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A B S T R A C T
One of the most well-known tests of general relativity (GR) results from combining
measurements of the anomalous precession of the orbit of Mercury with a determination of
the gravitational quadrupole moment of the Sun J2. The latter can be done by inference from an
integral relation between J2 and the solar internal rotation. New observational data of high
quality obtained from the Solar Heliospheric Satellite (SoHO) and from the Global Oscilla-
tions Network Group (GONG) allow the determination of the internal rotation velocity of the
Sun as a function of radius and latitude with unprecedented spatial resolution and accuracy. As
a consequence, a number of global properties of the Sun can also be determined with much
higher accuracy, notably the gravitational quadrupole moment of the Sun. The anomalous
precession of the orbit of Mercury is primarily due to GR effects, but there are classical
corrections, the largest of which is that due to J2. It is shown here that the data are currently
consistent with the predictions of GR.
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1 I N T RO D U C T I O N

For observations that are well resolved in space and in time the
oscillation of the Sun can be decomposed into its pulsation
eigenmodes, which are products of functions of radius and of
spherical harmonic functions. Each mode, and therefore each
measured oscillation frequency, is uniquely identified by three
numbers: the radial order n, and the degree l and the azimuthal
order m of the spherical harmonic. The solar rotation produces
oscillation frequencies that are split into multiplets. The relation-
ship between the mode frequencies and the rotation is

2p
nnlm ¹ nnl ¹m

2m
¼

�1

0

�1

¹1
dx d cos v Knlmðx; vÞQðx; vÞ; ð1Þ

where x ¼ r=R( is the fractional radius, R( is the radius of the Sun,
and v is the colatitude. The Knlm are the mode kernels for rotation.
The Global Oscillations Network Group (GONG) produces values
for the splittings through their data reduction pipeline which are
then available for inversion of the above integral relation. The Solar
Heliospheric Satellite (SoHO) SOI/MDI instrument pipeline gen-
erally produces Ritzwoller–Lavely a-coefficients (Ritzwoller &
Lavely 1991), instead of individual splittings. The relation between
these a-coefficients and the rotation rate is a linear integral equation
very similar to (1) although with different kernels. Explicit expres-
sions for the kernels for both cases can be found in e.g. Pijpers
(1997).

Using these data it is possible to determine the internal
rotation rate of the Sun using inverse techniques. Results of
such inversions can be found in e.g. Thompson et al. (1996) and
Schou et al. (1997). Apart from the resolved rotation rate, there
are some global properties of the Sun of astrophysical interest,

which are related to the internal rotation rate through integral
equations. One of these quantities is the total angular momentum
H of the Sun which is related to the internal rotation rate
through

H ;
�1

0
dx
�1

¹1
d cos vIQðx; vÞ; ð2Þ

with the moment of inertia kernel I
I ¼ 2pR5

(rx4ð1 ¹ cos2 vÞ; ð3Þ

where r is the density inside the Sun. Another is the total kinetic
energy T in rotation which is given by

T ;
�1

0
dx
�1

¹1
d cos v

1
2

IQ2ðx; vÞ: ð4Þ

Since the total angular momentum is related linearly to the rotation
rate Q, it is possible to construct the kernel I directly from a linear
combination of the individual model kernels (or a-coefficient
kernels) using for instance the technique of Subtractive Optimally
Localized Averages (SOLA) (cf. Pijpers & Thompson, 1992, 1994,
1996), as was done using GONG data by Pijpers (1998). This avoids
the circuitous route of first determining the resolved rotation rate
and then re-integrating. The reasons for doing this are that it can
have better properties from the point of view of propagation of the
measurement errors, as well as avoiding systematic errors intro-
duced at each computational step, and it is computationally much
less expensive. It is not possible to do the same for the kinetic
energy since this is quadratic in the rotation rate. To determine T ,
either one has to follow the route of determining the resolved
rotation rate, taking the square and then re-integrating, or one must
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make use of the second-order splittings which are generally much
less well-determined and are affected by physical effects other than
rotation, such as internal magnetic fields (cf. Gough & Thompson
1990).

