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INTRODUCTION

ABSTRACT

The discontinuity in the derivatives of the sound speed at the base of the overshoot
layer below the solar convection zone introduces a characteristic oscillatory com-
ponent in the frequencies of solar p-modes as a function of the radial order n. The
amplitude of this oscillatory part is calibrated as a function of the extent of overshoot
using a sequence of solar models constructed with varying extent of overshoot. Using
this calibration, an attempt is made to measure the extent of overshoot below the solar
convection zone using the available frequencies of the p-modes. It is found that the
observed frequencies are consistent with a solar model without overshoot. Further,
taking account of the errors in observations, it is possible to put a 2 upper limit of
0.1 H, on the extent of overshoot.

Key words: convection — Sun: interior - Sun: oscillations.

consistency of the mixing length theory, Antia & Chitre

It is generally accepted that there is no adequate theory to
describe astrophysical convection. In particular, there is no
agreement among different theories about the extent of over-
shoot from stellar convection zones (Renzini 1987). From
laboratory experiments and meteorological observations (cf.
Townsend 1966; Deardorff, Willis & Lilly 1969) there is
evidence for appreciable penetration of convective motions
beyond the unstable region as determined by the Schwarzs-
child criterion. Similarly, numerical simulations of penetra-
tive convection also show substantial overshoot (Hurlburt,
Toomre & Massaguer 1986). The only overshoot layer in
stars that is directly accessible to observations is the region
above the solar photosphere, where again there is evidence
for substantial overshoot (Keil & Canfield 1978). On the
basis of these results, it is sometimes concluded that there is
substantial overshoot below the solar convection zone, as
well as beyond the convective cores of massive stars.
Stothers & Chin (1992) have, however, analysed data involv-
ing the maximum effective temperature of hot evolved stars
in certain clusters to conclude that the data are consistent
with no overshoot from the convective cores in these stars.
They also set an upper limit of 0.2 H,, (where H,, is the local
pressure scaleheight) for the extent of overshoot on the basis
of their analysis. Similarly, using arguments based on the

(1993) found an overshoot of about 0.1H, below the solar
convection zone. Clearly, since the overshoot layer below the
solar convection zone is not directly observable, it would be
interesting to estimate its thickness using the available helio-
seismic data (Libbrecht, Woodard & Kaufman 1990).

All reasonable models of convection dynamics (e.g. Zahn
1991) indicate that the overshoot layer below the base of the
solar convection zone is almost adiabatically stratified and is
followed by an almost discontinuous transition to radiative
stratification below the base of the overshoot layer. Gough
(1990) has shown that abrupt changes of this type contribute
a characteristic oscillatory component to the frequencies v, ,
of those p-modes that penetrate beyond the base of the over-
shoot layer. This oscillatory component can be extracted by
taking second differences, 6?v, ,=v, ., ,—2v, ,tv,_, of
the frequencies with respect to the radial order » for a given
degree £. The amplitude of these oscillations depends on the
‘severity’ of the discontinuity, which in turn depends on the
extent of overshoot. In models without any overshoot the
first derivative of temperature (d 7/dr), and hence that of the
sound speed, is continuous, while the second derivative is
discontinuous. This leads to a mild discontinuity at the base
of the convection zone. On the other hand, in models with
overshoot below the convection zone, the first derivative of
the sound speed itself is discontinuous at the base of the
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overshoot layer, where the temperature gradient jumps from
the adiabatic to the radiative value. Further, the amount of
discontinuity in the first derivative increases with the extent
of overshoot. Thus the amplitude of these oscillations in the
frequency can be calibrated as a function of the extent of
overshoot by constructing solar models with different
amounts of overshoot, and the extent of overshoot in the Sun
may be surmised by comparing the amplitude obtained from
solar oscillation data against the calibration.

Using this technique, Monteiro, Christensen-Dalsgaard &
Thompson (1993a,b) tried to estimate the extent of over-
shoot below the solar convection zone. They found that the
amplitude estimated using the observed frequencies is
essentially consistent with a model without overshoot. The
same conclusion was drawn by Gough & Sekii (1993) and
Roxburgh & Vorontsov (1993). In fact, the amplitude from
the solar data is slightly smaller than that for a solar model
without overshoot, and hence it appears that the actual Sun
may be even smoother than the model without overshoot.
However, since the amplitude is fairly small, it is difficult
to estimate the effect of errors in observed frequencies.
Further, in addition to the oscillatory part, there is a smooth
component of the frequency which is difficult to remove
in an unambiguous manner. In fact, Berthomieu et al. (1993)
considered the relative differences between observed solar
frequencies and those computed for solar models to
conclude that the solar data resemble more closely a model
with overshoot than one without. Monteiro et al. (1993b)
have pointed out that it may be difficult to draw any con-
clusions from a straightforward comparison of frequency
differences between the Sun and a model, because of con-
siderable uncertainties in the frequencies introduced by the
outer layers of the solar convection zone, which are not very
well understood. Clearly, it is necessary to perform an inde-
pendent analysis of the data to ascertain the extent of over-
shoot below the solar convection zone. In particular, the
systematic errors in the earlier studies can be estimated only
by a study using an independent numerical procedure.
Monteiro et al. (1993a) used the second difference of the
frequency to extract the oscillatory part, while Monteiro et al.
(1993b) extracted the oscillatory part directly from the
frequencies. They do not, however, appear to have taken
account of the fact that the amplitude of the oscillatory
component can also be a function of ¢. Roxburgh &
Vorontsov (1993) attempted to measure the phase shift
introduced at the base of the convection zone using a
second-order asymptotic technique. They derived an upper
limit of 0.35H,, on the extent of overshoot.

For the present work we have constructed a number of
solar models with varying extent of overshoot and depth of
the convection zone. For each of these models, the frequen-
cies v, , are computed and the amplitude of the oscillatory
component is determined. Higher (fourth, sixth and eighth)
order differences are used to extract the oscillatory com-
ponent from the frequencies. The same exercise is repeated
for the observed frequencies to find the amplitude of the
oscillatory part, which can be compared against our models
to determine the extent of overshoot in the Sun. Preliminary
results from our work were presented in Basu, Antia &
Narasimha (1993), where the variation of amplitude with ¢
was not accounted for. In the present work, we have included
this variation, which results in significantly better fits.

