Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-TM-00-12

2000-01-01

Hello, World: A Simple Application for the Field Programmable
Port Extender (FPX)

John Lockwood and David Lim

The FPX provides simple and fast mechanisms to process cells or packets. By performing all
computations in FPGA hardware, cells and packets can be processing at the full line speed of
the card [currently 2.4 Gbits/sec]. A sample application, called 'Hello World' has been developed
that illustrates how easily an application can be implemented on the FPX. This application uses
the FPGA hardware to search for a string on a particular flow and selectively replace contents of
the payload. The resulting circuit operates at 119 MHz on a Xilinx XCV 1000E-FG680-7, and
occupies less than 1% of the available... Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Cf Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

Lockwood, John and Lim, David, "Hello, World: A Simple Application for the Field Programmable Port
Extender (FPX)" Report Number: WUCS-TM-00-12 (2000). All Computer Science and Engineering
Research.

https://openscholarship.wustl.edu/cse_research/295

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F295&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F295&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F295&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F295&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F295&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F295&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F295&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/295?utm_source=openscholarship.wustl.edu%2Fcse_research%2F295&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/295

Hello, World: A Simple Application for the Field Programmable Port Extender
(FPX)

John Lockwood and David Lim

Complete Abstract:

The FPX provides simple and fast mechanisms to process cells or packets. By performing all
computations in FPGA hardware, cells and packets can be processing at the full line speed of the card
[currently 2.4 Gbits/sec]. A sample application, called 'Hello World' has been developed that illustrates
how easily an application can be implemented on the FPX. This application uses the FPGA hardware to
search for a string on a particular flow and selectively replace contents of the payload. The resulting
circuit operates at 119 MHz on a Xilinx XCV 1000E-FG680-7, and occupies less than 1% of the available
gates on the device.

https://openscholarship.wustl.edu/cse_research/295?utm_source=openscholarship.wustl.edu%2Fcse_research%2F295&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/295?utm_source=openscholarship.wustl.edu%2Fcse_research%2F295&utm_medium=PDF&utm_campaign=PDFCoverPages

Hello, World: A Simple Application for the
Field Programmable Port Extender (FPX)

John Lockwood, David Lim

WUCS-TM-00-12

July 11, 2000

Department of Computer Science
Applied Research Lab
Washington University

Campus Box 1045

One Brookings Drive

Saint Louis, MO 63130

Abstract

The FPX provides simple and fast mechanisms to process cells or packets. By performing all computations
in FPGA hardware, cells and packets can be processing at the full line speed of the card {currently 2.4
Gbits/sec]. A sample application, called 'Hello World’ has been developed that illustrates how easily an
application can be implemented on the FPX. This application uses the FPGA hardware to search for a string
on a particular flow and selectively replace contents of the payload. The resulting circuit operates at 119
MHz on a Xilinx XCV1000E-FG680-7, and occupies less than 1% of the available gates on the device.

Supported by: NSF ANI-0096052

1 Introduction

Compare

1

/
Header | | vpi |vci=s -~ Match
[5 bytes in
2 words] N PAD
H B L L]) BHELL |~ Match
Payload '0’|pPs Ps P7 [) ".@’.- " UWIO! - Match+Write

[48 bytesin | | P& P9 P10 P11 RL DL | - Write
12 words] 1 - Copy
.. Payload Payload ..
L _
P44 P45 P46 P47 P44 P45 P46 P47] ~+ Copy
JWLARL 07400 |..___—,|

32 bits

Figure 1: Cell processing for matching cell

As an example of a simple application for the FPX, consider an algorithm that searches the cells on a
particular VCI that have payloads starting with the string "HELLO". If and only if we find such a match,
we wish to concatenate that string with "World." A graphical view of how this algorithm operates on a cell
is shown in Figure 1.

2 Discussion

Compare
VPI VPI=X m -~ Mismatch
PAD PAD
L 3)] N9 | 1 I]) 1 "n?
H: EVELY L H.E,lj.l- =+ Copy
‘0’| ps P6 P7 'O’ 5 P& P7
P8 P9 P10 P11 P8 P9 P10 P11
.. Payload Payload ..
P44 P45 P46 P47 P44 P45 P46 P47| ~+ Copy
JWLARL 0700

Figure 2: Cell processing for mismatched VCI

There are several cases in which the cell may not match. First, cells should only be processed if they arrive
on the correct VCI. In this example, we have chosen to process cells on VCI=5. If the VCI doesn’t match,
the cell should should pass through the circuit without modification, as shown in Figure 2.

