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The fact is used that electromagnetic fields are covariant (antisymmetric) tensors or
contravariant (antisymmetric) tensor densities, which are mutual conjugated. The conjugation
allows many-fold specific differentiation of the fields and leads to field chains. An integral
operation, named the generation, is considered, which is reverse to the specific differentiation.
The double generation yields zero as well as the double differentiation. The Helmholtz
decomposition is compared with the Poincare decomposition, and many ways of the
Helmholtz decomposition are presented. Laplace operator and the inverse Laplace operator
are expressed in terms of the differential and integral operations. All results are illustrated by
simple examples.

1. Introduction. Helmholtz’s decomposition and Poincare’s decomposition

The Helmholtz’s theorem is familiar to physicists [ 1] and mathematics [2]. The essence of the
theorem is as follows. A field, e.g. an electric vector field E, can be written as the sum of two terms, the
transverse or solenoidal field E and the longitudinal or irrotational field E :

E=E+E, divE=V-E=0, culE=VxE=0. (1.1)

Puc. 1

Fig. 2. Ttis from[4]. Trrotational vector fields.
The field lines start on electric charges and diverge.

Fig. 32.22 Electric field lines
(black) within solenoid and
outside of solenoid.

Fig. 1.  Itisfrom [3] and longitudinal or irrotational fields are denoted by E, or E,

The electric field is generated by a however, we use the circle o and the cross x for marking

Transverse or solenoidal fields are usually denoted by E, or E ,

time-dependent magnetic field. The field
lines form closed loop, the field lines do
not start on electric charges.

solenoidal and irrotational vector fields respectively because this
notations remind pictures of field tubes (or lines) of these fields
(see Fig. 1 from [3] for a solenoidal field and Fig. 2 from [4] for
irrotational fields). We are sure these visual notations are appropriate for a pedagogical paper. Moreover,
in accordance with Fig. 1, we name divergence-free fields closed fields. Thus, the circle o marks a closed
field.

Note that
curlE VxE——B d1VE V. E ple,. (1.2)
Helmholtz’s decomposition is well known The 1rrotat10na1 part of a vector field E is
V"E '
E(x):—vj(—xw. (1.3)
x 4rr(x,x")

Meanwhile, two different expressions are known for the solenoidal part of E:
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]?(x)=Vx(VxI%j [1, 5], (1.4)

VU V'<E(x")dV"
IGE(x)—V j 4mr(x,x")

Here x means the coordinates x, y, z ; the prime marks the variables of integrating or differentiating

[2,6-9]. (1.5)

under the integral sign; r(x.x") =| x — x| is the distance between x' and x. Thus, a field is integrated and
differentiated by turns when the field is under the Helmgoltz’s decomposition.
We pay attention that a similar consecution of integrating and differentiating takes place when an
exterior differential form ® (briefly, form) is decomposed into closed and not closed parts [10, 11]:
w:cho+de:o)+c+o (1.6)

(we mark closed parts of forms by the circle and not closed parts by the plus sign). This formula is very
important in the theory of exterior differential forms. In Eq. (1.6), d means the exterior derivative, and
K 1is an operation which is an inverse operation to the exterior derivative in the following sense: if ® = ®

is a closed form, i.e. dw =0, then
o= dOL & Kco o entails o= Kda & o= dKO) (1.7)

K -operator exists in dornalns which are not too comphcated topologlcally, according to the Poincare
theorem.

We present here an example of K -operator using tensor indices. If ® is a 3-form, ®, (x), then

Lo i
= joz X'y, (tx)dt . (1.8)
We name K -operator the Poincare generative operator, we name K'® s the Poincare generation from

®,; , and we name ®,, a source of K'w,, . Note that the Poincare generative operator does not contain a

ijk >
metric tensor.
It is easy to show that a double application of the K -operator yields zero, i.e. KK =0. For example,
. . 1 . 1 .
K'K'oy =] tx’“otzx’wy.k (tx)dt] dr=0 (1.9)

because x’ xioal].k = 0. We say that the generation from the generation is zero, or that the generation is

sterile. So, K eliminates the sterile part of a form ® while d eliminates the closed part of a form:
dlo+o)=do, Ko+0)=Ko. (1.10)

Thus, Eq. (1.6) is the decomposition of a form ® into the closed part ® and the Poincare sterile part .