2 THE BASIC TECHNIQUE

The basic principle behind this approach can be understood
by considering a simple two-layer model (Gough 1990;
Gough & Sekii 1993) with a discontinuity in both the sound
speed and the Brunt-Viisdla frequency at the interface
located at a radial distance of r,. Let k,; be the wavenumber
in the region above r =ry, where the wavefunction is of the
form Bsin(k,, r). Similarly, let k% =k?%(1+ ¢) be the wave-
number in the region below the discontinuity, where the
wavefunction is of the form C sin(k,,r + ¢). The local wave-
number k, for solar oscillations is given by (Deubner &
Gough 1984; Christensen-Dalsgaard & Berthomieu 1991)

2 2 2 2
w w, S N
k3=_2[1"?’"—lz(1_‘a?)j|’ (1)

where c is the sound speed and w_, N and S, are, respec-
tively, the acoustic cut-off frequency, the Brunt-Vaisild
frequency and the Lamb frequency. The phase shift ¢ intro-
duced at r =ry can be estimated by demanding continuity of
the wavefunction and its first derivative at r =r, to get

tan(krlrd‘}]-+e+¢)
Jl+e .

While deriving this expression we have neglected the term
involving dH/dr (where H is the scaleheight) in w,, which
should behave like a delta function at the discontinuity, in
models with overshoot. In the presence of this term, the
derivative of the wavefunction will not be continuous, thus
leading to some additional terms in equation (2) (Gough &
Sekii 1993; Monteiro, Christensen-Dalsgaard & Thompson
1994). Apart from this, there could be other terms arising
from the fact that the wavefunction is not strictly sinusoidal.
For simplicity, we have neglected all these effects.

After some algebraic manipulation, it can be shown that,
to the first order in ¢, the phase shift can be written as

tan(krl rd) =

(2)

1 € .,
¢~ ~5 ek, rq +Z sin(2k,, ry). (3)

Application of the boundary condition at the lower
boundary r =r, yields the dispersion relation

koro+é=nn+a, (4)

where a is a suitable constant which is supposed to take care
of the behaviour of the wavefunction near the turning points.
This equation gives a relation between the oscillatory part in
the frequency and that in the phase shift ¢.

Although, in the simple model considered here, we
assume a discontinuity in the sound speed at the base of the
convection zone or the overshoot layer, the discontinuity is
actually in the first (or second) derivative of the sound speed.
However, if we consider the changes in sound speed for
various solar models with differing depths of the convection
zone, it is found that there is a sharp change in the sound-
speed difference just below the depth of the shallower
convection zone. We are effectively approximating this sharp
change by a step function. Variations in the sound speed over
length-scales comparable to or larger than the wavelength of
the p-modes will not contribute to the oscillatory signal and
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will only give rise to a smooth variation in the frequency. In
models with overshoot, the acoustic cut-off frequency will
have a term involving a delta function at the discontinuity;
this has been neglected in our simplified treatment.

To a first approximation, the slow variation of k,
with radius can be taken into account by replacmg k,r by
Kk, drin equations (2), (3) and (4). Thus, assuming o, and
S, to be small compared to w, equation (3) can be written as

1% +
b= —Le| kdrtEsin|2or- B VEFL L1 (s
2 ), 4 W )
where
R R R
°dr ¢ ,dr °cdr
o A
n € . ¢ W r

Here the phase v is introduced to take care of the behaviour

of k, near the upper turning point where w,/w is not small. In

general, the quantity y itself could be a function of w, but for

simplicity we assume it to be a constant, since at least some

of the w dependence could be absorbed in the other terms.
From the definition of k,,, we find that

ok?
k2 ’

(7)

€=

where 0k? is the discontinuity in the wavenumber at r=r,.
The discontinuity in the wavenumber is due to two factors -
the discontinuity in the sound speed, dc, at r=r4, and the
fact that the Brunt-Vaisila frequency, N, rises from a value
close to zero in the convection zone and overshoot layer to a
finite value immediately below r =r,. Thus using

. 8Tl 24(2+1)

¢
oi=fS aa si=S2 8)
where g is the acceleration due to gravity and I', =(0 In P/
01n p),4, we get
o T} Oc £(¢+1 N’
ok?= 2—‘“——"3 c AN (9)
c c o’

Assuming that w,, S, and N are small relative to w, and
retaining the leading terms, we get

Z(Z+ 1)1\/2c2
r w

22 2
o, 1 6c[g I 2c z(f+1)]+
r

(10)

Adopting the typical values of dc and N? from solar models,
it can be seen that the first term makes the dominant contri-
bution to €. Further, €, and hence the amplitude of the oscil-
latory component in the frequency, also depends on £.

Thus from equation (4) we see that, to first order, the
frequency can be written in the form

y = ne
o (11)
(L+1
_"s(”,f)—isin 2wr—£—z_(_)+¢ ’
41, ® o

where
Ro

ro=J & (12)
Ty c

v,(n, £) is the smooth component of the frequency, and e is
given by equation (10). It may be noted that this is a rather
crude derivation of the oscillatory part, since the lower
turning point r, itself will be a function of ¢ and n and,
furthermore, other terms in &, have also been neglected to
replace the integral by 7, on the left-hand side of equation (4).
The higher order terms in these approximations may intro-
duce more terms in the amplitude, but these terms, which
also depend on ¢ or w, may be expected to be of the same
form as those in equation (10). Thus this equation may serve
as a good guide for choosing a functional form to be fitted to
the frequencies in order to estimate the amplitude of the
oscillatory component, and that is the only purpose for
which it is used in the present study. A detailed analysis of
the oscillatory contribution due to discontinuities in the
derivatives of the sound speed has been carried out by
Monteiro et al. (1994).

The oscillatory component in equation (11) is very small,
with an amplitude of the order of a few hundredths to a few
tenths of a uHz, while the smooth component is of the order
of mHz. It is therefore difficult to filter out the oscillatory
signal from the frequencies themselves. One way to extract
this signal is to follow the suggestion by Gough (1990) and
take the second difference of the observed frequencies. In the
second difference, the oscillatory component will dominate
over the smooth part and hence can be easily detected. The
dominant component of the oscillatory part in equation (11)
can be written as A sin(2w7). Further, for large n we can
approximate = w,+ an, where w, and a are constants.
With these approximations, the second difference of
equation (11) yields

0%v=0%v,+4A sin’(za) sin(2w7). (13)

Thus the amplitude of the oscillatory component in the
second difference is 4 sin’(ra)=~3.6 times that in the
frequency, while the smooth component may be expected to
be diminished when differences are taken. Compared to this,
the second derivative of the frequency is given by

d 1; dy, ——+4A(ra)’ sin(2w7). (14)
dn® dn®
Since Ta =2, the two expressions have completely different
amplitudes for the oscillatory component. This is to be
expected, since the second difference cannot be expected to
approximate the second derivative in such situations.
Because of the inherent discretization in the frequencies, 7 is
constrained to be an integer, and it is not possible to estimate
the derivative to any reasonable accuracy using numerical
values of the frequencies.

