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ABSTRACT

We present an open-source retrieval code named HELIOS-RETRIEVAL, designed to obtain chemical abun-

dances and temperature-pressure profiles from inverting the measured spectra of exoplanetary atmospheres.

We use an exact solution of the radiative transfer equation, in the pure absorption limit, in our forward model,

which allows us to analytically integrate over all of the outgoing rays. Two chemistry models are considered:

unconstrained chemistry and equilibrium chemistry (enforced via analytical formulae). The nested sampling

algorithm allows us to formally implement Occam’s Razor based on a comparison of the Bayesian evidence

between models. We perform a retrieval analysis on the measured spectra of the four HR 8799 directly im-

aged exoplanets. Chemical equilibrium is disfavored for HR 8799b and c. We find supersolar C/H and O/H

values for the outer HR 8799b and c exoplanets, while the inner HR 8799d and e exoplanets have a range of

C/H and O/H values. The C/O values range from being superstellar for HR 8799b to being consistent with

stellar for HR 8799c and being substellar for HR8799d and e. If these retrieved properties are representative of

the bulk compositions of the exoplanets, then they are inconsistent with formation via gravitational instability

(without late-time accretion) and consistent with a core accretion scenario in which late-time accretion of ices

occurred differently for the inner and outer exoplanets. For HR 8799e, we find that spectroscopy in the K band

is crucial for constraining C/O and C/H. HELIOS-RETRIEVAL is publicly available as part of the Exoclimes

Simulation Platform (ESP; www.exoclime.org).

Keywords: planets and satellites: atmospheres

1. INTRODUCTION

1.1. Motivation

Traditionally, the masses and radii of brown dwarfs and

substellar objects have been inferred from applying evolu-

tionary tracks to measurements of their luminosities and ages

(e.g., Burrows et al. 1997; Chabrier et al. 2000; Baraffe et

al. 2002). On rare occasions, brown dwarfs and low-mass

stars may transit their binary companions and allow for their

other properties to be studied (see Burrows, Heng & Nam-

paisarn 2011 and references therein). A particularly impor-

tant study was conducted by Konopacky et al. (2010), who

were able to obtain dynamical masses for 15 brown dwarfs

residing in binaries. By comparing the dynamical and pho-

tometric masses, Konopacky et al. (2010) showed that both

the Burrows et al. (1997) and Chabrier et al. (2000) mod-

els underpredicted the masses of M and L dwarfs and over-

predicted the mass of the lone T dwarf in their sample by

∼ 10% (tens of percent). From studying a sample of 46 L

dwarfs, Hiranaka et al. (2016) suggested that a dust haze of

sub-micron-sized particles exist in their upper atmospheres,

which are neglected by the standard evolutionary tracks.

Taken together, these results suggest that the traditional ap-

proach of using self-consistent evolutionary tracks may be in-

complete and motivates alternative and complementary ways

of interpreting the spectra of brown dwarfs and substellar ob-

jects. We expect this train of thought to apply to the recently

discovered directly imaged exoplanets as well, since the in-

terpretation of their photometry and spectroscopy is typically

performed using the evolutionary tracks computed for brown

dwarfs (e.g., Bonnefoy et al. 2016).

1.2. Theoretical Improvements

Self-consistent forward modeling starts with a set of as-

sumptions and computes forward to predict the temperature-

pressure profile and synthetic spectrum of an object. At-

mospheric retrieval is a complementary approach borrowed

from the Earth remote sensing community, where one ap-

plies an inversion method to obtain the temperature-pressure

profile and chemical abundances from finding the best-fit so-
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Figure 1. Flow chart for HELIOS-R and a description of its main components. Note that enforcing equilibrium chemistry is optional and our
approach for distinguishing between equilibrium and non-equilibrium chemistry is completely data-driven.

lution to the measured spectrum (e.g., Madhusudhan & Sea-

ger 2009; Benneke & Seager 2013; Lee, Heng & Irwin 2013;

Line et al. 2013, 2016; Barstow et al. 2015; Waldmann et

al. 2015). It sacrifices self-consistency and sophistication for

simplicity, which allows for a more thorough exploration of

parameter space. Atmospheric retrieval is particularly well-

suited for addressing questions regarding planet formation,

since it allows for the posterior distributions of the carbon-to-

oxygen ratio (C/O) and the elemental abundances of carbon

(C/H) and oxygen (O/H) to be computed.

The HR 8799 system hosts four exoplanets (Marois et

al. 2008, 2010), whose formation mechanisms remain an

enigma (Kratter, Murray-Clay & Youdin 2010). Spectra with

resolutions of about 30 to 4000 have been obtained by, e.g.,

Barman et al. (2011, 2015), Konopacky et al. (2013), Op-

penheimer et al. (2013), Ingraham et al. (2014) and Zurlo

et al. (2016). Since these spectra have resolutions that are

considerably higher than those obtained for hot Jupiters us-

ing WFC3 on the Hubble Space Telescope (e.g., Deming et

al. 2013; Mandell et al. 2013; Kreidberg et al. 2014; Steven-

son et al. 2014), they present an opportunity for performing

remote sensing of exoplanetary atmospheres that is similar

to what planetary scientists had to work with a few decades

ago, before the advent of probes. A key difference is that

the radii and masses of these directly imaged exoplanets are

unknown1, unlike for transiting exoplanets. A recent review

of directly imaged exoplanets, which includes the HR 8799

system, may be found in Bowler (2016).

The first atmospheric retrieval analysis of directly imaged

exoplanets was performed by Lee, Heng & Irwin (2013), who

studied only the HR 8799b exoplanet. In the current study,

we collect all of the published spectra of the HR 8799b, c,

d and e exoplanets and subject them to the same retrieval

method with the intention of using the retrieved chemistry to

constrain planet formation scenarios.

Besides the novelty of our analysis, the current study

is also a method paper for our new atmospheric retrieval

code named HELIOS-R, which we constructed from scratch

to study exoplanetary atmospheres. HELIOS-R is part of

the HELIOS radiation package of the Exoclimes Simulation

Platform2 and has the following features (Figure 1):

• We have implemented a nested sampling algorithm

to explore the multi-dimensional parameter space

(Skilling 2006; Feroz, Hobson & Bridges 2009; Ben-

neke & Seager 2013; Waldmann et al. 2015; Line et al.

2016). Unlike other approaches (e.g., Markov Chain

Monte Carlo, non-linear optimal estimation), nested

1 Meaning they are typically not directly measured, but rather inferred
using evolutionary models, which means the radii and masses are model-
dependent.

2 http://www.exoclime.org
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sampling allows for the Bayesian evidence to be di-

rectly calculated, which in turn allows for models with

different parametrizations (and number of parameters)

to be compared on an equal footing. Models with

extra complexity are penalized, which allows for Oc-

cam’s Razor3 to be formally enforced. For example,

our retrieval analysis allows us to formally determine

if chemical equilibrium is favored or disfavored in an

atmosphere in a completely data-driven manner. As

another example, it allows us to determine the number

and types of molecules to be included in the retrieval.

• Our temperature-pressure profile is taken from Heng,

Mendonça & Lee (2014), who generalized the work

of Guillot (2010) and Heng et al. (2012) to include

non-isotropic scattering and non-constant opacities.

When stellar irradiation and scattering are omitted, the

temperature-pressure profile reduces to the classical

solution of Milne for self-luminous objects (Mihalas

1970). By construction, it conserves energy in an ana-

lytical and exact sense.

• Our atmospheric cross sections are computed using

our customized opacity calculator named HELIOS-K,

which was previously published by Grimm & Heng

(2015).

• To combine the cross sections of different molecules,

one needs to have a chemistry model that calculates

their relative abundances. We use the analytical solu-

tions of Heng, Lyons & Tsai (2016), Heng & Lyons

(2016) and Heng & Tsai (2016), which have been

shown to be accurate at the ∼ 1% level (or better)

when benchmarked against numerical solutions using

Gibbs free energy minimization. These analytical so-

lutions allow for fast computation if one wishes to en-

force chemical equilibrium.

• Our radiative transfer scheme, which translates cross

sections and temperatures into fluxes (and hence al-

lows us to compute the synthetic spectrum), uses the

exact analytical solution in the limit of isothermal

model layers and pure absorption (Heng, Mendonça &

Lee 2014). It allows us to analytically integrate over all

of the incoming and outgoing angles associated with

every ray.

• Our cloud model is based on the basic principles of

Mie theory (e.g., Pierrehumbert 2010). It assumes

a monodisperse set of particles, which may be inter-

preted as the dominant size in a size distribution of

3 Whether Occam’s Razor always yields the correct answer is another
matter. In the current study, we are guided by Occam’s Razor in the limit of
sparse data.

particles (e.g., Burrows, Heng & Nampaisarn 2011). It

includes a dimensionless parameter that is a proxy for

the cloud composition. When the particles are small

compared to the wavelength, it reproduces Rayleigh

scattering. By contrast, models that implement a con-

stant cloud-top pressure implicitly assume the cloud

particles to be large (compared to the wavelength ob-

served) and preclude Rayleigh scattering by construc-

tion.

