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Hellinger—Hahn type decompesitions of the
domain of a Borel funetion

by .
M. G. NADKARNI* (Calenta and Bombay)

Absiract. In this paper we give decompositions of the domain of a Borel fune-
tion f from a complete separable metrio space X (of cardinalify ¢} into another com-
plete separable metric space ¥ where X and Y are equipped with their usual Borel
o-algebras and X is further equipped with a finite non-atomic measure u. These
decompositions depend on a deep theorem of Lusin which says that if fis “countable
o ome” then X cam be partitioned into countable number of Borel sets on each of
whieh. f is one-one. We algo give a decomposition of X when fis not “countable to
one”,

Introduction. In this paper we give decompositions of the domain
of a Borel function f from a complete separable metric space X (of cardi-
nality ¢) into another complete separable mefric space ¥, where X and ¥
ave equipped with their usual Borel ¢-algebras and X iy further equipped
with finite non-atomic measure . These decompositions, which are given
in Theorem 2.2 and 2.3. depend on a deep theorem of Lusin (Theorem 2.1)
and the method used in the proof of Hellinger-IHahn theorsm for spectral
measures on a separable Hilbert space.

When f it a bounded ecomplex valuned Borel functicn, our decom-
positions of X completely describe the measures and their multiplicities
that oceur in the Hellinger—-Hahn canonical representation of the spectral
measure of the normal operator T, on L,(X, p) consisting of mmltipli-
cation by f. In Section 4 we indieate how this is so and also give some
applications.

1.

DmrNtIron 1.1. Let m be a cardinal number. A function f defined
on & subset of X into ¥ is said to be m to 1 if the inverse image of every
singleton is of cardinality m. It is said to be countable to one i the inverse
image of every singleton is either of finite cardinality or of cardinality ¥,.

ProvosrrioN 1.1. Let f be a Borel function on X with values in Y.
Then X can be partitioned into two Bovel sets € and D such that

* Sincers thanks are due to Tata Institute of Fundamental Reseatch where
his work was carried out under a visiting fellowship.
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1) flg, the restriction of f to O, is counitable to one,
2) flp is countable to one on no subsel of positive p-measure in D,

Proof. Let & = {A p(d)> 0, f|, i countable to one}. If F is empty
we take D = X. If § is not empty let a = sup,u(A,) and let {d4,}2., be

a sequence of Borel sets such that u(4,) —+ a. We take ¢ = U A,. Then

s L
clearly flo is countable to one and fly. is eountable to one on no subyet
of positive measure. Take D = X --C. &

2. In thig gection we give two forms of Hellinger—Habn type decom-
positions of the domain of a countable to one Borel function. First of
all we need. '

THEOREM 2.1 (Lusin). La f be ¢ Borel function on X with values in ¥
such that imverse image of every singloton 48 countable. Then X can be docom-
posed into pairwise disjoini Bovel sets A, Ay, Ag, ... such that fl, is one-
one for each k.

Tor a proof of this we refer to ([2], p. 234).

Levma 2.1. Let § be @ Borel funciion on X with values in Y such that \

invorse image of every simgleton s countable. Then X oan be decomposed
into pairwise disjoint Borels sete N, Ay, Ay, Ag, ... such that

1) p(N} =0,

2y w(dy) >0 for each ¢,

3) fl,_il_ is one-one for each 1.

DErINTTION 2.1. A Borel function of f on X info ¥ is said to De umni-
formly m to one if X can be partitioned into m Borel sets such that

1) f is one-one on each member of the partition,

2) meagures induced by the restriction f to these sets in the parti-
tion are mutually absolutely continnous. fis said to be essentially m io
one it f is uniformly m to one after removal of a u-null Borel set.

In the above definition we require m < 8. We note that if f is essen-
tially m to one and also exgentially # te one then m == &.