It may be noted that Monteiro et al. (1993a) estimate the
second derivative using a cubic spline. Fig. 1 shows the
second difference, as well as the second derivative computed
using a cubic spline for £=15 p-modes of a solar model. It is
clear from the illustrations that the two estimates of the
second derivative are completely at variance, and that the
amplitude of the oscillatory component in the second deriva-
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tive (using a cubic spline) is higher than that in the second
difference, although not by the expected ratio between
d?v/dn? and 6?v. Neither of these estimates can be expected
to approximate the true second derivative. Note that, in this
figure, the smooth part of the frequency has not been
removed. Further, it is also clear from this figure that the
number of points for a single value of ¢ is not sufficient to
define the oscillatory part uniquely. It is also difficult to
separate the smooth and the oscillatory components in the
frequency using only one value of ¢. Consequently, it is
highly desirable to combine the data for different values of /.

Combination of modes with different values of ¢ is also
difficult because the smooth part of the frequency has some ¢
dependence which is not very easy to eliminate in an un-
ambiguous manner. It is found that this smooth part is rather
small at larger frequencies (v> 3.5 mHz), but unfortunately
the observations in this frequency range are not sufficiently
accurate for any meaningful estimate of the small oscillatory
signal. In order to overcome this problem, we take higher
differences of the frequency, since in the higher differences
the contribution due to the smooth part is decreased, while
that due to the oscillatory component is enhanced. More-
over, most of the ¢ dependence in the smooth part is
eliminated in the fourth difference, v, which makes it poss-
ible to combine the data for different values of ¢. If we con-
sider the sixth difference, there is very little contribution
from the smooth component, while in the eighth difference
the smooth component is barely noticeable. As the order of
the difference increases by two, the amplitude of the oscilla-
tory component increases by a factor of 4 sin?(az). How-
ever, the errors in observations also get enhanced in the
higher differences. For example, if all the observed frequen-
cies have the same standard deviation o, then, assuming that

6% or v” (uHz)

v (mHz)

Figure 1. The second difference 62v and the second derivative
(calculated using a cubic spline) of the frequency with respect to 7 as
a function of the frequency v for the degree £ =5 for model M1. The
open and filled circles respectively mark the difference and the
derivative. The dashed line is a cubic spline through the differences,
while the solid line is a spline through the derivatives.

the errors in different frequencies are uncorrelated, the
corresponding variance in the second difference is =2.5¢,
while those in the fourth, sixth and eighth differences are
=8.40, 3040 and 113.40, respectively. Thus the variance
increases by a factor of =~ 12 in going from the second to the
sixth difference, but then this increase is essentially compen-
sated by a similar increase in the amplitude of oscillations. It
may be noted that, since the oscillatory part of the frequency
is not a pure sine function, the process of differencing will
also introduce additional terms in the amplitude which
depend on ¢ or w. In this manner the form of amplitude
given by equation (10) can serve only as a rough guide to the
amplitude of the oscillatory part of the differences.

For the present study we have computed a series of
models with varying extent of overshoot and depth of
convection zone. For each of the models, we compute the
frequencies v, , for modes with £<20. The modes with
higher degree ¢ are not very useful for this study since a large
fraction of these modes either do not penetrate up to the
base of the convection zone or have turning points close to
that region and, as a result, are not affected by the dis-
continuity. In order to compute the amplitude of the oscil-
latory part, we combine the data for 5</<20 in the
frequency interval 2-3.5 mHz and estimate the smooth part
using a cubic spline data smoother, where the amount of
smoothing can be controlled. The trend is removed until the
residuals are symmetrically distributed about the frequency
axis. The modes with /<35 are ignored because the errors in
the observed frequencies are too large for any reasonable
estimate of the small oscillatory component. After the
smooth component is removed we perform a least-squares fit
to a function of a form similar to that of equation (11), that is

0y, =0 v— 06"y, (15)
{(4+1 {(4+1
= ao+a—;+a2 (2 )+a3 (4 ) sin(2v,, 7+ y),
m m Vm
where
_yi(e+1)

m

16
Py (16)

and determine the coefficients a,, a,, a,, a;, 7, y and y for
k=1, 2, 3 and 4. Hence v, is the oscillatory component of
v. The use of v,, instead of v eliminates the ¢ dependence of
the argument of the sine term by a simple shift in frequencies.
This allows us to plot the differences for all values of ¢
together, in order to check the fitted function against the
frequencies. However, the ¢ dependence of the amplitude
still remains. To eliminate this, instead of plotting 6%v, ., we
plot 6%y . — 6%*v,, where

62kv,=Z(Z+1)(%+a—f) sin(2v,,t+ ). (17)

m m

This essentially transforms the amplitude for any given value
of ¢ to the corresponding amplitude at £ =0. It may be noted
that, in equation (15), we do not have the term corresponding
to B/vin equation (11). A change of the definition of v,,, by
subtracting a term of the form B/v from the current
expression, will merely yield an Z-independent shift in the

© Royal Astronomical Society * Provided by the NASA Astrophysics Data System

Zz0z 1snbny oz uo 1senb Aq +11GZ01/602/1/.9Z/2101E/SBIUW/WOoD dNo"ojWwapede//:sdiy wolj papeojumoq


http://adsabs.harvard.edu/abs/1994MNRAS.267..209B

B!

FT90ZWNRAS, 267~ .

The extent of overshoot below the solar convection zone 213

frequencies of all points. It is found that inclusion of this
term does not improve the fit perceptibly and it is therefore
ignored. As is clear from equation (15), the amplitude of the
oscillatory term depends on v; therefore, for the purpose of
comparison, we use the average amplitude A in the given fre-
quency interval v,,; <v<v, , given by

a,

A=gqg,+ (18)

Vi Vim2

While performing the fit, each point is weighted according
to the quoted variance in the corresponding observed
frequencies.

3 RESULTS

For the present work we have constructed 14 solar models
with different extents of overshoot and depths of the convec-
tion zone to calibrate the amplitude of the oscillatory part in
the frequency as a function of the extent of overshoot. The
properties of these models are summarized in Table 1. In this
table the extent of overshoot is quoted in terms of the
pressure scaleheight H,, which is assumed to be 56 000 km
for all models. All these models have the correct solar radius
and luminosity and use a non-local mixing length formula-
tion as described by Antia, Chitre & Narasimha (1984).
These models have been constructed by integrating the
stellar structure equations from the outer boundary inwards.
In order to satisfy the boundary conditions at the centre, the
mixing length and a parameter determining the composition
are adjusted. We achieved the latter by taking the hydrogen
abundance profile to be the appropriate constant multiple 4
(which is found to be close to unity) of the profile given by
Bahcall et al. (1982), having fixed the heavy-element
abundance at 0.018. Models M1-M6 have been computed
using the opaL opacities (Rogers & Iglesias 1992) with
varying extent of overshoot, while models M7-M12 employ
the opacity tables of Cox & Tabor (1976). The models M11
and M12 have been constructed using different values of the
parameters C and D in the mixing length formulation (cf.