Compare

VPl |VCI=5 vPI=X [vei=s | | =+ Maich

| Pap I PAD
!ﬂ 1 S et ‘M E’ 'L’ °L'| -= Mismatch+Copy
O'|Ps pPs P7 O’ ps pP6 P7| == Copy
P8 P9 P10 P11 P8 P9 P10 P11

.. Payload Payload ..
P44 P45 P46 P47 P44 P45 P46 P47| <+ Copy

JWLARL 0700

Figure 3: Cell processing for mismatched payload

Second, for those cells that do arrive on the correct VCI, the string must match over all words in the
payload. For the string shown in Figure 3, a mismatch is found in the the first byte of the first word. Since
the "MELLOQ" doesn’t match "HELLO", the contents of the cell should be left unchanged.

Compare

1

el |veiss | VPI=X mau-sl - Match
PAD PAD
HEE L, 'H E' L' Y| = Match
ﬂpslpelp'/ ‘P’ P5 pPe P7| <+ Mismatch+Copy
P8 P9 P10 P11 P8 P9 P10 P11
.. Payload Payload ..
P44 P45 P46 P47 P44 P45 P46 P47| = Copy

JWUARL 0700
Figure 4: Cell processing for mismatched payload (2)

Performing a string match on the FPX is slightly complicated by the fact that the payload arrives as a
stream of words; not all at once. Since an FPX module receives only one word per clock cycle, the circuit
must know the status of previous comparisons to ensure that all current and previous words matched before
it writes the word "WORLD." in the current and future clock cycles.

3 Logical Implementation

O Append
/ "WORLD"
[—; O World
vCli Match

to payload
Check

’HeII'
Check
Reset\

Cell DOUt
Figure 5: State machine for the Hello World circuit

There are several ways to implement the "THELLO WORLD." circuit on the FPX. One such implementation
uses a word counter and the state machine shown in Figure 5.

The system begins in the reset state. When a new cell arrives, it compares the value of the VCL. If the
VCI doesn’t match, it jumps to the "Dout’ state. In the 'Dout’ state, all of the remaining data in the cell is
simply written out with the same value they had when it arrived. If the VCI matches, the circuit next scans
the first word of the payload for the letters "HELL". If the string doesn’t match, the state machine jumps to
"Dout’ If the cell still matches, the state machine next checks the contents of second payload word for the
letter "O". If that letter doesn’t match, the state machine again jumps to "Dout’.

For cells that do match, the state machine jumps to the *World’ state. It stays here for multiple clock
cycles as the "WORLD" string is written to the payload.

4 Simplified RAD Entity

Simplified RAD Module

Dataln[32] —- — = DataOut[32)
d_sw_nig | o d_sw_rad
StarofCell —{ Hellor o oicen
s0c_sw_nid | W@:rld: soc_sw_rad
TransmitCellAvailable —s—— e [*—— TransmitCellAvailable
tcalf_sw_rad Module teaff_sw_nid
RAD_Clock —-'-|>
RAD_Reset ——{ Signal
i RAD I/O Pin

Figure 6: Simplified RAD Entity

The most simple configuration fora RAD module is shown in Figure 6. As with all RAD modules, the circuit
operates at the 100 MHz frequency of RAD_Clock. RAD_Reset is asserted, active high, synchronously with
RAD_Clock in advance of data arrivals.

Data arrives as cells on a 32-bit data bus, DataIn[32]. Using the switch-side of the RAD logic, this bus
corresponds to the "d_sw_nid" I/O pins.

The arrival of a new cell on the bus is indicated by the StartOfCell (SOC) signal. This signal goes high
to indicate that the bus contains the first word of the cell.

The TransmitCellAvailable signal (TCA) is used for flow control. A module can block the arrival of a
new cell by asserting this signal no less than 4 cycles before the end of the previous cell.

Data leaves the module on the DataOut[32] bus. In general, a module can add, modify, delete, or delay
cells. The module simply asserts SOC when it has a new cell ready to transmit. Modules must defer the
transmission of cells if the outgoing interface is congested, as indicated by downstream TCA.

Since the "Hello world" application never adds cells or delays cells by more than a few clock cycles, it
never creates congestion. "Hello world”, therefore, can can simply map the outgoing TCA indicator to the
incoming interface.