While each component of HELIOS-R may not be novel

by itself, the assembly of all of these components into a sin-

gle code and retrieval tool is a novel endeavor. Furthermore,

we have designed HELIOS-R to run on Graphics Processing

Units (GPUs), which affords speed-ups of at least a factor of

several compared to the CPU version. With a UCrg model

(see Table 1) retrieval performed on the HR 8799b dataset,

the GPU version is 5 times faster than the CPU version on a

Macbook Pro laptop equipped with a NVIDIA GeForce GT

750M GPU card and an Intel Core i7 2.5 GHz CPU. For this

analysis, we used our GPU cluster of NVIDIA K20 cards; it

takes 10−2 seconds to evaluate one likelihood of this UCrg

model.

In §2, we provide a detailed description of each component

or ingredient of HELIOS-R. In §3, we subject HELIOS-R to

several tests before applying it to the measured spectra of the

HR 8799b, c, d and e directly imaged exoplanets. In §4, we

present our retrieval results of the HR 8799 system. In §5, we

compare our study to previous work and describe opportuni-

ties for future work. Table 1 shows the suite of models tested

in the current study. Table 2 states the priors used for our

fitting parameters. Table 3 summarizes our retrieval results.

Appendix A states our fast analytical formulae for evaluat-

ing the exponential integral of the first order. Appendix B

includes, for completeness, the full posterior distributions of

the best models for the atmospheres of HR 8799b, c, d and e.

2. METHODOLOGY

The executive summary is that each model of the retrieval

contains up to 11 parameters: the radius, the surface gravity,

2 for the temperature-pressure profile, 2 or 4 for the chem-

istry (depending on whether one adopts equilibrium or un-

constrained chemistry) and 3 for the cloud model. The mean

molecular weight is not a parameter and is constructed from

the mixing ratios. Each HR 8799 exoplanet typically has be-

tween 40 and 120 data points for its measured spectrum: 68

for b, 105 for c, 115 for d and 48 for e.

To construct an atmospheric retrieval model, we need

a forward model. By “forward model”, we refer to the

temperature-pressure profile, atmospheric opacities, chem-

istry model, radiative transfer scheme and cloud model. We

also need a method to scan the vast multi-dimensional param-

eter space of our forward model to locate the highest likeli-

hood region, i.e., the best solution that fits the data (e.g., for
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Table 1. Shorthand Notation for the Suite of Models Tested in this
Study

Notation Meaning

U Unconstrained chemistry

E Equilibrium chemistry

B Cloudfree (“blue sky”)

C Cloudy

1 H2O is included in retrieval

2 CO2 is included in retrieval

5 CO is included in retrieval

6 CH4 is included in retrieval

r planet radius R is included in retrieval

g planet surface gravity g is included in retrieval

d distance of the system d is included in retrieval

Note: “1”, “2”, “5” and “6” refer to the HITRAN/HITEMP labels for these molecules.

When no number is specified, it means that all four molecules are included in the re-

trieval. Example: UBrg16 is a cloudfree model with unconstrained chemistry, where

the mixing ratios of water and methane, as well as the planetary radius and surface

gravity, are included as fitting parameters. By contrast, the UB model includes all four

molecules in the retrieval, but fixes the planetary radius and surface gravity to user-

specified values.

Table 2. Priors Used in This Study

Symbol Prior Used Value

R Gaussian R = 1.2± 0.1RJ

g Gaussian log g = 4.1± 0.3 (cgs)

Xi Log-uniform 10−20 to 10−1

κ0 Log-uniform log κ0 = 10−15 to 10 (mks)

Tint Uniform 10 to 1500 K

Q0 Uniform 1 to 100

rc Log-uniform 10−7 to 10−3 m

fcloud Log-uniform 10−30 to 10−4

d Gaussian 39.4± 1.0 pc

cgs: centimeters, grams and seconds.

mks: meters, kilograms and seconds.

a review, see Press et al. 2007).

2.1. Nested Sampling

We use a nested sampling algorithm (Skilling 2006) to scan

the diverse, multi-dimensional parameter space describing

our one-dimensional model atmospheres. Benneke & Sea-

ger (2013) previously gave a detailed overview of the nested

sampling method. Waldmann et al. (2015) and Line et al.

(2016) also used nested sampling. Here, we provide a con-

cise description of our implementation.

Consider a model with a set of parameters ~θ =
{θ1, θ2, ..., θNθ

}, where Nθ is the number of parameters.

Consider a set of models labeled by the index i: Mi. The

probability density function (PDF) on the parameters for a

given model is P(~θ|Mi), which is also known as the “prior”.

Discussions of any Bayesian method necessarily start with

Bayes’s rule, which states that the PDF of a model given the

data (denoted by ~D) is (e.g., Skilling 2006)

P
(

~θ| ~D,Mi

)

=
P
(

~θ|Mi

)

L
(

~D|~θ,Mi

)

Z
(

~D|Mi

) . (1)

The quantity L( ~D|~θ,Mi) is the “likelihood”. We assume

L( ~D|~θ,Mi) to be the same Gaussian function as equation

(5) of Benneke & Seager (2013).

We will term P(~θ| ~D,Mi) the “posterior”. Since it nor-

malizes to unity, the Bayesian evidence is given by the multi-

dimensional integral,

Z
(

~D|Mi

)

=

∫

P
(

~θ|Mi

)

L
(

~D|~θ,Mi

)

d~θ. (2)

Fitting a model to a measured spectrum is an exercise in

which a better fit is obtained when more free parameters (e.g.,

more molecules) are introduced. Model selection is essen-

tially the enforcing of Occam’s Razor, meaning that we select

the model that has a level of sophistication or complexity that

is commensurate with the quality of data available. It pre-

vents the over-fitting of data by a model that is too complex.

For example, Hansen, Schwartz & Cowan (2014) find that

for some of the exoplanets the photometric data of Spitzer

alone may be fitted with a Planck function and a more com-

plex model is unnecessary. As the data quality improves, so

does the complexity of the best model.

The essence of nested sampling is to reduce the computa-

tion of the Bayesian evidence to a one-dimensional integral

(Skilling 2006),

Z
(

~D|Mi

)

=

∫ 1

0

L′ (X ) dX , (3)

where the likelihood now only depends on a single variable

and is denoted by L′. This variable X is termed the “prior

mass” and is bounded between 0 and 1. A visualization of

the prior mass and its relationship to the Bayesian evidence is

given in Figure 3 of Skilling (2006) and Figure 1 of Benneke

& Seager (2013). Numerically, we use the trapezoid rule to

compute the Bayesian evidence as a finite sum,

Z
(

~D|Mi

)

=
∑

j

Xj+1 −Xj

2

(

L′
j+1 + L′

j

)

. (4)

We begin by randomly drawing Nlive points from the pa-

rameter space(θ) subjected to the constraint of the chosen

prior. We use either Gaussian (radius, logarithm of gravity,

distance), log-uniform (mixing ratios, mean opacity, cloud

particle radius, cloud mixing ratio) or uniform (temperature,

cloud composition parameter) priors. For a set of points

drawn, we compute their likelihood values. At each step

of the algorithm, we discard the worst point and replace
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it with a newly drawn point until the convergence criteria

is met (see Skilling 2006). This newly drawn point needs

to have a higher likelihood than the worst point just dis-

carded. Specifically, we use the open-source software named

PyMultiNest4 (Buchner et al. 2014), which is a Python

wrapper for the open-source MultiNest5 program written

in Fortran 90 (Feroz & Hobson 2008; Feroz, Hobson &

Bridges 2009; Feroz et al. 2013). For each model, we run the

nested sampling algorithm using 40 000 living points paral-

lelised into 20 runs of 2000 “living points” each. For com-

parison, Waldmann et al. (2015) uses Nlive = 4000 living

points. Benneke & Seager (2013) use between Nlive = 50
and 10,000 living points. Line et al. (2016) do not specify

the number of living points used. Equation (4) is used to

compute the Bayesian evidence. As a by-product of this pro-

cedure, one also obtains posterior-distribution samples of the

model parameters.

For the purpose of comparing two models, which we de-

note by Mi and Mi+1, it is useful to define a quantity known

as the Bayes factor, which is the ratio of the Bayesian evi-

dences (Trotta 2008),

B =
Z
(

~D|Mi

)

Z
(

~D|Mi+1

) . (5)

The Bayes factor is equal to the posterior odds when both

models are considered equally likely. As shown in Table 2

of Trotta (2008), which is reproduced in Table 2 of Benneke

& Seager (2013), there is a relationship between the Bayes

factor, the p-value of the frequentists and the significance in

terms of the number of standard deviations. We use the Jef-

freys scale (Kass & Raftery 1995) to evaluate model signifi-

cances. Weak, moderate and strong evidence for favoring the

i-th model over the (i+1)-th model correspond to lnB = 1,

2.5 and 5, respectively.

2.2. Temperature-Pressure Profile

For the temperature-pressure profile, we assume a one-

dimensional, plane-parallel model atmosphere. Its layers

are evenly spaced in the logarithm of pressure between

1 µbar and 1 kbar. We implement equation (126) of

Heng, Mendonça & Lee (2014), who previously general-

ized the work of Guillot (2010) (pure absorption limit and

constant opacities) and Heng et al. (2012) (isotropic scat-

tering, constant shortwave/optical opacity) to include non-

isotropic scattering and a non-constant shortwave/optical

opacity. Since the HR 8799 exoplanets are non-irradiated, we

essentially use a reduced version of equation (126) of Heng,

4 https://github.com/JohannesBuchner/PyMultiNest/

5 https://ccpforge.cse.rl.ac.uk/gf/project/multinest/

Mendonça & Lee (2014),

T 4 =
T 4
int

4

[

8

3
+

3m̃

β2
L

(

κ0 +
κCIAm̃

2m̃0

)]

, (6)

where Tint is the internal/interior temperature, βL is the long-

wave/infrared scattering parameter, κ0 is the constant com-

ponent of the longwave/infrared opacity and κCIA is the

opacity associated with collision-induced absorption (CIA).