Table 1. Properties of solar models.

Model ri/Ro Extent of overshoot
M1 0.7124 0.004,
M2 0.7040 0.10H,
M3 0.6958 0.20H,
M4 0.6874 0.30H,
M5 0.6784 0.40H,
M6 0.6702 0.50H,
M7 0.7220 0.00H,
M8 0.7125 0.12H,
M9 0.6981 0.29H,
M10 0.6838 0.45H,
Mi1 0.7224 0.00H,
M12 0.6968 0.00H,
Mi3 0.7126 0.10H,
M14 0.7108 0.00H,

Antia et al. 1984). For model M11 we use C=1 and D=1,
and for model M12 we use C=0.01 and D=0.1, while all
other models use C=0.1 and D=0.01. In all models the
overshoot region is assumed to be adiabatically stratified.
The last two models have been constructed using some arti-
ficial modifications to the opAL opacities. Model M13 has
been constructed by decreasing the opacity by 16.5 per cent
near the base of the convection zone, to ensure an overshoot
of 0.1H, without changing the depth of the adiabatic layer.
For this model the opacity was taken as

. 1+0.165(r/Ro —0.72069)/0.00632
° 1.165

if 0.72701> r/R > 0.72069,

1
7CO
1.165

x=¢ if0.72069 = r/Ro, = 0.70459, (19)

K 1+0.165(0.70459 — r/R,)/0.04310
° 1.165
if 0.70459> r/R ;> 0.66149,

Ko

L otherwise,

where x, is the opacity computed by interpolating in the
opacity tables of Rogers & Iglesias (1992). Model M14 has
been constructed by decreasing the opacity uniformly by 10
per cent, while the composition is adjusted to match the
boundary conditions at the centre. Because of these
constraints, there is not much difference between this model
and model M1.

Fig. 2 shows the temperature gradient V=d log 7/d log P
as a function of radial distance in the solar models M7-M10.
For the model M7, which has no overshoot, the temperature
gradient is continuous, but its derivative is discontinuous at

T ¥ Opacity
(sec) (mHz)
2102 0.01367 OPAL
2125 0.01448 OPAL
2150 0.01537 OPAL
2176 0.01632 OPAL
2201 0.01736 OPAL
2224 0.01837 OPAL
2068 0.01270 CT
2098 0.01362 CT
2142 0.01512 CT
2185 0.01674 CT
2070 0.01266 CT
2155 0.01526 CT
2100  0.01361 Eq. (19)
2105 0.01382 0.9 * kopAL
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T T T T T T T T T T T T T T

0.4

0.5 0.6 0.7 0.8
r/Ro
Figure 2. The temperature gradient V=dlog T/dlog P as a
function of radial distance for the solar models M7-M10. The solid
line is the gradient for model M7, the dotted line is for model M8,
the dashed line is for model M9, and the dot-dashed line is the
gradient for model M10.

the base of the convection zone. For models M8-M10, which
have some overshoot, the temperature gradient itself is
discontinuous at the base of the overshoot layer. Further, the
magnitude of the discontinuity increases with the extent of
overshoot. In Fig. 3 we show the difference in the sound
speed relative to the sound speed in model M1 as a function
of radial distance. Model M1 has no overshoot, and hence
the sound-speed profile should be relatively smooth. Thus
the sharp change in the sound speed for models with over-
shoot is very clearly discerned when compared with that in
model M1. Use of this figure can justify our assumption of a
discontinuity in the sound speed at the base of the convec-
tion zone, which we used to obtain a simple expression for
the oscillatory component of the frequencies. It can be seen
that the fall in dc/c towards the centre is more gradual and
can be considered as a smooth variation. It is clear from the
figure that the jump in sound speed at the bottom of the
overshoot layer increases with an increase in the extent of
overshoot; for example, for model M3, dc/c relative to model
M1 is around 0.004, while for model M6 dc/c is around
0.02. The extent of overshoot in model M6 is 2.5 times that
in model M3. Further, it can be seen that the sound-speed
profiles in models M1 and M14 and models M7 and M11
are very similar.

For a representative value of dc/c, the magnitude of the
oscillatory component in the frequencies can be estimated
using equations (11) and (10). For example, if we take typical
values of the physical quantities involved, that is, the radial
distance of the base of the convection zone ry =5 X 101° cm,
the sound speed ¢=~2.2x107 cm s, the adiabatic index
I'; = 1.66, the acceleration due to gravity g=5.3x10* cm
s72, the Brunt-Viisala frequency N/2m=~0.2 mHz and
7o = 3500 s (corresponding to r,=0), then the amplitude of
the oscillatory component is about 0.4 uHz for dc/c=0.02,
which is a reasonable estimate for the model M6. Although,

in the present work, we have avoided estimating the ampli-
tude of the oscillatory component in the frequencies directly,
for the sake of comparison we attempted an estimate of the
amplitude for the model M6 and found it to be about 0.11
uHz. It is clear that the crude model considered in Section 2
gives the ampitude to within an order of magnitude of the
actual value. Since, in this paper, we are interested only in the
functional form of the amplitude that can be used to fit the
oscillatory part of the exact frequencies, this simple analysis
should be sufficient. For other models, the amplitude of
oscillations in the frequency is expected to be much less, and
it is therefore desirable to amplify the oscillations by taking
higher differences. Another problem in dealing directly with
the frequencies is that, for each ¢, there are not enough
points to be able to separate out the smooth part in the
frequency from the oscillatory part in an objective and
unambiguous manner. The final amplitude depends to some
degree on the extent to which the smooth part is removed.
This is particularly true for observations where the median
value of the standard deviation is comparable to or larger
than the amplitude of the oscillatory component.

