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ABSTRACT

We present the open-source radiative transfer code named HELIOS, which is constructed for studying
exoplanetary atmospheres. In its initial version, the model atmospheres of HELIOS are one-dimensional and plane-
parallel, and the equation of radiative transfer is solved in the two-stream approximation with nonisotropic
scattering. A small set of the main infrared absorbers is employed, computed with the opacity calculator HELIOS-
K and combined using a correlated-k approximation. The molecular abundances originate from validated analytical
formulae for equilibrium chemistry. We compare HELIOS with the work of Miller-Ricci & Fortney using a model
of GJ 1214b, and perform several tests, where we find: model atmospheres with single-temperature layers struggle
to converge to radiative equilibrium; k-distribution tables constructed with 0.01 cm−1 resolution in the opacity

function (103 points per wavenumber bin) may result in errors 1%–10% in the synthetic spectra; and a
diffusivity factor of 2 approximates well the exact radiative transfer solution in the limit of pure absorption. We
construct “null-hypothesis” models (chemical equilibrium, radiative equilibrium, and solar elemental abundances)
for six hot Jupiters. We find that the dayside emission spectra of HD 189733b and WASP-43b are consistent with
the null hypothesis, while the latter consistently underpredicts the observed fluxes of WASP-8b, WASP-12b,
WASP-14b, and WASP-33b. We demonstrate that our results are somewhat insensitive to the choice of stellar
models (blackbody, Kurucz, or PHOENIX) and metallicity, but are strongly affected by higher carbon-to-oxygen
ratios. The code is publicly available as part of the Exoclimes Simulation Platform (exoclime.net).
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1. INTRODUCTION

The past few years have been marked by a slow, but
steady, shift from the era of the detections of exoplanets to
the new age of the characterization of their atmospheres.
Exoplanets transiting in front of their host stars allow for
atmospheric features to be imprinted onto the total system
light (Seager & Sasselov 2000; Brown et al. 2001; Charbon-
neau et al. 2002). Secondary eclipses allow for photons from
the exoplanetary atmosphere to be directly measured (Char-
bonneau et al. 2005; Deming et al. 2005). Extracting the
spectroscopic signatures of these exoplanetary atmospheres is
a challenging task, because they are typically many orders of
magnitude fainter than the light from their host stars.
Interpreting these signatures requires a profound understand-
ing of radiative transfer and atmospheric chemistry, in order
to infer the thermal structure and atomic/molecular abun-
dances of the atmosphere from the data.

Hot Jupiters are particularly accessible to atmospheric
characterization via transits and eclipses. They are hardly 1D
objects, but a reasonable first approach is to study them using
1D, plane-parallel model atmospheres (Sudarsky et al. 2003;
Barman et al. 2005; Fortney et al. 2005, 2006, 2008, 2010;
Burrows et al. 2006, 2007, 2008), which may be used to mimic
the dayside- or nightside-integrated emission. The simplest
model one may construct of a dayside emission spectrum

(besides a Planck function) is a 1D model with an atmosphere
in radiative and chemical equilibrium, if one neglects the
effects of atmospheric dynamics and photochemistry. Despite
these simplifications, there are several nontrivial demands
associated with such a model: it should be able to consider a
rich variety of chemistries, metallicities, irradiation fluxes from
the star, and internal heat fluxes from the interior of the
exoplanet. It should be able to take, as an input, arbitrary
combinations of molecules and their opacities. The synthetic
spectrum computed should be highly customizable, such that it
may be readily compared to both photometric and spectro-
scopic data, often combined in a heterogeneous way across
wavelength. To explore such a broad range of parameter space,
the numerical implementation of a model (in short, the “code”)
needs to solve for radiative equilibrium very efficiently and
also allow for numerical convergence to be checked in several
different ways: number of model layers, spectral resolution of
opacity function, number of wavelength bins used, etc. Such a
code forms the basis of a flexible radiation package that one
may couple to a chemical kinetics code or a 3D general
circulation model. The challenges of constructing a 1D
radiative–convective model are also discussed in the review
article by Marley & Robinson (2015), where the “convective”
part stands for the additional consideration of convective
stability, which marks the next step in sophistication of an
atmospheric model.
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In the current work, we present a customizable and built-
from-scratch computer code named HELIOS

6, which has or
uses the following components.

1. In this initial version, we use the analytical solutions of
the radiative transfer equation in the two-stream approx-
imation, as derived by Heng et al. (2014). These solutions
enable us to iteratively and self-consistently solve for the
temperature–pressure profile of the atmosphere via
iteration with its opacity function, which generally
depends on temperature, pressure, and wavelength. The
synthetic spectrum is obtained as a natural by-product of
this self-consistent calculation.

2. For the opacity function of the atmosphere, we use our
open-source and custom opacity calculator, HELIOS-K,
which was previously published by Grimm & Heng
(2015). The finest resolution we have used is -10 5 cm−1

across the entire wavenumber range considered. We then
compute k-distribution tables from this finely spaced grid
of opacities across temperature, pressure, and molecular
species.

3. Throughout this work, we assume chemical equilibrium,
which effectively means that the chemistry is described
by only two parameters: the elemental abundances of
carbon and oxygen. Given the input values of these
elemental abundances, we then use the validated
analytical formulae of Heng & Lyons (2016) and Heng
& Tsai (2016) to calculate the mixing ratios (abundances
normalized to that of molecular hydrogen) of the various
molecules. We consider water (H2O), carbon monoxide
(CO), carbon dioxide (CO2), and methane (CH4).

4. We have built HELIOS to run on graphics processing
units (GPUs) to maximize the computational throughput.
A HELIOS calculation with 101 model layers and 300
wavelength bins takes only a few minutes to complete on
a personal computer with an NVIDIA GeForce 750M
GPU.7 This level of efficiency allows us to effectively
perform parameter studies.

In Section 2, we provide a detailed description of our
methodology, including the equations and boundary conditions
used, the numerical methods, the structure of our grid, the
opacity calculations, the chemistry model, and the stellar
models used. In Section 3, we subject HELIOS to various tests,
and use it to address several lingering ambiguities8 in the
literature and also to examine six case studies of hot Jupiters. In
Section 4, we summarize our results, compare them to previous
work, and discuss opportunities for future work.

2. METHODOLOGY

2.1. Radiative Transfer Scheme

2.1.1. Preamble

Any scheme to represent the propagation of radiation
through an atmosphere has to solve the radiative transfer

equation (Chandrasekhar 1960; Mihalas 1970),

m
t
¶
¶

= -l

l
l l

I
I S , 1( )

where lI is the monochromatic and wavelength-dependent

intensity, m qº cos is the cosine of the incident angle (θ)

relative to the normal, and tl is the optical depth measured

from the top of the atmosphere (TOA) downward. We denote

the wavelength by λ. The crucial “length” to adopt in radiative

transfer is the optical depth. (Only a nonvanishing tD l leads to

a change in intensityD lI .) The source function Sλ accounts for

both radiation scattered into the line of sight and the thermal

emission associated with each location in the medium.

Equation (1) is generally difficult to solve, because it is a

partial differential equation in tl and μ.
A commonly used simplification is to reduce Equation (1) to

an ordinary differential equation in tl by integrating over the
incoming (  p q- 2 0 or  m-1 0) and outgoing
(  q p0 2 or  m0 1) hemispheres and assuming that
the ratios of various moments of the intensity are constant and
take on specific values. This is known as the “two-stream
approximation” (Meador & Weaver 1980). One may then solve
the ordinary differential equation analytically to obtain
solutions for pairs of model atmospheric layers (Heng
et al. 2014). The moments of the intensity are related by the
so-called “Eddington coefficients.” Of particular interest to us
is the first Eddington coefficient (Heng et al. 2014),




=
1
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which is related to the “diffusivity factor” . In the next

subsection, we show that  should take on a value between 1

and 2 depending on the thickness of the atmospheric layers.
In the current study, we use the two-stream solutions

previously derived by Heng et al. (2014). We note that these
solutions allow for the inclusion of nonisotropic scattering via
two functions: the single-scattering albedo (w0) and the
scattering asymmetry factor (g0) (Goody & Yung 1989;
Pierrehumbert 2010). Pure absorption and scattering corre-
spond to w = 00 and w = 10 , respectively. Forward, backward,
and isotropic scattering correspond to =g 10 , −1, and 0,
respectively. Our formulation allows for w0 and g0 to be
specified as functions of wavelength/frequency/wavenumber,
temperature, and pressure.
Hereafter, the term “flux” describes a wavelength-dependent

quantity.9 Integrating the flux over all wavelengths, one obtains
the “bolometric flux.” We also neglect for readability the
subscript λ for τ and B.

