
Discrete Comput Geom (2008) 39: 194–212
DOI 10.1007/s00454-007-9022-1

Helly-Type Theorems for Line Transversals to Disjoint
Unit Balls

Otfried Cheong · Xavier Goaoc ·
Andreas Holmsen · Sylvain Petitjean

Received: 21 December 2005 / Revised: 6 February 2007 /
Published online: 18 September 2007
© Springer Science+Business Media, LLC 2007

Abstract We prove Helly-type theorems for line transversals to disjoint unit balls
in R

d . In particular, we show that a family of n ≥ 2d disjoint unit balls in R
d has a

line transversal if, for some ordering ≺ of the balls, any subfamily of 2d balls admits a
line transversal consistent with ≺. We also prove that a family of n ≥ 4d − 1 disjoint
unit balls in R

d admits a line transversal if any subfamily of size 4d − 1 admits a
transversal.

Keywords Geometric transversal theory · Helly-type theorem · Hadwiger-type
theorem · Spheres · Balls · Line transversal

1 Introduction

Helly’s celebrated theorem, published in 1923, states that a finite family of convex
sets in R

d has non-empty intersection if and only if any subfamily of size at most
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d + 1 has non-empty intersection. Subsequent results of similar flavor (that is, if
every subset of size k of a set S has property P then S has property P) have been
called Helly-type theorems and the minimal such k is known as the associated Helly
number. Helly-type theorems and tight bounds on Helly numbers have been the object
of active research in combinatorial geometry. In this paper, we investigate Helly-type
theorems for the existence of line transversals to a family of objects, i.e. lines that
intersect every member of the family.

History The earliest Helly-type theorems in geometric transversal theory appeared
about five decades ago. In 1957, Hadwiger [14] showed that an ordered family S of
compact convex sets in the plane admits a line transversal if every triple admits a line
transversal compatible with the ordering. (Note that a line transversal to S may not
respect the ordering on S ; to prove the existence of a line transversal that respects
the ordering on S one needs the assumption that any four-tuple admits an order-
respecting line transversal.) In what follows, we shall talk about a Hadwiger-type
theorem when the family of objects under consideration is ordered.

The same year, Danzer [6] proved the following result concerning families of pair-
wise disjoint unit discs in the plane: if such a family consists of at least 5 discs, and if
any 5 of these discs are met by some line, then there exists a line meeting all the discs
of the family. This answered a question of Hadwiger [11], who gave an example (5
circles, almost touching and with centers forming a regular pentagon) which shows
that 5 cannot be replaced by 4. Grünbaum [9] showed that the same result holds if
“unit disc” is replaced by “unit square”, and conjectured that the result holds for fam-
ilies of disjoint translates of any compact convex set in the plane. This long-standing
conjecture was finally proved by Tverberg [21]. A weaker form of the conjecture
which assumed 128 instead of 5 had been established earlier by Katchalski [18].

Danzer [6] conjectured that Helly-type theorems exist for line transversals to dis-
joint unit balls in arbitrary dimension. The first positive result was obtained by Had-
wiger [12, 13] for the case of families of “thinly distributed” balls, where the distance
between any two balls is at least the sum of their radii. This result was extended by
Ambrus et al. [1] to disjoint unit balls, in arbitrary dimension, the centers of which are

at distance at least 2
√

2 + √
2. Danzer’s conjecture for three-dimensional disjoint unit

balls, without additional assumption on their distribution, was only settled in 2001 by
Holmsen et al. [17]. It should be stressed that in dimension three (and higher), nei-
ther Hadwiger nor Helly-type theorems exist for line transversals to general convex
objects, not even for translates of a convex compact set [16].

In his paper [6], Danzer also asked whether the Helly number for line transversals
to disjoint unit balls in R

d is a strictly increasing function of d . The only known
lower bound is the planar example of Hadwiger [11]. This number was proved to be
at most d2 for thinly distributed balls in R

d by Hadwiger [12, 13], a bound improved
to 2d − 1 by Grünbaum [10] using the topological Helly theorem. For disjoint unit
balls in dimension three, Holmsen et al. [17] proved bounds of respectively 12 and 46
for the Hadwiger-type and Helly-type theorems, which were later improved to 12
and 18 by Cheong et al. [5].

We refer the reader to the recent survey by Wenger [22] for a broader discussion
of geometric transversal theory.
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Our Results In this paper we complete the proof of Danzer’s conjecture. More pre-
cisely, we show that Helly-type theorems exist for line transversals to families of
pairwise-inflatable balls in R

d . A family F of balls in R
d is called pairwise-inflatable

if for every pair of balls B1,B2 ∈ F we have γ 2 > 2(r2
1 + r2

2 ), where ri is the radius
of Bi , and γ is the distance between their centers. A family of disjoint unit balls is
pairwise-inflatable, since γ 2 > 2(r2

1 + r2
2 ) implies γ > r1 + r2 when r1 = r2, and so is

a family of balls that is “thinly distributed” in Hadwiger’s sense. Pairwise-inflatable
families of balls are not only more general than families of disjoint congruent balls
but allow to generalize most of our proofs obtained in three or four dimensions to
arbitrary dimension; the key property, which we prove in this paper, is that the set of
pairwise-inflatable families is closed under intersection with affine subspaces, unlike
the set of families of disjoint congruent balls.

An order-respecting line transversal to a subset of an ordered family is a line
transversal that respects the order induced by the family on that subset. An ordered
family F of pairwise-inflatable balls is said to have property (OR)T if it admits a
(order-respecting) line transversal. If every k or fewer members of F admit a (order-
respecting) line transversal then F is said to have property (OR)T (k). Our first main
result requires that the line transversals to the subfamilies induce consistent order-
ings:

Theorem 1 For any ordered family of pairwise-inflatable balls in R
d , ORT (2d) im-

plies T and ORT(2d + 1) implies ORT .

We then remove the condition on the ordering at the cost of increasing the Helly
number to 4d − 1 and restricting ourselves to disjoint unit balls:

Theorem 2 For any family of disjoint unit balls in R
d , T (4d − 1) implies T .