5 VHDL Source Code

~~ Hello World: Sample FPX Application

-- Operates as Ingress (switch-side)} cell processor of RAD
-- Copyright: July 2000, John Lockwood, David Lim

-- Washington University, Applied Research Lab

library IEEE;
use IEEE.std_logic_l164.all;
use IEEE.std_logic_arith.all;

entity HelloWorld is
port (rad_clk: in std_logic; ~- 100 MHz RAD Clock
rad_reset: in std_logic; -- Asserted low at startup
soc_sw_nid: in std_logic; -- Start of Cell [actiwve high]
tcaff_sw _nid: in std_logic; ~-- Transmit Cell Available
d_sw_nid: in std_logic_vector {31 downto 0}); -- Data In
soc_sw_rad: out std_logic; -- Outgoing Start of Cell
tcaff_sw_rad: out std_logic; -- [pass through]
d_sw_rad: out std_logic_vector (31 downto 0) -- Data Out
)
end HelloWorld;

architecture Hello_arch of HelloWorid is
type state_type is (rst, dout, hell_check, o_check, world);

-- "rst": reset state;

-- "dout": output of the circuit equal to the input of the circuit;
-- "hell_check": checks for the letters "HELL" in the incoming word;
-- "o_check": checks for the letter "0";

-- "world": circuit writes out the word "WORLD".

signal state, nx_state : state_type;
signal counter, nx_counter : std_logic_vector (3 downto 0);
signal CEN, nx_CEN : std_logic;

-- buffer signals to meet timing:
signal BData_Out : std_logic_vector (321 downto 0):

signal BData_in : std_logic wvector (31 downtoc 0);
signal BSOC_In : std_logic;
signal BTCA_In : std_logic;
signal BSOC_Out : std_logic;
signal BTCA_Out : std_logic;
signal clkin i std_logic;

begin
counter_process: process (CEN, counter) begin
if CEN = "0’ then
nx_counter <= "0001";
else

nx_counter <= unsigned {(counter) + 1;

end if;

end process;

-~ State Transitions

state_machine_process: process (BSOC_In, state, counter, BData_In, rad_reset,

begin

if (rad_reset = ‘1’) then

elsif (

elgif

elsif

elsif (

elsif (

elsif {

elsif (

elsif |

elaif

else

end if;
end process;

nx_state <= rst;
nx_CEN <= ‘0‘;
BSOC_In = ‘1’ and
BData_In(19 downto 4) = "0000000000000101") then
-- checks to see if VCI = 5, if so: next check payload
nx_state <= hell_check;
nx_CEN <= *'1’;
BSOC_In = ‘1’ and
BData_In{19 downto 4) /= "0000000000000101") then
-- VCI != 5
nx_state <= dout; nx_CEN <= *1‘;
state = hell_check and counter = *0010" and
BData_In="01001000010001010100110001001100") then
-- checks to see if first payload word has letters "HELL"
nx_state <= o_check;
nx_CEN <= *1‘;
state = hell_check and counter = "0010" } then
-- Payload([0] != "HELL"
nx_state <= dout;
nx_CEN <= *1°';
state = o_check and counter = "0011" and
BData_In (31 downto 24} = "01001111") then

-- checks to see if second payload word has the letter "0

nx_state <= world;

nx_CEN <= '1‘;

state = o_check and counter = "0011")} then
-- Payload[l] !'= "Q*"

nx_state <= dout;

nx_CEN <= ‘1/;

state = world and counter = "0100") then
nx_state <= dout;

—-- Output rest of payload, unchanged.

nx _CEN <= *1/;

state = dout and counter = *“1100") then
nx_state <= rst;

-- Start over for next cell

nx_CEN <= '0’;

state = dout or state = hell_check or state = rst } then
nx_state <= state;

-- same state

nx_CEN <= CEN;

nx_state <= state;
nx_CEN <= 'X‘’;

CEN)

-- Upper 16-bits of Data Output
DataOut_3ldowntolé_process: process (¢lkin) begin
if clkin‘event and clkin = ‘1’ then
-- checks to see if the intput data has the letter "O"...
if (state = o_check and BData_In(31 downto 24} ="01001111")} then
-~ writes out "0 " for the higher two bytes of the output

BData_Out {31 downto 16) <= "010011110101111l1"; -- ("0 "}
elsif (state = world and counter = "0100" } then

BData_Out {31 downto 16) <= "0101001001001100"; -- ("RL")
elsif { state = rst and BSOC_In /= ‘1’) then