The column mass is denoted by m̃, while m̃0 is the column

mass referenced to the bottom of the model atmosphere. We

set P0 = m̃0g = 1 kbar, where g is the surface gravity.

Equation (6) is essentially a generalization of the classi-

cal Milne’s solution (Mihalas 1970) to include scattering and

CIA. In the limit of pure absorption (βL = 1) and in the

absence of CIA, we obtain T = Tint when κ0m̃ = 4/9,

somewhat different from the classical Milne value of 2/3. It

is worth emphasizing that equation (6) is, by construction, a

temperature-pressure profile in radiative equilibrium, which

implies that both local and global energy conservation are

guaranteed in an exact, analytical sense (Heng, Mendonça

& Lee 2014; Heng & Lyons 2016). By contrast, the versa-

tile fitting function used by Madhusudhan & Seager (2009)

does not, by construction, obey energy conservation and this

has to be enforced as a separate numerical condition. How-

ever, in using a mean opacity equation (6) sacrifices accuracy

for simplicity, which makes the temperature-pressure profile

more isothermal, at high altitudes, than if a more realistic ra-

diative transfer calculation was performed.

In principle, κ0 and κCIA are mean opacities that may be

calculated directly from the spectroscopic line lists. How-

ever, in deriving these analytical temperature-pressure pro-

files Guillot (2010), Heng et al. (2012) and Heng, Mendonça

& Lee (2014) have assumed that the absorption, flux, Planck

and Rosseland mean opacities are equal, which makes it un-

clear how to exactly compute κ0 and κCIA. Therefore, we

opt to use κ0 and κCIA as fitting parameters instead. In other

words, our temperature-pressure profile is not self-consistent

with the atmospheric opacities used.

We find that using κCIA and βL as fitting parameters have

a negligible effect on our results (not shown). In practice, the

use of equation (6) with only Tint and κ0 as fitting parameters

(i.e., setting βL = 1 and κCIA = 0) is sufficient for our

retrieval calculations.

We use a constant value of the surface gravity, as we are

sensing at most 6 orders of magnitude in pressure, which cor-

responds to 13.8 scale heights. This means that the region of

the atmosphere being sensed is only several percent of the ra-

dius of the exoplanet. A constant surface gravity is thus not

unreasonable.

2.3. Atmospheric Cross Sections

We first distinguish between our use of the terms “cross

section” and “opacity”. The former has units of area. The lat-

ter is the cross section per unit mass. We previously designed
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Table 3. Summary of Retrieved Results

Property Exoplanet Value

XH2O HR8799b −2.89+0.09
−0.09

XH2O HR8799c −2.60+0.12
−0.05

XH2O HR8799d [−2.29]

XH2O HR8799e [−1.84]

XCO2
HR8799b −6.70+1.52

−6.33

XCO2
HR8799c −4.63+0.13

−0.11

XCO2
HR8799d [−18.84]

XCO2
HR8799e [−19.13]

XCO HR8799b −1.86+0.10
−0.09

XCO HR8799c −2.48+0.14
−0.20

XCO HR8799d [−16.32]

XCO HR8799e [−17.36]

XCH4
HR8799b −5.03+0.14

−0.16

XCH4
HR8799c −5.03+0.17

−0.18

XCH4
HR8799d [−28.11]

XCH4
HR8799e [−27.59]

µ HR8799b 2.18+0.00
−0.00

µ HR8799c 2.19+0.00
−0.00

µ HR8799d [2.28]

µ HR8799e [2.42]

C/O HR8799b 0.92+0.01
−0.01

C/O HR8799c 0.55+0.10
−0.12

C/O HR8799d 0.00+0.00
−0.00

C/O HR8799e 0.00+0.00
−0.00

C/H HR8799b −2.11+0.10
−0.09

C/H HR8799c −2.73+0.14
−0.20

C/H HR8799d −16.62+4.08
−2.04

C/H HR8799e −11.93+4.62
−4.64

O/H HR8799b −2.07+0.09
−0.09

O/H HR8799c −2.47+0.09
−0.11

O/H HR8799d −3.20+0.19
−0.15

O/H HR8799e −2.75+0.57
−0.57

Q0 HR8799b 1.21+0.49
−0.73

Q0 HR8799c 0.79+0.25
−0.26

Q0 HR8799d 1.39+0.27
−0.34

Q0 HR8799e 0.95+0.53
−0.52

rc HR8799b −4.37+0.49
−0.46

rc HR8799c −4.44+0.25
−0.20

rc HR8799d −6.68+0.18
−0.18

rc HR8799e −4.69+0.79
−0.76

Xc HR8799b −21.22+0.80
−0.85

Xc HR8799c −20.55+0.41
−0.49

Xc HR8799d −15.96+1.20
−0.95

Xc HR8799e −20.56+1.55
−1.37

d HR8799b 40.30+0.66
−0.79

d HR8799c 39.73+0.22
−0.20

d HR8799d 40.81+0.42
−0.50

d HR8799e 39.40+0.70
−0.78

Note: we have listed the 1σ uncertainties, which were computed by locating the

15.87th and 84.13th percentile points on the horizontal axis. In the limit of a symmetric

Gaussian function, these would yield the full-width at half-maximum of the Gaussian.

For planet d and e, the molecules abundances and the mean molecular weight are given

at 1 bar. Values are in log10 (except for C/O) and dimensionless (except for rc which

is in meters).

and wrote an open-source opacity calculator (Grimm & Heng

2015), based on implementing Algorithm 916 (Zaghloul &

Ali 2012) to perform fast computations of the Voigt profile

by recasting it as a Faddeeva function. Typically, HELIOS-K

is able to compute an opacity or cross section function with

∼ 105 spectral lines in ∼ 1 s on a NVIDIA K20 GPU. In

principle, it is agnostic about the spectroscopic line list being

used and is able to take any line list as an input. The details of

how to take the inputs of a line list and use them to compute

the integrated line strengths and line shapes have previously

been summarized in Grimm & Heng (2015) and we will not

repeat them here.

We restrict ourselves to only four molecules: carbon

monoxide (CO), carbon dioxide (CO2), water (H2O) and

methane (CH4). For CO and CO2, we use the HITEMP

database (Rothman et al. 2010). For H2O and CH4, we use

the ExoMol line list (Barber et al. 2006; Yurchenko & Ten-

nyson 2014). Acetylene, ammonia, ethylene and hydrogen

cyanide have been omitted, because they are subdominant

at the photospheric temperatures of the HR 8799 exoplanets

(Madhusudhan 2012; Heng & Tsai 2016; Moses et al. 2016).

In particular, see Figure 10 of Moses et al. (2016).

In the current study, we choose to deal with cross sections

instead of opacities. For our HELIOS self-consistent radia-

tive transfer code, we chose to use opacities instead (Malik et

al. 2017). There are various strategies to construct the cross

section function of the atmosphere. By “cross section func-

tion”, we refer to the function that depends on temperature,

pressure, wavenumber and type of molecule. The cross sec-

tion function is a theoretical construction: it may be defined

continuously or be sampled at an arbitrary number of dis-

crete points. We consider the way in which the cross section

function is sampled as an issue of implementation, which we

will now discuss. Regardless of the approach used to con-

struct and sample the cross section function, the end goal is

the same: to use them to construct transmission functions and

ultimately integrate fluxes over a waveband.

The first approach is to use the “k-distribution method”,

which resamples the highly erratic cross section function into

a monotonically increasing cumulative distribution function

(Lacis & Oinas 1991; Fu & Liou 1992; Grimm & Heng

2015). Since the k-distribution method is only exact for a ho-

mogeneous atmosphere with one molecule (Grimm & Heng

2015), one has to apply the “correlated-k approximation” as

well, which assumes that the spectral lines are perfectly cor-

related (see Chapter 4.4.5 of Pierrehumbert 2010).

The second approach is to use “opacity sampling”, which

is to discretely sample the opacity function, typically at a

smaller number of points than there are lines. In our con-

text, it is perhaps more accurate to term it “cross section sam-

pling”.

The “line-by-line” limit occurs when the integrated fluxes

over a waveband is exact (to machine precision). It is es-

sentially the second approach, but where the cross section
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function is sampled at more wavenumber points than there

are lines. Since there are ∼ 109 (or more) lines for the water

molecule alone, this is a formidable computational challenge

and is currently infeasible for any retrieval code dealing with

hot exoplanetary atmospheres. We note that a cross section

function that includes all of the lines of a given line list does

not qualify it as being “line by line”, if the sampling is not

fine enough to resolve each line profile.

In the current study, we adopt the second approach, which

is also used by Madhusudhan & Seager (2009), Benneke &

Seager (2013), Line et al. (2013) and Waldmann et al. (2015).

Our spectral resolution used is 1 cm−1, evenly sampled

across wavenumber. We note that Line et al. (2013, 2015)

and Waldmann et al. (2015) also used a spectral resolution of

1 cm−1. Some authors do not specify the spectral resolution

of their atmospheric cross section function (e.g., Madhusud-

han & Seager 2009; Benneke & Seager 2013; Barstow et al.