DrrrNTIIoN 2.2, Let f be a Borel function on a Borel subset of X
with values in Y. 'We say that the domain of f has Hellinger-Hahn deoom-
position of first kind if it can be decompoged into pair-wise disjoint Borel
sets N, Oy, Uy, Og, ... (this sequence may be finite) such that

1) w(d) =0,

2y u(C;) > 0 for each 4,

3) flg, is one-one for-each 4,

4) meagure induced by flg, » is absolutely continuous with respect
to the one induced by flg,.
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TEEOREM 2.2. Let f be o countable to one Borel fumction on X with
values i Y. Then X has o Hellinger—tahn decomposition N, Oy, Gy, Oy, ...
of first kind. If N', 0y, G4, C4, ... Do amother such decomposition them the
METIUTCS induoed bfy flo, ond f| are wmutually absolutely continuous.

Proof. Let N, 44, 4,, A,, . be a soquence of Borel sets satisfying
conditions of Lemma 2.1, Let 4, be partiioned into Bovel sets 4., and 4.,
such that measures induced by fl,,, and fl,, are respectively singular
and absolutely continuous with respect to the one induced by fl, . Now
the facty that L) f|,, and fl,, are one-one Borel functions 2) measures
induced by them are mutually singular together imply that f i cssentially
one-one on A, u.d,. For nx= 3, let 4, be partitioned into Borel sets
Ay and 4, such that meagures induced by fl,  and fl, , ore singular and
absolutely eontinuous with respect to the one induced by fla,vagu...udy s,y
The function f iz essentially ome-one on 4, U Ay v... v 4, and the
measures induced by f| 4 o 2 < p < m are absolutely coxxtmuous with respect

to the one induced by flﬂiwlmu iy, Lot Dy = Ay wdy v 0dy .
and let D, be obtained from Azz, Asz,Am, ... by the abovo procedure
leaving regidual subsets Ay, Ay, Ag, ... of ASZ, Ayey Ay ... respectively.

Proceeding thus we get o sequence Dy, Dy, Dy, ...
Borel sets such that for cach &k

of pair-wise disjoint

1) f is essentially one-one on Dy,

N AdyeDiuDyu... uDy,

3) measure induced by flp, ., is absolutely continuous with respect
to the one induced by flp,.

Let €, be obtained from D, by removing & u-null Borel set N; so
that f is one-ome on 0. Leb N;’s be absorbed in N and the resulting set
still denoted by N, The sets &, 0y, 0, (4, ... then form a Hellinger—ITahn
decomposition of X of first kind.

Let N', C;, 0, ... be another Ifellinger-tlahn decomposition of X
of first lkind. Measures induced by flg, and f'a; are mutually abso-
Iutely continnous since they are equivalent (in' the sense of mutual abso-

lute eontinuity) to the measwre indueced by f itself. Now assume, to use
induction, that measures induced by flg, and f| ¢ T0 mutually absolutely
]

continunons for 1 = 4= n —1. We show that fl;, and f| induce squivalent
£

measures, Suppoqe they do not. We may guppose then that thero is o Borel
set B « (), of positive u-meagure such that f (B) has fio, induced measure

zero. Then the sot f~*(f(B)} it equal to U fG;(f(B) upto a wnull set
. .

and the restriction of f to thiy set is cssentmlly (n—1) to one. Bub since.
#(B) >0 and B < 0, the restriction of f to f~'(f(B)) 18 not essentially
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{n—1} to one, This is & contradiction. Hence f lg,, and fja, induce mutually
n
absolutely continnous measures. m

Derinrrion 2.3. Let f be a Borel function on X with values in Y.
We say that X has Hellinger—Hahn decomposition of 2nd Tind if X can
be decomposed into pair-wise disjoint Borel sets #, ye, Y1, V) Vay .-
(this sequenco may be finite) such that

1) uln) =0,

2) fra) N fly) =0 i =],

3) [ly,, is uniformly % to 1 for each k& < oo,

1) fly, 18 uniformly 8, to ome.