Our results are thus both qualitative and quantitative: we generalize Danzer’s result
to arbitrary dimension and prove that the Helly number grows at most linearly with
the dimension. We build on the work of Holmsen et al. [17] who obtained results
similar to Theorems 1 and 2 for disjoint unit balls in three dimensions, albeit with
larger bounds on Helly numbers (12 and 46 instead of 6 and 11, respectively). A
previous version of this paper, also restricted to disjoint unit balls in three dimensions,
appeared in the Symposium on Computational Geometry 2005 [4].

Paper Outline To prove Theorem 1, we start with a family of balls having property
ORT(2d) and continuously shrink them until that property no longer holds, following
Hadwiger’s approach [14]. Before the set of order-respecting line transversals to a 2d-
tuple of balls disappears, it first reduces to a single line (Corollary 12) and this line is
an isolated line transversal to 2d − 1 of the balls (Proposition 13). That line has then
to be a line transversal to the whole family and Theorem 1 follows; considerations on
geometric permutations yield Theorem 2.

Proving the two properties mentioned above (Corollary 12 and Proposition 13) is
elementary in the plane but requires considerably more work in higher dimension.
Our proofs rely on Proposition 4, the cornerstone of this paper, which shows that
the directions of order-respecting line transversals to a family of pairwise-inflatable
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balls form a strictly convex subset of S
d−1. This directly implies Corollary 12 and

yields that order-respecting line transversals form a contractible set in line space.
From there, a well-known topological analogue of Helly’s theorem (Theorem 3) leads
to a weaker version of Theorem 1 sufficient to prove Proposition 13.

2 Preliminaries

Transversals Let F be a finite family of disjoint compact convex sets F in R
d with

a given linear order ≺F . We will call F a sequence to stress the existence of this
order. A line transversal to a sequence F is an oriented line that intersects all the
objects of F in the order prescribed by ≺F . A line transversal is strict if it intersects
the interior of each object in F .

For a sequence F , let K(F) ⊂ S
d−1 denote the set of directions of line transversals

to F . That is, a direction vector v ∈ S
d−1 is in K(F) if there is a line transversal to

F with direction v. Note that the direction vector of a line transversal determines the
order in which it intersects a family of disjoint convex objects. Thus, if sequences
F1 and F2 are two distinct orderings of the same collection of objects, then K(F1)

and K(F2) are disjoint. We will call K(F) the cone of directions of F . Similarly, let
K◦(F) be the set of directions of strict line transversals to F .

Note that all our line transversals must respect a given order. Only in Sect. 5 will
we consider line transversals without order restriction. For clarity, let us call such a
line transversal an unordered line transversal.

We consider the natural topology over the set of oriented lines in R
d : U is a neigh-

borhood of a line � if and only if for some δ > 0 it contains all lines �′ such that the
shortest distance between � and �′ and the angle between their direction vectors are
both less than δ. An isolated line transversal to a family of objects F is an isolated
point of the set of line transversals to F , that is, a line transversal � which is a con-
nected component of the line transversals to F .

Given a ball A and a direction v in R
d , we denote by Pv(A) the (d − 1)-

dimensional ball obtained by projecting A orthogonally on an hyperplane with nor-
mal v. Observe that a sequence of balls F has a line transversal with direction v if and
only if the balls Pv(F) := {Pv(A) | A ∈ F} have non-empty intersection. Similarly,
F has a strict line transversal with direction v if and only if the intersection of Pv(F)

has non-empty interior.

Inflatable Balls A collection F of balls in R
d is called pairwise-inflatable if for

every two balls B1,B2 ∈ F we have γ 2 > 2(r2
1 + r2

2 ), where ri is the radius of Bi ,
and γ is the distance between their centers. Note that for balls of equal radius, this
condition only enforces that they are disjoint (and so any family of disjoint congruent
balls is pairwise-inflatable). The more unequal the radius of the balls, however, the
stronger the distance constraint. At the limit, when r1 = 0, the constraint is γ >

√
2r2.

Pairwise-inflatability is less restrictive than Hadwiger’s notion of “thinly distributed”
balls, which can be defined as γ 2 > 4(r1 + r2)

2 for each pair of balls.
The class of families of pairwise-inflatable balls is closed under intersection with

affine subspaces (as proved in Lemma 5). This property (which does not hold for unit-
radius balls) will allow us to carry results proved in three dimensions over to R

d .
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Topological Machinery We use a few notions from topology that we now re-
view (these can be found, for instance, in the introductory chapter of Matoušek’s
book [19]). Given a topological space A and a subset B ⊂ A, B is a deformation
retract of A if there exists a continuous map F : A × [0,1] → A such that

⎧
⎨

⎩

F(a,0) = a for any a ∈ A,

F(b, t) = b for any b ∈ B and t ∈ [0,1],
F (a,1) ∈ B for any a ∈ A.

Two topological spaces A,B are homotopy equivalent if there exists a third space
C such that both A and B are deformation retracts of C. A space that is homotopy
equivalent to a single point is said to be contractible. A homology cell is a non-empty
set with trivial homology, e.g. a point. Since homology is invariant under homotopy
equivalence, any contractible space is a homology cell. A generalization of Helly’s
theorem based on topology instead of convexity was originally given by Helly him-
self [15]. We will use a version proved by Debrunner using modern tools (singular
homology) [7], as it allows us to work with open sets.

Theorem 3 (Topological Helly Theorem [7]) Let {Xj }j∈J be a finite family of open
subsets of Euclidean d-space R

d such that the intersection Xj1 ∩ · · · ∩ Xjr of each r

sets of this family is nonempty for r ≤ d + 1 and is even a homology cell for r ≤ d .
Then

⋂
j∈J Xj is a homology cell.

In fact, we only use a weaker version of this theorem where “homology cell” is re-
placed by “contractible”.