2015; Line et al. 2016). We precompute our cross sections on

a grid across wavenumber, pressure and temperature: 100 to

2900 K (in increments of 200 K) and 1 µbar to 1 kbar (with

two points per dex in pressure) for CO, CO2, CH4 and H2O.

The grid is then interpolated to obtain values of the cross

sections for any temperature and pressure within the stated

ranges.

A lingering issue, which stems from an unsolved physics

problem, is that the far line wings of Voigt profiles do not

accurately represent the wings of real lines. Various groups

have adopted different ad hoc approaches to truncating the

Voigt profiles (see Grimm & Heng 2015 and references

therein). Hedges & Madhusudhan (2016) discuss this issue,

but do not provide any solution for it. In the current study,

we adopt a 100 cm−1 cutoff.

2.4. Chemistry

Once the cross sections have been computed, they may be

used to compute the optical depth, of each model layer, for

all of the molecules,

∆τ =
∑

i

Xiσi

m̄g
∆P, (7)

where Xi and σi are the mixing ratio and cross section of the

i-th molecule, respectively. ∆P is the thickness of the layer

in terms of the difference in pressure. The mean molecular

mass is given by m̄ = µmu, where µ is the mean molecular

weight and mu is the atomic mass unit. The preceding ex-

pression assumes hydrostatic equilibrium, isothermal layers

and that the surface gravity is constant throughout our model

atmosphere.

Generally, the mixing ratios of molecular hydrogen and he-

lium only show up via CIA as a contribution to the continuum

of a spectrum, which implies that they cannot be as defini-

tively determined as that of the molecules. Our CIA opaci-

ties are obtained from Richard et al. (2012). In the range of

XH2
≈ 0.8–0.9, the effect on the continuum of the synthetic
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Figure 2. Mean (solid curves) and maximum (dashed curves) errors
in the synthetic spectrum as a function of the number of model lay-
ers used, computed by performing retrievals on the measured spec-
trum of HR 8799b. The reference used is the retrieval with 10,000
model layers (see text). When about 100 layers are used, the models
with isothermal and non-isothermal layers yield the same answers.

Figure 3. Validation of our HELIOS-R forward model (green
dashed curve and upward-facing triangles) against that used in the
HELIOS self-consistent radiative transfer code (blue solid curve
and downward-facing triangles). The insert shows the temperature-
pressure profile used as an input.

spectrum is very similar (not shown). The effects of H2-He

CIA are even more subtle. As such, we adjust XH2
to render

the sum of the mixing ratios unity,

1.1XH2
+

∑

i

Xi = 1, (8)

where we have assumed that XHe = 0.1XH2
to reflect cos-

mic abundance. By denoting the mass of the i-th molecule by

mi, the corresponding mean molecular weight is calculated
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using

µ = 2XH2
+ 4XHe +

∑

i

miXi

mu
. (9)

For example, if we have XH2
= 0.85, XHe = 0.085 and

XCO = 0.065, then we have µ = 3.86. In models with

equilibrium chemistry, the mean molecular weight changes

slightly for each layer, because the molecular abundances

vary from layer to layer even for the same metallicity.

In the current study, we consider two chemistry models.

“Unconstrained chemistry” refers to using each Xi as a fit-

ting parameter in the retrieval. “Equilibrium chemistry”

means that the Xi may be determined using only the ele-

mental abundances of carbon (fC) and oxygen (fO), if C-

H-O gaseous chemistry is considered. In this case, the 4-

parameter system of unconstrained chemistry reduces to 2

parameters. To compute the four Xi values given fC and

fO, we use the validated analytical formulae of Heng, Lyons

& Tsai (2016), Heng & Lyons (2016) and Heng & Tsai

(2016). Specifically, we implement equations (12), (20) and

(21) of Heng & Lyons (2016) for gaseous C-H-O chemistry.

The benchmarking of these formulae against calculations of

Gibbs free energy minimization was previously performed

by Heng & Tsai (2016), who showed that they are accurate

at the ∼ 1% level or better. Further validation of these formu-

lae comes from matching the trends found by Madhusudhan

(2012) and Moses et al. (2013).

For unconstrained chemistry, the carbon-to-oxygen ratio is

computed using

C/O =
XCO +XCO2

+XCH4

XCO + 2XCO2
+XH2O

. (10)

The elemental abundances are inferred using

C/H =
XCO +XCO2

+XCH4

2XH2
+ 4XCH4

+ 2XH2O
,

O/H =
XCO + 2XCO2

+XH2O

2XH2
+ 4XCH4

+ 2XH2O
.

(11)

Each mixing ratio is assumed to be constant over the entire

model atmosphere. The alternative, which is to have a differ-

ent value of the mixing ratio for each of the 100 model layers

we assume, would result in 400 free parameters. This is un-

warranted given the sparseness of the data, i.e., we have less

than 400 data points.

For equilibrium chemistry, the carbon-to-oxygen ratio is

simply

C/O =
fC
fO

, (12)

and fC ≡ C/H and fO ≡ O/H are directly the fitting param-

eters of the retrieval. Since the mixing ratios of all of the

molecules can be exactly specified for each layer, which has

its own temperature and pressure, the assumption of constant

mixing ratios across height/pressure is unnecessary for the

models with equilibrium chemistry. The 400 values of the

mixing ratios are specified by just two free parameters: fC
and fO.

Unlike in previous studies, we do not manually decide

whether to pick unconstrained or equilibrium chemistry.

Rather, we compute both of these models and select between

them based on the Bayesian evidence computed.

We note that, as part of the ESP, we have previously devel-

oped a chemical kinetics solver named VULCAN (Tsai et al.

2017).

2.5. Radiative Transfer Scheme

With the cross sections and temperature-pressure profiles

in hand, one may compute the optical depth and hence the

transmission function for each layer of the model atmo-

sphere. To propagate fluxes through the atmosphere and

thus obtain the synthetic spectrum, we need a radiative trans-

fer scheme. Beer’s law6 is the simplest example of such a

scheme, where incident radiation through a passive medium

is exponentially attenuated. A more sophisticated radiative

transfer scheme needs to account for both the fluxes incident

upon a layer and the thermal emission associated with the

layer itself, since each layer has a finite temperature. To this

end, we use equation (B4) of Heng, Mendonça & Lee (2014),

F↑j+1
= F↑j

T + πB (1− T ) , (13)

where the fluxes are computed at the j- and (j + 1)-th in-

terfaces. The Planck function (B) is evaluated within each

layer. The transmission function is given by equation (B5) of

Heng, Mendonça & Lee (2014)

T = (1−∆τ) exp (−∆τ) + (∆τ)
2
E1, (14)

with E1(∆τ) being the exponential integral of the first order.

The optical thickness of each layer is given by ∆τ . Appendix

A describes an analytical fitting formula for E1 that is highly

accurate and allows for the computation to be significantly

sped up.

We use equation (13) to propagate the boundary condition

at the bottom of the atmosphere (i.e., the internal/interior heat

flux), which is the Planck function with a temperature given

by the temperature-pressure profile at the bottom boundary.

The outgoing flux at the top of the atmosphere is then the

synthetic spectrum.

We emphasize equation (13) is an exact solution of the ra-

diative transfer solution in the limit of isothermal layers and

pure absorption. It is an improvement over using approxi-

mate solutions (e.g., two-stream solutions) and allows us to

implement a radiative transfer scheme without taking any ap-

proximations besides assuming pure absorption. Equation

(13) is equivalent to the approach of Line et al. (2016), who

used four-point Gaussian quadrature to account for angle-

6 Also known as the Beer-Lambert-Bouguer law.
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Figure 4. Performing retrieval on a mock dataset, where the “ground truth” is known (see text for input parameters). We focus on performing
retrieval with the UB model (see Table 1). The columns represent the different wavelength coverages: 0.7–5 µm with 0.01 µm resolution (first
column), HR 8799b-like data (second column) and HR 8799e-like data (third column). The rows represent different assumptions for R and g:
fixed R and g (first row), fixed R but g is a fitting parameter (second row), fixed g but R is a fitting parameter (third row), both R and g are
fitting parameters (fourth row). The labels “CO”, “CO2”, “CH4” and “H2O” refer to the mixing ratios of carbon monoxide, carbon dioxide,
methane and water, respective. Tint is in units of K. The labels “κ0” and “gravity” are for log κ0 and log g in mks and cgs units, respectively.
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Figure 5. Further results from the retrievals on the mock dataset.
The top panel shows the mock dataset at full resolution (0.01 µm),
and also with HR 8799b-like data coverage (circles). The mock
dataset and best-fit spectrum overlap exactly (to within the reso-
lution of the plot). The insert shows the retrieved temperature-
pressure profile. The bottom panel shows the retrieved posterior
distributions of C/O assuming different models (see Table 1). The
solid and dotted curves are for HR 8799b-like and HR 8799e-like
data coverage. The broader posterior distributions of C/O associ-
ated with HR 8799e-like data coverage are primarily due to the lack
of K band data.

dependent flux propagation. In our exact solution, the in-

tegration over angle has been performed analytically and is

encapsulated in the exponential integral of the first order. We

gain computational efficiency both by bypassing the need for

performing Gaussian quadrature and also by evaluating E1
using an analytical approach (Appendix A). The overall ac-

curacy is relegated to the number of discrete layers used.