TonoreM 2.3. Let f be a countable to one Borel fumetion on X with
values in Y. Then X has Hollinger—Hahn decomposition 3, v, ¥1; Yoy -
of 2nd kind. If o, Yo, ¥1, ¥a, ... be another sush decomposition, then for
each by (v Avie) = 0.

Proof. Let N, 0y, U,, 0y, ... be a first kind Hellinger-Flahn decor-
position of X ag in Theorem 2.2. Lot

Cr=puVye .. v Y1y
0; = Yoz W e U Yoy,
0, =
where vy, § =k k41, k-+2,... are pair-wise digjoint Borel subsets
of ¢, such .tha;‘o measure induced f by 5 is absolutely continuous with respect
to the one indueced by f le, but singular with respect to one induced by f ]gj 4
Turther yy,, is disjoint from y, and measure induced by Sl 18 abs0-

lutely continuous with respect to the one induced by flo, for ench 4. Now
take # = N and '

Vi = Py
Y2 = V12 Y Vo

We note that u(g) =0 and y;, ¥,, y4... Y Are pair-wise disjoint Borel
sets such that f|, s uniformly & to one, y, = 3, u Yok U -.. U Yy being
a decomposition. of y, such that fl,,m i3 one-one and measures induced
by fly, 18 equivalent to the part of the measure induced by flg, which is
singular to the one indueed by f logqs - Adber removing a p-null Bkorel sot if
necessary we can choose. yy, v, ..., ¥, such that their images are digjoint.
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Now suppose that #*, 91, ¥, .-+, ¥ is another Hellinger—Hahn decom-
position of X of 2nd kind. Suppose u(y,Ap;)=* 0. Then either y, or
has a subsetl of positive measure which does not intersect the other. SBuppose
there is a set B « y, of positive measure which does not intersect y;.
Now the multiple valued function f* is one-one on f(¥) since B < v,
and it is not one-one on f(H) since B Ny = @. This is a contradiction.
Hence p(ysAy)= 0. An inductive argument shows fhat for each =,
B(yalvp)=0. m

Let Z be another complete separable metric space of cavdinality ¢
and let » be a non-atowmic finite measure on Z.

DErINITION 2.4. Two Borel functions f: X - ¥ and ¢: Z2 Y
are §aid to be equivalent f there exists a Borel isomorphism »: X —Z,
such that

1) the meagures wv and » are equivalent,

2) f=9p(x) e u

DerNITION 2.5. Agsume further that f and ¢ are countable to one
andlet N, 0y, 0y, U, ... and M, D,, Dy, Dy, ... be the respective Hellinger—
Hahn decomposition of firgt kind, We say that these decompositions
are eqwivalent if for each % the measures induced by flg, and ¢lp, are
equivalent. )

An. elementary argument yields:

TaroREM 2.5. Let f and ¢ be couniable to one Borel functions om X
and Z vespectively with values in Y. Then f and ¢ are eguivalent f and only
if the corresponding Hellinger—Hahn decompositions of first kind are equiv-
alent,

3. In this section we congider Borel functions which are essentially
uncountable to one, which we define to mean functions which are one-one
on. no subset of positive meagsure. In view of Theorem 2.1 it is clear that
a Borel funetion i# essentially unconntable to one if and only if it is count-
able to one on no subset of positive mearure. We prove

Tiworum 3.1. Det f be a Borel funolion o X with values in ¥ such
thet it 48 essentially wnooumtalle to one. Then there exists o Borel sel A = X
such that flq ond flx. 4 tnduce equivalont measures. ’

For a preof of thig theoren) we need following two lenmas:

Lmya 3.1, Let f be a funclien on o set T with range 7(H) = F. Lt
= {A, 1y ey Ay, ’cn} be a sequence of paritiions of B such that

el
1) atoms of \Jm, are singlotons,
Nl

2) for eaoh wy {f(du1)s o Fldun,)} ore pair-wise disjoint.
Then f i3 onc-one on K. :
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o
Proof. Let 4, 4,, Ay, ... be an enumeration of | n,. Let 4} = 4,
Hm]
and AL = H—4,. Then hecause of 1) for any given @<H there exists