A purpose of this paper is to show that the Helmholtz’s decomposition is a decomposition into closed
and sterile fields as well.

2. Differential forms, tensor densities, the boundaries, the conjugation, etc
It is important to recognize that the electromagnetism involves geometrical quantities [12] of two

different types [13]. These are covariant (antisymmetric) tensors ¢, E,, 4,, B, , which are named also

exterior differential forms or simply forms, and contravariant (antisymmetric) tensor densities:
B, . EL.p,.

The distinction between forms and tensor densities is known long since. For example, professor J. A.
Schouten delivered lectures on this subject before the war at Delft, and after the war at Amsterdam (see
the classical monograph [12], which was grown from the lectures, and Fig. 3). A similar interpretation for
covectors is presented in [14] (Fig. 4). Note that the magnitude of a covector is proportional to the density
of sheets. Therefore, a covector fields must be depicted by a family of bisurfaces with an outer orientation
and bivector densities must be depicted by a family of bisurfaces with an inner orientation rather than by
lines or tubes.



The geometric images of F, D, H, and B are

Y=Y

Fia. 23.

Fig. 3.  Ttis from [12].
The distinction between differential forms and cont:ravaria_l_lt tensor densities
is presented. We denote F— £, D— F' | H— BY, B%By_

Unfortunately, this distinction is ignored by most of the physicists.

S0, common boldfaced characters do Now consider a covector. This should be familiar to most
not represent the quantities adequately, and g, dents in terms of a gradient. We can picture a gradient
we are forced to use tensor indices. best in terms of the equipotential surfaces to which it refers,
Besides, instead of using of Gothic and this is the basis of the pictorial representation. That is,

characters (as in Fig. 3), it is convenient to draw the surfaces themscl'ves:, along with some sense _of di-
mark the density by the symbol ‘wedge’ A rection, which might be indicated by a wavy line with an
at the level of bottom indices for a density arrow at the end, or with a whorl on one of the sheets:

of weight +1 and at the level of top indices
for a density of weight —1. For example, @ ; C_J% ®

volume element dV' " is a density of weight
—1. Also we mark pseudo forms by the

asterisk * and pseudo densities by the tilde Fig. 4._ It is from [14]. The authors refer to this pictorial
DB e representation of a covector as a "lasagna vector”. Covector (a)
By B has an outer orientation. (b) represents a pseudo covector; it has

The exterior derivation of the forms is  an inner orientation.
used in the electrodynamics. The exterior
derivation of a scalar is the common partial derivation,

E =0¢p<=E=grad¢=V-¢ (2.1)
(we do not write minus in this formula, so we write p = V>¢), but in a general case an antisymmetrization

is implied. The notion “curl” can be used with a covector,
B,=20,4, ©B=culA=VxA, B, =-20,E, <B=-culE=-VxE, 2.2)

1 . o . .
we denote 0,4, = 5(8 ;A; —0;4,) . The exterior derivation of a covariant tensor of valence 2 is a
divergence,
30,B,,=0=divB=V-B=0, (2.3)

we denote 0, B, = %(a,{Bﬁ +0,B; +0,B,).

As to tensor densities, a transvection over a (last) contravariant index is used in the electrodynamics
when the specific derivation is performed. The derivation of a vector density is named divergence:

p,=0.E &p=divE, (2.4)
but the derivation of a bivector density is denote by curl,
ji=0,B" < j=curlB. (2.3)

The derivation of a scalar density is zero,



0,p, =0, (2.4)
because p, has no contravariant indexes. We emphasize that all presented differential operations are

covariant operations. Their writing is valid no matter what coordinates are in use, Euclidean or
curvilinear. The Cristoffel symbols are not needed.

For short, we will designate the derivations of the both types by the symbol 0, curly d, without
indices. We name a derived field a boundary, and we name the field under derivation the filling of the
boundary, i.e. (boundary) = 0 (filling), for example,

p,=0E!, E =08y, B;=-CE, j.=0B', 0=0B,. (2.5)
The term “boundary” is justified, for example, by the fact that lines (or tubes) of force of E’ -field are

bounded by a charge density p,, according to p, = 0E" . This example is depicted in Fig. 2 where the

electric charge bounds the electric vector field E. Thus, the symbol 0 expresses the relation between a
boundary and its filling, i.e.0 is a boundary operator.

