrfi computation with the help of (3.4) and (3.5) gives the fol-

(3.9)
— 3RON + (4RAN + 4RAN® — RON")E — ThAN"H?
+ (5R2N + 10R2N® 4 BR2X® — 3hAN" + 34N N"? — 24NN )t
— (BR2N" 4 2REXN" — 3R2N Nt 4 (BREN X + N 4 3X° 4+ 3X° 4+ X7
— BRIN — ARINPN 4 BRENNTT — 2N NS — (X7 4 2NN XN
+ (BN = X — 2N PN 4 NN - NN = 0.

A(t) + t\'(t) =0.

Suppose that M is of polynomial kind, that is, A(¢) is a polynomial in ¢. Denote
by deg A(t) the degree of A(t).

If deg A(t) > 2, then the term X (t)¢® in (3.9) has the highest degree in ¢
and so the leading coefficient of X'’ (£)t5 must be zero, which is a contradiction.

Now, we assume that deg A(t) = 1. We may put A(t) = at + b for some
nonzero constant a and b € R. If we make use of (3.9) again, we must have
a = 0, which is also a contradiction. Therefore X is a constant. Putting together
(3.5) and (3.7), we obtain f(t) = Ul%‘%g (See Example 1.1.).

Thus, the parametrization of M is reduced to

z(t,0) = (tcosb,tsinf,a+ hd), h#0

for some constant a. It is nothing but part of an ordinary helicoid. Con-
versely, by straightforward computation, an ordinary helicoid has pointwise
1-type Gauss map of the first kind. Consequently, we have

Theorem 3.5. A genuine helicoidal surface of polynomial kind has pointwise
1-type Gauss map if and only if it is part of an ordinary helicoid.

Next, we suppose that M is of rational kind. Then the function A(t) in (3.1)
and X(t) are both rational functions in ¢. If N'(¢) is not a polynomial, we may
put

r(t)
3.10 N(t) =p(t) + —=,
(3.10) 0 =)+ 75
where p(t) is a polynomial in ¢ and the polynomials 7(t) and g(t) are relatively
prime. Let degp(t) = [, degr(t) = n and degq(t) = m with degr(f) = n <
deg g(t) = m, where | and n are some nonnegative integers. Putting (3.10) in
(3.9) and multiplying ¢”(t) with thus obtained equation, we get a polynomial
in ¢ in the left hand side of (3.9). A long algebraic computation shows that the
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degree of the polynomial is 7I+ Tm + 5. So the leading coefficient must be zero.
But it contradicts the character of functions p and ¢. Consequently, we have

Theorem 3.6. There is no genuine rational helicoidal surface with pointwise
1-type Gauss map except that of polynomial kind.

Combining Theorem 3.5 and Theorem 3.6, we get

Theorem 3.7 (Characterization). A genuine rational helicoidal surface M
with pointwise 1-type Gauss map if and only if M is part of an ordinary helicoid.

On the other hand, in [6], it was proved that rational surfaces of revolution
with pointwise 1-type Gauss map is part of a circular cylinder or a right cone.
Part of a circular cylinder has 1-type Gauss map in usual sense that means
the function f in (1.1) is constant. In particular, a circular cylinder is a triv-
ial helicoidal surface, i.e., p is constant in (2.2). Consequently, we give the
following

Theorem 3.8 (Characterization). A rational helicoidal surface M with point-
wise 1-type Gauss map if and only if M is part of a circular cylinder, a right
cone or an ordinary helicoid.

From this, we immediately get the following

Corollary 3.9. A right cone is the only rational helicoidal surface with point-
wise 1-type Gauss map of the second kind.

4. Helicoidal surfaces with harmonic Gauss map

In this section, we consider the helicoidal surfaces with harmonic Gauss map.
We now suppose that M is a helicoidal surface of polynomial kind in E*, which
has harmonic Gauss map, that is, its Gauss map G satisfies AG = 0. Then the
polynomials A(t), B(t) and D(¢) in (3.3) are vanishing.

If deg X'(t) > 1, then the term X' (£)t5 of A(t) has the highest degree in ¢
and its leading coefficient must be zero, which is a contradiction. Therefore
deg N'(t) = 0, i.e., N is constant. A direct computation gives that A(t) = 0
implies that A’(t) = 0. Hence, A is constant. Moreover with the help of (3.5),
B(t) = 0 implies that h = 0. Thus, M is a non-genuine helicoidal surface, i.e.,
a surface of revolution. Therefore, the parametrization of M is reduced to

z(t,0) = (tcos@,tsinf, \)
for some constant A, which means M is part of a plane. Consequently, we have

Theorem 4.1. Let M be a helicoidal surface of polynomial kind in E®. Then
M has harmonic Gauss map if and only of M is part of a plane.

Next we suppose that M is a helicoidal surface of rational kind in E3 with
harmonic Gauss map. Then A(t) and X (¢) are rational functions in t. If N (¢)

is not a polynomial, we may put X' (t) = p(t) + ;—%, where p(t) is a polynomial
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in ¢, r(t) and q(t) are relatively prime polynomials with degg > 1. From a
straightforward computation, q”(t)A(t) is a polynomial in ¢ and the leading
coefficient must be zero. This is a contradiction and thus M is of polynomial
kind. Consequently, we have

Theorem 4.2. A helicoidal surface of polynomial kind is the only rational
helicotdal surface with harmonic Gauss map.

Combining the above theorems and Theorem 3.8 we have

Theorem 4.3 (Characterization). Let M be a rational helicoidal surface in
Euclidean 3-space E3. Then, the Gauss map G is either harmonic or of point-
wise I-type if and only if M is part of a plane, a circular cylinder, a helicoid
and a Tight cone.

We finally propose a problem to classify helicoidal surfaces with pointwise
1-type Gauss map.

Problem: Classify all helicoidal surfaces with pointwise 1-type Gauss map.
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