& BeQUENCE sy, &, &, ... Of zeroy and ones such thatb

p=dAPnAZN ... N dpn.,
Then
J@) =fpndzn.. )= Q Fldit) = ﬂ(f(fli))”"

where the last equality is true becanse of 2). Thus f(#) belongs to an. atowm
generated by f(4,), f(4a), ... It follows that f is one-one. m

Luvva 3.2, 4 Borel fumeclion on a Bovel subset of X is essentially
one-one if and only if the measures induced by restrictions of f to disjoint
Boyrel subsets are muiually singuler.

Prooi. That the condition is necessary is obvious. To prove that it
is sutficient let 7, = {41, ..., 4, k,} b€ a sequence of partitions into Borel
sets of the Domain D of f such that (J =, generates the o-algehra of D,

Rl
Bince the restriction of f to disjoint Borel sets induce mutually singular
meagures, for each n there exivts & mull Borel set I, such that images
under f of A,,—N,, ..., 4, —N, are pair-wise disjoint. Applying
Lemma 3.1 to D~ JN, with =, = {4y~ N, ..., Ay, — N} we see

n=l
that f is one-one in D—N. m.

A consequence of above lemma is that if f is one-one on no subset
of positive measure, then given any set 4 of positive measure, there exist
disjoint Borel sets 0 and D in A of positive measure such that f|; and f|,
induce mutually absolutely continuous measures. This remark is used
in the :

. Proof of Theorem 3.1. Let § denote the collection of pairs (4, B)
of disjoint Borel subsets of X of positive mensure such that Il and flp
induce mutually absolutely continuous measures. Partially order § by
writing (4,B)> (0, D) f u(A—C) =p(B~D) =0. We show that
every chain in § has an upper bound. Let (4,, B,)acl be o chain in §:
Let a = Eigp,u(Aa) and b = su})‘u(Bu). Let (a,)m., be a sequence of indi-

ces such that p(d,)—>e and (Bun) —b. Then the pair (4,.B) where
4 = ML:{A“" —UB,, and B ~ U B, —{J 4, is an upper bound of the

. n=1 n=1

chain, ({1” B.), ael. Hence by Zorn’s lemma there exists a maximal element
(#, F) in §. By our remark X—F o F must have u-measure zero. Now
tak.e 4 =E-—(X—F UF). Then fl, and fly_, induce measures on ¥
which are mutually absolutely continuons. '
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Remark. We can choose 4 such that wu(Ad) = pw(X) 4

Txamrrs 8.1, Let X = RB* and let x be any measure absolutely
contimuons with respect to the plane Lebesgue meagire on X. Let f(x, y)
— p Then Fubini theorem shows that f i essentially uncountable to
one. Theorem 3.1 shows that for any given s we can decompose X
into # disjoint Bovel ety By, By, ..., B, such that measures induced
on Rbyf P Bo== L, ..., 9% are mubually absolately continuous.

4. Lot f bo a bounded complex valued Borel function on X and let TY
denote the normal operator on Ly(X, u) consigting of multiplication by j.
The objective of this seebion is to describe the gpeciral meagure asso-
ciated with 7. For this purpose we first of all reeall some of the relevant
results about spectral measures ([1], [31, [4]).

Let $ Dbe s non-trivial separable Hilbert space. Let C dencte the
complex plane and B ity Borel ¢-algebra. By a spectral measure B we
shall mean a countably additive function on B, the values of B being
orthogonal projections in § and F(C€) being equal to the identity map
of §. For any #e$ we have a non-negative measure u, defined by u,(o)
= [B(0)®, m) , oeB. If §, denoties the subkpace spanned by {B(0)w: 0B}
then $, is invariant under # and the mapping S,: Blo)z =1, extends

- to an invertible isometry from $, onto Lu{C, g,) in such & manner that

S, ES7Y == F,, where ¥, is the spectral measure on Lo(C, py) detined
by F,(e) = multiplication by 1,(l, = characteristic function of o).