Our symbol 0, instead of d , means the exterior derivation when it is applied to a form. We are
convinced it is anti-pedagogical to use the symbol d as a designation of the exterior derivation. The
symbol d is used for infinitesimal quantities in physics and mathematics, not for a derivation. For
example, dq = p(x)dV denotes the charge of an infinitesimal volume dV . Another example: one can

write r + vdt =r + dr where v is a velocity, dr =idx + jdy + kdz is an infinitesimal increment of the
vector r, and dx, dy, dz are the infinitesimal increments of the coordinates. Also df (x) = f'(x)dx, and
we can write d(df)=d’f = f"(dx)* oreven d’ f = f"(dx)* + f'd’x .

Contrary to this, d is used as an operator which takes each p-form o toa (p +1)-form dw, and
d(dw) =0 forever [10, 11]. Accordingly, the expressions dx, dy, dz are known as a nonindex notation
for the coordinate 1-forms, i.e., covectors, rather than as the components of the infinitesimal vector dr,
i.e. dx,dy,dz areknownas dx =0,x =38!, dy=0,y=3;, dz=0,z=3. This mishmash is inadmissible.

On the other side, the symbol 0 means “boundary” in the theory of sets. And this is the very

meaning that our symbol 0 has.
If the boundary of a field is zero, we say that the field is closed, for example, B, is closed:

0B, =30, B,; = 0. An example of a closed electric field is presented in Fig. 1, 9, E' = 0. Lines of force

il
of the induced (solenoidal) vector field E = E’_have no boundaries, and this field has no boundary. In
accordance with Section 1, we mark a closed field by a circle.

The double derivation gives zero, 00 = 0. For example, if £ ,=0,¢, then 0, E ;= 8[2ki]d) =0. We say
that the boundary of a boundary is zero, or that a boundary is closed. A boundary has no boundary, but a
boundary has a filling, according to the Poincare theorem. In the case, £ ,=0.¢, ¢ is a filling of the

boundary E . This case is depicted in Fig. 11. Another example: if £ =0 I17,then 0, E’=0,ie. E’,

is a boundary, and the vector electric potential 17 is the filling.

The raising and lowering of tensor indices is usually performed by a metric tensor g or g, . But, in
the electrodynamics, this process is accompanied by the transition between differential forms and
contravariant densities, for example, between the covector E, and the vector density E’ . So this process
uses the root of the metric tensor determinant \/E » Which is a scalar density of weight +1. So, the

tensor densities gi = g*\/g or g, =g, /g is used instead of g” or g, . If Cartesian coordinates

are in use, the absolute value of the determinant equals one, but the root has a specific geometrical
properties. The process of the raising or lowering of tensor indices changes the geometrical sense of a
field; it is referred to as the conjugation here, and we designate the process by the Courier star * (in
contrast to the Hodge star operation *), for example,



*E, =g E =E|, *E, =g,E =E, *B"=g,g,B" =B

A y

*B, = gimgf"Bl,j. =B". (2.6)
The conjugation is obviously involutory: ** =1 . We say that a field and the conjugate field make up a
tandem. For example (E; & E, =*E,) and (B! & B, =*B/) are tandems (see Fig. 5 and Fig. 6).

A
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Fig. 5.
Covector and vector density, which are mutual Bivector density and 2-form, which are mutunal
conjugated. For example, E' =*E conjugated. The element of a bisurface is

The element of a bisurface is orthogonal to the field ~ orthogonal to the field tube. An inner orientation
tube. An outer orientation of the bisurface is of the bisurface is coordinated with the outer
coordinated with the inner orientation of the tube. orientation of the tube.

The conjugation * differ from the Hodge star operation * [10, 11, 15]. Hodge operator performs our
conjugation of a field and then renumbers components of the field by the antisymmetric tensor pseudo

density ¢, (Levi Civita density). For example, *E, = ¢, . g’E, =E’ . Here Hodge operator transforms a

N

I-form E, into the pseudo 2-form E; . However, the renumbering has no physical and geometrical

meaning because E has the same geometrical meaning as the vector density E/ =*E, (Fig. 5).
Therefore, the addition of the renumbering to the conjugation has no sense. We do not use the
renumbering and so we reduced Hodge operation to the conjugation. Note, the Hodge operator cannot be
applied to a tensor density.