For fitting the function to the second difference of the
frequencies, we choose a frequency range of 2.5-3.8 mHz.
We do not consider lower frequencies because of the very
pronounced non-oscillatory trend in 6%v for frequencies
below = 2.5 mHz, which is difficult to eliminate. This trend
can be seen very clearly in Fig. 1. Frequencies higher than 3.8
mHz are not considered because the observed frequencies in
this range have rather large errors. Before combining the
data for all values of Z, it is necessary to remove the smooth
part in the second difference, because the smooth com-
ponent itself has significant ¢ dependence, as can be seen
from Fig. 4(d), which shows the second differences for model
M1. It is clear that the smooth component for points with
5=<¢<10, which are marked by crosses, is different from that
for 16 </<20, indicated by filled squares. Consequently, we
divide the second differences of the frequencies d%v into
three groups corresponding to 5<¢=<10, 11</<15 and
16<¢<20. For each group we filter out the smooth trend
separately. The residuals after the smooth trend has been
removed are combined, and the function given by equation
(15) is then fitted to the combined data. Of course, there will
be some ¢ dependence in the smooth part within each sub-
group also, but consideration of individual values of £ separ-
ately is rather difficult since the number of points for each ¢
is too small to separate out the smooth part unambiguously.
It is preferable to combine the data after removing the
smooth part independently, since otherwise the number of
points in each range is limited. This introduces significant
uncertainties in the fitting process, particularly in the pres-
ence of errors. In Fig. 4(e), which shows the residuals after
the smooth part has been removed, the oscillations are barely
noticeable. After introducing the /-dependent shift to the
abscissae defined by equation (16), the oscillations are very
clear (cf. Fig. 4f). The same procedure was followed for the
observed solar frequencies also. Figs 4(c) and (f) show,
respectively, the results of the fits to observations and to fre-
quencies computed for model M1. It can be seen that there is
some difficulty in removing the smooth component for the
observations, and the three curves in Fig. 4(a) show some
variation in form which is probably not expected, as can be
seen from Fig. 4(d) which displays the same curves for model
M1.
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Figure 3. The relative sound speed difference dc/c between the models M2-M14 and M1 is shown as a function of radius. The models using
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Figure 4. The second difference 62 for 5<£<20 and frequency vin the range 2.5-3.8 mHz fcr the observed frequencies and the frequencies
computed for model M1. (a) and (d) show the differences for the observations and the model, respectively. The points for 5<¢<10 are marked
by crosses, those for 11</<15 by open squares, and those for 16 <£<20 by filled squares. The non-oscillatory part is represented by a solid
curve for 5<£<10, a dashed curve for 11</<15 and a dotted curve for 16<£=<20. The residuals after subtracting the smooth trend, as
represented by the lines, are plotted in (b) for the observations and in (e) for the model. (c) shows the result of the fit to the observations plotted
after removing the £ dependence of the differences. Similarly, (f) is the fit for model M1.
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For the second differences, we thus find that it is very diffi-
cult to remove the smooth trend in the frequencies in an
unambiguous manner. The fact that the set of frequencies has
to be divided into three groups makes the situation even
worse, since the number of points decreases in the process.
Besides, we cannot be quite sure that the smooth part has
been removed to the same extent in each ¢ group. The diffi-
culties can be gauged from Fig. 4(f) where it can be seen that,
even for the frequencies computed from the model, the fit is
far from perfect. As a result, we have looked into higher
differences of the frequencies. For the fourth and sixth differ-
ences of the frequencies, we find that there is no perceptible
£ dependence in the smooth part and hence the differences
for all £ values in the range 5-20 can be combined even
before the smooth trend is removed. This makes the task of
removing the smooth trend easier, as the number of points
we are now dealing with is larger, about 170. Besides, of
course, the higher differences have the advantage that the
oscillations are magnified further while the smooth part is
reduced. Thus the oscillatory part can be extracted quite
unambiguously from the smooth background. For these
differences we can use a slightly lower frequency range, since
the pronounced non-oscillatory trend seen in the second
difference is significantly reduced. Consequently, we have

chosen the range 2.0<v<3.5 mHz for both 6%v and 6%v. A
shift in the range of frequencies used enables us to use more
accurate data from observations at low frequencies.

The results of the fits to the fourth difference of the
observed solar frequencies, and to the fourth difference of
the frequencies computed for model M1 as a representative
model, are shown in Fig. 5. It can be seen that the oscilla-
tory part is well defined and can be extracted very easily. The
fit to the oscillations in the frequencies computed from the
models is almost perfect, which justifies the functional form
of the amplitude given by equation (15). It can be seen from
Fig. 5 that the ‘smooth’ component in the frequencies is also
oscillatory, but with a larger wavelength. In fact, this com-
ponent can be identified as the oscillatory signature due to
the second helium ionization zone (Roxburgh & Vorontsov
1993). Since this ionization zone occurs at a shallower
acoustic depth, the wavelength of the oscillatory component
is larger, and when we take higher differences the smaller
wavelength oscillatory component due to the discontinuity at
the base of the convection zone dominates. Fig. 6 shows the
fits to the sixth difference of the observed solar frequencies
and the frequencies computed for model M1. As can be seen
from the figure, the smooth component of the frequency is
further reduced.
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Figure 5. The fourth difference d*v for 5<£<20 and frequency v in the range 2.0-3.5 mHz for the observed frequencies and the frequencies
computed for model M1. (a) and (d) show the differences for the observations and the model, respectively. The different symbols have the same
meanings as in Fig. 4. The non-oscillatory part is represented by the solid curve. The residuals, after subtracting the smooth trend as
represented by the line, are plotted in (b) for the observations and in (e) for the model. (c) shows the result of the fit to the observations plotted
after removing the ¢ dependence of the differences. Similarly, (f) is the fit for model M1.
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Figure 6. The same as Fig. 5, but for the sixth difference 66 of the frequencies.

In order to demonstrate the £ dependence of the ampli-
tude, we take the oscillatory component of the fourth dif-
ference for model M1 as shown in Fig. 5(e) and perform
separate fits for different ranges of £. In this case we drop the
¢-dependent terms in the fitting function given in equation
(15), by setting a, =a;=0, and use five sets of ¢ values,
namely {5, 6,7}, {8,9, 10}, {11, 12,13}, {14, 15,16} and
{17, 18, 19}. For each of these ¢ ranges we estimate the
amplitude of the oscillatory component, and the results are
shown in Fig. 7, where the amplitudes are plotted against
£(£+1) for the middle value of ¢ in the corresponding range.
The least-squares fit to a straight line is shown by the solid
line. It is clear that the amplitude is decreasing almost
linearly with £(Z + 1). It may be noted that, since the number
of points in each subgroup of ¢ values is rather small, the
amplitude cannot be determined very accurately.

Encouraged by the fact that the fourth and sixth differ-
ences made the oscillations in the frequencies stand out
clearly without being overwhelmed by observational errors,
we went one step further and decided to examine the eighth
difference of the frequencies. We find that, for the eighth
difference, the smooth component of the frequency is barely
noticeable and hence we can fit the function of the form
given in equation (15) directly to the differences. Fig. 8
shows the fits to the observations and the frequencies
computed for models M1 and M2.