TFor any non-negative finite measure 1 on B and any cardinal number
< ¥y W shall denote by nL, (¢, A) the Hilbert space which is thg dirt?ct
sum of # copies of Ly(C, A). If F = (f1,fs; fs, ---) (this sequence ig finite
if < ¥y) be an element of nL,(C, 1), we write

Fin(ﬂ).f s (Lo j-uf‘u o), oeB.

Then F, is & spoctral measurs on B. ‘
Wo now state Tellingar=Hahn theorem for speetral measures in two
different forms.
IRLISGn-T AN wrmorey  (fiest-form), et B be o speokral
measure. Then W, finile measures Ay, As, Agy .. o0 B and on inwertible iso-
e
melry 8 feomn S oo the divaet yum Y L, (€, 4,) such that

Fazn ],
(i) For each i, Ay 88 absolutely conbinuous with respect to A, .
(i) SESL e multiplioation by charaderistio Junction, t.o. if f = (fu,

Fayfay oo} Delongs to ELE((J,l,L), thon

Mol

SE ()8 == (Lafys Lafer o), FoeB.
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If A,y Ay By, ... be another sequence of fimite measures for which T an inver-

]
tible isometry 8" from % onio 3, Ly (C, A,) sueh that (i) and (i) are satigfiod
n=1
with respoct to A, by, Ay, ... amd 8", then for each n, 2, and A, are mutually
absolutely continaous.
Tor a proof of above theorem we refer to [(4], Chapter VII).
HeriaNer-Hauy turokem (Second form). Let H be a spociral
moasure. Then T mubually singular finite measures dyy Ay Ay, oo on B
and an iwvertible isometry S from § onto the direet sum of n I,(C, 4,),
now= oo, 1, 2,8, ... such thet SHS™' = F = multiplicalion by characier-
istée funclion, i.e., for each n, the restriction of I to T, ((}, ) 8 Fy o Faurther
if Awy Aus Az s ... be another sequence of maduelly singular measures for which ©
an isomelry 8' from $ onto the divect sum of n Ly(C, A,), n = o0,1,9,5, ...
such that S'BS'™ = F' = muliiplication by characteristic function, then
Jor each m, 1, and A, arc mutually absolutely continuous. '
. A proof of above theorern can be obtained by specializing the results
of ([1], Chapter III) to the case of separable Hilbert space.

Tror any finite measure A on B wo shall write 1 t0 denote the class
of o-finite measures on B which are mutnally absolutely continnous with
respect to 4 and eall 7 the measure clags of 4. It follows from second form
of Fellinger—Hahn theorem that any spectral measure % uniquely deter-
ines mutually singalar measure elasses Ay, 4y, Ay, - 80 that Ay, Ay, Ay, ..
satisfy the conditions of that theorem.

DERINETION 4.1. We say that B has uniform mallipliotty w with asso-
ciated measurs class 7, if in the Hellingar—Fahn theovem of second form
Ty =0 for k& +# m.

Remark It ean be shown using Radon—Nikodym derivatives that B
has uniform multiplicity = if and only if in the Hellinger—ILahn theorem
of first form 4, 4,, ..., 4, belong to same meastre clags and App1 18 the
Zero measure.

Returning to Hellinger—Iahn theorem in ity second form, i£ 8§ be
the igometiry of that theorem, then the subspaces §, = &~ (T (€, 2,))
are such that § is their direct sum, B$H, = §,, the restriction of I to S
has uniform multiplicity # with associated measure clags G- Tt e then
is always absolutely comtinuous with respect to Ay -RA, 4 A ... (Bhis
is & o-finite measure). Further we$, it and only it ;18 absolutely contin-
uous with respect to 1,, and indeed §, = {z: p, is absolutely contin-
nous with respect to 2.}. From this it follows thas %, does not depend
on choice of 8 or 2, A, 4, ...