Another quantity of particular interest is the gravitational quad-
rupole moment J2 of the Sun, caused by its flattening owing to the
rotation. The gravitational quadrupole moment J2 of the Sun is that
component of the gravitational field corresponding to the second
Legendre polynomial as a function of co-latitude in an expansion of
the gravitational field on Legendre polynomials. It is related to the
solar oblateness Df, the ellipticity of the visible solar disc after
correcting for the centrifugal force, as J2 ¼ 2

3 Df. The gravitational
quadrupole moment of the Sun modifies the precession of the orbits
of the planets. Therefore in using for instance the precession of the
orbit of Mercury for testing the prediction from GR, it is necessary
to know J2. Expressions for the integral relation between J2 and the
internal rotation rate of the Sun have been derived for special cases
of a rotation rate dependent on the radius only, or on simple
parametrizations with respect to latitude (cf. Gough 1981, 1982;
Ulrich & Hawkins 1981). More general expressions have been
given by Dziembowski & Goode (1992), who expand the rotation
rate by projection on to Legendre polynomials. However, it can be
shown that this is a somewhat cumbersome approach, and quite
simple expressions can be found even for a general distribution of
Qðx; vÞ.

In Section 2, the integral relation between the gravitational
quadrupole moment of the Sun and a general internal rotation
rate is given. In Section 3 the results are given of performing the
direct inversion for H, and the values for T and J2 obtained by taking
the square of the resolved rotation rate and re-integrating, using data
from GONG and from SOI/MDI on board SoHO. Conclusions are
also presented in Section 3.

2 T H E G R AV I TAT I O N A L Q UA D R U P O L E
M O M E N T

The general expressions relating the various moments of the
gravitational potential of rotating stars to their rotation rate have
been given by Goldreich & Schubert (1968) and by Lebovitz
(1970). These lead to what are essentially Clairaut–Legendre
equations for the moments. For convenience the steps will
be briefly repeated here. The starting point is Poisson’s
equation which relates the gravitational potential to the density
distribution:

=2f ¼ ¹4pGr; ð5Þ

and the equation of motion

r=f ¼ =p ¹ rQðr; vÞ2r sin vÃ; ð6Þ

where f is the gravitational potential, G is the constant of gravity, r
and p are the gas density and pressure respectively, and Q is the
rotation rate which is a function of radius r and co-latitude v. Ã is a
unit vector perpendicular to the rotation axis. Writing equation (6)
out in components yields

r
∂f

∂r
¼

∂p
∂r

¹ rrð1 ¹ u2ÞQðr; uÞ2
;

r
∂f

∂u
¼

∂p
∂u

þ rr2uQðr; uÞ2
;

ð7Þ

in which u ; cos v. Following the treatment of Goldreich &

Schubert (1968) and Lebovitz (1970) for slowly rotating stars, all
quantities are described in terms of perturbations of the spherically
symmetric non-rotating star, i.e. Q2 is treated as a quantity of first
order in a small-parameter expansion. Subscripts 0 refer to the non-
rotating configuration, and 1 to the perturbed quantities. Collecting
the first-order terms in the perturbation analysis of equation (7),

r0
∂f1

∂r
þ r1

∂f0

∂r
¼

∂p1

∂r
¹ r0rð1 ¹ u2ÞQðr; uÞ2

;

r0
∂f1

∂u
¼

∂p1

∂u
þ r0r2uQðr; uÞ2

:

ð8Þ

Of interest for the quadrupole moment of the gravitational potential
is the projection on to the Legendre polynomial P2ðuÞ ¼

ð3u2 ¹ 1Þ=2. In the first equation of (8) all terms are multiplied by
5
2 P2ðuÞ and then integrated over u. The second equation would yield
0 ¼ 0 since all its terms are odd in u. Therefore this equation is first
integrated in u and then projected. In the following the subscripts 12
refer to the part of the first-order perturbed quantities corresponding
to these P2 Legendre polynomial projections.

r0
∂f12

∂r
þ r12

∂f0

∂r
¼

∂p12

∂r
¹ r0r

�1

¹1
du

5
3

1 ¹ P2ðuÞ
� �

× P2ðuÞQðr; uÞ2
;

r0f12 ¹ p12 ¼ r0r2
�1

¹1
du

5
2

P2ðuÞ

�u

¹1
dv vQðr; vÞ2

:

ð9Þ

The double integral in the second equation can be re-written, using
partial integration:�1

¹1
du

5
2

P2ðuÞ

�u

¹1
dvvQðr; vÞ2

¼
5
4

u3 ¹ u
ÿ � �u

¹1
dvvQðr; vÞ2

� �1

¹1

�
¹

�1

¹1
du u3 ¹ u
ÿ �

uQðr; uÞ2
�

¼
5
4

�1

¹1
du u2 ¹ u4ÿ �

Qðr; uÞ2
:

ð10Þ

The second equality of equation (9) can be used to eliminate p12

from the first of (9). After some rearranging the result is

r12
∂f0

∂r
¼ f12

∂r0

∂r
¹

∂
∂r

r0r2GðQÞ
� �

¹ r0r
�1

¹1
du

5
3

1 ¹ P2ðuÞ
� �

P2ðuÞQðr; uÞ2
;

p12 ¼ r0f12 ¹ r0r2GðQÞ;

ð11Þ

where G is defined by

GðQÞ ;
5
4

�1

¹1
du u2 ¹ u4ÿ �

Qðr; uÞ2
: ð12Þ

The relevant equations from the perturbed Poisson equation (5)
are

1
r2

∂
∂r

r2 ∂f0

∂r

� �
¼ ¹4pGr0;

∂2f12

∂r2 þ
2
r

∂f12

∂r
¹

6
r2 f12 ¼ ¹4pGr12; ð13Þ
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in which r12 can now be substituted using the first of equations
(11):

∂2f12

∂r2 þ
2
r

∂f12

∂r
¹

6
r2 f12 ¼

4pr2

Mr

�
f12

∂r0

∂r

¹
∂
∂r

r0r2GðQÞ
� �

¹r0r
�1

¹1
du

5
3

1 ¹ P2ðuÞ
� �

P2ðuÞQðr; uÞ2
�
;

ð14Þ

in which use has been made of the mass within radius r:

Mr ;
�r

0
dr04pr0r02

: ð15Þ

Now define the linear differential operator L:

Lf12 ;
∂
∂r

r2 ∂
∂r

� �
¹ 6 þ

4pr4

Mr

∂r0

∂r

� �� �
f12; ð16Þ

and a function f :

f ðrÞ ; ¹
4pr4

Mr

�
r2 ∂

∂r
r0GðQÞ
� �

þ r0r

�
2GðQÞ

þ

�1

¹1
du

5
3

1 ¹ P2ðuÞ
� �

P2ðuÞQðr; uÞ2
��

¼ ¹
4pr4

Mr

�
r2 ∂

∂r
r0GðQÞ
� �

¹ r0r

×
�1

¹1
du

5
4

u2 ¹ 1
ÿ �

5u2 ¹ 1
ÿ �

Qðr; uÞ2
�
;

ð17Þ

so that f12 is the solution of Lf12 ¼ f ðrÞ: This equation can be
solved used Green’s functions. For r > R( the density r0 ; 0 and
therefore f ðrÞ ; 0. An exact solution is then f12 ¼ r¹3. If another
solution w of Lw ¼ 0 is constructed that is regular at r ¼ 0 the
general solution is

f12ðRÞ ¼

�∞

0
dzGðR; zÞf ðzÞ; ð18Þ

with Green’s function

GðR; zÞ ¼

wðRÞz¹3

z2WðzÞ
0 # R # z;

wðzÞR¹3

z2WðzÞ
0 # z # R;

8>>><>>>: ð19Þ

where WðzÞ is the Wronskian of the solutions r¹3 and w:

WðzÞ ¼
w z¹3

w0 ¹3z¹4

�����
����� ¼ ¹z¹6 d

dz
ðz3wÞ: ð20Þ

Since r¹3 is not a solution of Lw ¼ 0 for r < R(, this equation is
only valid for R $ R(. Of interest here is the solution f12 at
R ¼ R(. If in (18) R is replaced with R(, z2WðzÞ can be replaced
with R2