The radius of the exoplanet (R) only appears as a scaling

factor between the observed flux (Fobs) and the flux escaping

from the top of the atmosphere (FTOA),

Fobs =

(

R

d

)2

FTOA, (15)

where d is the distance between the observer and the object.

The HR 8799 system is located at 39.4±1.0 pc (van Leeuwen

2007), but the measured fluxes are usually reported as if it

were located at d = 10 pc (i.e., absolute fluxes).

2.6. Cloud Model

The need for a cloud model is motivated by previous sug-

gestions that the atmospheres of the HR 8799 exoplanets are

cloudy (Barman et al. 2011; Madhusudhan, Burrows & Cur-

rie 2011; Marley et al. 2012), and also by the finding that

each cloud configuration essentially corresponds to a differ-

ent mass-radius relationship (Burrows, Heng & Nampaisarn

2011; Lee, Heng & Irwin 2013). Our cloud model is based

on the notion that, while cloud formation is challenging to

model from first principles (e.g., Helling & Woitke 2006),

once clouds do form it is somewhat easier to describe their

effects on the synthetic spectrum, since this derives from our

knowledge of classical optics and Mie theory (Pierrehumbert

2010).

Following Lee, Heng & Irwin (2013), we consider the

presence of clouds to add an extra contribution to the opti-

cal depth,

∆τc = Qextπr
2
cncloud ∆z = Qextπr

2
cfcloud

∆P

m̄g
, (16)

where Qext is the extinction efficiency, rc is the radius of the

(spherical) particles, ncloud is the number density of clouds

and ∆z = ∆P/nm̄g is the spatial thickness of the layer. The

cloud mixing ratio is fcloud = ncloud/n and it is this quantity

that we set a prior on (see Table 2 for its range of values). We

assume the cloud to be uniformly distributed throughout the

atmosphere.

In a departure from the approach of Lee, Heng & Irwin

(2013), we do not use a specific composition of cloud (e.g.,

enstatite). Specifically, we adopt their approximate fitting

formula (listed in the appendix of Lee, Heng & Irwin 2013

but not used in their analysis),

Qext =
5

Q0x−4 + x0.2
, (17)

where x ≡ 2πrc/λ and λ is the wavelength. When the par-

ticles are small (x ≪ 1), we recover Rayleigh scattering:
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Figure 6. Montage of posterior distributions from performing retrieval on the measured spectrum of HR 8799b and allowing the radius, surface
gravity and mean molecular weights to be uniform or log-uniform priors. The retrieved value of the radius (R ≈ 0.5RJ) is unphysical (see
text for discussion). The labels “CO”, “CO2”, “CH4” and “H2O” refer to the mixing ratios of carbon monoxide, carbon dioxide, methane and
water, respectively. R and Tint are in units of RJ and K, respectively. The labels “κ0” and “gravity” are for log κ0 and log g in mks and cgs
units, respectively.

Qext ∝ λ−4. Large particles (x ≫ 1) produce a roughly

constant Qext. By contrast, Benneke & Seager (2013) as-

sume their clouds to be described by only one number, which

is the cloud-top pressure. Their model carries the implicit as-

sumption that the cloud particles are large compared to the

range of wavelengths examined.

The dimensionless quantity Q0 serves as a proxy for the

cloud composition. Refractory species (e.g., silicates) have

Q0 ≈ 10, while volatile species (e.g., ammonia, methane,

water) have Q0 ≈ 40–80. By using Q0 as a fitting parame-

ter in the retrieval, we can constrain the composition of the

clouds. The other fitting parameters in our cloud model are

rc and fcloud.

Since we do not self-consistently treat the cloud physics

and gaseous chemistry, the caveat is that our retrieved C/O

values are representative of only the gaseous component of

the atmosphere. It is conceivable that the true C/O values,

which must account for the material sequestered in the cloud
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Figure 7. Top panel: transit radius versus surface gravity of a sample
of transiting Jupiter-sized exoplanets around main-sequence stars
(black data points). The red data points are the sub-sample of tran-
siting exoplanets with zero-albedo equilibrium temperatures below
1000 K. The single outlier is Kep-447b (see text). Bottom panel:
the same sub-sample, but color-coded by mass. The red, green,
blue and cyan points are for < 0.8MJ, 0.8 < M < 1.2MJ,
1.2 < M < 2MJ and > 2MJ, respectively. Data taken from
http://www.exoplanets.org (Han et al. 2014).

particles, are different.

2.7. Data Selection: Spectra of HR 8799b, c, d and e

The spectra and photometric data points of the HR 8799b,

c, d and e exoplanets have been taken from Bonnefoy et

al. (2016) and Zurlo et al. (2016). The new SPHERE data

were presented in Zurlo et al. (2016), while Bonnefoy et al.

(2016) unified all of the previous data of the four exoplanets.

Specifically, we use the data from Figure 4 of Bonnefoy et al.

(2016).

To compute the flux in a photometric waveband, we sim-

ply integrate the synthetic spectrum over the range of wave-

lengths of the filter and assume a Heaviside function with a

value of unity throughout. Unlike Lee, Heng & Irwin (2013),

we do not apply filter functions with non-unity values to our

synthetic spectrum, because this correction has already been

done en route to reporting the observed fluxes in Bonnefoy

et al. (2016) and Zurlo et al. (2016). It is unclear what has

been done in previous studies. Madhusudhan, Burrows &

Currie (2011) display filter functions in their Figure 1, but

do not describe whether these filter functions were applied

to their synthetic spectra. Line et al. (2013) state that, “For

the broadband points we simply integrate the flux from the

high-resolution model spectrum with the appropriate filter

function for that point,” but do not provide quantitative de-

scriptions of their filter functions. It cannot be ruled out that

these filter functions have values of unity throughout. For the

spectroscopic data points, we do not convolve the synthetic

spectrum with the instrument’s response function, because

the impact is minor for low-resolution spectra.

3. TESTS

Before analyzing the measured spectra of the HR 8799b, c,

d and e directly imaged exoplanets, we subject HELIOS-R

to a battery of tests.

3.1. Number of Atmospheric Layers

The number of layers used in a one-dimensional model

atmosphere is a critical but often overlooked or unexplored

detail. We wish to quantify the mean and maximum errors

associated with assuming a specific number of model layers.

We use the measured spectrum of HR 8799b as an illustra-

tion. We consider an ensemble of 103 cloudfree models with

unconstrained chemistry. For each model, we randomly se-

lect our parameter values: 2 parameters for the temperature-

pressure profile, 4 parameters for the mixing ratios and 1 for

the surface gravity. The range of parameter values used is

listed in Table 2. No model selection is performed for this

test. We consider forward models with both isothermal and

non-isothermal layers. For the latter, we use equation (B6) of

Heng, Mendonça & Lee (2014).

For each of the 103 models, the spectrum computed with

10,000 non-isothermal layers is used as a reference. We then

compute coarser models with between 10 and 8000 isother-

mal or non-isothermal layers and calculate the fractional

error on the synthetic spectrum compared to the reference

model. In Figure 2, we show both the mean and maximum

errors associated with the synthetic spectrum. With 100 lay-

ers, we see that models with isothermal and non-isothermal

layers have the same mean and maximum errors of about
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Figure 8. Bayes factors from a suite of models for each HR 8799 exoplanet. See Table 1 for an explanation of the shorthand notation used to
mark each model. All of the models assume Gaussian priors on R and log g (see Table 2). For HR 8799b and c, the Bayesian evidence clearly
favors cloudy models with non-equilibrium (unconstrained) chemistry. For HR 8799e, the lack of K band spectroscopy implies that none of the
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model placed at the top of each panel.
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Figure 9. Best-fit spectra and temperature-pressure profiles for HR
8799b, c, d and e.

2.5% and 8%, respectively. For the rest of the paper, we will

use 100 isothermal layers. For comparison, Madhusudhan

& Seager (2009), Lee, Heng & Irwin (2013) and Line et al.

(2013) used 100, 43 and 90 layers, respectively.

3.2. Validating the Forward Model

We previously developed a self-consistent radiative trans-

fer code named HELIOS, which solves the radiative trans-

fer equation in tandem with the first law of thermodynam-

ics to obtain one-dimensional model atmospheres in radia-

tive equilibrium (Malik et al. 2017). HELIOS was validated

against the radiative transfer model of Miller-Ricci & Fort-

ney (2010). In the limit of pure absorption, we also demon-

strated that the two-stream and exact solutions produce ex-

cellent agreement if the diffusivity factor is set to 2 (Heng,

Mendonça & Lee 2014; Malik et al. 2017).

The forward model of HELIOS uses the same equation

as HELIOS-R, but was implemented independently by the

first author of each study. Here, we compare the forward

models of HELIOS-R and HELIOS to verify that our im-

plementation is bug-free. In Figure 3, we constructed a

cross section function consisting purely of water and used

the k-distribution method to compute the fluxes. Malik et

al. (2017) used instead an opacity function, but also consist-

ing purely of water and using the k-distribution method as

well. The k-distribution tables were constructed using a res-

olution of 10−5 cm−1 evenly distributed across wavenum-

ber (not shown). Other assumptions include a hydrogen-

dominated atmosphere (µ = 2), a water mixing ratio of 10−3

and a surface gravity of log g = 3.3 in cgs units ( ≈19.5 m

s−2). We then assumed an input temperature-pressure pro-

file, as shown in the insert of Figure 3, in tandem with the

k-distribution tables to compute the synthetic spectrum us-

ing both HELIOS-R and HELIOS. The excellent agreement

validates our implementation of the forward model.