Limyvoaa d.1. Let A be o findle positive measure on B and let FosfaroesFn
en Ly(C, 2) be such that

() VoeB, L.f; L f; if 1 %5,
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(i) the measures vy, p(0) e= L% belongs to the measure class 1

Then W < N

Proof. The conditions of the lemma imply that for a.e. « with respect
to A the wectors fi(»), Futay, .y fule) ave non-zero and they ave ortho-
gonal. Tence it iy clear that o= 4. -
_ TemMA 4.2. Let I be o speciral measure of uniform mudtiplicity a
with associated measure olags & 4 O, Leb &, @y, .0y #y,e5 be such thai

(i) Vo, B{o)a, | m il 4 #j . ~

(il) the MOMUPES fiy) s fhys vy fy,, 006 AL of moasure class 4.

Thete T sz Mh

This lewma follows from Lémma 4.1 by making uso of the isometry 8.

LimMMa 4.3. Let 1 be a speciral moasure with associated measure
Aasses T,y Fyy Ayy .- - aGcOrding to the second form of Hellinger—Hakn thgore¢n.
Suppose that for svery positive integer o, 0 &), %ay ..o, w, €8 such that

(i) Vo3, B(o)w, | o; if @ # ],

(i) for each i, the HaRUTG olass ., belongs to the measure class of
I o T e o PR

Then A, = 0 for k< oo

Proof. Suppose A, is non-zero for some kb < co. Let @y, &y, o Whn
be elemnents in § satistying conditions (i) and _(ii) of the lemma,. _Ijet y=DLg k‘a;i,
wheve Py, denotes the orthogonal projection on $,. Let X denote the
regtriction of 7 10 H;. Then we have ~

(a) B, has uniform multiplicity % with associated measure class Ay

(b)Y VoeB, Bylo)y Ly; ¢ 55],

(¢) for each ¢, the measures » defined by »,(o) = (B o)y ;) belong
to the measure class 4,. By Lemmsa 4.2 this is impossible. Hence 1, = 0. ®

Now let 4 Dbe & hounded normal operator on . Then by the spectral
theorem ([17, p. 71] o a spectral measure I supported 0011 the spectrum

A wuch that . .
o L A= [ (i)
«
Tt 9 in auy polynomiad in ¢ and 2, then.

D(d, A% = [ plz, E) Bld2)
qQ

Turther for any @<, the subspace spanned by {{flmm, A*™p),

m == 0,1,%,3,... i the same as the subspace spanned by.énﬁ (oYw: o<B}.

Thus H(e)w | yVo it and only ¥ vm, A"z ly, 4 .10_{T ':/ fczv

taks § == Lo(X, p) and A ==Ty. Toer any cpeliy (X, p) write ‘u.( (i

= [lof(w)ulde) and 1, = 4", Le, A, is the measure on % define
B

BY Ap(0) == uf(f"N(0)], o, Tiot A De the measure uf™". Tt iy ensy to
see that A, is aways absolutely continnous with respect to 4.
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Let F denote the spectral measure of T,. Then Vm = 0

(TP, 0) = [ (w0} lp(u)Puldu) = i 2"l (d2) = [ 2*(B(d2)g, ¢),
(7 (4]

X

T3y @) = [T (W) lp ()P (@) = [ &3, (d2) = [ 2*(B(de) g, ),
P [4) o

(TP 1,1) = [#i(de) = [em(B(d)1,1),
[ o

(X" 1, 1) = [#(ds) = [#4{(de)1, 1).
« (3]

The second equality in the first two equations follows from transfor-
mation of variable formula. It is clear from these formulas that 1 = uf™?
belongs to the measure class of Ao+ A -+A+iy... Where Ay, %, %y, ...
ate the measure classes associated with % according to Hellinger—Hahn
theorem in ifs second form. )