2.1.2. Exact Solution of the Radiative Transfer Equation

in the Pure Absorption Limit

As previously shown by Heng et al. (2014, and references
therein), the radiative transfer equation has an exact solution in
the limit of pure absorption (w = 00 ). We use a staggered grid
(see Section 2.2.1), such that the two-stream solutions are
applied to the interfaces of a model layer. We label the
interfaces by “1” and “2” and our convention is to locate
interace 2 above interface 1 in altitude. If the layer has only one
temperature throughout (i.e., it is isothermal), then the fluxes at

6
Named after the Greek god of the Sun.

7
Note that these are fully converged and self-consistent models, which

require iteration to solve for radiative equilibrium.
8

We describe these issues as “lingering,” because studies in the published
literature typically omit the details involved, which prevents us from directly
comparing our results to them.

9
Accordingly, the units of the flux F are =F[ ] erg s−1 cm−3.

2

The Astronomical Journal, 153:56 (20pp), 2017 February Malik et al.



the interfaces are given by
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The subscripts  and  refer to the outgoing and incoming

fluxes, respectively. The blackbody intensity within this layer is

given by B1.
We can improve upon the isothermal-layer treatment by

considering a (linear) temperature gradient within the layer
(Toon et al. 1989). If we instead Taylor-expand the Planck
function in τ and retain only the constant and linear terms, we
obtain
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following the derivation in Heng et al. (2014). The difference in

optical depth between the layers is given by t t tD º -2 1. The

gradient of the Planck function is approximated by

t t
¢ »

-
-

B
B B

, 5
2 1

2 1

( )

where B1 and B2 are now the Planck functions for the

temperatures at the interfaces 1 and 2, respectively.
In both the isothermal and nonisothermal cases, the

transmission function or transmissivity is
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where 1 is the exponential integral of the first order. Unlike for
the two-stream solutions, there is no need to specify  as an

input, because it has an exact solution,
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For very thin layers ( tD  1),  = 2 is an accurate

approximation, but as the layer becomes optically thick the

value of  approaches unity (Figure 1). Operationally, since

we pick our model grid to be equally spaced in the logarithm of

pressure, this means that the value of tD is small near the top

of the model atmosphere and gradually becomes large (and

exceeds unity) at high pressures. Within the context of the two-

stream approximation, assuming  to be constant is equivalent

to picking a representative or mean value, over the entire

atmosphere, of the diffusivity factor.
As already pointed out by Heng et al. (2014), the analytical

expression for  when scattering is present (equivalent to
Equation (7)) is unknown.

It is worth emphasizing that Equations (3) and (4) are exact
solutions and that the two-stream approximation is not taken. In
Section 3.1.5, we compare these exact solutions to the two-
stream solutions to derive the value of .

2.1.3. Different Flavors of Two-stream Solutions

We now rederive the two-stream solutions of Heng et al.
(2014) without setting  = 2, so as to facilitate comparisons
with the exact solutions. For all of the solutions presented in
this subsection, the transmission function is

  w w tº - - - Dgexp 1 1 . 80 0 0[ ( )( ) ] ( )

The simplest two-stream solutions are derived in the limit of
pure absorption and isothermal atmospheric layers,
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Without scattering (w = 00 ), the coupling coefficients are

z =+ 1 and z =- 0, and the transmission function simply

becomes   t= - Dexp( ). If we increase the sophistication of

the model by considering nonisothermal layers and pure

absorption, we obtain
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For isothermal atmospheric layers with nonisotropic scatter-
ing included, the two-stream solutions for the fluxes read
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The coefficients α, β, ξ, υ are defined as
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Figure 1. Diffusivity factor , as a function of the difference in optical depth
tD across a layer, in the limit of pure absorption.
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with the coupling coefficients being
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In the limit of w = 10 , the equations in (11) are replaced by
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These solutions give the correct limits of a transparent or

opaque atmosphere when w = 10 (Heng et al. 2014). The

general solutions stated before in Equation (11) do not

reproduce this limit.
Our most sophisticated two-stream solutions include non-

isotropic scattering and nonisothermal model atmospheric
layers,
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Note that in the nonisothermal approach a single constant

gradient of ¢B is assumed within a layer. Thus B1 and B2 are

placed at the interfaces.10 The coefficients α, β, and ξ, as well

as the coupling coefficients z, retain the same functional forms

as in the case with isothermal layers.
Generally, we find that the nonisothermal solutions attain

more rapid numerical convergence (to radiative equilibrium).
In principle, if a large enough number of isothermal layers are
used, the isothermal and nonisothermal calculations should
agree.

2.1.4. Rayleigh Scattering

To include the effects of Rayleigh scattering by molecules,
we use the cross section (Sneep & Ubachs 2005),

⎛

⎝
⎜

⎞

⎠
⎟s

p
l

=
-
+

l
l

l
l

n

n

n
K

24 1

2
, 16scat,

3

ref
2 4

2

2

2
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where nref is the number density at a reference temperature and

pressure, nλ is the wavelength-dependent refractive index, and

Kλ is the King factor, which is a correction factor for

polarization.
In the current study, we focus on Rayleigh scattering by

hydrogen molecules, but our approach may be straightforwardly
generalized to other molecules. We ignore the contribution due
to helium, which is less than 1% of that due to molecular
hydrogen. For H2, we use = ´ -n 2.68678 10 cmref

19 3, K=1,

and

l= ´ + ´ +l
- - -n 13.58 10 1 7.52 10 cm 1. 175 11 2 2( ) ( )

The influence of Rayleigh scattering enters via its inclusion, as

s l mscat, ¯ , in the opacity of each model layer, where m̄ is the

mean molecular mass, and also via the single-scattering albedo

w0. The dashed line in Figure 3 shows the opacity of Rayleigh

scattering by H2, which dominates in the optical but becomes

subdominant, compared to molecular absorption, in the infrared

due to its dropoff with l-4.
If the scattering dominates and w- < -1 100

6( ) in this layer
and waveband, then we switch to the pure scattering solutions
(Equation (14)).

2.2. Numerical Method

2.2.1. Model Grid

For the isothermal treatment, a staggered grid is used with
the layers being separated by interfaces. There are n layers and
+n 1 interfaces. The grid is evenly spaced in height or the

logarithm of pressure, which serves as the vertical coordinate.
The thickness of the ith layer is given by

⎛

⎝
⎜

⎞

⎠
⎟D =

+
z

k T

mg

P

P
ln , 18i

i i

i

B ,inter

1,inter¯
( )

with kB being the Boltzmann constant and g the surface gravity.

For hydrogen-dominated atmospheres, we set =m m2.4 p¯ with

mp being the mass of the proton. The pressures at the interfaces

are represented by Pi,inter and +Pi 1,inter. The preceding expres-

sion is obtained from integrating the equation of hydrostatic

balance over a model layer and assuming isothermality and the

equation of state for an ideal gas.
The contribution to the optical depth11 from the ith layer is

t k kD = D =
- +

m
P P

g
, 19i i i

i i
icol,

,inter 1,inter
( )

where ki is the opacity and Dm icol, is the difference in column

mass, which can be further written in terms of pressure and

surface gravity.
For the nonisothermal grid, we require a more sophisticated

grid layout, which is shown in Figure 2. Each layer has a
temperature and pressure, located at its center. To compute the
fluxes, we need to interpolate across the temperature and
pressure grids to obtain their values at the interfaces. A key
quantity to compute is the Planck function B, which relates the
temperature to the thermal emission of a layer. If one constructs
the grid using a single gradient ¢B of the Planck function over
the whole layer, one is essentially decoupling the radiative
transfer process from the temperature at the center of the layer.
We solve this problem by splitting each layer into two
sublayers, leading to two ¢B values within a layer. The fluxes
are propagated first from the lower interface to the layer center,
then from the layer center to the upper interface (and
vice versa), similar to the approach taken in, e.g., Mendonça
et al. (2015). In this manner, both the layer centers and
interfaces are involved in the iteration for radiative equilibrium.

10
In practice, in the numerical implementation of the equations one layer has

to be divided into two sublayers (see Section 2.2.1).

11
To be pedantic, the optical depth is a coordinate. It is the difference in

optical depth that is needed for radiative transfer. The analogy is to distance
versus displacement.
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Finally, in the nonisothermal grid, a numerical caveat arises
in the upper atmosphere. There, the difference in optical depth
tD i of a layer i is tiny (due to the very small pressure) and thus

the denominator of Equation (5) vanishes, which in turn leads
to numerical issues for ¢B in Equation (15). To prevent this, we
keep the sublayered grid of the nonisothermal approach, but
switch in each sublayer from the nonisothermal prescription
(Equation (15)) to the isothermal one (Equation (11)) when-
ever tD < -10i

4.

