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Abstract

There is recent popularity in applying machine learning to medical imaging, notably deep learning, which has achieved state-of-

the-art performance in image analysis and processing. The rapid adoption of deep learning may be attributed to the availability of

machine learning frameworks and libraries to simplify their use. In this tutorial, we provide a high-level overview of how to build

a deep neural network for medical image classification, and provide code that can help those new to the field begin their

informatics projects.
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Introduction

Machine learning has sparked tremendous interest over the

past few years, particularly deep learning, a branch of machine

learning that employs multi-layered neural networks. Deep

learning has done remarkably well in image classification

and processing tasks, mainly owing to convolutional neural

networks (CNN) [1]. Their use became popularized after Drs.

Krizhevsky and Hinton used a deep CNN called AlexNet [2]

to win the 2012 ImageNet Large Scale Visual Recognition

Challenge (ILSVRC), an international competition for object

detection and classification, consisting of 1.2million everyday

color images [3].

The goal of this paper is to provide a high-level introduc-

tion into practical machine learning for purposes of medical

image classification. A variety of tutorials exist explaining

steps to use CNNs, but the medical literature currently lacks

a step-by-step source for those practitioners new to the field in

need of instructions and code to build and test a network.

There are many different libraries and machine learning

frameworks available, including Caffe, MXNet, Tensorflow,

Theano, Torch and PyTorch, which have facilitated machine

learning research and application development [4]. In this tu-

torial, we chose to use the Tensorflow framework [5]

(Tensorflow 1.4, Google LLC, Mountain View, CA) as it is

currently the most actively used [6] and the Keras library

(Keras v 2.12, https://keras.io/), which a high-level application

programming interface that simplifies working with

Tensorflow, although one could use other frameworks as well.

Currently, Keras also supports Theano, Microsoft Cognitive

Toolkit (CNTK), and soon MXNet.

We hope that this tutorial will spark interest and provide a

basic starting point for those interested in machine learning in

regard to medical imaging. This tutorial assumes basic under-

standing of CNNs, some Python programming language

(Python 3.6, Python Software Foundation, Wilmington DE),

and is more of a practical introduction to using the libraries

and frameworks. The tutorial will also highlight some impor-

tant concepts but due to space constraints not cover everything

in full detail.

Hardware Considerations

For larger datasets, you will want a computer that con-

tains a graphics processing unit (GPU) that supports the
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CUDA® Deep Neural Network library (cuDNN) designed

for Nvidia GPUs (Nvidia Corp., Santa Clara, CA). This

will tremendously speed up training (up to 75 times faster

than a CPU) depending on the model of the GPU [7].

However, for smaller datasets, training on a standard cen-

tral processing unit (CPU) is fine.

This tutorial is performed on a computer containing an

Nvidia 1080ti GPU, dual-xeon E5-2670 Intel CPUs, and

64 gb RAM. However, you could perform this experiment

on a typical laptop using the CPU only.

Dataset Preparation

A common machine learning classification problem is to

differentiate between two categories (e.g., abdominal and

chest radiographs). Typically, one would use a larger sam-

ple of cases for a machine learning task, but for this tuto-

rial, our dataset consists of 75 images, split roughly in

half, with 37 of the abdomen and 38 of the chest. The

data is derived from OpenI, a searchable online repository

of medical images from published PubMed Central arti-

cles, hosted by the National Institutes of Health (https://

openi.nlm.nih.gov). For your convenience, we hosted the

images on the following SIIM Github repository: https://

github.com/ImagingInformatics/machine-learning. These

images are in PNG (Portable Network Graphics) format

and ready to be utilized by any machine learning framework.

For handling Digital Imaging and Communications in

Medicine (DICOM) images, a Python library such as

PyDicom (http://pydicom.readthedocs.io/en/stable/index.

html) may be used to import the images and convert them

into a numpy array for use within the Tensorflow

framework. With other frameworks such as Caffe, it

may be easier to convert the DICOM files to either

PNG or Joint Photographic Experts Group (JPEG) format

prior to use.

First, randomly divide your images into training and vali-

dation. In this example, we put 65 cases into training and 10

into validation.More information regarding principles of split-

ting and evaluating your model, including more robust meth-

odologies such as cross-validation, are referenced here [8, 9].

Then, place the images into the directory structure as

shown in Fig. 1.