BData_Out (31 downto 16) <= "0000000000000000";
elsif (state = dout or state=hell_check or BSOC_In = ‘1‘) then

BData_Out {31 downto 16) <= BData_In(31 downto 16):

else

BData_Out (31 downto 16) <= 1D:9.8.9.8.9:6.6.0.9.9.9.6.6.6.0. 4
end if;

end if;
end process;

-~ Lower 16-bits of Data Qutput
Data_Out_1l15downto0_process: process (clkin) begin

if clkin’event and clkin = ‘1’ then
-- checks to see if the input data has the letter "0Q"...
if (state = o_check and BData_In{31 downto 24) = "01001111") then
-- writes out "WO" for the lower two bytes of the output
BData_Out (15 downto 0) <= "0101011101001111"; —- ("WO")}
elsif (state = world and counter = *0100" } then
BData_Qut (15 downto 0) <= "0100010000101110"; -- ("D.™)

elsif { state = rst and BSOC_In /= ‘1’) then
BData_0Out (15 downto 0) <= "0000000000000000";
elsif (state = dout or state=hell_check or BSOC_In = ‘1’) then
BData_Out (15 downto 0) <= BData_In(l5 downtoc 0);
else
BData_OQut {15 downto 0) <= "XXXXXXXXXXXXAXKX";
end if;
end if;
end process;

BData_Qut_process: process {clkin) begin
-- buffer signal assignments:

if clkin’event and clkin = '1‘ then
d_sw_rad <= BData_Out; -- (Data_Out = d_sw_rad)
BData_in <= d_sw_nid; -- {(Data_In = d_sw_nid}
BSOC_In <= soc_sw_nid; -- (50C_In = soc_sw_nid)
BSOC_Out <= BSOC_In;
so¢_sw_rad <= BSOC_Out; -~ {SOC_Out = tcaff_sw_rad)
BTCA_In <= tcaff_sw_nid; -- (TCA_In = tcaff_sw nid)
BTCA_Out <= BTCA_In;
tcaff_sw_rad <= BTCA_Out; -- (TCA_Out = tcaff_sw_rad)
counter <= nx_counter; -- next state assignments
state <= nx_state; -- next state assignments:
CEN <= nx_cen;

end if;

end process;
clkin <= rad_clk;

end Hello_arch;

10

6 RAD Ingress Module I/0 Pin Mapping

The RAD has two interfaces: one interface typically used for data from the switch (egress), and the other
typically used for data from the line card (ingress). Modules can be mapped to either interface. For this
interface, the design is mapped to the switch (sw) side of the RAD.

On this interface, I/O pins of V1000E-FG680 device are mapped as follows:

File: rad.ucf
Backend constraints file for RAD FPGA
Switch (8W) Side Module

DataIn (Linecard interface, from NID)
NET d_sw_nid(0) LOC=B31;
NET d_sw_nid(l) LOC=C31;
NET d_sw_nid(2) LOC=C32;
NET d_sw_nid(3) LOC=D30;
NET d_sw_nid{(4) LOC=B33;
NET d_sw_nid{5}) LQC=D32;
NET d_sw_nid({6) LOC=A31;
NET d_sw_nid(7) LOC=D31:
NET d_sw_nid(8) LOC=a33;
NET d_sw_nid(9)} LOC=C34;
NET d_sw_nid{10) LOC=a34;
NET d_sw_nid{(11l) LOC=D34;
NET d_sw_nid(12} LOC=B32;
NET d_sw_nid{l3) LOC=B36;
NET d_sw_nid(l4) LOC=A35;
NET d_sw_nid(l5} LOC=D35;
NET d_sw_nid{ié) LOC=B37;
NET d_sw_nid{(17) LOC=D33;
NET d_sw_nid(18} LOC=A36;
NET d_sw_nid(19) LOC=B34;
NET d_sw_nid(20) LOC=B35;
NET d_sw nid(21} LOC=D37;
NET d_sw_nid(22}) LOC=C33;
NET d_sw_nid{(23) LOC=F37;
NET d_sw_nid{24}) LOC=G37;
NET d_sw_nid(25) LOC=C35;
NET d_sw_nid(26) LOC=F36;
NET d_sw_nid(27) LOC=E38;
NET d_sw_nid{28) LOC=E37;
NET d_sw_nid(29) LOC=G36;
NET d_sw_nid(30) LOC=D38;
NET d_sw_nid(31) LOC=C38;