2.2.2. Boundary Conditions

At the TOA, which is also the nth interface of the model
atmosphere, the flux is given by

⎜ ⎟
⎛

⎝

⎞

⎠


p=F f
R

a
B , 20n,

2

( )

where R is the stellar radius, a is the orbital distance of the

planet, and B is the stellar blackbody function. This represents

the heating from the incident stellar flux. Most of the quantities

in the preceding expression are astronomical observables (or

quantities that may be inferred from the observations). It is

possible to replace B by a more sophisticated model of the

stellar spectrum (see Section 2.5).
The quantity f is a parameter that describes the redistribution

of heat from the dayside to the nightside of a tidally locked hot
Jupiter, which is dictated by an interplay between atmospheric
dynamics and radiative cooling. In principle, its value may be

inferred from infrared phase curves. Theoretically, it is
bounded between =f 1 4 (full redistribution) and f=1 (no
redistribution). Since we are using our 1D, plane-parallel model
to describe the dayside emission spectra of hot Jupiters, the
value of f is a proxy for the dayside-integrated absorption and
re-emission of radiation. In the current study, we adopt
=f 2 3 following the arguments in, e.g., Burrows et al.

(2008) and Spiegel & Burrows (2010).
At the bottom of the model atmosphere (BOA), we have

included the option to specify an internal radiative heat flux
(pBintern), such that

ò p l s=B d T , 21intern SB intern
4 ( )

where λ is the wavelength, sSB is the Stefan–Boltzmann

constant, Tintern is the internal temperature, ºB B Tintern intern( ),

and B is the Planck function. The internal heat flux reflects the

thermal heating due to gravitational contraction. The BOA is

also the 0th interface. It is important to note that any form of

atmospheric heating is associated with the net flux (the

difference between the outgoing and incoming fluxes) (Heng

et al. 2014),

p = - B F F . 22intern 0, 0, ( )

In our current study, we set =T 0intern K in the absence of such

constraints on hot Jupiters.

2.2.3. Iterating for Radiative Equilibrium

Within each model layer of the atmosphere, its temperature
and pressure determine its absorption and scattering properties,
given by molecular abundances and opacities, which in turn
determine the transmission function and fluxes. However, as
flux enters and exits the layer, the temperature changes, which
in turn changes the opacity. Clearly, this is an iterative process.
It turns out that one is iterating for radiative equilibrium, which
is a statement of local energy conservation (Heng et al. 2014).
Local energy conservation implies global energy conservation,
but not vice versa (Heng & Lyons 2016).
We integrate the fluxes ( F and F ) over the entire spectral

range to obtain the bolometric fluxes ( and ), which in turn
allows us to construct the bolometric net flux (  º --  ).
For the ith layer, the divergence12 of the bolometric net flux
becomes

    D
D

=
- - -

D
- +  +   

z z
. 23

i

i

i i i i

i

, 1, 1, , ,( ) ( )
( )

Between successive timesteps, the change in temperature of the

ith layer then becomes (Heng et al. 2014)


r

D =
D
D

D-T
c z

t
1

, 24i

i

i

i

i

p

,
( )

where ri is the local density and Dti is the numerical timestep.

The specific heat capacity of an ideal gas at constant pressure is

(Pierrehumbert 2010)

=
+

c
n

m
k

2

2
, 25p

dof
B

¯
( )

Figure 2. Staggered grid used for models with nonisothermal layers. The
boundary conditions are applied at the top (stellar irradiation) and bottom
(internal heat flux) of the model atmosphere, which are also the nth and 0th
interfaces, respectively. The pressure and temperature are located at the center
of each layer, while the fluxes traversing a layer are computed at the layer
interfaces. We further divide each layer into two sublayers during the iteration
for radiative equilibrium (see text for details). In the schematic, we have
focused on the kth layer and the various quantities associated with its center
and interfaces. Quantities marked with an asterisk are temporarily used in the
computation, but not stored as the final output. The layers are evenly spaced in
the logarithm of pressure.

12
In 1D, the divergence is simply the vertical gradient.
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where we set the number of degrees of freedom of the gas to be

=n 5dof , as is valid for a diatomic molecule (ignoring the

vibrational modes) like molecular hydrogen, the main comp-

onent of the atmospheres of gas planets. This simplification

does not hold should the atmospheric composition change, e.g.,

by dissociation of molecular hydrogen at very high tempera-

tures. Since the only occurrence of cp in our model is in the

timestepping algorithm, this flaw is of only minor concern for

our cause, but it would render, e.g., the calculation of the

entropy inaccurate.
In practice, we start with an arbitrary temperature profile

with D ¹- 0i, . We perform the iteration described until D -i,
vanishes for each layer, which is our numerical condition for
radiative equilibrium (compare with Equation (29)). Physically,
each atmospheric layer emits the same amount of energy as it
receives.

When scattering is present, the flux solutions become
coupled. Each array of outgoing or incoming fluxes cannot
be populated independently of the others. This is solved
iteratively by starting with the coupled dependences as zero and
populating the flux arrays multiple times in each temperature
step. We include four additional scattering iterations in the full
radiative transfer calculation because the flux values are still
known from the previous timestep, and 80 scattering iterations
for pure post-processing purposes (propagating only once
through the atmosphere).

2.2.4. Numerical Timestepping

For the numerical timestepping, there are two options in
HELIOS. The first option uses a fixed and uniform timestep
(Dt) for every model layer. Typically, we choose
 Dt10 10 s2 4 . The challenge is that rD µ -T 1 and ρ

may vary by several orders of magnitude across our model
atmosphere. With a uniform timestep, the upper layers of the
atmosphere attain convergence much more rapidly than the
lower layers. Thus, this approach is plausible and technically
correct, but infeasible.

A more efficient approach is to implement an adaptive
timestepping scheme that uses a different timestep for each
model layer. Specifically, the timestep in the ith layer is related
to the radiative timescale (ti,rad),

D =t f t , 26i i i,pre ,rad ( )

where fi,pre is a prefactor to adjust to the optimal value of Dti.
The radiative timescale is approximated by

s
»t

c P

gT
, 27i

i

i

,rad
p

SB
3

( )

where the temperature and pressure of the ith layer are given by

Ti and Pi, respectively. With this improved timestepping

scheme, the timestep becomes larger as one goes deeper into

the model atmosphere. The evolution of the model does not

strictly correspond to a physical evolution, but is rather a

convenient way of reaching a numerical steady state.
To further optimize the efficiency of HELIOS, we also allow

the timestep to vary in time as the model approaches radiative
equilibrium. Specifically, the algorithm checks in each layer
whether the temperature has oscillated for the most recent six
successive timesteps. We find oscillations in temperature to be
a robust and practical indicator of having adopted too large a

timestep. If oscillations are detected, the timestep is reduced by
33%. By contrast, if no oscillations are detected (i.e., the
change in temperature is monotonic), then the timestep is
increased by 10%.
We note that the purpose of the prefactor ( fi,pre) is to dampen

sudden spikes in D -i, . For practical purposes, it takes the
form of


=

D -
- -

f
10

erg s cm
, 28i

i
,pre

5

,
1 2 0.9[∣ ∣ ( )]

( )

which leads the temperature iteration step DTi to depend only

on D -i,
0.1, which guarantees the correct direction of the

evolution but substantially smoothes irregularities, making the

iteration process significantly more stable.
Finally, we need a condition to judge whether radiative

equilibrium has been established. Usually, one would assume a
criterion demanding the rate of temperature change to be below
a certain threshold, dD D <T t limit, and evaluate whether this
is satisfied in every layer. However, if Dt is variable and not
representing a physical time, then the utility of this approach
becomes suspect. Instead of setting a threshold on the
consequence of radiative equilibrium (changes in temperature),
we set one on its cause (a vanishing bolometric flux
divergence). We use the dimensionless convergence criterion,


s
D

<- -

T
10 , 29

SB
4

7 ( )

where the change in bolometric net flux is normalized by the

thermal emission associated with each layer. In practice, this

criterion results in changes in temperature of less than 4 K at

the BOA and less than 1 K in the photospheric regions, which

impacts the emission spectrum by less than 0.5%.