Compatible Directions Let D be a set of directions in R
d completely contained in

the interior of a hemisphere of S
d−1, and let L(D) be the set of lines with directions

in D. We parametrize L(D) as a subset of R
2d−2, using the points of intersection of

a line � ∈ L(D) with two parallel hyperplanes that are not parallel to any direction
in D. Our aim is to apply the Topological Helly Theorem to sets of line transversals
to pairwise-inflatable balls. Unfortunately, such sets are not necessarily homology
cells, and may in fact even be disconnected: two lines intersecting disjoint objects in
different orders cannot be in the same connected component of transversals to these
objects. We overcome this difficulty by restricting the set of directions that we allow
for transversals. For a sequence F of pairwise-inflatable balls in R

d−1, let

U(F) := {
c(Y ) − c(X)

∣∣ X,Y ∈ F; X ≺F Y
}
,

where c(X) denotes the center of ball X. Let DF be the set of directions making
a positive dot-product with each u ∈ U(F). Note that DF is an open convex set
on the sphere of directions S

d−1. Clearly a line transversal � ∈ L(DF ) for a subset
F ′ ⊂ F respects the order on F ′. Such a line transversal is called a transversal to F ′
compatible with F .

3 The Cone of Directions is Strictly Convex

We now establish the cornerstone of this paper, a generalization of the first lemma by
Holmsen et al. [17] to arbitrary dimension:
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Proposition 4 Let F be a sequence of pairwise-inflatable balls in R
d . Then K(F) is

strictly convex.

The proof of this proposition is based on Lemma 7, which shows that some well-
chosen fibers over 1-dimensional slices of the cone of directions of unit balls in R

4

are convex. We also need some properties of families of pairwise-inflatable balls. We
start by showing that this class is closed under intersection with affine subspaces.

Lemma 5 Let F be a family of pairwise-inflatable balls in R
d , and let E be an affine

subspace of dimension k < d . Then F ′ := {B ∩ E | B ∈ F} is a family of pairwise-
inflatable balls in E.

Proof We prove the claim for k = d − 1 and the lemma follows by induction. Let
B1,B2 ∈F with respective radii r1 and r2 and centers at distance γ apart. Since F is
pairwise-inflatable we have γ 2 > 2(r2

1 + r2
2 ). For i = 1,2 let B ′

i = Bi ∩ E, ρi denote
the radius of B ′

i and δi be the distance between the center of Bi and that of B ′
i . First,

observe that

γ 2 ≤ �2 + (δ1 + δ2)
2,

where � is the distance between the centers of B ′
1 and B ′

2. If E separates the centers
of B1 and B2 the equality holds. If E does not separate the centers, then replacing B2

by its mirror image with respect to E increases γ while leaving all other quantities
unchanged, hence the inequality. Then from (δ1 − δ2)

2 ≥ 0 we deduce (δ1 + δ2)
2 ≤

2(δ2
1 + δ2

2) and since r2
i = ρ2

i + δ2
i we finally obtain

�2 ≥ γ 2 − (δ1 + δ2)
2 > 2(r2

1 + r2
2 ) − 2(δ2

1 + δ2
2) = 2(ρ2

1 + ρ2
2)

and the claim follows. �

The following lemma shows that two pairwise-inflatable balls in dimension d can
always be “inflated”1 to two disjoint equal-radius balls in dimension d + 1.

Lemma 6 Let E be a d-dimensional subspace of R
d+1, and let B ′

1,B
′
2 ⊂ E be

pairwise-inflatable d-dimensional balls in E. Then there exist two disjoint (d + 1)-
dimensional balls B1,B2 of equal radius in R

d+1 such that B ′
1 = B1 ∩ E and

B ′
2 = B2 ∩ E.

Proof Let qi and ρi be the center and radius of B ′
i , for i = 1,2. Consider the line

orthogonal to E through qi . Pick a point pi on this line at distance δi from qi , in such
a way that p1 and p2 are on opposite sides of E. Let also Bi be the ball with center

pi and radius ri =
√

δ2
i + ρ2

i . Clearly B ′
i = Bi ∩ E and it remains to pick δi such that

r1 = r2 and B1 and B2 are disjoint.

1Hence the name “pairwise-inflatable”.
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Let � be the distance between q1 and q2. Without loss of generality, we assume
ρ1 > ρ2. Since �2 > 2(ρ2

1 + ρ2
2), there exists σ > 0 such that

σ 2 < min{�2 − 2(ρ2
1 + ρ2

2), ρ2
1 − ρ2

2}
and we can define

δ1 = (ρ2
1 − ρ2

2 − σ 2)/(2σ) and δ2 = δ1 + σ.

Now, since 2σδ1 + σ 2 = ρ2
1 − ρ2

2 we have that δ2
2 = δ2

1 + ρ2
1 − ρ2

2 , and it follows that
B1 and B2 have equal radius r = r1 = r2. Now, the distance γ between their centers
satisfies

γ 2 = �2 + (δ1 + δ2)
2 = (�2 + 2δ1δ2) + δ2

1 + δ2
2 .

Since

�2 − 2(ρ2
1 + ρ2

2) > σ 2 = (δ2 − δ1)
2 = δ2

1 + δ2
2 − 2δ1δ2

it follows that

�2 + 2δ1δ2 > δ2
1 + δ2

2 + 2(ρ2
1 + ρ2

2)

and finally

γ 2 > 2(δ2
1 + ρ2

1) + 2(δ2
2 + ρ2

2) = 4r2.

This shows that B1 and B2 are disjoint. �

Let now F = (O,x, y, z,w) be an orthogonal frame in four-dimensional space R
4.

Let H denote the plane (O,x, y), and let H(z,w) be the translated copy of H going
through the point2 (0,0, z,w). Given two disjoint convex sets A and B in R

4, we
denote by QF

AB ⊂ R
2 × S

1 the set of all (z,w,α) such that there is an oriented line
in H(z,w) that intersects A before B and that makes an angle α with the x-axis.

Lemma 7 If A and B are disjoint congruent balls in R
4 then QF

AB is convex for any
orthogonal frame F of R

4.