3.3. Retrieval on a Mock Dataset

A useful test is to create a mock dataset, where we know

what the “ground truth” is concerning the synthetic spec-

trum, temperature-pressure profile, molecular abundances,

surface gravity, etc. We assume a cloudfree model with un-

constrained chemistry, which has the following input param-

eters:

XCO = XCO2
= XCH4

= XH2O = 10−4,

R = 1.2RJ, log g = 4.0 (cgs),

Tint = 700 K, κ0 = 2.9× 10−4 m2 kg−1,

(18)

where RJ is the radius of Jupiter. Using this setup, we create

3 mock datasets: a full mock spectrum from 0.7–5µm with

0.01 µm resolution, HR8799b-like and HR8799e-like data

coverage. We assume this mock object to be located d = 10

pc away.

Such a test serves three purposes. First, if R and g are fixed

to their input values (and excluded from being fitting param-

eters in the retrieval), then it is a test of the ability of our

nested sampling algorithm to correctly recover the molecu-

lar abundances and temperature-pressure profile. Second, if

we now include g and R as fitting parameters, it allows us

to study the degeneracies associated with our ignorance of

the surface gravity and/or radius. Third, by adapting and de-

grading the mock spectrum to the data resolution and spectral

coverage of HR 8799b and HR 8799e, we may study the ef-

fects of incomplete or sparse data on the retrieved molecular

abundances. The key difference between the currently avail-
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able data for HR 8799b and HR 8799e is that the latter does

not have K band spectroscopy.

Figure 4 shows the outcomes of these tests. When R and g

are fixed to their input values, HELIOS-R correctly recovers

the input values of the mixing ratios and T -P profile param-

eters from the full mock spectrum (first row, first column).

Surprisingly, our ability to recover these input values appear

to be insensitive to whether the mock spectrum is degraded

or not (first row, second and third columns), if R and g are

known.

When the radius is implemented as a uniform prior, its

value is correctly recovered, although the posterior distribu-

tions of the other fitting parameters become a little broader

(third row of Figure 4). With HR 8799e-like data coverage,

we see clear signs of degeneracies being introduced into the

posterior distributions. It suggests that the K band spectrum

contains important information on the molecular abundances,

an issue we will explore further in §4.4.

Allowing the surface gravity to be a fitting parameter has

more serious consequences, as it introduces degeneracies

into all of the other fitting parameters (second row of Figure

4). Even full data coverage does not lift these degeneracies

(second row, first column). It suggests that an informative

prior needs to be set on the surface gravity.

Surprisingly, the retrieved posterior distribution of C/O ap-

pears to be robust to the different model assumptions (Figure

5). It suggests that the C/O is a robust outcome of the re-

trieval.

Overall, these exercises teach us that wavelength cover-

age and spectral resolution are generally not as important as

knowledge of the surface gravity, although the K band spec-

trum appears to encode crucial information on the molecular

abundances. In §4.1, we will argue for setting Gaussian pri-

ors on log g as well as R when analyzing real data from the

HR 8799 exoplanets.

4. RESULTS

4.1. Setting Priors on Radius and Surface Gravity

The strongest demonstration of why our assumptions for

the prior distributions of input parameters are important

comes from examining a model where the radius and surface

gravity are implemented as uniform priors in the retrieval.

Specifically, we perform a retrieval on the measured spec-

trum of HR 8799b using model UBrg in Figure 6, where R

and g are specified as uniform priors. We see that the re-

trieved solution is R ≈ 0.5RJ, which is physically unrea-

sonable. The surface gravity takes on unphysical values of

log g ≈ 5.5–6. As we have learned from the mock-retrieval

exercises in §3.3, these difficulties stem from specifying the

radius and surface gravity as unconstrained fitting parame-

ters.

We now discuss why the values for R are physically un-

reasonable. There are indirect arguments for why retrieved

solutions with radii well below a Jupiter radius should be re-

jected. First, brown dwarfs and low-mass stars with masses

between 20 and 100 Jupiter masses have transit radii that

are at least 0.8RJ (see Burrows, Heng & Nampaisarn 2011

and references therein), including CoRoT-3b, which is a low-

mass brown dwarf with a dynamical mass of M = 21.66 ±
1.0MJ and a transit radius of R = 1.01±0.07RJ (Deleuil et

al. 2008). Second, a review of the data for all of the transiting

Jupiter-like exoplanets reveals also that objects with radii be-

low 0.8RJ do not exist (Figure 7). When a cut is made to only

include objects with zero-albedo equilibrium temperatures

below 1000 K (to exclude objects that are “inflated” by some

unknown mechanism related to stellar heating, e.g., Demory

& Seager 2011), we find that the radii are bound between

0.8 and 1.2RJ. The single outlier with R = 1.65+0.59
−0.56 RJ

is Kep-447b, which has an extremely grazing transit (Lillo-

Box et al. 2015) that may render its radius measurement un-

reliable. Third, objects with a mass of Jupiter (or higher)

are partially degenerate and it is theoretically challenging to

get their radius to be less than that of Jupiter’s (Burrows &

Liebert 1993).

While it may be tempting to fix our model radius at be-

tween 0.8 and 1.2 RJ, we should be reminded of the fact that

these radii are measured for > 1 Gyr-old objects, whereas

the HR 8799 exoplanets are estimated to be ∼ 10–100 Myr

old. Guided by evolutionary models (Mordasini et al. 2012;

Spiegel & Burrows 2012), we set R = 1.2 ± 0.1 RJ as a

Gaussian prior of our retrievals. The uncertainty of 0.1RJ

is the full-width at half-maximum of the Gaussian. We note

that Moses et al. (2016) assume a fixed value of R = 1.2 RJ

for their self-consistent model of HR 8799b.

The bottom panel of Figure 7 is also revealing, as it shows

the measured surface gravities of transiting Jupiter-sized ex-

oplanets to be hovering around log g ≈ 4 for objects with

masses of M > 2MJ, where MJ is the mass of Jupiter.

Since we expect the HR 8799 exoplanets to have radii that are

slightly larger than Jupiter’s, we expect their surface gravities

to also be log g ≈ 4. Surface gravities of log g ≈ 4.5–5.0 are

only appropriate when one crosses over into the brown dwarf

regime (& 13MJ), e.g., CoRoT-3b has log g = 4.72 ± 0.07.

The photometric masses of HR 8799b, c, d and e are less than

half that of CoRoT-3b (Marois et al. 2008, 2010). Based on

the evolutionary calculations of Marleau & Cumming (2014),

who estimated M ≈ 4–13 MJ for the HR 8799 exoplan-

ets, we set a Gaussian prior of log g = 4.1 ± 0.3 on the

surface gravity (taking into account R = 1.2 ± 0.01 RJ).

This range of surface gravities is somewhat higher than the

log g = 3.5± 0.5 values considered by Barman et al. (2015).

In summary, we find that what we assume for the prior dis-

tributions of the input quantities is critical to the outcome of

the retrieval. Uniform or log-uniform priors may not always

be the best choice as they may lead to unphysical or even non-

sensical outcomes. Gaussian priors are better choices in these

instances, but only when they are guided by physics. We find
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our retrievals to be physically meaningful only when Gaus-

sian priors are set on the radius and surface gravity, which is

a departure from the HR 8799b analysis of, e.g., Lee, Heng

& Irwin (2013).

4.2. Model Selection Using Bayesian Evidence

Traditionally, model selection is performed manually by

the modeler or theorist. One starts with a set of assump-

tions, computes forward and arrives at a prediction for the

thermal structure and synthetic spectrum. These assumptions

include chemical equilibrium or disequilibrium, a value for

the strength of atmospheric mixing, the number of atoms and

molecules included in the model, the metallicity and C/O,

etc. Other assumptions are more closely related to technique,

e.g., the approximate or limiting form of the radiative transfer

equation being solved.

Like all of the other previous studies involving both for-

ward modeling and retrieval, we inevitably make a set of both

physical and technical assumptions. However, we use our

nested sampling approach to go a step further: we compute

the Bayesian evidence for models with and without equilib-

rium chemistry. We then compare them in order to formally

quantify whether equilibrium chemistry is a warranted as-

sumption. Instead of assuming a fixed set of cloud param-

eters for each retrieval, as was done by Lee, Heng & Irwin

(2013), we allow our cloud model to be part of the retrieval

and also compare its Bayesian evidence to a retrieval that

assumes a cloudfree atmosphere. In these ways, we allow

model selection based on the Bayesian evidence to inform

us on whether the atmosphere is cloudy or cloudfree and in

chemical equilibrium or disequilibrium.

Figure 8 shows a montage of all of the models tested for

all four HR 8799 exoplanets. Table 1 explains what the la-

bels of the models correspond to. For HR 8799b, c and d,

we see that the Bayesian evidence favors model atmospheres

that are not in chemical equilibrium and are cloudy. For HR

8799e, the relative lack of data, compared to the other HR

8799 exoplanets, means that we are unable to strongly select

between the different models.