DataOut (Linecard interface, from RAD)
NET d_sw_rad(0) LOC=R20;
NET d_sw _rad{l} LOC=B21;
NET d_sw_rad{2) LOC=E22;
NET d_sw_rad(3) LOC=A21;

11

d_sw_rad(4)

d_sw_rad(5}

d_sw_rad(6)

d_sw_rad(7)

d_sw_rad(8)

d_sw_rad(9)

d_sw_rad(10)
d_sw_rad{1ll)
d_sw_rad (12}
d_sw_rad(13)
d_sw_rad(1l4)
d_sw_rad(1l5)
d_sw_rad(1l6)
d_sw_rad{l7)
d_sw_rad(18)
d_sw_rad(l9)
d_sw_rad(20)
d_sw_rad(21)
d_sw_rad(22)
d_sw_rad(23)
d_sw_rad{24)
d_sw_rad(25)
d_sw_rad(26)
d_sw_rad({27)
d_sw_rad(28)
d_sw_rad(29)
d_sw_rad{30)
d_sw_rad(31)

Start of Cell
NET soc¢_sw_rad LOC=D27;
NET soc_sw_nid LOC=A32;
TCA
NET tcaff_sw_nid LOC=B26;
NET tcaff_sw_rad LOC=D39;

¥# clock
NET rad_clk LOC=AW19;
Reset
NET rad_reset LOC=B30;

LOC=D22;
LOC=C22;
LOC=D23;
LOC=222;
LOC=B22;
LOC=E23;
LOC=B23;
LOC=AZ23;
LOC=C23;
LOC=A24;
LOC=C24;
LOC=B24;
LOC=A25;
LOC=D26;
LOC=B25;
LOC=D25;
LOC=D24;
LOC=C26;
LOC=C28;
LOC=C25;
LOC=B27;
LOC=227;
LOC=C27;
LOC=A29;
LOC=B29;

LOC=A28;

LOC=B28;
LOC=A26;

12

1AM ET 100
(07 CheRT % e

Figure 7: Post-synthesis signal timing relationships
7 Results of Physical Implementation

The circuit to implement the "Hello World" module was synthesized for RAD FPGA (a Xilinx V1000E-
FG680-7 device) using Exemplar and Xilinx back-end synthesis tools. The resulting circuit operates at:
119 MHz. The 8.4ns critical path in this circuit is well within the 10ns period provided by the RAD’s clock.
Since the circuit can handle back-to-back cells; this circuit achieves the maximum packet processing rate
of (100 MHz)/(14 Clocks/Cell)=7.1 Million packets per second.

Other statistics for this the circuit are listed below:

oChip utilization: 1% (49/12,288 slices)

eEdge Flops: Dataln + DataOut + SOCs + TCAs = 32+32+4 = 68

eInternal Flops : BufferedData + SOCs + TCAs + state + counter = 32+4+6=42
#I0Bs: Dataln + DataOut + SOCs + TCAs + Reset = 69

oGCLKS: RAD-CLK =1

The post-synthesis timing relationships among the signals in the "Hello World" are shown in Figure 7.
Note that the signals, like *Start of Cell (SOC)’ and data, are buffered both internally and across the edge
flops of the FPGA. Observe how the buffered data output (bdata_out) are modified from the buffered data
input (bdata_in). The payload of the cell was transformed from "HELLOELLQ.." to "HELLO WORLD.".

8 Exercises

oThe "Hello World" circuit could have been implemented with fewer states. Determine the minimum
number of states needed to implement the "Hello World" circuit,

eIdentify the states for the circuit described above.

sModify the VHDL, and re-synthesize the "Hello World" circuit using your optimized design.

13

sRemove any critical paths in your circuit that are longer than 10 nanoseconds.

elmplement a circuit which performs the matching algorithm over multiple cells. Use AALS to
encapsulate a frame.

eConsider how an FPX could be used with an SPC to implement hybrid hardware and software packet
processing functions.

9 Conclusions

The FPX provides a simple and efficient platform for the implementation of certain types of cell and packet
processing applications. The "Heilo World." application detailed here is a complete and working example
of a simple hardware module implemented on the the RAD.

10 References

Additional Information about the FPX is available on-line:

http://www.arl.wustl.edu/arl/projects/ipx/

14

	Hello, World: A Simple Application for the Field Programmable Port Extender (FPX)
	Recommended Citation
	Hello, World: A Simple Application for the Field Programmable Port Extender (FPX)

	tmp.1439924045.pdf.eKX1d