We prove this lemma by showing that QF
AB is the volume under the graph of a

concave function of two variables, which involves showing that the Hessian of this
function is negative definite. We thus follow the approach of Holmsen et al. [17, proof
of Lemma 1] but the details (postponed to Appendix) are more involved.

We proceed to prove the convexity of K(F) (but not yet its strict convexity) for
the 3-dimensional case.

Lemma 8 Let F be a sequence of pairwise-inflatable balls in R
3. Then K(F) is

convex.

2By abuse of notation, we use the letters z and w to label the coordinate axes and to represent the coordi-
nates of some specific point, the meaning being clear from the context.



Discrete Comput Geom (2008) 39: 194–212 201

Proof We need to show that for any pair v1, v2 ∈ K(F) the great circle arc joining
them on S

2 lies in K(F) (since K(F) is contained in an open hemisphere of S
2, there

is a unique such arc of length less than π ). We thus let �1, �2 be line transversals to
F with directions v1, v2, and pick a plane H parallel to both �1 and �2. We embed
the 3-dimensional space as an affine 3-space of R

4, and equip R
4 with a frame F =

(O,x, y, z,w) such that {w = 0} is our original 3-dimensional space, and such that
(O,x, y) coincides with H .

For any pair of balls (B ′
1,B

′
2) from F with B ′

1 ≺F B ′
2, Lemma 6 gives us two

balls B1,B2 ⊂ R
4 of equal radius such that B ′

i = Bi ∩ {w = 0}. By Lemma 7, QF
B1B2

is convex and so QF
B ′

1B
′
2
= QF

B1B2
∩ {w = 0} is convex as well. It follows that

Q :=
⋂

A,B∈F ,A≺FB

QF
AB

is a convex set.
Each point in Q corresponds to a family of parallel and coplanar lines such that

each pair (A,B) in F is intersected by at least one of them in the correct order.
Helly’s theorem (in one dimension) implies that there is a line transversal to F in this
family and this transversal is trivially order-respecting. Let q1, q2 ∈ Q be the points
representing the line transversals �1 and �2. For any direction v on the great circle
arc v1v2 there is a point q on the segment q1q2 whose associated line transversal has
direction v. �

We now characterize the boundary of K(F). This will allow us to show that K(F)

is not only convex, but even strictly convex. The result will then carry over rather
effortlessly to arbitrary dimension. Recall that K◦(F) is the set of directions of strict
transversals to F . The next lemma shows that K◦(F) is the interior of K(F).

Lemma 9 Let F be a sequence of disjoint balls in R
3, v ∈ S

2 and D := ⋂
Pv(F).

Then v ∈ ∂K(F) if and only if D is a point and v ∈ int(K(F)) if and only if D has
non-empty interior.

Proof Clearly v ∈ K(F) if and only if D is non-empty. Since Pv(F) is a family
of discs, D is either empty, a point, or has non-empty interior. If D has non-empty
interior, then a small perturbation of the direction v cannot cause D to become empty,
and so v ∈ int(K(F)). It remains to show that if D is a point, then v ∈ ∂K(F).

We thus assume that D is a point. Let k ≥ 2 be the number of discs that have this
point on their boundary, and let � be the (unique) transversal of F with direction v. If
k = 2 then � lies in a plane separating two balls and there are directions v′ arbitrarily
close to v such that no line transversal with direction v′ to these two balls exists (see
Fig. 1). Thus, v ∈ ∂K(F). If k ≥ 3 then by Helly’s theorem in the plane there are three
balls whose projections intersect in a single point. Let A denote the middle one with
respect to ≺F and let �′ be the line through the center of A and its tangency point
with � (see Fig. 2). Consider a rotation of v by a small angle δ around �′. This rotation
leaves Pv(A) invariant and moves the centers of the two other projections along lines
orthogonal to Pv(�

′), either both away from Pv(�
′) or both towards Pv(�

′), depending
on the sign of δ. Any sufficiently small rotation that moves the centers away from
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Fig. 1 Perturbation removing all transversals when k = 2: 3D view (left) and projections (right)

Fig. 2 Perturbation removing all transversals when k = 3: 3D view (left) and projections (right)

Pv(�
′) turns v into a direction v′ such that no transversal to the three balls exists in

the direction v′. In that case we again have v ∈ ∂K(F). �

Lemma 10 If F is a sequence of pairwise inflatable balls in R
3 then K(F) is strictly

convex.

Proof We already know that K(F) is convex. If K(F) is not strictly convex then
it has to contain on its boundary a great circle arc. By the previous lemma, if v ∈
∂K(F) then Pv(F) is a point. This implies, by Helly’s theorem, that the boundary of
K(F) consists of (finitely many) curve arcs that are either (a) directions of bitangent
lines lying in bitangent planes or (b) directions of tritangent lines. The directions of
bitangent lines lying in bitangent planes to two balls contain a great circle arc only if
the two balls are tangent, which cannot occur in our situation.

Therefore, if K(F) is not strictly convex then it contains in its boundary a great
circle arc of directions of lines tangent to three balls. These directions, being on a
great circle arc, are parallel to a given plane. In projective geometry, parallels to a
plane are recast as lines intersecting the “line at infinity” of that plane. Thus, if K(F)

is not strictly convex, F contains three balls with infinitely many common tangents
that intersect a fixed line at infinity. Such configurations were tabulated by Megyesi
and Sottile [20]. Their cases (i), (iii), and (iv) cannot arise with disjoint spheres and
the fixed line at infinity. The remaining possibility (case (ii)) is that the three spheres
are tangent to a cone whose apex lies on the fixed line. In our case, that line is at
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infinity so this cone is a cylinder and the spheres have equal radii and aligned centers;
all common tangents then have the same direction and cannot form a great circle
arc. �

We will need the generalization of Lemma 9 to arbitrary dimension.

Lemma 11 If F is a sequence of disjoint balls in R
d , then K◦(F) = int(K(F)).