It is important that when the Hodge operator is applied two times in the structure * 0 *, the result
differs from * 0 * by a sign only [15, p. 315]:

p p
*0% @ = (—1)""P *ox e 2.7)

p
where 7 is the dimension of the space and p is the degree of the form ®. Because a so-called
codifferential is defined as

P P
8(0:(—1)”’””+1 *0*w, (2.8)
we have for the codifferential

P P
do=(-1)"*0*w. (2.9)
It is remarkable that the conjugation often transforms a closed field into a not closed field. For
example,
0B; =0, but 0*B; =0,(g"g"B;)=0,B" =u,J; . (2.10)

Such fields, closed before or after conjugation, is named conjugate-closed fields, or, simply, coclosed
fields: B, is closed, but B;" is coclosed because 0* B =0B; =0.

ij
Now recall Helmholtz’s theorem (1.1). It must be written down in terms of vector densities,
E =E'+E'. (2.11)



The solenoidal vector field E = F ’A , which satisfies divE=V-E =0, curlE = VxE =-B is closed,
0, E'=0. The irrotational Coulomb vector field E = E’_, which satisfies curlE = VxE =0,
divE=V-E=p/g,, is coclosed:

Vxl*x_?:26[k(gj]i§i):6*l*;:0. (2.12)

Thus, the mark x, which was used already in (1.1), marks the coclosed fields.

As aresult, we see that Helmholtz’s decomposition (1.1) is a decomposition into closed and coclosed
components.

It is important that Helmholtz’s decomposition (1.1) can be rewritten in the conjugate form in term of
covectors

*E=*E+*E < *E =*E'+*E' & E =E~+E,. (2.13)
Here E |, the first component of decomposition (2.13), which corresponds to the induced solenoidal
closed vector field, is not closed now; it has a boundary: — B =20, E; (1.2). This boundary is the time-

dependent magnetic field, and the bisurfaces, which depict the covector field £ ,, are bounded by tubes of

force of the magnetic field, the bisurfaces start from tubes of force of the magnetic field in Fig. 7. These
bisurfaces is orthogonal to lines of force in Fig. 1.The field E ., is obviously coclosed: 8,g" E =0.

/

Fig. 7. The induced covector field has the
boundary. However, as a vector field, this field iz

Fig. 8. This field was an irrotational vector

- ; B field in Fig. 2. However, as a covector
a solenoidal one, and it has no boundary in Fig. 1. feld. this feldas clossd lisie.

The second component in (2.13), £ ., which corresponds to the irrotational vector field E , is closed
now because Eq. (1.1), curlE =V xE =0, means 20,,g7, E F= 20, E ,=0. Accordingly, £, -field is
depicted by spherical bisurfaces in Fig. 8. These bisurfaces is orthogonal to lines of force in Fig. 2.

3. Chains of fields

The property of the conjugation to transform closed fields into not closed fields leads to an existence
of infinite or finite chains of fields. We present here, as an example, the infinite chain of the electrostatic.

=+ (0,)8(x)(*)3, (x)(0,) G'.(*) G ,(9,)p(*)p, (0,) E,(*) E ,(0)0(*)$,, (0,) F ,(*) F ,(8,) - (3.1
The sections of the chain, i.e. § (x), G', p, etc., are joined by the symbols (0,) and (¥). It means, for
example, p. =0, E', E'=*E, E,=0,6. In(3.1), 8(x) is the Dirac delta function if the electric

charge density p, equals p, =—1/4nr. The explicit form of the chain in this case is



r, -1 -1 -r - -r =T —rr'!
~— (0, * 0, *)—(0.)—(*)— (0.
47U”3( l)47tr( )47tr( l)8nr( )8nr( ’)STt( )87t( 2

,

~+(0,)8(x)(*)5, (x)(9,) 4;;3 (*) (*)

B
32n " 32n ©)
(3.2)
Really, a coclosed electric intensity, corresponding to the density p, =—1/4nr,is E'=—-x'/8nr
because

0,(=r" /8nr) = —1/4nr ; the corresponding potential is ¢ = —r /8 ; the density ¢ =*p =—r/8m is the
boundary of a hypothetical coclosed field F ' =—rr'/32n; etc. On the other hand, the boundary of

p=*p =-1/4nr is G =0,(~1/4nr) =r,/4nr’; the boundary of * G ,=G'=r'/4mr’ is the § -

function: § (x)=0,(r' /4nr’); etc.:
We can present a complementary electrostatic chain:
(0 G (G L@, H#) (@) E (¥ EL@)TTHMTT (0, F (%) F.(3,) (33)

Here E* is a closed vector density, E=0,T1",i.e. E = curlll, and IT is so-called electric vector
potential. Magnetic current density J , is the boundary of the coclosed covector electric intensity

Ek=*l:?';: {ik=28[i€k],i.e. J =curlE.