Figure 9 shows the best-fit spectra. Our retrieval procedure

generally manages to find good fits to the data, except for

the band-head near 1 µm for HR 8799c. We speculate that

this mismatch could be due to the influence of an additional

molecule we have not included in our analysis, but we deem

it beyond the scope of the present paper to identify it. In the

Appendix, Figure B6 elucidates the effects of using ExoMol

methane and water versus HITRAN methane and HITEMP

water.

For the rest of this paper, we will discuss the retrieved

properties of the HR 8799b, c and d exoplanets based on the

best-fit models only. For HR 8799e, we will discuss results

from the model with equilibrium chemistry and that includes

all four molecules in the retrieval. In Figures B2, B3, B4 and

B5 of Appendix B, we provide the full posterior distributions

of the best models for all exoplanets for completeness.

4.3. Retrieving the Cloud Properties and Inferring Kzz

Figure 10 shows the retrieved posterior distributions of

the cloud particle radius (rc) and composition parameter

(Q0). Unsurprisingly, the retrieved values of Q0 span a broad

enough range (3 to 4 orders of magnitude) that they are un-

informative with regards to distinguishing between different

compositions, consistent with the expectation that the ab-

sorption and scattering properties of the cloud are mainly

determined by the particle size and less by the composition

(Heng & Demory 2013).

The inferred values of rc span a broad range and lie be-

tween about 1 and 100 µm. The presence of these cloud parti-

cles implies that they are being held aloft by atmospheric mo-

tion. Since these exoplanets are not being heavily irradiated

(unlike for hot Jupiters), we can safely assume that the under-

lying mechanism driving this motion is convection (Burrows

et al. 1997; Chabrier et al. 2000; Baraffe et al. 2002) and

estimate approximate values for the associated “eddy diffu-

sion coefficient”, which we denote by Kzz. We use equations

(15) and (17) of Spiegel, Silverio & Burrows (2009), as well

as equations (6) and (8) of Heng & Demory (2013), to calcu-

late the terminal speed associated with a particle of radius rc,

which we denote by vterminal. The eddy diffusion coefficient

is roughly

Kzz ∼ 0.1vterminalH, (19)

where the pressure scale height is H = kBT/m̃g and kB is

the Boltzmann constant. We follow the prescription of Smith

(1998) and use 0.1H as the characteristic length scale, which

is more conservative than what was assumed in Lee, Heng &

Irwin (2013). We note that the preceding expression for Kzz

has no dependence on g, as it appears in the numerator of

vterminal and the denominator of H . We assume the intrinsic

density of the particles to be 3 g cm−3.

In Figure 10, we see that Kzz spans a broad range of val-

ues from ∼ 105 cm2 s−1 to ∼ 1010 cm2 s−1 as rc increases

from 1 µm to 1 mm. The deviation in the curves between

P = 0.1 and 1 bar arises from the Cunningham-Millikan-

Davies “slip factor correction” kicking in when the mean free

path for collisions between the hydrogen molecules becomes

comparable to the cloud particle radius. If we place the re-

trieved values of rc corresponding to the peak of each pos-

terior distribution on the plot, we infer Kzz ∼ 105–108 cm2

s−1, in agreement with Barman et al. (2015). Madhusudhan,

Burrows & Currie (2011) assume Kzz = 102–106 cm2 s−1,

while Barman et al. (2011) and Marley et al. (2012) assume

Kzz = 104 cm2 s−1.

4.4. Retrieving C/O, C/H and O/H for the HR 8799b, c, d

and e Exoplanets and Implications for Planet Formation

4.4.1. The Star of HR 8799

We refer to the “metallicity” as the set of elemental abun-

dances with atomic mass numbers that are larger than that of
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Figure 10. The top and middle panels show the retrieved cloud par-
ticle radius and composition parameter for the HR 8799b, c, d and
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Figure 11. Retrieved C/O values for the HR 8799b, c, d and e di-
rectly imaged exoplanets. The stellar C/O value is about 0.56. PDF
stands for “probability density function”.
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Figure 12. Retrieved C/H values for the HR 8799b, c, d and e di-
rectly imaged exoplanets. The stellar C/H value is about 4.3×10−4.
PDF stands for “probability density function”.

hydrogen and helium. In our current study, these would be

fC ≡ C/H and fO ≡ O/H. For comparison, their values in

the solar photosphere are fC ≈ 3×10−4 and fO ≈ 6×10−4,

such that C/O ≈ 0.5 (Lodders 2003). For the star of the HR

8799 system, Sadakane (2006) has found that

C/H⋆ ≈ 4.3× 10−4, O/H⋆ ≈ 7.6× 10−4, C/O⋆ ≈ 0.56.

(20)

4.4.2. Retrieved C/O, C/H and O/H Values

Given the interest in the possibility of carbon-rich exo-

planets (Gaidos 2000; Kuchner & Seager 2005), our retrieval

analysis yields the posterior distributions of C/O, C/H and

O/H for the atmospheres of HR 8799b, c, d and e in Figures
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Figure 13. Retrieved O/H values for the HR 8799b, c, d and e di-
rectly imaged exoplanets. The stellar O/H value is about 7.6×10−4.
PDF stands for “probability density function”.
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11, 12 and 13, respectively, which we then compare to the

values for the star listed in equation (20). A caveat is that

the retrieved values are only for the gaseous phase and the

true C/O ratio may be hidden in a condensed phase such as

graphite (Moses et al. 2013). The retrieved posterior distri-

butions of C/O and C/H for HR 8799e are not as definitive as

for the other three exoplanets, because its K band spectrum

has not been measured.

4.4.3. Locations of Snowlines/Icelines

Konopacky et al. (2013) have previously estimated that the

H2O, CO2 and CO snowlines or icelines are located at about

10, 90 and 600 AU, respectively. We wish to point out that

the iceline locations depend on the formation history of the

HR 8799 exoplanets.

In Figure 14, we show calculations of the locations of the

CO, CO2 and H2O icelines as functions of the age of the HR

8799 system. We consider two scenarios: an optically thin

disk and a vertically isothermal, passively irradiated disk. For

the optically thin disk, the temperatures are simply the zero-

albedo equilibrium temperatures at a given distance from the

star informed by the Pisa stellar evolution models (Tognelli,

Prada Moroni & Degl’Innocenti 2011). By “passively irra-

diated”, we mean that viscous heating associated with turbu-

lence is neglected (Chiang & Goldreich 1997). Both mod-

els consider the evolution of stellar heating as the star ages.

We expect more sophisticated calculations that involve tem-

perature gradients, photoevaporation and viscous heating to

produce iceline curves that are intermediate between these

two scenarios. The calculations are shown for t = 105 to

107 years, because this encompasses the gas-clearing phase

of the protoplanetary disk. Curiously, the CO2 iceline sits

between different pairs of HR 8799 exoplanets as its location

evolves during the gas-clearing phase (t ∼ 106 years), imply-

ing that a variation in the C/O, C/H and O/H values of these

exoplanets may be a natural outcome of the planet formation

process.

4.4.4. Implications for Planet Formation

Our findings have implications for planet formation, if we

assume the retrieved C/O, C/H and O/H values to be repre-

sentative of the bulk composition of each exoplanet. Öberg,

Murray-Clay & Bergin (2011) have previously elucidated

the chemical signatures associated with the planet forma-

tion mechanism and history of an exoplanet. If an exoplanet

forms by gravitational instability, the zeroth-order expecta-

tion is that its C/O, C/H and O/H values mirror that of the

star, unless late-time accretion occurred. This is clearly at

odds with our inferred values of C/O, C/H and O/H for the

HR 8799b, c, d and e exoplanets.

In the context of the core accretion formation mechanism,

all four exoplanets should have C/O values that are enhanced

above stellar, but below unity, if they formed in-situ and

in between the water and carbon dioxide snowlines/icelines

(Öberg, Murray-Clay & Bergin 2011). Our retrieved values

of C/O for HR 8799b and c are consistent with this scenario,

whereas HR 8799d and e have sub-solar C/O values. Öberg,

Murray-Clay & Bergin (2011) have suggested that substel-

lar C/O values are still consistent with core accretion if the

late-time accretion of planetesimals has occurred to pollute

the atmospheres. The link between late-time planetesimal

accretion and atmospheric composition has been emphasized

by Mordasini et al. (2016). The HR 8799b and c exoplanets

have super-stellar C/H and O/H values, which suggests that

they accreted both carbon- and oxygen-rich ices. The HR

8799d and e exoplanets, which reside closer to the star, have

substellar C/H values but stellar to superstellar O/H values,
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which suggest the accretion only of oxygen-rich ices.

Overall, our retrieved values of C/O, C/H and O/H appear

to be consistent with the core accretion formation mecha-

nism and inconsistent with gravitational instability without

late-time accretion, as has been suggested by, e.g., Kratter,

Murray-Clay & Youdin (2010).

4.4.5. Why Spectroscopy in the K Band is Crucial

A lesson we have learned from our analysis is that spec-

troscopy in the K band is crucial for obtaining meaningful

constraints on C/H and C/O, as it affects the ability of the

retrieval approach to constrain the abundances of CO and/or

CH4. The lack of K band spectroscopy for HR 8799e ham-

pers our ability to make stronger statements on its C/H and

C/O values. These findings have implications for the design

of future instruments on the European Extremely Large Tele-

scope (ELT). Furthermore, multiple wavebands should be

monitored simultaneously in order to detect variability (Apai

et al. 2016).