TarorREM 4.1. If f is essemtially wncountable io ome them Ty has uni-
Jorm multiplioity R, with associated measure dass 3 where ) = uf L

Proof. Let » be any positive integer. Tet Ay, Agy ..oy Ay, be a decoin-
position of X in the fashion of Theorem 3.1, i.6., measures induced by
restriction of f to 4, are all mutually absolutely continuous and indeed
belong to the measure class 7. Let o, = Ly ooy @y =1y . Then it is
clear that for every integer m > 0 TPa;, 7™z, ave both orthogonal to n
if j 4, hence for all 0e®B, B(o)w, | #; whenever 4+ §. Next for each i,
the measure eyt o, (0) = (B (o), x;) is the measure induced by the
restrietion of f to 4,, ie., My = uf |g; and belongs to the measure class A
Hence by Lemma 4.3 T, has uniform multiphcity - 8, with agsociated
measurs 1. m

Now let us assume that f is countable to one. Let v, vy, #s, ... be
a Hellinger—Hahn decomposition of X of second kind and let Ay denote
the measure induced by restriction of f to y,. Then i, i, Ay ... i8 the
sequence of mutually singular measure classes associated with the spee-
tral measure 7 of T, according to second form of Hellinger-Iahn theorem.
To see this it is enough to note that

D) Lo( X, p) = Ly (Xl ) +La( X, al, ) @ ..
" n
(i) Ly (X, '”’II'.,,) = 21: Ly (X, /U'|vm-): where y, = }J Yot 2 Vg O Py =
i= ]

it 4 55 7. fly,s is one-one for every i and measures induced by fl,,, ave
mutually absolutely conmtinuous, 1 <7< n(l).

(ii}) I 4,; be the measure induced by the restriction of f 1oy, then,
sinee f is one-one on y,,;, the mapping §,,: 8,:9 = gof [i;:i is an invertible

isometry from L,(X sty ) and Ly{C, ,;) such that for any helL,(C, 1)

() Note that yyy here is pz in Theorem 2.3,
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(80T 85 1) (2) = 2h ()
from which it follows that VoeB
BB (o) S h =1,

(i‘f) if gmn == ~;L2(Cr At}

1

1
-y
S
By Z S
il

then & == 8,--8,--834- ... i# an invertible isometry from L, (X, u)
onto M @M, DI, D ... such that SES? acts on each Ly(C, A,) in the
manuer given fn (lil) above.

(v) The eonclusion follows from. the remark following definition 4.1.

- We continue with the assamption that f iy essentially countable to

one and show how the firgt kind Hellinger-Hahn decomposition of X yields
the measure classes associated with the spectral measure of 7, according
to the IMellinger—Ilahn theorem in its first form. Let O, 0,, 04, ...
be a5 in Theorem 2.2 and let, for each %, A; be the measure induced by
restriction of f to (. Let & denote the direct sum of Hilbert spaces Ly(C, 4,).
For any DBorel set ¢<B, let I'(¢) denote the projection operator
F{o)(gry gos far ---) == (lathrs 1agay Dofa, --.) Whove (g4, 65, Fa, ...}« R Then
F s onitarily equivalent to the spectral measure B of 2. To see this
it is enough to note fhab:

(i) i 8, denotes the invertible isometry between I, (X, plo,) and
Ly(C, %) given by

B = hoflgl,  hely(X, plg,),
then
(81 Ty87 0) () = aple),  peLla(C,hy)
from which it follows that for any gel,(C, Ay
Bl (o) S5t = Lop,  VodB.
(i} Lo(X, @) ;:2; Ly (X, prlgy,)-

Sineo A, iy absolutely continuous with rexpect o 2, ‘it is clea,?? thait
Tus By duy o ov pive the meagure clagses associated with ¥ according- o
Hollinger-ITahn, theorent in ibts fiest form. )