Setting Up Your Environment

For this example, we will assume you are running this on your

laptop or workstation. You will need a computer running

Tensorflow, Keras, and Jupyter Notebook (http://jupyter.

org/), an open-source web application that permits creation

and sharing of documents with text and live code [10]. To

make things easier, there is a convenient SIIM docker that

has Tensorflow, Keras, and Jupyterlab already installed avail-

able at https://github.com/ImagingInformatics/machine-

learning/tree/master/docker-keras-tensorflow-python3-

jupyter.

First, launch a Jupyter Notebook, text editor or Python-

supported development environment of your choosing.

With Jupyter, the notebooks are organized into cells,

whereby each cell may be run independently. In the note-

book, load requirements from the Keras library (Fig. 2).

Then, specify information regarding the images. Last, de-

fine the number of epochs (number of passes through the

training data), and the batch size (number of images proc-

essed at the same time).

Build the Model

Then, build the pretrained Inception V3 network [11], a

popular CNN that achieved a top 5 accuracy of greater

than 94% on the ILSVRC. In Keras, the network can be

built in one line of code (Fig. 3). Since there are two

possible categories (abdominal or chest radiograph), we

compile the model using binary cross-entropy loss

(Fig. 4), and measure of model performance with a prob-

ability between 0 and 1. For classification tasks with

greater than 2 classes (e.g., ImageNet has 1000 classes),

categorical cross-entropy is typically used as the loss

function; for tasks with 2 classes, binary cross-entropy

is used.

data/

train/

abd/

abd001.png

abd002.png

...

chst/

chst001.png

chst002.png

…

val/

abd/

abd_val_001.png

abd_val_002.png

...

chst/

chst_val_001.png

chst_val_002.png

…

Fig. 1 Directory structure for the data
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There are many available gradient descent optimization

algorithms, which minimize a particular objective function

[12]. In the example, we use the Adam [13] optimizer with

commonly used settings (Fig. 4).

More About Transfer Learning

In machine learning, transfer learning refers to application of a

process suited for one specific task to a different problem [14].

For example, a machine learning algorithm trained to recog-

nize every day color images, such as animals, could be used to

classify radiographs. The idea is that all images share similar

features such as edges and blobs, which aids transfer learning.

In addition, deep neural networks often require large datasets

(in the millions) to properly train. As such, starting with

weights from pretrained networks will often perform better

than random initialization if using small datasets [14–16]. In

medical imaging classification tasks, this is often the case, as it

may be difficult to annotate a large dataset to train from

scratch.

There are many strategies for transfer learning, which

include freezing layers and training on later layers, and

using a low learning rate. Some of this optimization is

frequently done by trial and error, so you may have to

experiment with different options. For this tutorial, we

# build the Inception V3 network, use pretrained weights from ImageNet 
# remove top fully connected layers by include_top=False 

base_model = applications.InceptionV3(weights='imagenet', include_top=False, 
input_shape=(img_width, img_height, 3))

Fig. 3 Start with the original Inception V3 model. Then, remove top or fully connected layers from the original network. Use pretrained weights from

ImageNet

# build a classifier model to put on top of the convolutional model 
# This consists of a global average pooling layer and a fully connected layer with 256 nodes  
# Then apply dropout and sigmoid activation 

model_top = Sequential() 
model_top.add(GlobalAveragePooling2D(input_shape=base_model.output_shape[1:], 
data_format=None)),
model_top.add(Dense(256, activation='relu')) 
model_top.add(Dropout(0.5)) 
model_top.add(Dense(1, activation='sigmoid'))  
model = Model(inputs=base_model.input, outputs=model_top(base_model.output)) 

# Compile model using Adam optimizer with common values and binary cross entropy loss 
# Use low learning rate (lr) for transfer learning
model.compile(optimizer=Adam(lr=0.0001, beta_1=0.9, beta_2=0.999, epsilon=1e-
08,decay=0.0), loss='binary_crossentropy', metrics=['accuracy'])

Fig. 4 Add new layers on top of

the original model. There are

many possibilities, but here, we

add a global average pooling

layer, a fully connected layer with

256 nodes, dropout, and sigmoid

activation. We also define an

optimizer; in this case, it is the

Adam optimizer with default

settings

# load requirements from the Keras library
from keras import applications 
from keras.preprocessing.image import ImageDataGenerator 
from keras import optimizers 
from keras.models import Sequential 
from keras.layers import Dropout, Flatten, Dense, GlobalAveragePooling2D 
from keras.models import Model 
from keras.optimizers import Adam