In order to estimate the amplitude of the oscillatory
component in the solar frequencies, the same treatment is
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Figure 7. The amplitude of the oscillatory component of the fourth
difference of the frequency for model M1 as a function of £(£+1)in
the frequency range 2.0<v<3.5 mHz. Each point represents the
amplitude obtained for frequencies using modes with £ —1, ¢ and
£+ 1. The solid line gives the least-squares fit to a straight line for
these points.

o

applied to the observed data of Libbrecht et al. (1990). In
this case, however, apart from the coefficients, we also need
to estimate the associated uncertainties arising from the
observational errors. The errors in the computed amplitude
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Figure 8. The eighth difference 6®v for 5<£<20 and frequency v in the range 2.0-3.5 mHz of the observed frequencies and the frequencies

computed for the models M1 and M2 are shown in (a), (b) and (c) respectively. The different symbols have the same meanings as in Fig, 4. (d)
(e) and (f) show the fits to the differences for the observations, model M1, and model M2, respectively, after removing the ¢ dependence.

and 7 were estimated by performing a simulation using arti-
ficially generated data sets. The simulated data were
generated by adding random errors, with standard deviation
as quoted by the observers, to the computed frequencies of
model M1. For each set of simulated data, the amplitude was
computed in the same way as for the models. From the
distribution of amplitudes in a set of 20 simulations we have
estimated the mean value and the variance. The standard
deviation and the mean value of the amplitude, 7 and y, as
estimated by the simulations for various differences, are
listed in Table 2, which also gives the corresponding values
obtained for model M1 (without adding errors). It can be
seen that in all cases the mean values from simulations are
close to the actual value for the model. To check if it is
adequate to use results of the simulations based on the
computed frequencies of model M1 only, we have produced
20 sets of simulated data for each model and tried to see, for
the eighth difference of the frequencies, how the results
compare. From the results shown in Table 3 it is clear that
the variances of the parameters computed from the different
models are not very different. In fact, the variance computed
from simulations on model M1 is one of the highest, which is
only to be expected as model M1 has about the lowest ampli-
tude. Thus, by using the variance of parameters obtained
from model M1, we will not in any way be underestimating
the errors in the least-squares fit.

>

In principle, it is possible to consider still higher order
differences to amplify the signal; however, the growth in the
errors will make such an exercise quite meaningless. The
errors in the computed differences can be estimated from the
quoted errors in the observed frequencies by assuming that
these errors are uncorrelated. In Table 4 we show the median
of the errors, as well as the minimum value of the error for
each set of differences. We also list the amplitudes obtained
for model M1, which is among the models that give the
lowest amplitudes, and appears to be the closest to obser-
vations. The amplitudes obtained from observed solar fre-
quencies are also listed. From Table 4, it can be seen that, for
all differences, the estimated variance in the amplitude is
about 0.26 times the median value of the error in observed
values. Table 4 also gives the ratios of the amplitudes
obtained to the median error. It can be seen from this table
that the results are most promising for the fourth difference.
The ratio of the amplitude to the error is lower for the sixth
difference and lower still for the eighth. We do not therefore
think it worthwhile to consider higher differences. It may be
noted that the ratio of the amplitudes for the sixth and fourth
differences, as well as that of the eighth and sixth differences,
is consistent with our crude estimate of 4 sin?(a.7) in Section
2.1t may also be noted that for the second difference we have
used a slightly different frequency range and, as a result, the
ratio of amplitudes for 62vand 6*v s slightly different.
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Table 2. Variance of computed parameters.

Difference Results of Model Mean Results From Variance of Computed
M1 Simulations Quantities
A T vy A T ¥ oA o oy

(uHz) (sec) (mHz) (pHz) (sec) (mHz) (pHz) (sec) (mHz)

§%v 0.196 2283 0.0166 0.171 2281 0.0177 0.042 28 0.0024
§tv 0.852 2318 0.0144 0.849 2315 0.0149 0.105 15 0.0024
5% 2.822 2319 0.0143 2.864 2316 0.0145 0.378 17 0.0025
8% 9.252 2308 0.0125 9.207 2304 0.0131 1.441 22 0.0044

Table 3. The fitted coefficients for the eighth difference.

Model Results From Mean Results From Variance of Computed
Models Simulations Quantities
A T ¥ A T Y TA Ir oy

(eHz)  (sec) (mHz) (pHz) (sec) (mHz) (pHz) (sec) (mHz)

M1 9.252 2308 0.0125 9.207 2304 0.0131 1.441 22 0.0044
M2 11.734 2320 0.0131 11.743 2320 0.0136 1.388 17 0.0027
M3 15.956 2345 0.0138 15.821 2347 0.0144 1.109 12 0.0014
M4 18.999 2371 0.0144 18.999 2374 0.0146 1.197 10 0.0011
M5 20.778 = 2400 0.0155 20.907 2403 0.0153 1.132 10 0.0013
M6 21.639 2429 0.0169 21.709 2429 0.0167 0.848 10 0.0014
M7 11.441 2283 0.0128 11.483 2274 0.0117 1.672 21 0.0029
M8 14.983 2295 0.0127 14.974 2290 0.0122 1.597 15 0.0020
M9 21.515 2338 0.0136 21.367 2340 0.0140 1.206 9 0.0012
M10 25.294 2383 0.0148 25298 2386 0.0149 1.201 8 0.0008
Mi1 11.114 2304 0.0127 11.087 2293 0.0115 1.657 21 0.0030
M12 9.096 2364 0.0143 9.100 2366 0.0145 1.315 26 0.0030
Mi13 13.208 2303 0.0130 13.141 2295 0.0122 1.539 18 0.0024
M14 9.415 2311 0.0124 9.271 2306 0.0123 1.521 26 0.0043

Table 4. Comparison of errors in various differences.
Difference  Errors in obs. Amplitude M—P—e‘:‘;'“Elr‘m T T
Median Min. M1 Obs. (ca) M1 Obs.
(uHz) (pHz) (pHz) (pHz) (pHz)

v 0.060 0.030 0.037 0.032 0.010 0.617 0.533 0.167
v 0.141  0.082 0.196 0.218 0.042 1.390 1.546 0.298
&ty 0.402 0.220 0.852 0.860 0.105 2.119 2.142 0.261
8%y 1.459 0.813 2822 2801 0378 1.934 1.920 0.259
& 5428 3.148 9.252 8.797 1441 1.704 1.621 0.265

Zz0z 1snbny oz uo 1senb Aq +11GZ01/602/1/.9Z/2101E/SBIUW/WOoD dNo"ojWwapede//:sdiy wolj papeojumoq

In order to compare observations against the models, we
have plotted the amplitude against 7 for various models and
observations for each of the differences considered. Table 5
shows the ratio of amplitudes for models M2-M14 relative
to that of model M1, for all the differences considered. The
amplitude is essentially a function of the extent of the over-
shoot. However, 7, which is basically the acoustic depth of
the base of the overshoot layer, depends on the depth of the
discontinuity, that is, the extent of the convection zone and
the overshoot layer. As a result, models with the same extent

of overshoot but with different depths of the base of the
convection zone will give different values of . There is also
some remnant ambiguity due to the fact that, for a given
extent of overshoot, the amplitude depends on the opacity
used, since the extent of discontinuity in the temperature
gradient is controlled by the opacity gradient. Thus in the
two-dimensional 7-A graph we expect that the models will
be well separated. Fig. 9 shows our results for all the dif-
ferences considered in the present work, that is, the second
difference 82, the fourth difference 64, the sixth difference
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Table 5. Amplitude ratios for solar models.