2.3. Calculating Opacities and Transmission Functions

Our method for computing the opacities (cross sections per
unit mass) of molecules has previously been elucidated in
Grimm & Heng (2015), who published an opacity calculator
named HELIOS-K that is part of the HELIOS radiation
package. As such, we do not repeat the detailed explanations of
Grimm & Heng (2015) and instead highlight only the salient
points. We include the opacities associated with the four main
infrared absorbers: H2O, CO2, CO and CH4. We also include
the opacities associated with the collision-induced absorption
(CIA) of H2–H2 and H2–He pairs. Table 1 states the
spectroscopic line lists used to compute our opacities, while

Table 1

Opacity Sources Used in this Work

Name Source

H2O HITEMP databasea (Rothman et al. 2010)

CO2 HITEMP databasea

CO HITEMP databasea

CH4 HITRAN databaseb (Rothman et al. 2013)

CIA HITRAN CIA database (Richard et al. 2012)

Rayleigh scattering Sneep & Ubachs (2005)

Notes.
a
hitran.org/hitemp/

b
www.cfa.harvard.edu/hitran/
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Figure 3 displays the final weighted opacities used in the code
at one temperature and pressure.13

The first step involves calculating the opacity function (cross
section per unit mass as a function of wavelength, temperature,
and pressure), which includes all of the molecules previously
mentioned, at a given spectral resolution. If the spectral
resolution is too coarse, then spectral lines may be missed or
omitted, which leads to an underestimation of the true opacity.
To avoid this pitfall, we use a resolution of -10 5 cm−1. Since
the wavenumber range goes up to ~104 cm−1, this means that
we are sampling the opacity function at ~109 points, which
approaches a true line-by-line calculation.

The shape of each spectral line is described by a Voigt profile.
A major uncertainty associated with this approach, which remains
an unsolved physics problem, is that the far line wings of the
Voigt profile overestimate or underestimate the true opacity
contribution depending on the molecule (see Grimm &
Heng 2015 for a discussion). The common practice is to truncate
each Voigt profile at some fixed spectral width. For example,
Sharp & Burrows (2007) use a line-wing cutoff of

Pmin 25 1atm, 100( ) cm−1. We use a cutoff of 100 cm−1 except
for water, where we instead use 25 cm−1. We emphasize that the
correct functional form of these far line wings is unknown.

To speed up our calculations, we wish to avoid having to
deal with integrating over ~109 points in the opacity function
to obtain the transmissivities. Instead, we employ the k-
distribution method to calculate the transmission function
within each wavelength bin,

 ò y= dy, 30
0

1

( )

where the integrand, which is given by y tº - Dexp( ), is a

function of a new variable (y) that is bounded between 0 and 1.

We refer the reader to Grimm & Heng (2015) for a detailed

explanation of the k-distribution method and instead focus on our

method for numerically evaluating the preceding integral, which

we solve by applying the Gauss–Legendre quadrature rule,

⎛

⎝
⎜

⎞

⎠
⎟ò åy y=

+

=

dy w
y1

2

1

2
, 31

g

g
g

0

1

1

20

( )

where yg is the gth root of the 20th order Legendre polynomial

P20. The corresponding Gaussian weight wg is (Abramowitz &

Stegun 1972)

=
- ¢

w
y P y

2

1
, 32g

g g
2

20
2[ ] [ ]

( )

with ¢P20 being the derivative of P20. We find that using a 20th

order Gaussian quadrature rule is sufficient by comparing our

calculations to direct integration using Simpsonʼs rule (not

shown).
The obvious advantage of using Gaussian quadrature over

direct integration is the enhanced computational efficiency. In
HELIOS, we propagate the fluxes through the model atmos-
phere for each of the 20 Gaussian points and perform the
Gaussian quadrature sum at the end of the propagation to
obtain the flux associated with a wavelength bin. Since the
fluxes follow inhomogeneous paths across pairs of layers (i.e.,
the temperatures and pressures are not constant along these
paths) and we also add the k-distribution functions of the
various molecules, we have to invoke the correlated-k
approximation twice (Grimm & Heng 2015).
Computing the flux through each Gaussian point is

equivalent to expressing the transmission function through
layer i and waveband l by

 å= k

=

- Dw e , 33i l

g

g
m

,

1

20

i l g i, , col, ( )

which is nothing other than a discrete form of Equation (30)

applied to our model. The gth k-coefficient in waveband l is

written as

åk k=
=

T P T P, , , 34i l g

j

j i i j l g i i, ,

1

6

, ,( ) ( ) ( )

where Ti and Pi are the temperature and pressure at the center

of the ith layer in the isothermal layer grid and also at the

interfaces in the nonisothermal layer grid where we have

sublayers. In the latter case, we calculate the opacity in the

center and at the interface and take their average to obtain the

value in the connecting sublayer. The mixing ratios and

opacities are generally functions of temperature and pressure.

At this point, we have to distinguish between the mixing ratios

by volume (Xj) and the mixing ratios by mass (j). The

chemistry formulae (see Section 2.4) are constructed to

compute Xj. However, to construct ki we need

 =
X m

m
, 35j

j j

¯
( )

where mj is the mass of the jth molecule.
In Equations (34) and (35), the indices =j 1, 2, 3, 4 refer to

the four molecules being included in the current study: CO,
CO2, H2O, and CH4. For these molecules, Xj is computed using
the chemistry model. The indices j=5 and j=6 refer to the

Figure 3. Opacities, as functions of wavelength, for all of the opacity sources
used in the current study, computed using HELIOS-K (Grimm & Heng 2015).
For illustration, we set T=1500 K and P=1 bar. Each opacity is weighted
by its mass mixing ratio. We include only Rayleigh scattering by molecular
hydrogen, but CIA associated with both H2–H2 and H2–He pairs.

13
The reader should be aware that, in this first version of HELIOS, we omit

greenhouse gases like NH3, HCN, C2H2, and the alkali metals Na and K, which
may have an impact on the atmospheric structure. H and H− absorption may
also be important at high temperatures. Nevertheless, our starting set of four
molecules is sufficient for us to build up the first version of a radiative transfer
code, and we intend to augment this set in the future.
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CIA opacities associated with H2–H2 and H2–He, respectively.
For these, we use =X 15 and =X 0.16 to approximately reflect
cosmic abundance. We use =m m2 p5 and =m m4 p6 .

By using Equation (34), we inherently assume the spectral
lines of the various molecules to be perfectly correlated. In
general, there are three limits: perfectly correlated, randomly
overlapping (perfectly uncorrelated), and disjoint lines (see
Pierrehumbert 2010 for a review). Real spectral lines behave in
a way that is intermediate between these limits. Lacis & Oinas
(1991) and, more recently, Amundsen et al. (2016) have
implemented a randomly overlapping method for combining
the opacities of the different molecules, which is computation-
ally more expensive because it involves multiple summations.
As the spectral resolution increases (and the bin size decreases),
these approaches should converge to the same answer. The true
accuracy of these approaches remains unquantified in the hot
atmosphere regime and needs to be tested by a true line-by-line
calculation, where each of the 109 line shapes is numerically
resolved. This is the subject of future work and is beyond the
scope of the present paper.

In HELIOS, the k-coefficients are read in from a four-
dimensional, precomputed table in temperature (  T100
2900 K, D =T 200 K), pressure (  - P10 10 bar6 3 , D log10
P = 0.5),14 and wavelength (  l0.33 105 μm), with the bins
subdivided by 20 Gaussian points. The opacities are used at the
constructed wavelength (and Gaussian point) values, but are
linearly interpolated across T and Plog .

Finally, we note that we use 300 wavelength bins (equally
spaced in wavenumber) when running HELIOS to solve for
radiative equilibrium. Upon obtaining the converged temper-
ature–pressure profile, we then use it to compute synthetic
spectra in 3000 wavelength bins as a post-processing step. We
find that this approach produces essentially identical results to
performing the entire calculation using 3000 wavelength bins
(not shown).

2.4. Chemistry Model

Given the elemental abundances of carbon (nC) and oxygen
(nO), we would like to compute the mixing ratios (number
densities normalized by that of molecular hydrogen) of the four
molecules used in our model as functions of temperature and
pressure. This requires a chemistry model. To this end, we use
the analytical calculations of Heng & Lyons (2016). Specifi-
cally, Heng et al. (2016) laid out the theoretical formalism,
which led to the formulae in Equations (12), (20), and (21) in
Heng & Lyons (2016) that we are using. Heng & Tsai (2016)
demonstrated that these formulae are accurate compared to a
Gibbs free energy minimization code, even when nitrogen is
added to the system. We explicitly demonstrate the agreement
between Equations (12), (20), and (21) of Heng & Lyons
(2016) and the calculations from the TEA code of Blecic et al.
(2015) in Figure 4. Since we do not study atmospheres with
C/O >1, we ignore C2H2.