Proof As in the proof of Lemma 9 we observe that K◦(F) ⊂ int(K(F)), and it re-
mains to prove the other inclusion. Let v ∈ int(K(F)) and pick v1, v2 ∈ K(F) in a
neighborhood of v such that v lies in the interior of the great circle arc v1v2. Let
�1, �2 be two line transversals to F with directions v1, v2, and let E be an affine sub-
space of dimension three containing both lines (E is unique if the lines are skew). By
Lemma 5, the section of F by E is a sequence F ′ of pairwise-inflatable balls. Since
v1 and v2 belong to K(F ′) and v is interior to the great circle arc they span, Lemma 10
implies that v ∈ int(K(F ′)) = K◦(F ′) and, by Lemma 9, there is a strict transversal
to F ′ with direction v. This line is also a strict transversal to F and Lemma 9 yields
that v ∈K◦(F). �

We can now finally prove the main result of this section.

Proof Proposition 4 Let v1, v2 ∈K(F) with v1 �= v2. Since K(F) is a closed convex
set contained in an open hemisphere of S

d−1, there is a unique great circle arc of
length less than π connecting v1 and v2. We need to show that all interior points of
this great circle arc lie in the interior of K(F).

Let �1, �2 be two line transversals to F with directions v1 and v2. Let E be an
affine subspace of dimension three containing both transversals. The space E inter-
sects every ball in F and, by Lemma 5, the section of F by E is a sequence F ′ of
pairwise-inflatable balls.

Let v be an interior point of the great circle arc v1v2. The direction v lies in E,
and since K(F ′) is strictly convex by Lemma 10, we have v ∈ int(K(F ′)) = K◦(F ′).
A strict transversal to F ′ is a strict transversal to F , and so Lemma 11 implies v ∈
K◦(F) = int(K(F)). �

Proposition 4 has the following important corollary:

Corollary 12 Let F be a sequence of pairwise-inflatable balls in R
d . If K(F) has

empty interior then it is a point.

4 Pinning Number of Pairwise-Inflatable Balls

A family F of objects pins a line � if � is an isolated transversal to F . The pinning
number of a class C of families of objects is defined as the smallest integer k such
that the following holds: if a family F ∈ C pins a line � then some subfamily F ′ ⊂ F
of size at most k already pins �. A key ingredient in Hadwiger’s original proof of his
theorem [14] is the fact that the pinning number of disjoint planar convex sets is 3. In
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this section we show a similar result for pairwise-inflatable balls in R
d . Note that the

pinning number k is simply the Helly number for the property of “not being pinned”:
if a line transversal to a family F is not pinned by any subfamily of size k then it is
not pinned by F .

Proposition 13 The pinning number of pairwise-inflatable balls in R
d is at most

2d − 1.

Our proof is based on Lemma 14, which shows that sets of compatible transver-
sals are contractible and therefore homology cells, and Lemma 15, which applies the
Topological Helly Theorem to these sets of lines and obtains a weak version of our
Theorem 1. We state the next lemma using the notion of “compatible” transversal
introduced in Sect. 2:

Lemma 14 Let F be a sequence of pairwise-inflatable balls in R
d and F ′ be a

subsequence of F . Then the set L of line transversals to F ′ compatible with F is a
contractible subset of R

2d−2.

Note the restriction on the direction of lines in L: there may be strict order-
respecting line transversals to F ′ that are not compatible with F .

Proof Given a line � ∈ L, let v� be its direction. A transversal � to F ′ is barycentric
if it goes through the center of mass of the intersection of Pv�

(F ′). For any direction
v in K(F ′) there is a unique barycentric transversal to F ′, which we denote bF ′(v).

Let L∗ denote the set of barycentric transversals to F ′ with directions in DF . The
projection of a ball changes continuously with the direction of projection, so bF ′ is
continuous. Since the direction of a line changes continuously with the line, b−1

F ′ is
also continuous. Thus, bF ′ defines a homeomorphism between L∗ and K(F ′) ∩DF .

By Lemma 4, K(F ′) is convex and so is DF . Thus, K(F ′) ∩ DF is convex and
hence contractible. It follows that L∗ is also contractible. The map

{
L × [0,1] → L,

(�, t) �→ � + t (bF ′(v�) − �),

is continuous and shows that L∗ is a deformation retract of L. Since L∗ is con-
tractible, so is L. �

We can now apply the Topological Helly Theorem to obtain a “weak” Hadwiger-
type result.

Lemma 15 Let F be a sequence of at least 2d − 1 pairwise-inflatable balls in R
d .

If every subfamily F ′ ⊂ F of 2d − 1 balls admits a strict line transversal with a
direction in DF , then F admits a strict line transversal.

Proof We apply Theorem 3 on L(DF ). With the parametrization discussed above,
L(DF ) ⊂ R

2d−2. For S ∈ F let XS be the subset of L(DF ) of lines intersecting the
interior of ball S. Clearly, XS is an open set in R

2d−2. Consider now the intersection
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Y := XS1 ∩ . . . ∩ XSr of r such sets. The set Y consists of exactly those lines in
L(DF ) that are strict transversals of S1, . . . , Sr . The assumption of the lemma implies
that Y �= ∅ for r ≤ 5. By Lemma 14, Y is contractible and hence a homology cell.
Theorem 3 now implies that

⋂
S∈F XS �= ∅, and so there is an order-respecting strict

line transversal for F . �

In principle, Lemma 15 is the Hadwiger-type result we are looking for. Its draw-
back is that it requires a subfamily of balls to have not only an order-respecting
transversal, but one that, in a sense, respects the order on the entire family of balls.
This is nonetheless enough to prove the desired result on the pinning number of
pairwise-inflatable balls:

Proof of Proposition 13 Let F be a family of at least 2d pairwise-inflatable balls
in R

d admitting an isolated line transversal �. Let ≺ be the order on F induced by �.
Lemma 14 implies that the set of line transversals to F respecting ≺ is connected,
and so � is the only order-respecting line transversal to F .