# dimensions of our images
img_width, img_height = 299, 299

# directory and image information 
train_data_dir = '../data/train'
validation_data_dir = '../data/val'

# epochs = number of passes of through training data 
# batch_size = number images processed at same time 
train_samples = 65
validation_samples = 10
epochs = 20
batch_size = 5

Fig. 2 Jupyter Notebook showing

initial steps
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Original Translation Rotation Horizontal Flip Shear

Fig. 6 Augmentation examples using the Keras generator

# Directory, image size, batch size already specified above 
# Class mode is set to 'binary' for a 2-class problem 
# Generator randomly shuffles and presents images in batches to the network 

 train_generator = train_datagen.flow_from_directory( 
    train_data_dir, 
    target_size=(img_height, img_width), 
    batch_size=batch_size, 
    class_mode='binary') 

validation_generator = train_datagen.flow_from_directory( 
    validation_data_dir, 
    target_size=(img_height, img_width), 
    batch_size=batch_size, 
    class_mode='binary')

# Fine-tune the pretrained Inception V3 model using the data generator 
# Specify steps per epoch (number of samples/batch_size) 

history = model.fit_generator( 
            train_generator, 
            steps_per_epoch=train_samples // batch_size, 
            epochs=epochs, 
            validation_data=validation_generator, 
            validation_steps=validation_samples // batch_size)

Fig. 7 Defining the training and

validation generator and fitting

the model

# Some on-the-fly augmentation options 
 train_datagen = ImageDataGenerator( 
        rescale= 1./255,    # Rescale pixel values to 0-1 to aid CNN processing
        shear_range=0.2,    # 0-1 range for shearing
        zoom_range=0.2,    # 0-1 range for zoom
        rotation_range=20,    # 0-180 range, degrees of rotation 
        width_shift_range=0.2,   # 0-1 range horizontal translation
        height_shift_range=0.2,   # 0-1 range vertical translation
        horizontal_flip=True)    # set True or False

val_datagen = ImageDataGenerator( 
         rescale=1./255)    # Rescale pixel values to 0-1 to aid CNN processing

Fig. 5 Rescale images and

specify augmentation methods

Epoch 1/20 

13/13 [=================] - 2s - loss: 0.5701 - acc: 0.7231 - val_loss: 0.7761 - val_acc: 0.6000 

Epoch 2/20 

13/13 [=================] - 2s - loss: 0.1420 - acc: 0.9692 - val_loss: 0.4471 - val_acc: 0.8000 

Epoch 3/20 

13/13 [=================] - 2s - loss: 0.1645 - acc: 0.9385 - val_loss: 0.2711 - val_acc: 0.9000 

Epoch 4/20 

13/13 [=================] - 2s - loss: 0.0807 - acc: 0.9692 - val_loss: 0.2032 - val_acc: 0.9000 

Epoch 5/20 

13/13 [=================] - 2s - loss: 0.2372 - acc: 0.9538 - val_loss: 0.4368 - val_acc: 0.8000 

Epoch 6/20 

13/13 [=================] - 2s - loss: 0.0766 - acc: 0.9692 - val_loss: 0.0848 - val_acc: 1.0000

Fig. 8 Training metrics. Loss, training loss; acc, training accuracy; val_loss, validation loss; val_acc, validation accuracy. 13 refers to the number of

batches (13 batches × 5 images per batch = 65 training images). 20 refers to number of epochs
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remove the final (top) fully connected layers of the

pretrained Inception V3 model that was intended for a

1000-class problem in ImageNet, and insert a few

additional layers with random initialization (Fig. 4), so

they can learn from the new medical data provided. We

then fine-tune the entire model using a very low

# import matplotlib library, and plot training cuve 
import matplotlib.pyplot as plt
print(history.history.keys()) 

plt.figure() 
plt.plot(history.history['acc'], 'orange', label='Training accuracy') 
plt.plot(history.history['val_acc'], 'blue', label='Validation accuracy') 
plt.plot(history.history['loss'], 'red', label='Training loss') 
plt.plot(history.history['val_loss'], 'green', label='Validation loss') 
plt.legend() 
plt.show()