(WðR(Þ, which can be verified by substitution of (18) into
(14). Since f ðrÞ ¼ 0 for r > R(, the expression for f12ðR(Þ sim-
plifies to

f12ðR(Þ ¼ ¹R¹3
( r¹4 d

dr
ðr3wÞ

� �¹1

r¼R(

�R(

0
dz wðzÞf ðzÞ: ð21Þ

The solar oblateness Df is related to f12 as

Df ¼ ¹
3
2

R(

GM(

f12ðR(Þ: ð22Þ

Substituting the expressions for f12 and f ðrÞ,

Df ¼
2pR2

(

GM(

d
dr

ðr3wÞ

� �¹1

r¼R(

�R(

0
dr

(
¹3r6wðrÞ

Mr

×
∂
∂r

r0G
� �

þ
3r6wðrÞ

Mr

r0

r

" �1

¹1
du

5
4

u2 ¹ 1
ÿ �

× ð5u2 ¹ 1ÞQðr; uÞ2

#)

¼
2pR2

(

GM(

d
dr

ðr3wÞ

� �¹1

r¼R(

�R(

0
dr

(
3r0G

×
∂
∂r

r6wðrÞ
Mr

 !
þ

3r6wðrÞ
Mr

r0

r

×
�1

¹1
du

5
4

u2 ¹ 1
ÿ �

5u2 ¹ 1
ÿ �

Qðr; uÞ2
� ��

¼
2pR2

(

GM(

d
dr

ðr3wÞ

� �¹1

r¼R(

�R(

0
dr
�1

¹1
du

×
15
4

r0
∂
∂r

r6wðrÞ
Mr

 !
ðu2 ¹ u4Þ

"

þ
15
4

r6wðrÞ
Mr

r0

r
u2 ¹ 1
ÿ �

5u2 ¹ 1
ÿ �#

Qðr; uÞ2
;

ð23Þ

in which the second equality is obtained by partial integration, and
the third is a re-arranging of terms making use of the definition (12)
of G.

For an Q that is a function of r only, integration over u of the
second term between square brackets in (23) is identical to 0 and the
first term reduces to

r0
∂
∂r

r6wðrÞ
Mr

 !
Qðr; uÞ2

:

Equation (23) then reduces to equation (12) of Gough (1981). Once
the density r0ðrÞ of the Sun is known, it is trivial to calculate the
two-dimensional kernel:

F ðr; uÞ;
15pR2

(

2GM(

d
dr

ðr3wÞ

� �¹1

r¼R(

r0

r
r6wðrÞ
Mr

 !

×
∂ ln r6wðrÞ

Mr

� �
∂ ln r

u2 ¹ 5u2 ¹ 1
ÿ �24 35 1 ¹ u2ÿ �

:

ð24Þ

Determining Df is thus reduced to evaluating the two-dimensional
integral:

Df ¼

�R(

0
dr
�1

¹1
du F ðr; uÞQðr; uÞ2

: ð25Þ

Direct inversion would have to make use of the second-order
splittings in an inverse problem, so the same route is followed as
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with the kinetic energy T: the resolved Q2 is multiplied with F and
integrated.

Using the standard solar model S of Christensen-Dalsgaard (cf.
Christensen-Dalsgaard et al. 1996), the kernels I and F were
calculated, and normalized to have unit integral over the solar
volume. Contour plots in one quadrant are shown in Fig. 1. The
other quadrants can be obtained by reflection in the coordinate axes.

3 R E S U LT S A N D C O N C L U S I O N S

Two independent data sets have been used to determine the total
solar angular momentum, the total kinetic energy and the gravita-
tional quadrupole moment. One data set is in the form of splittings
obtained with the Earth-based GONG network of telescopes:
33 169 splittings distributed over 542 complete multiplets with
7 # l # 150 and 1:5 < n < 3:5 mHz gathered from GONG months
4 to 10. The other data set is in the form of a-coefficients gathered
from 144 d out of the first 6 months of operation of the SOI/MDI
instrument on board the SoHO satellite. The data consist of 414
multiplets with 1 # l # 250 and 1:0 < n < 4:2mHz, and the odd a-
coefficients up to at most a35 are available.