Since � is not a strict transversal, F has no strict order-respecting transversal. By
Lemma 15, there is a subfamily F ′ ⊂ F of 2d − 1 balls that has no strict order-
respecting transversal with direction in DF , that is K◦(F ′) ∩ DF = ∅. However,
K(F ′) ∩ DF �= ∅ since it contains the direction of �. Since K(F ′) is convex, by
Lemma 4, and DF is open, it follows that K◦(F ′) = ∅ and F ′ has no strict order-
respecting transversal at all. Now, K(F ′) is non-empty but has empty interior, so,
by Corollary 12, K(F ′) is a single direction v. Since K(F ′) = {v}, the balls Pv(F ′)
intersect in a unique point and � is the only order-respecting line transversal of F ′,
and is thus isolated. �

5 Hadwiger and Helly-Type Theorems

We can now prove the main results of this paper.

A Hadwiger-Type Theorem Propositions 12 and 13 are all we need to reproduce
Hadwiger’s original proof of the 2-dimensional case.

Proof of Theorem 1 We simultaneously shrink all the balls and continue shrinking
as long as every subset of size 2d has a transversal. If all the centers are aligned
then the theorem trivially holds. Otherwise, at some point in the shrinking process a
subfamily F ′ of size 2d stops having a transversal. The cone K(F ′) changes contin-
uously during the shrinking and must have empty interior before disappearing. Thus,
by Corollary 12, at that moment the sequence F ′ has a unique transversal �.

Now, by Proposition 13, there is then a subfamily F ′′ ⊂ F ′ of at most 2d − 1 balls
such that � is the unique transversal of F ′′. For any ball X ∈ F \F ′′, the set F ′′ ∪ {X}
has a line transversal �X . Since the only line transversal of F ′′ is �, we must have
�X = �, and � intersects X. It follows that � is an unordered line transversal for F .

Similarly, if any subfamily of size 2d + 1 admits a line transversal there exists a
subfamily F ′ of 2d − 1 balls having a unique line transversal �. For any X,Y ∈ F
with X ≺ Y , the subfamily F ′ ∪ {X,Y } admits a line transversal that must be �, and
� intersects X before Y . It follows that � is an (order-respecting) line transversal
of F . �
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Removing the Ordering Assumption We now generalize Theorem 1 by removing
the restriction on the ordering. However, we restrict ourselves to the case of disjoint
unit balls in R

d as we build on the following result by Cheong et al. [5].

Theorem 16 [5] Let F be a family of at least nine disjoint unit balls in R
d . Then F

admits at most two distinct geometric permutations, which differ only in the swapping
of two adjacent balls.

Proof of Theorem 2 We first shrink the balls simultaneously until some subfamily
F4d−1 of 4d − 1 balls is about to lose its last unordered transversal.

If F4d−1 admits more than one (unordered) line transversal (all of which vanish if
the balls are shrunk any further), each transversal must realize a different geometric
permutation. Theorem 16 then implies that F4d−1 has exactly two line transversals,
�1 and �2, with two distinct geometric permutations. By Proposition 13, for each �i

there are 2d − 1 balls in F4d−1 for which �i is the only line transversal respecting the
ordering induced by �i . There is thus a subfamily F ′ of F4d−1 of exactly 4d −2 balls
(we can complete F ′ using balls from F4d−1 if needed) for which �1 and �2 are the
only line transversals respecting their respective orders. By Theorem 16, F ′ admits
at most two geometric permutations, and so �1 and �2 are its only line transversals.
Since any subfamily of 4d − 1 balls has a line transversal, any ball of F \ F ′ must
intersect �1 or �2. If all the balls intersect both lines then the theorem is proved.
Otherwise, there exists a ball A that intersects, say, �1 but not �2. Then F ′ ∪ {A} is
a family of 4d − 1 balls with a unique transversal. We are left with a set F4d−1 of
4d − 1 balls that has a unique transversal �.

Let ≺� be the order on F4d−1 induced by �. By Proposition 13, there is a subfamily
F2d−1 ⊂ F4d−1 such that � is the unique transversal of F2d−1 respecting ≺�. For each
Z ∈ F4d−1 \F2d−1, let FZ denote the set F4d−1 \ {Z}. If one of the subsets FZ has
no other transversal than � then every other ball of F intersects � and the proof is
complete.

We now assume that every FZ has some transversal �Z distinct from � and ob-
tain a contradiction. Since FZ contains F2d−1, �Z realizes a geometric permuta-
tion different from that of �. By Theorem 16, the order induced by �Z on F4d−1
differs from ≺� by the swapping of two adjacent balls X,Y . Since �Z realizes a
geometric permutation of F2d−1 different from �, we must have X,Y ∈ F2d−1. Let
Z1,Z2 ∈ F4d−1 \F2d−1, and consider the set F4d−1 \{Z1,Z2}. It admits the transver-
sals �, �Z1 , and �Z2 but, by Theorem 16, at most two geometric permutations. Since
� is the unique transversal respecting ≺�, �Z1 and �Z2 must realize the same geo-
metric permutation on F4d−1 \ {Z1,Z2}. Thus the balls X,Y ∈ F do not depend on
the choice of Z. Let ≺ be the order on F4d−1 obtained from ≺� by swapping X

and Y . For any Z ∈ F4d−1 \ F2d−1 the subfamily FZ admits a line transversal re-
specting ≺. On the other hand, F4d−1 does not admit such a transversal as � is its
only transversal. By (the second half of) Theorem 1, there is a subset F2d+1 ⊂ F4d−1
of at most 2d + 1 balls that does not admit a transversal respecting ≺. We must
have X,Y ∈ F2d+1, as without both X and Y , ≺� and ≺ are equivalent. This implies
that |F2d−1 ∪ F2d+1| ≤ 4d − 2. There is therefore a Z ∈ F4d−1 \ F2d−1 such that
F2d−1 ∪ F2d+1 ⊆ FZ . However, �Z cannot be a line transversal to F2d+1, a contra-
diction. �



Discrete Comput Geom (2008) 39: 194–212 207

6 Conclusion and Open Problems

We conclude this paper with a few comments on our results followed by open prob-
lems they suggest.