A
c
c
u

ra
c
y

Epochs 

Fig. 9 Sample Python code to

plot training data. Accuracy

increases and loss decreases over

time for the training and

validation data

# import numpy and keras preprocessing libraries 
import numpy as np
from keras.preprocessing import image 

# load, resize, and display test images 
img_path='../data/test/chest_test_001.png'
img_path2='../data/test/abd_test_001.png'
img = image.load_img(img_path, target_size=(img_width, img_height)) 
img2 = image.load_img(img_path2, target_size=(img_width, img_height)) 
plt.imshow(img) 
plt.show() 

# convert image to numpy array, so Keras can render a prediction 
img = image.img_to_array(img) 

# expand array from 3 dimensions (height, width, channels) to 4 dimensions (batch size, 
height, width, channels) 
# rescale pixel values to 0-1 
x = np.expand_dims(img, axis=0) * 1./255 

# get prediction on test image
score = model.predict(x) 
print('Predicted:', score, 'Chest X-ray' if score < 0.5 else 'Abd X-ray') 

# display and render a prediction for the 2nd image
plt.imshow(img2) 
plt.show() 
img2 = image.img_to_array(img2) 
x = np.expand_dims(img2, axis=0) * 1./255
score2 = model.predict(x) 
print('Predicted:', score2, 'Chest X-ray' if score2 < 0.5 else 'Abd X-ray')

Fig. 10 Steps for performing

inference on test cases, including

displaying of image and

generating a prediction score
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learning rate (0.0001), as not to rapidly perturb the

weights that are already relatively well optimized.

Image Preprocessing and Augmentation

We then preprocess and specify augmentation options (Fig. 5),

which include transformations and other variations to the im-

age, which can help preempt overfitting or Bmemorization^ of

training data, and have shown to increase accuracy and gen-

eralization of CNNs [17]. While augmentation can be done in

advance, Keras has an image data generator, which can per-

form Bon-the-fly^ augmentation, such as rotations, translation,

zoom, shearing, and flipping, just before they are fed to the

network.

Some examples of transformed images are presented on

Fig. 6.

Then, more instructions are provided to the generator, such

as training directory containing the files, size of images, and

batch size (Fig. 7). Then, we fit the model into the generator,

which is the last set of code to run the model (Fig. 7).

Training the Model

After executing the code in Fig. 7, the model begins to train

(Fig. 8). In only five epochs, the training accuracy equals 89%

and validation accuracy 100%. The validation accuracy is

usually lower than the training accuracy, but in this case, it is

higher likely because there are only 10 validation cases. The

training and validation loss both decrease, which indicates that

the model is Blearning.^

The loss and accuracy values are stored in arrays,

which can be plotted using Matplotlib (Fig. 9), which is

a Python plotting library that produces figures in a variety

of formats.

Evaluating the Trained Model

In addition to inspecting training and validation data, it is

common to evaluate the performance of the trained model

on additional held-out test cases for a better sense of general-

ization. In Keras, one could use the data generator on a batch

of test cases, use a for-loop on an entire directory of cases, or

evaluate one case at a time. In this example, we simply do

inference on two cases and return their predictions (Figs. 10

and 11). The outputs from such could also be used to generate

a receiver operating characteristic (ROC) curve using Scikit

learn, a popular machine learning library in Python, or sepa-

rate statistical program.

Conclusion

With only 65 training cases, the power of transfer learning and

deep neural networks, we built an accurate classifier that can

differentiate chest vs. abdominal radiographs with a small

amount of code. The availability of frameworks and high-

level libraries has made machine learning more accessible in

medical imaging. We hope that this tutorial provides a foun-

dation for those interested in starting with machine learning

informatics projects in medical imaging.

Data Availability The Jupyter Ipython Notebook containing

the code to run this tutorial is available on the public SIIM

Github repositiory: https://github.com/ImagingInformatics/

Predicted: [[0.00007]] Chest X-ray

       Predicted: [[0.99823]] Abd X-ray 

Fig. 11 Inference on two test cases. The numbers within the brackets

represent the probability of a chest vs. abdominal radiograph (range

0–1). A score close to 0 indicates a high confidence of a chest

radiograph, and a score close to 1 indicates a high confidence of an

abdominal radiograph
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machine-learning, under BHelloWorldDeepLearning.^ A live

interactive demo to the model is available at https://public.md.

ai/hub/models/public.

Open Access This article is distributed under the terms of the Creative
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priate credit to the original author(s) and the source, provide a link to the
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