5. DISCUSSION

5.1. Summary and Comparison to Previous Work

We have presented the complete methodology for a nested

sampling atmospheric retrieval code named HELIOS-R,

which allows us to insert arbitrary prior distributions of pa-

rameters and also compute the full posterior distributions of

the retrieved quantities. In its current implementation, we

used analytical formulae for the forward model, temperature-

pressure profile and equilibrium chemistry, as well as a cus-

tomized opacity calculator (HELIOS-K). By computing the

Bayesian evidence, we can compare models that assume

equilibrium versus unconstrained chemistry and determine

which scenario is favored by the data.

We apply HELIOS-R to the measured spectra of the HR

8799b, c, d and e directly imaged exoplanets. We find that the

outer HR 8799b and c exoplanets are enriched in carbon and

have superstellar and stellar C/O values, respectively. The

inner HR 8799d and e exoplanets are diminished in carbon

and C/O. All four exoplanets are possibly enriched in oxy-

gen relative to the star, which is a clear signature of late-time

accretion of water-rich planetesimals. Figure 15 provides a

summary of our findings. We note that our retrieved water

abundances are about 2 to 3 orders of magnitude higher than

what was found by Madhusudhan et al. (2014) for three hot

Jupiters, although it should be noted that these authors do not

include a cloud model in their retrievals. The inclusion of a

cloud model should worsen the discrepancy between these

outcomes. Our retrieved molecular abundances and C/O for

HR 8799b are in broad agreement with Lee, Heng & Irwin

(2013), despite differences in our retrieval techniques. Table

3 summarizes the properties of the four exoplanets inferred

from the retrieval.

Our conclusions differ somewhat from previous studies,

which reach a diversity of conclusions. Barman et al. (2011)
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Figure 15. Summary of our main results. The top panel shows the
retrieved water mixing ratios and elemental abundances of carbon
and oxygen for all four HR 8799 exoplanets. For HR 8799d and
e, we show the water abundance in chemical equilibrium at 1 bar
(represented by the blue stars). For C/H and O/H, we also show
the corresponding values of the HR 8799 star (horizontal dashed
lines). The bottom panel shows the exoplanetary elemental abun-
dances normalized to their stellar values with the dashed line denot-
ing parity.

used self-consistent models to interpret the H and K band

spectra of HR 8799b. They infer R = 0.75+0.17
−0.12RJ and

M = 0.72+2.6
−0.6MJ. We deem this radius value to be unphys-

ical for the reasons described in §4.1. Marley et al. (2012)

also used self-consistent models and found that if the the-

oretical interpretation is made of the photometry alone, then

the inferred radius for the HR 8799b exoplanet is 1.11 RJ but

with a surface gravity of log g = 4.75, considerably higher

than the log g = 3.5 ± 0.5 value of Barman et al. (2011).

Madhusudhan, Burrows & Currie (2011) used self-consistent
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models7 with various cloud configurations to conclude that

the HR 8799b, c and d exoplanets have masses of 2–12, 6–13

and 3–11 MJ, respectively, and surface gravities log g ≈ 4.

In these studies, solar abundance is assumed. The diversity

of reported results from these studies already hint at the dif-

ficulty of using photometry and spectroscopy to infer the ra-

dius and mass of a directly imaged exoplanet from the tradi-

tional use of forward modeling.

Barman et al. (2015) performed a manual fitting of the H

and K band spectra of HR 8799b and HR 8799c. They first

held the CO and CH4 abundances fixed to their solar val-

ues, then fitted for the abundance of H2O. The bandheads

involving CO and CH4 are masked or excluded from the fit.

Next, the H2O abundance is held at its best-fit value (and

CH4 is again held fixed at its solar value) and the abundance

of CO is inferred. The final step involves fitting for CH4.

Such an approach is plausible as a first step, but does not ex-

plore the model degeneracies. It is likely that the reported

value of C/O = 0.61 ± 0.05 for HR 8799b has uncertainties

that are under-estimated. Barman et al. (2015) themselves

remark that, “The various sources of uncertainty in the mod-

els (are) not accounted for in the formal mole fraction error-

bars.” Building on the work of Barman et al. (2015), Moses

et al. (2016) assumed fixed values for the equilibrium tem-

perature, surface gravity, radius, C/O, metallicity and Kzz, as

well as a fixed temperature-pressure profile. They explored

thermo- and photochemical models of HR 8799b and pro-

duced synthetic spectra that somewhat match the measured

spectrum (see their Figure 14).

Lee, Heng & Irwin (2013) analyzed the HR 8799b exo-

planet and reported super-solar metallicities for their best-

fits, consistent with the present study. They considered two

cloud models, where the monodisperse cloud particle radius

is fixed manually and not formally included as part of the

retrieval. The cloud composition is also assumed to be en-

statite, whereas we have allowed the cloud composition to be

part of the retrieval. The models of Lee, Heng & Irwin (2013)

allowed for R and g to be uniform or log-uniform priors,

whereas in the current study we have chosen R and log g to

be Gaussian priors. Somewhat surprisingly, despite these dif-

ferences, they retrieve a C/O value that is similar to what we

find (see Figure 11). On the technical side, Lee, Heng & Ir-

win (2013) used the NEMESIS code, which implements non-

linear optimal estimation (versus the nested sampling algo-

rithm we implemented). This technique, which is also used

by Barstow et al. (2015), assumes that the priors and poste-

riors are Gaussian and is unable to formally perform model

selection via Bayesian evidence comparison. Lee, Heng &

Irwin (2013) also do not consider equilibrium chemistry in

their comparison of models. (See Line et al. 2013 for a com-

parison of these optimization methods.) Overall, HELIOS-R

implements a number of improvements over NEMESIS that

are more appropriate for the sparse data regime of exoplan-

etary atmospheres (compared to the remote sensing data of

Solar System objects) and is able to more rigorously explore

a broader range of parameter space.

5.2. Opportunities for Future Work

There are ample opportunities for future work. Instead of

unconstrained chemistry, disequilibrium chemistry may be

described by some form of atmospheric mixing (e.g., eddy

diffusion). More molecules may be added to the analysis, in-

cluding acetylene, ethylene and hydrogen cyanide, which are

known to be spectroscopically active in the infrared at tem-

peratures higher than for the photospheres of the HR 8799

exoplanets. Ultimately, it is our hope that the collective body

of work on atmospheric retrieval will stimulate and connect

to work on disk chemistry (e.g., Cridland, Pudritz & Alessi

2016). It will also be insightful to train HELIOS-R on a large

sample of brown dwarf photometry and spectra, as Line et al.

(2015) have done for two T dwarfs.
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APPENDIX

A. ANALYTICAL FORMULA FOR THE EXPONENTIAL INTEGRAL OF THE FIRST ORDER

We may avoid the numerical integration of the exponential integral of the first order by using the approximate, but highly

accurate, analytical formulae presented in Abramowitz & Stegun (1970),

E1 =







− ln∆τ +
∑5

j=0 Aj (∆τ)
j
, ∆τ ≤ 1,

(∆τ)
−1

exp (−∆τ)
∑

4
j=0

Bj(∆τ)4−j

∑
4
j=0

Cj(∆τ)4−j , otherwise.
(A1)

7 Strictly speaking, these are parametric models, because the cloud
physics is not treated self-consistently with the gaseous chemistry and is

instead parametrized.
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Figure A1. Calculations of the diffusivity factor using a canned routine (“exact”) versus those performed using our fitting formulae for E1 in
equation (A1) (“approximate”). The calculation labeled “fit” is a 13th order polynomial fit to the exact solution, which performs poorly even at
the ∼ 10−3 level.

The fitting coefficients Aj , Bj and Cj are given in equations (5.1.53) and (5.1.56) of Abramowitz & Stegun (1970), but we

reproduce them here for convenience: A0 = −0.57721566, A1 = 0.99999193, A2 = −0.24991055, A3 = 0.05519968,

A4 = −0.00976004 and A5 = 0.00107857; B0 = C0 = 1, B1 = 8.5733287401, B2 = 18.059016973, B3 = 8.6347608925,

B4 = 0.2677737343, C1 = 9.5733223454, C2 = 25.6329561486, C3 = 21.0996530827 and C4 = 3.9584969228. As originally

stated by Abramowitz & Stegun (1970), the formula involving Aj has a precision better than 2 × 10−7, while that involving Bj

and Cj is precise to better than 2× 10−8. In Figure A1, we check these claims by evaluating E1 using a canned routine (expint

in IDL) and computing the diffusivity factor using

D = −
1

∆τ
ln
[

(1−∆τ) exp (−∆τ) + (∆τ)
2
E1

]

. (A2)

We label these calculations as “exact”. The calculations labeled “approximate” were performed using the fitting formulae in

equation (A1). We see that the error is better than 10−6. By contrast, a 13th order polynomial fit to the exact solution incurs large

errors (& 10−3).

B. FULL POSTERIOR DISTRIBUTIONS FOR BEST MODELS OF HR 8799B, C, D AND E

For completeness, we show in Figures B2, B3, B4 and B5 the full posterior distributions for our best models of HR 8799b, c,

d and e, which elucidate the model degeneracies between each pair of parameters.
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Figure B6. Elucidating the effects of using different spectroscopic line lists. The dashed curves in each panel show the retrievals using ExoMol
data for water and methane. The red, continuous curves use the retrieved parameters to produce model spectra but using HITEMP water and
HITRAN methane (post-processing).
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