Model v v &5y
5<€<20 5<€<20 5<£<20

88y v §v
5<€<20 5<£<20 0<¢<4

2.5-3.8 mHz 2.0-3.5 mHz 2.0-3.5 mHz 2.0-3.5 mHz 3.5-5.5 mHz 2.0-5.0 mHz

A (uHz)

A (uHz)

M1 1.000 1.000 1.000
M2 1.284 1.317 1.279
M3 1.971 1.882 1.787
M4 2.637 2.312 2.157
M5 3.082 2.691 2.404
M6 3.423 2.959 2.575
M7 1.056 1.123 1.202
M8 1.542 1.543 1.592
M9 2.790 2.504 2.408
M10 3.612 3.180 2.907
Mi11 1.033 1.133 1.179
Mi12 1.016 0.975 0.938
M13 1.388 1.393 1.414
Mi14 1.019 1.010 1.010
Obs. 1.110 1.010 0.992
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Figure 9. The amplitude A and the acoustic depth 7 of the discontinuity for the different models for various differences are shown in the four
figures. The different symbols are as follows: open circle (model M1), open triangle (M2), open square (M3), open pentagon (M4), open
hexagon (M5), open heptagon (M6), filled circle (M7), filled triangle (M8), filled square (M9), filled pentagon (M10), filled diamond (M11),
cross (M12), open diamond (M13) and asterisk (M14). The star with error bars represents the result for the observed frequencies.

0%v and the eighth difference 08v. It can be seen that models
M7-M10 constructed with the Cox & Tabor (1976) opaci-
ties show higher oscillation amplitudes than those con-
structed with the opaL opacities with a similar extent of over-
shoot. This may be expected, since the opacity gradient

at the base of the convection zone is lower in models
constructed using opAL opacities: for example, for model M1
the opacity scaleheight at the base of the convection zone is
6.22 X 10* km, while for model M7 it is 5.21 X 10* km. Since
the radiative gradient Vy, is essentially determined by opacity,
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its gradient also varies with the opacity gradient. From
equation (10) it can be seen that the amplitude is expected to
be proportional to dc/c. For solar models it may be expected
that the difference dc arises because of the departure of the
temperature gradient from its adiabatic value. Thus to first
order

oc 10T 1 1 av
o e Vor=— S (6r)
¢ 2 172 2 o O (20)

where Or is the distance from the base of the convection
zone. Now the quantity (1/2H,)/dV/dris 0.92x 107 km ™2,
1.06 X 10719 km~2 and 0.92 X 1071 km~?2 for models M1,
M7 and M12, respectively. Thus we can expect the ampli-
tudes for model M7 to be about 15 per cent higher than
those for models M1 and M12. Further, the amplitudes of
models M1 and M12 should be nearly equal. This is con-
sistent with the results in Table 5. Thus, apart from the extent
of overshoot, the amplitudes also depend on the opacity
gradient at the base of the convection zone, and also on any
other possible force field (e.g. magnetic field) present near
the base of the convection zone.

In the presence of a magnetic field the dispersion relation
for the acoustic waves will be modified to w?= k*(c?+v?),
where v, is the Alfvén speed. Hence the presence of a
localized magnetic field near the base of the convection zone
can also lead to a discontinuity in the wavenumber k. In this
case

2 2 2

N (21)
k* c 4nl'\ P

where P is the gas pressure and B is the strength of the
magnetic field. Thus a magnetic field of 10° G will yield
€=0.0008, which gives an amplitude of 0.009 pHz in the
frequencies. Further, it should be noted that in equation (10)
dc/c <0, since the temperature gradient reduces sharply
below the convection zone. Thus the sign of the contribution
of a magnetic field due to € is opposite to that due to dc, and
in principle it is possible to reduce the amplitude of the
oscillatory component in the frequency by invoking a few-
megagauss magnetic field below the base of the convection
zone.

The acoustic depth of the discontinuity, 7, for the models
constructed using Cox & Tabor opacities is lower than for
the corresponding models constructed using OPAL opacities.
This is expected since the convection zone depth is slightly
smaller for models with Cox & Tabor opacities (Table 1). It
may be noted that the value of 7 computed by the least-
squares fit is always slightly higher than the actual value given
by equation (6), for all models (cf. Table 1). This is a conse-
quence of the phase y in the sine term having a component
proportional to the frequency (Monteiro et al. 1993b), which
gets absorbed in 7 during the fitting process. As a result, it is
not possible to estimate the acoustic depth 7 using this tech-
nique, but it may be possible to distinguish between models
with different 7.

‘It is interesting to note that all the four figures appear to be
rather similar except for the fact that the amplitude scales are
different in each case. This shows that the uncertainties in the
fitting procedure are probably not very significant. From
Table 5 it can be seen that the relative amplitudes of the
oscillatory part are essentially independent of the difference,

though there is some variation arising mainly due to the fact
that the factor 4 sin(ra), which is introduced in going to
higher differences, depends on 7. As a result, for models with
high overshoot the relative amplitude decreases slowly with
increasing order of difference.

The results for the observed frequencies are shown with
error bars which correspond to the variance of the para-
meters obtained from the simulations. It can be seen that
the results consistently point to the fact that, of all the
models, model M1 is closest to the actual Sun. Note that
model M1 has no overshoot and the depth of the convection
zone in this model is the same as that inferred for the Sun
by Christensen-Dalsgaard, Gough & Thompson (1991). All
the figures indicate that the observed solar frequencies are
consistent with a model without overshoot. It can be seen
that the error bars are significantly larger for the second
difference, which reflects the uncertainties in extracting the
oscillatory part and performing the least-squares fit. In view
of the errors on the fitted parameters, neglecting systematic
errors due to uncertainties in opacity, we can put a 2o upper
limit of 0.1H,, on the extent of overshoot at the base of the
solar convection zone.