Thoe following theorem ¥ an easy consequence of the foregoing

Temorem 4.2. Let f be o bounded complen valued Borel function on X.
Then the spectral measwre of T, is of uwiform multiplicity %< 00 @f and
only if f is essentially n to one. In pariionlar it is of multiplictly ome if and
only if I is essontially one-one. . o

For the next theorem whose proof is left to the reader, keep in view
Definitions 2.4 and 2.5. !
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THEOREM 4.3. Leét f and ¢ be essemtially countable to one bounded com-
plew valued Borel funciion on X and Z respectively. Then T, and T, are
umitarily equivalent if and only if the corresponding first hind Hellingor—
Hahn decompositions of X and Z are equivalent, i.6., if and oply if f amd ?
are equivalent.

Bemark. It can happen thab f is essentially uneountable to one, @
is countable to one and Ty and 2, are unitarily equivalent. Tndeed any
bounded normal operator on a separable Hilbert space is mmitarily equiv-
alent to T, where (y) is the funetion on I x € (I = Set of positive
integer) given by (¢) (n, ) = #, and where o meagure on I x € is detor-
mined by the operator in question. Note that (v) is always countable to one.

Aceknowledgement (September 9, 1972). I would like to acknowledge hore
that Proposition 1.1 togethor with the first part of Theorem 2.2 are contained in
Rohlin’s beautiful study of Lebesgue Spaces in his paper “Om fundamentsl ideas of
meoasure theory” {Amer. Math. 8oc. Trans. Series 1, 10, page 45). Theorem 3.1 also
follows from his result on the “existence of independent complement for measurable
decompositions which are not one sheeted on any set of positive measure”. I am
gratefnl to D. Ramachandran for pointing this eut to me and for acquainting me
with the contents of Rollin's paper. Rohlin’s proofs of the vesults mentioned rely
on the exisbence of camonical systern of measures and they are obtained in the
process of giving a complete classifications of moasurable decompositions of
a Lebesgue Space. Our proof of Thecrem 2.2 is directly in the spirit of classieal
Hellinger—Hahn theorem for gpeeiral measures. Theorem 3.1 also does uob depend
in anyway on canonical system of measures. '
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Linear topologies which are suprema
of dual-less topologies™

by

N, T IECK and TORACTO PORTA (Urbana JIL)

Abstract. Tho first vesult of this paper is that every topological linear space
of algebraie dimevsion ab least the continnum is lin(smly llOInOOLI).OI'p:.llic to & sub-
gpace of a duslless space (Le., o topologieal Hnear space with zero dual) in such a way
that the dimengion and codimengion of the image are equal. Using this result, it is
then proved that the norm topology of many of tho classieal separable ]3mm.ch spaces
earl ho writben as the supremum of a finibe number of dual-less topolog_les. »?;omu
sxtonsions of this are given for the non-separable case and for other topological lincar
spaces.

0. INTRODUGTION

Tt is well known that the topology of convergence in measure ig one
of the weakest topologies on a funection space; for example, on the spaee
of all Lebesgue meagurable functions on [0, 1] the only linear funct"mna.l
which is continuous for convergence in meagure ig the zero functiomal.
In view of this it may be somewhat surprising that the norm topology
on the clasgical Banach gpaces can be expressed ag simultaneous conver-
gence in three topologies, each of whieh is an inverge image of a topology
of convergenco in measure. This is proved below ag & consequence of more
general results concerning the following problems: .

a) which lineax topologies on a vector space are rostrictions of “very
weak™ topologies on a larger space?

1) which linear topologios on a vector space can be exprossed as
suprema of families of “very weak” topologies on ib¥ )

By a *very weak?” topology we mean a linear topqlolgfy thadf is atb
least dual-less in the sense that it does not have any non-trivial continuous
linear funetional, Theorems A, B, O helow provide some answers to these
problems. ‘ )

Questions of this sort were investigated by Klee in [3], to which we
refer the reader for background. In this paper, Klee proved that the supre-
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