We define “solar elemental abundance” to be = ´n 2.5C
-10 4 and = ´ -n 5 10O

4, such that º =n nC O 0.5C O . In
this study, we keep the value of nO fixed and vary nC when we
vary C/O. For example, a model with =C O 0.1 has
= ´ -n 5 10C

5 and = ´ -n 5 10O
4.

Following the convention of the astronomers, we refer to the
“metallicity” as the set of values of the elemental abundances that
have atomic numbers larger than that of helium. In our model,
these are nC and nO. These numbers are simply decreased or
increased by a constant factor when the metallicity is varied. For
example, a model with ´3 solar metallicity has = ´ -n 7.5 10C

4

and = ´ -n 1.5 10O
3, but still retains =C O 0.5.

Figure 5 shows examples of our calculations of the
molecular mixing ratios as functions of temperature, C/O,
and metallicity. To develop some intuition for the relative
abundances of molecules present in our model atmospheres, we
have included shaded columns indicating the dayside-averaged
temperatures of five of the seven exoplanets being studied in
the current paper.15

2.5. Stellar Models

For any atmosphere of the exoplanet irradiated by the host
star, one needs a description of the incident stellar flux. The
simplest approach is to adopt a Planck function, where the only
input is the effective temperature of the stellar photosphere ( T ).
The next level of sophistication requires the use of models such
as MARCS, PHOENIX, or Kurucz (ATLAS) that predict the
photospheric emission from a star. Specifically in this work, we
use the latter two: PHOENIX (Allard & Hauschildt 1995;
Husser et al. 2013) and Kurucz models (Kurucz 1979; Murphy
& Meiksin 2004; Munari et al. 2005).16 For completeness,
Figure 6 shows the stellar spectra we used to model our sample
of six hot Jupiters in Section 3.2. The choice of stellar model
has two primary effects. First, since the secondary emission
spectrum is the ratio of the exoplanetʼs to the starʼs flux,
features in the stellar spectrum are imprinted onto it. Second,
differences in the stellar spectrum cause changes in the way the

Figure 4. Validation of our analytical chemistry model (Heng & Lyons 2016;
circles) by calculations using the Gibbs free energy minimization code, TEA
(Blecic et al. 2015; solid curves). For illustration, we have computed the
volume mixing ratios as functions of C/O and examined P=1 bar and
T=800 and 3000 K.

14
If the layer pressure or temperature exceeds the range of the values in the

table, the opacity is simply taken to correspond to the closest pre-tabulated
value.

15
Two planets are hotter than 3000 K and not visible in Figure 5. As we have

tabulated Gibbs free energies only up to 3000 K, we assume the chemistry to be
that at 3000 K if the temperatures exceed 3000 K.
16

The PHOENIX spectra are downloaded directly from their online library at
ftp://phoenix.astro.physik.uni-goettingen.de/HiResFITS/ and interpolated in
stellar temperature T

å
, surface gravity g , and metallicity to fit the stellar

parameters shown in Table 2. The Kurucz spectra are interpolated in T
å
and g .
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model atmosphere is being heated, which ultimately affects the
temperature–pressure profile and synthetic spectrum. As both
the PHOENIX and Kurucz stellar models do not extend across
the entire wavelength range included in our calculations
(0.33 μm–10 cm), we patch them using a Planck function.

2.6. Numerical Implementation

The computationally intensive parts of HELIOS are written in
CUDA C++ (Nickolls et al. 2008), a proprietary language
extension of C++ for general-purpose computations on suitable
NVIDIA GPUs. The GPUsʼ main purpose is to provide a fast 2D
graphical image where each pixel needs to be updated
simultaneously, so their architecture is designed to maximize the
throughput of parallel calculations and memory bandwidth. A
radiative transfer problem is naturally amenable to parallelization
because the flux propagation through the atmosphere can be
computed for each wavelength separately if we assume coherent
scattering (i.e., no change in the wavelength of the radiation). We
also parallelize the interpolation of the precomputed k-distribution
tables to determine the correct layer values. For further speed-up,
the code offers the possibility to tabulate the Planck and the
transmission functions at the modelʼs wavelength values and a
grid in T (D =T 10 K) and opacity ( kD log10 = 0.1),
respectively. These grid resolutions are found to be sufficient
for a converged behavior of the model (not shown here).
With this implementation of the temperature iteration, the

procedure needs typically the following time: with an NVIDIA
GeForce 750M, the atmospheric temperatures converge within
2–15 minutes; with an NVIDIA K20 GPU, this takes between
0.5 and 4 minutes. These times have been found for a typical
atmospheric setup with 101 layers and 300 wavelength bins,
including a separate iteration for scattering during each
numerical timestepping. Without scattering, the convergence
times are usually a factor of 2 smaller. Once the converged
temperature–pressure profile is found, the calculation of the
emission spectrum with very high spectral resolution (3000
wavelength bins), as a post-processing step, takes less than 30
seconds. In our experience, we have found it to be sufficient to
run HELIOS on a personal computer with an NVIDIA GPU
(i.e., a GPU cluster is unnecessary).

3. RESULTS

We first subject HELIOS to a battery of tests. We then use it
to address several lingering issues in the literature concerning the
radiative transfer of exoplanetary atmospheres. Finally, we
present 1D, benchmark calculations for the emission spectra of
six hot Jupiters (HD 189733b, WASP-8b, WASP-12b, WASP-
14b, WASP-33b, and WASP-43b) that serve as “null hypoth-
esis” models.
By default, we use 300 wavelength bins and 101 nonisother-

mal layers in our calculations to solve for radiative equilibrium.
The emission spectra are computed using 3000 bins and
isothermal layers as a post-processing step. These bins are
evenly distributed in wavenumber and cover a range of
 l-0.1 1 30,000 cm−1, which corresponds to 0.33μm

 l 10 cm. The layer pressures at the TOA and BOA are
set at 1 μbar and 1 kbar, respectively. Stellar heating is
represented by a Planck function. The diffusivity factor is set
to  = 2 and the redistribution efficiency factor is set to
=f 2 3. Isotropic scattering (w ¹ 00 , =g 00 ) and equilibrium

chemistry with solar abundances are assumed. Unless otherwise
stated, our fiducial model adopts these default parameter values.

3.1. Tests

To check HELIOS for consistency of the implementation,
we focus on the case study of the super-Earth GJ 1214b. The
parameter values used are listed in Table 2.

Figure 5. Elucidating the temperature dependence of the volume mixing ratios
of the molecules used in the current study. For illustration, we set P=1 bar
and explore C/O=0.1 (top panel), C/O=0.5 (middle panel), and C/O=1
(bottom panel). Within each panel, we explore the effects of varying the
metallicity by ´1 3 and ´3 the solar value.
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3.1.1. Comparison to GJ 1214b Model

of Miller-Ricci & Fortney

We test HELIOS against the results of Miller-Ricci &
Fortney (2010) for the planet GJ 1214b; they used the code
originally developed by McKay et al. (1989) and Marley &
McKay (1999) for the atmospheres of solar system planets. It

was later adapted to exoplanetary atmospheres by Fortney et al.

(2005). They utilize a radiative transfer technique based on

Toon et al. (1989), which is a multi-stream approach with a

simplified two-stream solution for the scattering, further

explained in Cahoy et al. (2010), and add a convection model

for unstable atmospheric layers. Furthermore, Miller-Ricci &

Figure 6. Comparison of the PHOENIX and Kurucz stellar models with the stellar blackbody function for the six hot Jupiters examined in the current study. Each
stellar model was customized according to the specified stellar effective temperature, surface gravity, and metallicity, as stated in Table 2.
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Fortney (2010) use the opacities associated with H2O, CO2,
CO, CH4, and NH3 (Freedman et al. 2008), as well as the CIA
opacities associated with H2–H2, H2–He, H2–CH4, and CO2–

CO2. Their chemistry model is taken from Lodders & Fegley
(2002, 2006) and they include a treatment of Rayleigh
scattering by molecular hydrogen. Still, we choose to compare
HELIOS with the results of Miller-Ricci & Fortney (2010),
because the employed radiative transfer technique and also the
list of absorbers, together with the Rayleigh scattering, are
similar to ours.