• Weaker versions of Theorems 1 and 2 (with constants quadratic in d) can be ob-
tained more easily, using only Lemma 4 and the reasoning of Holmsen et al. [17].

• In the plane, if three disjoint convex sets {C1, . . . ,C3} pin a line � then they are
all tangent to � and alternate: the first and the third are on the same side of �, the
second is on the other side. Thus, if � does not intersect a fourth convex set C4 some
triple {Cx,Cy,C4} has no line transversal at all. This explains why, in Hadwiger’s
original proof the “Hadwiger number” is the same as the pinning number. A way
to reduce the bound in Theorem 1 to 2d − 1 could be to prove a similar statement:
given a sequence of pairwise inflatable balls F that pins a line � and a ball C not
intersecting �, there is a subsequence F ′ ⊂ F of size |F | − 1 such that F ′ ∪ {C}
has no transversal respecting the ordering on F ′. We have no idea whether such a
statement actually holds.

• To apply the Topological Helly Theorem, we did not actually need that K(F) is
convex, only that it is contractible. This may be important for further generaliza-
tion.

• For general convex sets, even smooth ones, the pinning number is at least 6 as
the following example using six unit-radius cylinders in R

3, due to Günter Rote,
shows: the first three cylinders are parallel to the x-axis and their axes go through
the points (0,1,0), (0,−1,1) and (0,1,2) respectively. The last three cylinders are
parallel to the y-axis and their axes go through the points (1,0,10), (−1,0,11) and
(1,0,12) respectively. The six cylinders have only one transversal—the z-axis—
but any five have an infinite number of transversals.

• Lemmas 5 and 6 imply that two disjoint balls A,B ⊂ R
d are pairwise-inflatable

if and only if they can be expressed as sections of two disjoint congruent balls in
some higher-dimensional space. Generalizing this, let us call a set F of balls in
R

d inflatable if F can be expressed as the intersection of a higher-dimensional set
of disjoint congruent balls with a d-dimensional affine subspace. Batog recently
showed that it is NP-hard to decide whether a given collection of balls is inflat-
able [2].

Problem 1 What is the maximum number of geometric permutations of pairwise-
inflatable balls in R

d?

To generalize Theorem 2 to pairwise-inflatable balls, one would need to extend
Theorem 16 to those families. It is known that the number of geometric permutations
of n disjoint balls in R

d is at most 3 if the balls have equal radii and �(nd−1) if the
ratio

largest radius

smallest radius
is not bounded independently of n [23].

Problem 2 For which classes of objects is the cone of directions K(A1, . . . ,An)

convex, or at least contractible?
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Our proof of convexity for the cone of directions of balls collapses for balls that
are not pairwise-inflatable. In fact, the set QF

AB is not necessarily convex if B is
much smaller than A but very close to it. Note that this problem was recently solved
by Borcea et al. [3] for disjoint balls in arbitrary dimension.

Problem 3 For which classes of objects is the set of order-respecting line transver-
sals always connected?

Our proof of Theorem 1 follows from (i) a bounded pinning number and (ii) the
fact that as the set of order-respecting line transversals to a sequence disappears it
first reduces to a single line. For strictly convex objects, property (ii) follows from
the connectivity of the set of order-respecting transversals. Surprisingly, it is an open
question whether this set is connected for even 4 disjoint balls in R

3, whereas it
is known to be connected for any triple of disjoint convex objects [8, Lemma 74].
We conjecture that general convex sets in R

d have a bounded pinning number. Thus,
understanding how general this connectivity property is would provide insight in how
general the example of Holmsen and Matousek [16], convex sets whose translates do
not admit a Hadwiger theorem, actually is. Of course, a positive answer to Problem 2
for a particular family of convex sets implies a positive answer to Problem 3 for that
family as well.

Problem 4 Given a collection of disjoint unit balls, assume that any subset of size
2d − 1 admits a line transversal. Does any subset of size 2d − 1 admit a compatible
line transversal?

In other words, can our “weak Hadwiger theorem” (Lemma 15) be strengthened
into a Hadwiger theorem with a better constant than Theorem 1?

Problem 5 Is the pinning number of disjoint unit balls in R
d equal to 2d − 1?

Surprisingly, the only known lower bound on the Helly number is the construction
done by Hadwiger fifty years ago. Note that the bound in our Hadwiger theorem
has to be higher than the pinning number of the corresponding family and one can
therefore look for a lower bound on the pinning number. Intuitively, considerations
on the dimension suggest that the pinning number in dimension d cannot be less
than 2d − 1, the dimension of the underlying line space being 2d − 2.

Acknowledgements We thank Gregory Ginot for helpful discussions and suggesting the proof of
Lemma 14, Günter Rote for the lower bound construction with cylinders mentioned in the conclusion,
and Guillaume Batog for helpful discussions on inflatability.

Appendix Proof of Lemma 7

Proof Let F be the frame (O,x, y, z,w). We first observe that a translation of F

along the x- or y-axis leaves QF
AB unchanged, while a translation of F along the z-

or w-axis causes an equivalent translation of QF
AB . Rotating the x- and y-axes while

leaving the z- and w-axes fixed causes a translation of QF
AB along the α-axis. Finally,
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scaling F causes QF
AB to be stretched along the z- and w-axes. Since convexity is

invariant under affine transformations, we can therefore assume that A and B are
unit-radius balls with centers at (0,0,0,−b) and (e,0,0, b), where b > 0, e > 0.
The disjointness of A and B implies that e2 + 4b2 − 4 > 0. Let D denote the lune-
shaped region in the (z,w) plane that corresponds to the intersection of the two unit
discs with centers (0,−b) and (0, b). If (z,w) /∈ D then H(z,w) does not intersect
both A and B . If b > 1 then D is empty. If b = 1 then D is reduced to z = w = 0,
H(0,0) intersects both A and B in a point, and so QF

AB is a point. In the following
we can therefore assume b < 1.