We find that if a higher frequency range, like 3.5<v<5.5
mHz, is considered, even for the fourth difference, no
smooth part of the frequencies has to be removed. This can
be seen from Fig. 10, where we show the fit to the fourth
difference of the frequencies computed for model M1, while
the A-t diagram displaying results for all the models is
shown in Fig. 11(a). Thus the uncertainty due to removal of
the smooth part of the frequency should be reduced in this
case. Further, since most of the terms in the oscillatory part
fall off as 1/w? or faster, the oscillatory part can be extracted
relatively easily. In fact, the sinusoidal oscillations are
apparent in Fig. 10(a) even before the /-dependent shifts
in the frequency and amplitude are corrected for. This
frequency range is not, however, very useful for the solar
case, as the observed frequencies in this range have large
errors. Another disadvantage with this range is that, since the
amplitude is a decreasing function of the frequency, the
amplitude in this higher frequency range is much smaller,
thus requiring higher accuracy in observations in order to
estimate the amplitude reliably. We also find that for the
higher frequency range (3.5<v<5.5 mHz) the fitted values
of 7 and y are close to those predicted by the asymptotic
theory (see Table 1), while at lower frequencies the fitted
values are somewhat higher.

For the Sun it is possible to consider only intermediate-/
values to find the extent of overshoot, as has been done in the
present work, since observations exist for many ¢ values.
Observations of other stars are not, however, expected to
give us any information about frequencies with £>4. We
have therefore tried to see if it is possible to extract the
oscillatory signal in the frequencies with <4 from our
computed models. Only the fourth difference is considered,
since that seems to give the best results. Fig. 12 shows our
results using only the modes with /<4, while Fig. 11(b)
shows the A-t diagram with the results for all models. It is
clear that, even with the limited number of points, it is indeed
possible to extract the oscillatory part and calculate its ampli-
tude. Another advantage of the low-/ modes is that the ¢
dependence in both the oscillatory and the smooth com-
ponent is not significant, and hence it is easier to obtain
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Figure 10. The fourth difference of frequencies computed for model M1 for 5<¢<20, and » in the range 3.5-5.5 mHz. (a) shows the
difference 64w, while (b) shows the fit to the difference plotted after removing the £ dependence. The different symbols have the same meanings
asin Fig. 4.
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Figure 11. The amplitude A and the acoustic depth 7 of the discontinuity for the different models for the fourth difference for (a) frequencies
in the range 3.5-5.5 mHz for 5</<20 and (b) frequencies in the range 2.0-5.0 mHz for 0</<4. The different symbols have the same
meanings as in Fig. 9. Points corresponding to models M7 and M11 overlap in (a) and hence the point for M11 cannot be seen distinctly.
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Figure 12. The fourth difference of the frequencies computed for model M1 for 0< /<4, with v in the range 2.0-5.0 mHz, is shown in (a). The
curve defines the smooth part, which is removed to get the oscillatory part shown in (b). (c) shows the fit to the oscillatory part of the
differences.

the fits. The observed frequencies for low-¢ solar p-modes, <4 and the frequency range of 2-3.5 mHz. This is more than
however, have too large an error to be useful. The median of four times that for 5</<20 in the same frequency range.
the variance in the fourth differences of the observed Thus the median of the errors is about twice the amplitude of

frequencies of Libbrecht et al. (1990) is 1.66 uHz for 0</¢ the oscillatory part in the observed frequencies. Similarly, the
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observed frequencies for low-¢ modes from full disc
measurements (e.g. Elsworth et al. 1991) also have com-
parable or larger errors. In fact, the low-¢ frequencies in
Libbrecht et al. (1990) have also been obtained from full disc
observations and hence have larger errors as compared to
intermediate-¢ frequencies. Because of the large errors, it is
not possible to extract the oscillatory part from the observed
solar frequencies for low-¢ modes.

4 CONCLUSIONS

In the present work we have attempted to infer the extent of
overshoot below the solar convection zone using the ampli-
tude of the oscillatory component in the frequency as a
function of the radial order n. We have demonstrated that the
present technique is able to distinguish between models with
different extents of overshoot as well as with different depths
of the convection zone (cf. Fig. 9). The amplitude mainly
depends on the extent of overshoot, apart from the opacity
gradient at the base of the convection zone, while 7
essentially measures the depth of the adiabatic layer. The
solar data appear to be consistent with model M1, which has
no overshoot and is computed using the opaL opacities. The
depth of the convection zone in this model is the same as that
inferred from helioseismic data by Christensen-Dalsgaard et
al. (1991). Nevertheless, for a given extent of overshoot the
amplitude does depend on the opacity gradient at the base of
the convection zone, because the ‘severity’ of discontinuity in
the temperature gradient is controlled by the opacity
gradient. For example, models M1, M7, M11, M12 and M14
have no overshoot, but the amplitudes are not the same for
all these models.

It may be noted that the results obtained for each of the
differences are consistent with one another, thus indicating
that the uncertainties in removing the smooth part and in the
fitting process are not very significant. Further, the final
A-7 diagram does not appear to depend crucially on the
form of the function used for fitting, since Basu et al. (1993)
obtained very similar results using a different form where the
amplitude is independent of /. Similarly, our results are
consistent with those of Monteiro et al. (1993a,b), even
though they used a very different form for fitting the
frequency or the second derivative computed using splines.

Neglecting systematic errors due to uncertainties in the
opacities and the presence of other force fields, we can put a
20 upper limit of 0.1H,, on the extent of overshoot. On the
other hand, if we assume that the Sun does have an over-
shoot layer of thickness 0.1H, then, using the crude
estimates given in Section 3 (cf. equation 20), it can be seen
that the opacity gradient at the base of the solar convection
zone will have to be reduced by a factor of = 1.55 to get the
quoted amplitude. A change of this magnitude in the opacity
gradient does not appear to be likely. It may be noted that
this change cannot arise because of differences in the depth
of the convection zone, since that is known fairly accurately
(Christensen-Dalsgaard et al. 1991) and, moreover, the value
of 7 will change with the depth of convection zone. Similarly,
considering an intermediate scenario, if we add the 1o error
bar to the quoted amplitude for the observed frequencies,
then the resulting amplitude will be consistent with an over-
shoot of 0.1H,, provided that the opacity gradient at the base
of the solar convection zone is reduced by about 20 per cent.

Of course, the presence of a few-megagauss magnetic field
below the base of the convection zone may reduce the ampli-
tude of the oscillatory component in the frequencies. The
observed frequencies can be consistent with an overshoot of
0.1H, provided there is a magnetic field of about 10° G
below the base of the convection zone.

In principle, it is possible to apply this technique to
estimate the extent of overshoot below the base of the outer
convection zone in other stars also, using the frequencies of
low-¢ modes. For massive stars with convective cores there
will be another discontinuity at the boundary of the convec-
tive core. This discontinuity should also contribute an
oscillatory component to the frequencies. However, in our
simple model in Section 2, we can measure the acoustic
depth from either boundary. For the convective core the
acoustic depth as measured from the centre is rather small,
thus giving rise to an oscillatory signal with large wavelength,
which may not be easily distinguishable from uncertain
contributions from the surface layers. Thus it may not be
possible to use this technique to measure the extent of over-
shoot above the stellar convective cores.
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