As a reference, we take their solar-abundance model that has
a dayside-averaged temperature of 660 K (see the red, dashed
curve in their Figure 1). To permit any reasonable comparison,
we use the same astronomical parameters as Miller-Ricci &
Fortney (2010). For instance, we set the stellar temperature to
3026 K and tune the redistribution parameter f (in this test only)
so that the dayside-effective temperature attains 660 K as in
their setup. Furthermore, to mimic their use of a stellar
spectrum for GJ 1214 from Hauschildt et al. (1999) we also
employ a PHOENIX stellar spectrum (from the updated online
database) for the same stellar parameters, extrapolated by a
blackbody fit to cover the whole wavelength range.

In Figure 7, left panel, we show the temperature–pressure
profiles for GJ 1214b by Miller-Ricci & Fortney (2010) and as
computed with HELIOS. There is excellent agreement around
= -P 10 2

–1 bar—essentially, the calculations produce infrared
photospheric temperatures that coincide. At >P 1 bar, the
HELIOS temperature–pressure profile is about 200 K hotter.
We suspect that this discrepancy is due to our simpler treatment
of the opacities, as we consider only four molecules. This leads
to greater transparency, particularly in the visible wavelengths
of our model atmosphere, which in turn produces more heating
in the deep atmosphere. To support this hypothesis, we have
successfully reproduced the deep atmospheric structure of
Miller-Ricci & Fortney (2010) by artificially introducing an
opacity of ´ -6 10 4 cm2 g−1 to the shortwave below 1 μm (see

green dashed curve in Figure 7). Since our model does not have
any convective treatment, we cannot reproduce the adiabat in
their model at the bottom boundary. However, by introducing
an internal heat flux, we can somewhat mimic their deep
temperatures (shown for =T 60intern K).
In the right panel of Figure 7 we show the ratio of the

planetary and the stellar emission for the model of Miller-Ricci
& Fortney (2010) and for ours. The spectra are of the same
magnitude and show similar trends. Their results show a larger
variation in intensity across wavelength, particularly enabling
emission from deeper, and thus hotter, atmospheric regions.
This could be a consequence of several factors: differences in
employed molecular line lists, combination of the opacities,
chemistry model, or the stellar spectrum. Considering all those
components, it is not surprising that the individual spectral
features do not match perfectly, and we conclude that HELIOS
is still rather consistent with the results of Miller-Ricci &
Fortney (2010). For completion, we show both the spectrum of
our fiducial setup and the one with an added artificial
shortwave opacity. As expected, those are very similar because
the models only differ slightly around the emitting
photosphere.

3.1.2. Trends Associated with Scattering

As a further consistency check of HELIOS, we examine
calculations with idealized descriptions of scattering and check
whether the trends match our physical intuition.
For illustration, we set w = 0.50 across all wavelengths. We

then examine models with = -g 0.5, 00 , and 0.5, which are
also constant across all wavelengths. We emphasize that the
two-stream solutions used in HELIOS, which are taken from
Heng et al. (2014), are generally able to take w0 and g0 as input
functions (rather than just scalars/numbers).
Figure 8 shows the fiducial pure absorption model compared

against the three models with idealized descriptions of
isotropic, backward, and forward scattering. For = -g 0.50

Table 2

Planetary and Stellar Parameters used in this Study

Object GJ 1214ba HD 189733bb WASP-8bc WASP-12bd WASP-14be WASP-33bf WASP-43bg

Mean molecular mass m̄ mp( ) 2.4h

Surface gravity g (cm s−2) 768 1950 5510i 1164 10233 2884 4699

Orbital separation a (au) 0.01411 0.03142 0.0801 0.02293 0.036 0.0259 0.0152

Effective temp. Teff
j
(K) 775 (660k) 1575 1185 3241 2403 3494 1845

Planet. radius Rpl RJup( ) 0.2479 1.216 1.038 1.776 1.281 1.679 1.036

Stellar temp. T
å

(K) 3252 (3026k) 5050 5600 6300 6475 7430 4520

Stellar radius R
å

(Re) 0.211 0.805 0.945 1.595 1.306 1.509 0.667

Stellar surface gravity log g
å

(cm s−2) 5.04 4.53 4.5 4.16 4.07 4.3 4.645

Stellar metallicity [F/H] 0.13 0.0 0.2 0.2 0.0 0.0 0.0

Notes.
a
Bouchy et al. (2005), Anglada-Escudé et al. (2013), Harpsøe et al. (2013).

b
Southworth (2010), de Kok et al. (2013), Boyajian et al. (2015).

c
Queloz et al. (2010).

d
Hebb et al. (2009), Chan et al. (2011).

e
Joshi et al. (2009).

f
Collier Cameron et al. (2010), Kovács et al. (2013), Lehmann et al. (2015).

g
Gillon et al. (2012).

h
Our choice value for a hydrogen-dominated atmosphere.

i
This value has been obtained from Newtonʼs law of gravity assuming a spherical shape of the planet and neglecting rotation.

j
Assuming dayside heat redistribution using a factor =f 2 3.

k
This value is used for the model comparison with Miller-Ricci & Fortney (2010).
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and 0, scattering generally shifts the absorption profile of

starlight upward (toward lower pressures), which cools the

model atmosphere. As the scattering shifts from being isotropic

to being backward, the deep atmosphere becomes cooler. We

also observe a trend of the reflected light at 1μm being the

strongest for backward scattering, but of the thermal emission

at 1μm being the strongest for forward scattering, which is

expected.
Scattering also has the general effect of muting the spectral

features in the synthetic spectra. It effectively raises the level of

the infrared continuum. This effect is stronger as the scattering

becomes more backward-dominated (Figure 8). Such an effect

mimics the presence of aerosols or condensates. Overall, these

expected trends provide a “proof-of-concept” validation of

HELIOS.

3.1.3. Isothermal versus Nonisothermal Layers

An essential ingredient of 1D models of atmospheres in
radiative equilibrium is the number of layers used in the
computation. We perform a series of convergence tests by
considering different numbers of layers and employing models
with isothermal versus nonisothermal layers. We again use the
parameters of GJ 1214b as an illustration.
Figure 9 shows the temperature–pressure profiles associated

with models having 51, 201, and 1001 isothermal layers, and
also those with 21, 101, and 501 nonisothermal layers. First, we
note that the temperature–pressure profiles of the models with
nonisothermal layers coincide (with differences of less than
3 K), implying that 21 nonisothermal layers are sufficient to
attain convergence. By contrast, even with 1001 layers, no
convergence is seen for the models with isothermal layers.

Figure 7. Comparison with the atmospheric model of GJ 1214b from Miller-Ricci & Fortney (2010). The left panel shows the dayside temperature–pressure profile at

=T 660eff K. The temperatures in the infrared photosphere (~ -10 2
–1 bar) match very well. We also reproduce the temperatures in the deep atmosphere when an

artificial opacity of ´ -6 10 4 cm2 g−1 is inserted into the visible wavelengths (dashed curve). We can mimic the convective tail by adding internal heat flux, shown
here for =T 60intern K (cyan). The right panel depicts the corresponding planetary emission for three models of the left panel, together with a blackbody emission at
the same effective temperature for comparison. The spectrum of Miller-Ricci & Fortney (2010) shows more pronounced features, but overall has the same magnitude.
The HELIOS runs are similar because the main temperature difference lies below the emitting photosphere.

Figure 8. Consistency check of HELIOS by examining the temperature–pressure profiles (left panel) and synthetic spectra (right panel) in the idealized limits of
scattering: =g 00 (isotropic scattering), =g 0.50 (forward scattering), and = -g 0.50 (backward scattering). For illustration, we set w = 0.50 . Both the single-
scattering albedo (w0) and scattering asymmetry factor (g0) are assumed to be constant across wavelength, but we note that the two-stream solutions we implemented
allow for them to generally be specified as functions of wavelength, temperature, and pressure. The qualitative trends associated with the temperature–pressure profiles
and synthetic spectra are consistent with physical expectations (see text).
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These results illustrate the superiority of using nonisothermal
layers. We recover the same behavior even when a different
case study (e.g., WASP-12b) is considered (not shown).

Next, we compute the synthetic spectrum of the model with
501 nonisothermal layers and use it as a reference. We then
consider models with 51 and 101 nonisothermal layers, as well
as models with 51, 101, 201, and 501 isothermal layers. For
each model, we compute the deviation in the synthetic
spectrum, from the reference model, as a function of
wavelength. Figure 9 shows that, as expected, the deviation
decreases as the resolution increases. Only the model with 51
isothermal layers produces deviations that exceed 1% in the
flux. The model with 101 isothermal layers produces deviations
that are typically less than 1%. Since models with isothermal
layers are faster to compute, this motivates us to adopt a model
with 101 isothermal layers for our post-processing step. In
other words, we use nonisothermal layers to iterate for radiative
equilibrium. Upon attaining radiative equilibrium, we post-
process the converged temperature–pressure profile, using a
model with 101 isothermal layers, to produce synthetic spectra.