The GONG data lead to the values

Hd ¼ 186:3 6 2:4ð Þ × 1039 kg m2 s¹1
;

Hi ¼ 186:3 6 3:7ð Þ × 1039 kg m2 s¹1
;

T ¼ 245:5 6 9:8ð Þ × 1033 kg m2 s¹2
;

J2 ¼ 2:14 6 0:09ð Þ × 10¹7
:

ð26Þ

The MDI data lead to the values

Hd ¼ 192:3 6 1:9ð Þ × 1039 kg m2 s¹1
;

Hi ¼ 192:9 6 3:9ð Þ × 1039 kg m2 s¹1
;

T ¼ 262:5 6 10:0ð Þ × 1033 kg m2 s¹2
;

J2 ¼ 2:23 6 0:09ð Þ × 10¹7
:

ð27Þ

The subscript d refers to a determination directly from the data
using the freedom of the SOLA method to construct the kernel
directly; the subscript i refers to the indirect method, which is re-
integrating the resolved Q. T and J2 have been determined by re-
integration only. Since the direct method should suffer much less
from systematic effects, the value Hi is shown merely to demon-
strate consistency between the two methods. Error-weighted means
for Hd; T ; and J2 are

H ¼ 190:0 6 1:5ð Þ × 1039 kg m2 s¹1
;

T ¼ 253:4 6 7:2ð Þ × 1033 kg m2 s¹2
;

J2 ¼ 2:18 6 0:06ð Þ × 10¹7
:

ð28Þ

This determination of J2 is entirely consistent with that of Paternó,
Sofia & DiMauro (1996) who used direct oblateness measurements
of the solar disc to infer the quadrupole moment.

One of the most well-known tests of GR results from combining
measurements of the precession of the orbit of Mercury (cf.
Shapiro, Counselman & King 1976; Anderson et al. 1987, 1991,
1992) with a determination of the gravitational quadrupole moment
of the Sun J2. In the fully conservative parametrized post-Newtonian
(PPN) formalism, the predicted advance Df0 per orbital period of a
planetary orbit with semi-major axis a and eccentricity e, after

correcting for perturbations owing to other planets, is

Df0 ¼
6pGMlp

að1 ¹ e2Þc2 ð29Þ

where

lp ¼
1
3
ð2 ¹ b þ 2gÞ þ

R2c2

2GMað1 ¹ e2Þ
J2: ð30Þ

Here M and R are the mass and radius of the Sun, G is the
gravitational constant, and c is the speed of light. The parameters
b and g are the Eddington–Robertson parameters of the PPN
formalism (cf. Misner, Thorne & Wheeler 1973), which in general
relativity are equal to 1. For Mercury the above relation (29) reduces
to

Df0 ¼ 42:9794lp arcsec century¹1 ð31Þ

and (30) is

lp ¼
1
3
ð2 ¹ b þ 2gÞ þ 2:96 × 103 × J2: ð32Þ
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Figure 1. The normalized kernel I for determination of the total solar
angular momentum and kinetic energy (top panel), and the kernel F for the
determination of the gravitational quadrupole moment of the Sun. Contour
intervals are 0.1 for both kernels.
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Shapiro et al. (1976), using planetary radar ranging, found an
anomalous precession for Mercury’s orbit of 43:11 6 0:21. Using
radar and spacecraft ranging, Anderson et al. (1987) found
42:92 6 0:20, and an update (Anderson et al. 1991) gives the
value 42:94 6 0:20. The most recent result reported by Anderson
et al. (1992) is 43:13 6 0:14. Combining the most recent value for
the anomalous precession of Mercury’s orbit and the value for J2

given above in equations (28) yields

1
3
ð2 ¹ b þ 2gÞ ¼ 1:003 6 0:003: ð33Þ

The error quoted here is entirely due to that in the planetary ranging
data, since the error due to the uncertainty in J2 is two orders of
magnitude smaller.

In this paper it is thus demonstrated that the total solar angular
momentum, its total kinetic energy in rotation, and the solar
gravitational quadrupole moment can be determined through
inverting integral equations that are linear in the rotation rate Q or
in its square, with known integration kernels. The value of the
gravitational quadrupole moment (28), when combined with pla-
netary ranging data for the precession of the orbit of Mercury, yields
a value for the combined PPN formalism parameters (33) which is
consistent with GR in which this combination is predicted to be
exactly equal to unity. More stringent tests of GR using the orbit of
Mercury rely on measuring its orbital precession with much greater
precision.
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