Let

R(z,w) =
√

1 − z2 − w2,

and let R+ = R(z,w + b) and R− = R(z,w − b). If (z,w) ∈ D then H(z,w) ∩ A is
the disc with center (0,0) and radius R+, while H(z,w) ∩ B is the disc with center
(0, e) and radius R−. Now, let

f (z,w) = R+ + R−
e

.

Since A and B are disjoint, the discs H(z,w) ∩ A and H(z,w) ∩ B are disjoint,
implying that R+ + R− < e, and so 0 ≤ f (z,w) < 1. Consider

G(z,w) = arcsin(f (z,w)).

Since (z,w,α) ∈ QF
AB if and only if (z,w) ∈ D and −G(z,w) ≤ α ≤ G(z,w), it

suffices to show that G is a concave function. A sufficient condition for this is that
its Hessian H(G) be negative definite, which we endeavor to prove now. By sym-
metry with respect to the z- and w-axes, we need to prove negative definiteness only
for z, w ≥ 0.

In what follows, subscripts are used to denote partial derivatives. Also, reference
to z,w as arguments of functions is dropped when no confusion can arise.

The Hessian of G is

H(G) =
(

Gzz Gzw

Gzw Gww

)
= (1 − f 2)H(f ) + f (∇f )(∇f )T

(1 − f 2)3/2
,

where H(f ) is the Hessian of f and ∇f = (fz, fw)T is its gradient. The Hessian of
G is negative definite if and only if

(i) Gzz < 0 and (ii) detH(G) = GzzGww − G2
zw > 0.

We prove these two inequalities in turn. For this, we need the following derivatives:

Rz = −z

R
, Rw = −w

R
, Rzz = w2 − 1

R3
, Rzw = −zw

R3
,

Rww = z2 − 1

R3
, Rzzz = 3(w2 − 1)z

R5
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(i) The first inequality is simple to check. We have

Gzz = (1 − f 2)fzz + f f 2
z

(1 − f 2)3/2
.

Since the denominator is strictly positive for all z and w, the sign of Gzz is determined
by its numerator which we denote by g(z,w). The derivative of g with respect to z

is:

gz = (1 − f 2)fzzz + f 3
z .

For z > 0, we have Rz < 0 and Rzzz < 0, so fz < 0 and fzzz < 0 implying that gz < 0.
It follows that the function z �→ g(z,w) is decreasing for z > 0. Since g(0,w) < 0 it
follows that g(z,w) < 0 for z,w ≥ 0, so Gzz < 0.

(ii) The second inequality is considerably more challenging. Let us introduce the
following notations:

γ+ = R2+, γ− = R2−, γ = 1 − z2 − w2 + b2,

P = γ+γ−, S = γ+ + γ−.

γ+, γ− and γ satisfy the following constraints:

0 < γ+ ≤ 1 − b2 < 1, 0 < γ− ≤ 4b(1 − b) < 1 and

0 < 2b2 ≤ γ < 1 + b2 < 2.

Expanding detH(G) gives detH(G) = (1 − f 2)�, where

� = (1 − f 2)�1 + f �2,

�1 = detH(f ) = fzzfww − f 2
zw, �2 = f 2

wfzz + f 2
z fww − 2fzfwfzw.

We first find that

�1 = 1

e2P 2
(μ1 + μ2

√
P ),

where

μ1 = S2 − 2P = γ 2− + γ 2+ > 0 and μ2 = P + γ (2 − γ ) > 0.

Also,

�2 = 1

e3P
3
2

(λ−
√

γ− + λ+
√

γ+ ),

where

λ− = γ (γ − 2) + 2γ+(γ − 1) + P and λ+ = γ (γ − 2) + 2γ−(γ − 1) + P.

Note that since λ−(z,0) = λ+(z,0) = 4z2(z2 − 1) ≤ 0, we can’t conclude yet and
have to go further along.
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Putting everything together, we get

� = χ

e4P 2
,

where

χ = χ1 + χ2
√

P ,

χ1 = μ1(e
2 − S) + P(λ+ + λ− − 2μ2),

χ2 = μ2(e
2 − S) − 2μ1 + λ−γ− + λ+γ+.

We want to prove that χ > 0, implying � > 0. Let δ = e2 + 4b2 − 4. Noting that
S + 4 − 2γ = γ+ + γ− + 4 − 2γ = 4 − 4b2, we get that e2 − S = δ + 4 − 2γ . So we
have:

χ1 = μ1δ + χ∗
1 , χ2 = μ2δ + χ∗

2 ,

where

χ∗
1 = 2μ1(2 − γ ) + P(λ+ + λ− − 2μ2),

χ∗
2 = −2μ1 + 2μ2(2 − γ ) + λ−γ− + λ+γ+.

Let χ∗ = χ∗
1 + χ∗

2

√
P . Then

χ = (μ1 + μ2
√

P )δ + χ∗ > χ∗,

since μ1 > 0,μ2 > 0, δ > 0.
Let us prove that χ∗ ≥ 0. Let

θ1 = 2S2 − 4P − SP − 2Pγ, θ2 = 2(2 − γ ) − S.

We can rewrite χ∗
1 and χ∗

2 in terms of θ1 and θ2:

χ∗
1 = (2 − γ )θ1 − Pγ θ2, χ∗

2 = −θ1 + γ (2 − γ )θ2.

Now observe that χ∗ factors:

χ∗ = χ∗
1 + χ∗

2

√
P = (2 − γ − √

P )(θ1 + θ2γ
√

P ).

Noting that θ2 = 4(w2 + z2) ≥ 0 and

θ1 = 2S2 − 8P + P(2(2 − γ ) − S) = 2(γ+ − γ−)2 + Pθ2 ≥ 0,

we see that the second factor of χ∗ is positive. It remains to observe that 2 − γ +√
P > 0 and that

(2 − γ )2 − P = 4(z2(1 − b2) + w2) ≥ 0,

to conclude that 2−γ −√
P ≥ 0 and χ∗ ≥ 0. Overall, χ > 0,� > 0 and detH(G) >

0, which concludes the proof. �
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