3.1.4. Obtaining Convergence for the k-distribution Tables

Another essential ingredient of 1D models of atmospheres in
radiative equilibrium is the spectral resolution used in
constructing the opacity function, which is then used to
construct the k-distribution tables. We wish to investigate the
errors associated with using different spectral resolutions. The
reference case is taken to be a model with a spectral resolution
of 10−5 cm−1. We examine models with resolutions of -10 1,
-10 2, -10 3, and -10 4 cm−1 and compare the errors in the

synthetic spectra, after we have iterated for radiative equili-
brium, as a function of wavelength, relative to the reference. As
we are using 3000 wavelength bins, these sampling resolutions
correspond to 102, 103, 104, and 105 points per bin,
respectively.

Figure 10 shows our results for the case studies of GJ 1214b
and WASP-12b, which were illustrated to span the range of
temperatures for the currently characterizable exoplanetary
atmospheres. We find the expected trend that the error
decreases as the resolution increases from -10 1 to -10 4 cm−1.

Using a spectral resolution of only -10 1 cm−1 ( -10 2 cm−1)
results in errors that are>10% (~1%–10%) in the near-infrared
flux. To reduce the error to ∼1%, we find a minimum
resolution of -10 3 cm−1 to be required in our model. This value
might change if one is using opacity sampling. We also show
the error in the spectra produced by purely post-processing the
temperature profile of the reference case, which demonstrates
that the errors are not merely associated with iterating for
radiative equilibrium.

3.1.5. Using the Correct Value of the Diffusivity Factor

As discussed previously, one may obtain an exact solution of
the radiative transfer equation, without invoking the two-stream
approximation, only in the limit of pure absorption. This
solution may be compared to two-stream calculations with
different assumed values of the diffusivity factor.
Amundsen et al. (2014) have recently advocated the use of

 = 1.66 from comparison of their two-stream calculations to
a different set of calculations computed using the discrete-
ordinates radiative transfer method. Armstrong (1969) also
advocated  = 1.66 based on radiative transfer calculations of
water in the atmosphere of Earth. However, the correct value
for  should depend on the vertical resolution of the model
(see Figure 1), which motivates us to perform our own
comparisons.
Figure 11 displays the computed temperature–pressure

profiles and the error in the resulting synthetic spectrum for
GJ 1214b for  = 1.66, 1.8, 1.9, and 2 compared to the exact
solution. Regarding temperature, the  = 1.9 and 2 models
produce the best match to the exact solution. However,  = 2
leads, on average, to the smallest error in the spectrum. We also
consider the same set of calculations for a hotter exoplanet,
WASP-12b. In this case,  = 2 clearly produces the best
match to the exact solution in terms of the temperature as well
as the spectrum. In general, the error in the spectrum is smaller
than for the cooler planet. It is not surprising that  = 2
provides the most accurate results, because we expect the
diffusivity factor to approach a value of 2 when the vertical
resolution of the model is sufficient (see Figure 1), i.e., the

Figure 9. Resolution tests to determine the minimum number of isothermal vs. nonisothermal layers needed for numerical convergence. The left panel shows various
temperature–pressure profiles computed using 51, 201, and 1001 isothermal layers vs. 21, 101, and 501 nonisothermal layers, demonstrating that the use of isothermal
layers is not an efficient approach. The right panel shows the deviation or error in the synthetic spectrum, as a function of wavelength, using the model with 501
nonisothermal layers as a reference.
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difference in optical depth between the layers is small, at least
in the photospheric regions of the atmosphere.

3.2. Testing the Null Hypothesis and Variations on a Theme:
Benchmark 1D Models for Hot Jupiters

Despite heroic efforts to obtain data for exoplanetary
atmospheres, exoplanets are spatially unresolved point
sources—and will probably remain so for the foreseeable
future—although phase curves and eclipse maps provide some
spatial information. As a first approach, theorists have resorted
to interpreting the spectra of exoplanetary atmospheres using
simple models: 1D, plane-parallel, just as we have constructed.
There is a precedent of using 1D models to interpret spectra
(see Introduction for references). As a null hypothesis, we
make the following assumptions: chemical equilibrium,
radiative equilibrium (which we solve for using HELIOS),
and solar abundances. This would be the second simplest
model after a blackbody emission spectrum (Hansen
et al. 2014). Upon constructing the null hypothesis, we then
examine variations in the metallicity and C/O.

We have chosen the sample of hot Jupiters to include in this
analysis based on a literature search for planets with nonblack-
body emission spectra. We have started from Hansen et al.
(2014), which catalogs all planets with secondary eclipse
measurements in at least two bandpasses as of 2014. They
found seven planets that are poorly fit by a blackbody model.
We also searched for any more recent nonblackbody results. To
select the most precise, reliable measurements from our search,
we consider space-based data only. We have also stipulated
that the data were reduced with state-of-the-art techniques.
Specifically, we only consider Spitzer results that used
sophisticated models of the intrapixel sensitivity such as
BLISS mapping or pixel-level decorrelation (Stevenson
et al. 2012; Deming et al. 2015). This approach has been
demonstrated to be the best practice in Spitzer data analysis
(Ingalls et al. 2016). This search has resulted in the selection of
six planets: HD 189733b, WASP-8b, WASP-12b, WASP-14b,
WASP-33b, and WASP-43b. Their model parameter values

and spectral data sources are shown in Tables 2 and 3,

respectively.
Figure 12 shows the null-hypothesis models for all six

studies. We have computed synthetic spectra and temperature–

pressure profiles using a stellar blackbody, a Kurucz stellar

model, and a PHOENIX stellar model. All of the stellar models

were customized for each case study by specifying, as input

parameters, the stellar effective temperature, surface gravity,

and metallicity. The synthetic spectra in all three cases are

qualitatively similar. The largest difference occurs between 3

and 10 μm. These differences appear to be more pronounced

for the hottest hot Jupiters (i.e., WASP-12b and WASP-33b).

Interestingly, the choice of stellar model affects the strength of

the water-band features between 1.5 and 2.5 μm, which are

partially probed by the WFC3 instrument on the Hubble Space

Telescope. This discrepancy between the models is somewhat

apparent for HD 189733b and WASP-43b. The shapes of the

temperature–pressure profiles, in all six cases, are very similar

with the largest discrepancies in either the very high, optically

thin layers or deep, optically thick layers, which are less

important for the planetary emission.
Overall, HD 189733b appears to be consistent with a null

hypothesis and its dayside emission spectrum is reasonably

described by a 1D, plane-parallel model in chemical and

radiative equilibrium with solar metallicity. WASP-43b is fairly

well described by the null hypothesis. However, our models for

WASP-8b, WASP-12b, WASP-14b, and WASP-33b consis-

tently underpredict the infrared fluxes. These discrepancies

could be either due to an insufficient implementation of opacity

(lacking partial molecular absorption, aerosol extinction, or

inaccurate line profiles) or due to a limited methodological

framework, lacking chemical disequilibrium (which requires a

self-consistent calculation coupled to a chemical kinetics

solver), radiative disequilibrium (which requires another self-

consistent calculation coupled to atmospheric dynamics), or

non-1D effects (which a 1D model prescription with f cannot

characterize and which would ideally require coupling to a 3D

spatially resolved, general circulation model). We will defer

this investigation to future work.

Figure 10. Elucidating the errors, in the synthetic spectra, associated with using different spectral resolutions to construct the k-distribution tables. The reference case

uses a spectral resolution of -10 5 cm−1. The label “ppb” refers to the number of points per bin. All of the synthetic spectra were computed for model atmospheres in
chemical and radiative equilibrium using the correlated-k approximation. We either run the whole radiative transfer iterative process (solid) or solely post-process the
T–P profile of the reference case (dotted). For illustration, we examine models of cool (GJ 1214b; left panel) and hot (WASP-12b; right panel) exoplanetary
atmospheres.
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For further variations on the theme, we retain the PHOENIX
stellar models because they offer higher spectral resolution and
more updated atomic/molecular line lists than the Kurucz
stellar models. In Figure 13, we repeat our calculations with
1/3×, 1×,and 3×solar metallicity. We find the expected
trend that a higher metallicity leads to generally hotter model
atmospheres, which has the effect of strengthening the near-
infrared water-band features. However, compared to the null
hypothesis, decreasing or increasing the metallicity by a factor
of 3 appears to have a minimal effect on the synthetic spectra,
which is consistent with the retrieval analysis conducted for
WASP-43b in Kreidberg et al. (2014), where they obtain

similar metallicity uncertainties based on data constraints. Our

conclusions are qualitatively identical to those visible in

Figure 12.
Varying the C/O has a more marked effect, as we show in

Figure 14. Specifically, we examine water-rich (C/O=0.1),
solar-abundance (C/O=0.5), and C/O=1 scenarios. Gen-

erally, we find that the C/O=1 models have consistently

colder temperature–pressure profiles, due to the lower abun-

dance of H2O as the oxygen atom is preferentially sequestered

by CO, at high temperatures, compared to the water-rich and

solar-abundance models. The increasing abundance of CO also

leads to stronger absorption features at 2.3, 4.5, and 4.8 μm,

which render the model atmospheres darker (i.e., they have less

flux in these bands). This transition to the stronger CO features

is more pronounced in the hotter objects (WASP-12b and

WASP-33b). Our qualitative conclusions appear to be

unchanged: our models for WASP-8b, WASP-12b, WASP-

14b, and WASP-33b still underpredict the infrared fluxes. It is

somewhat difficult to judge whether the data favor the water-

rich or C/O=1 models, for HD 189733b and WASP-43b,

without running a detailed atmospheric retrieval model, which

we again defer to future work.

Figure 11. Determination of the diffusivity factor () by comparing the two-stream and exact solutions in the limit of pure absorption. For illustration, we study the
warm super-Earth GJ 1214b (top panels) and the hot Jupiter WASP-12b (bottom panels). We show the temperature profiles on the left and the error in the resulting
synthetic spectrum compared to the exact solution on the right. A diffusivity factor of  = 2 appears to produce the best match to the exact solutions, following
closely the temperature–pressure profile of the exact solution and leading on average to the smallest error in the spectrum.

Table 3

Spectral Data Sources

Planet Source

HD 189733b Crouzet et al. (2014), Todorov et al. (2014)

WASP-8b Cubillos et al. (2013)

WASP-12b Stevenson et al. (2014)

WASP-14b Blecic et al. (2013)

WASP-33b Deming et al. (2012), Haynes et al. (2015)

WASP-43b Blecic et al. (2014), Kreidberg et al. (2014)
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4. SUMMARY, DISCUSSION, AND CONCLUSIONS

4.1. Summary

We have presented the new, extensible code, HELIOS,
which solves the equation of radiative transfer for a 1D, plane-
parallel atmosphere that allows for nonisotropic scattering via

the specification of the functional forms of the single-scattering
albedo and the scattering asymmetry factor. It uses a staggered
spatial grid with the options of specifying isothermal or
nonisothermal layers. We have used HELIOS-K (Grimm &
Heng 2015) to compute the opacities of the four molecules that
are active in the infrared, and combined those by weighting

Figure 12. Null-hypothesis models for the six hot Jupiters in our current study: 1D, plane-parallel model atmospheres in chemical and radiative equilibrium, with solar
metallicity/abundances. The predicted dayside emission spectra were compared to published data (see text for details). For each case study, we computed three models
using the PHOENIX and Kurucz stellar models as well as a stellar blackbody. For each assumption of the stellar irradiation flux, we iterated the model atmosphere to
attain radiative equilibrium (see text for details).
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them with the validated analytical formulae of Heng & Lyons
(2016) and Heng & Tsai (2016) for equilibrium chemistry. In
order to combine the various gaseous absorbers we have
employed a correlated-k approximation, which assumes perfect
correlation between the molecular bands. The boundary
conditions are the stellar irradiation flux at the top of the
model atmosphere and the internal heat flux at the bottom.
HELIOS further allows for the stellar irradiation flux to be
specified as a simple Planck function or from a stellar model

(e.g., Kurucz, PHOENIX). We have constructed and optimized
HELIOS to run on GPUs, which allows for fast computation on
a single machine. We have exploited this efficiency to explore
the parameter space of stellar type, metallicity, and C/O ratio.

4.2. Comparison to Previous Work

Several groups have made contributions to a rich body of
literature on self-consistent radiative transfer models in

Figure 13. Same as Figure 12, but using only the PHOENIX stellar model and examining the effects of varying the metallicity of the model atmospheres.
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exoplanetary atmospheres. The work of Burrows et al.

(2006, 2007, 2008) uses the accelerated lambda iteration

method, originally developed for stellar atmospheres

(Hubeny & Lanz 1995). The work of Fortney et al.

(2005, 2006, 2008, 2010) and Morley et al. (2013, 2015)

uses an atmosphere modeling code and radiative transfer

methods with a heritage from brown dwarf and solar system

models (McKay et al. 1989; Toon et al. 1989; Burrows et al.

1997; Marley & McKay 1999). Amundsen et al. (2014)

recently implemented a radiative transfer code using the two-

stream approximation in the limit of pure absorption.

Mollière et al. (2015) constructed a pure-absorption code

using the “variable Eddington factor” method, which has a

heritage from the study of stellar atmospheres (e.g., Auer &

Mihalas 1970) and protoplanetary disks (Dullemond 2002).

Our approach and assembly of the various components (see

Figure 14. Same as Figure 12, but using only the PHOENIX stellar model and examining the effects of varying the C/O (0.1, 0.5, and 1) of the model atmospheres.

18

The Astronomical Journal, 153:56 (20pp), 2017 February Malik et al.



above) and their collective implementation is a novel
endeavor and we hope it will contribute to the advancement
of this field.

4.3. Discussion and Opportunities for Future Work

In the current work, we have considered a small set of the
four main infrared absorbers (H2O, CO2, CO, CH4), and
included the opacity associated with CIA from H2–H2 and H2–

He pairs. Future work should include more opacity sources,
especially that associated with C2H2 and HCN, if one is
interested in C/O>1models, and Na and K as these are major
absorbers in the visible for very hot planets. Also important at
the higher-temperature end of exoplanets is continuum
absorption by electrons moving freely in the field or being
decoupled from the shell of neutral atoms (e.g., H, He),
molecules (e.g., H2), or ions (e.g., H−) (Sharp & Bur-
rows 2007). Furthermore, it is important to conduct a study
examining the accuracy of the employed correlated-k approx-
imation for different combinations of molecular absorbers,
since this could be a potential source of error—a study similar
to Amundsen et al. (2016) for the random-overlap scheme.
Another opportunity for future work is the inclusion of aerosols
and clouds, whose proper implementation remains a subject of
debate. Additionally, we will implement convective adjustment
as the next step in sophistication and we plan to investigate the
effect of disequilibrium chemistry (induced by both atmo-
spheric motion and photochemistry) and radiative disequili-
brium by coupling HELIOS to a chemical kinetics code and a
general circulation model. Hot Jupiters are complex, three-
dimensional entities (e.g., Burrows et al. 2010) and interpreting
them, on a detailed case-by-case basis, requires a three-
dimensional model (e.g., Kataria et al. 2015). The exact
interpretation of the molecular abundances associated with the
six hot Jupiters may be performed using an atmospheric
retrieval code. HELIOS is a key component of the open-source
Exoclimes Simulation Platform (exoclime.net), which includes
a chemical kinetics code (Tsai et al. 2016), retrieval code
(Lavie et al. 2016), and general circulation models (Mendonça
et al. 2016; L. Grosheintz et al. 2017, in preparation). The up-
to-date version of HELIOS may be downloaded from its main
repository github.com/exoclime/HELIOS and the version
used to produce the results in this work is archived under the
DOI: 10.5281/zenodo.164176.

M.M., L.G., S.G., J.M., B.L., D.K., S.T., and K.H. thank the
Swiss National Science Foundation (SNF), the Center for
Space and Habitability (CSH), the PlanetS National Center of
Competence in Research (NCCR), and the MERAC Founda-
tion for partial financial support.

Software:HELIOS-K (Grimm & Heng 2015; github.com/
exoclime/HELIOS-K), CUDA (Nickolls et al. 2008), PyCUDA
(Klöckner et al. 2012), python (van Rossum 1995), scipy
(Oliphant 2007), numpy (van der Walt et al. 2011), mat-
plotlib (Hunter 2007).
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We thank the developers of the Thermochemical Equili-
brium Abundances (TEA) code (Blecic et al. 2015), initially
developed at the University of Central Florida, Orlando,

Florida, USA. The Reproducible-Research Compendium
(RRC) is available at github.com/exoclime/HELIOS.
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