X

We can present also a chain that is complementary to chain (3.3):
(080 (*)8 (0 1 ()T @M (*IM (0 NTT,(MTTT(E,)07(*)0,;(0,) - (3.4

Here the closed electric bivector potential TT% is the boundary of a hypothetic 6 -field: T1¥=0, 6,

This can be expressed as IT" = grad®” where I1" is a pseudo covector and 0" is a pseudo scalar because
I, =¢,117/2,0 =¢,07/6.

J

Two complementary magnetostatic chains can be obtained by renaming of sections of chains (3.3)
and (3.4),

E=j II=B, F=> A4 n=p:

m

(0,4 7 A@) B B0, 4,4 4.@,) (3.5)
T (ai)p iki(*)p /ki(a/)lj ki(*)§ T(a,)gljj(*)?ku(ak) T (3-6)

m m’

Here p ;,=30,; @ w18 the magnetic charge, p = divB, and 9’;” is the magnetic pseudo scalar

Jjki

potential: B¥=0,0%,i.e. B=grad6.

4. The Laplace operator
The derivation of a sum of a closed and a coclosed field equals the derivation of the coclosed term
only, because the derivation eliminates closed term, like (1.10),

O,(E'+E')=0,E". 4.1)
However, Laplacian, the second order operator, V2= g’o .0 ;» treats both terms of such a sum. As is
known [15, p. 316],
V?=-80-05 4.2)
(the signature of g’ =+ ++). Here & is the codifferential (2.8), (2.9). Because of (2.9),

p ptl p+l p p P
dow=80a =(-1)’"*o* a =—(-1)" *0*0w, Bw=(-1)"0*0*w». (4.3)
Therefore, for a p -form (:3,



p p
Vio=(-1)"(*0*0-0*0%) o, (4.4)
p
see also [16]. It is easy to show that for a contravariant density of valencep f ,

p p
VB, =(=1)""(*0*0-0*0*)pB . (4.5)
Thus, Laplacian realizes a transition to four sections of a chain to the left and, maybe, changes the sign.
For example, according to (3.2) and (4.5) for p =0,
1 -1

8 (X)=0%0*—=V>—, (4.6)
4mr 4mr
according to (3.5) and (4.4) for p =1,
]—*8*8A—— *4.. (4.7)
or, according to (3.5) and (4.5) for p =1 [1, (5.31)]
Jjl=0%0*A'=-V* A4’ (4.8)

If the vector potential is not satisfied (3-dimension) Lorentz gauge, 0,4’ # 0, then, according to (4.5) and

[1, (5.30)],
V24 =%0%0A —0*0* A =graddivA —j. (4.9)

5. The generations
Given a closed differential form or contravariant density, we can find their fillings by an integral
generative operator

_J~ VAr’(xx) (5.1)
4mr® (x,x")
instead of K’ from (1.7). For example, the filling of & (x) (see (3.2)) is
i ] dV/\' i
ISA'(XV) rA (x’3x ) — r/\ 3('x) . (5.2)
4 (x,x") 47t (x)
. . r () . 7! () (%)
We say that &, (x) is a source which generates — and write '3, (x) = ,or 9, (x)— .
4mr 4nr’ 4nr
Generally, we say that a source generates the generation, i.e. T(source) = (generation).
Next example: — enerates_—1 ie. ' n_~l Le i - -1 Le
P Tcr3g drr” T A Awe” T Am 4’
J- r(x) i (x,x)dvV' _Ia 1 r(x,x)dV’ _J- r(x,x"dV'
4nr’ (x') 4mr’ (x,x") " 4mr(x') 4nr’ (x,x") 4rr(x) " 4nr’ (x,x")
= —j L s(exydr’ =—1 (5.3)
4rr(x") 47tr(x)

because
r (x,xdV' 5 r (x,x")dV'
! 4nr’ (x,x") "4 (x, x")

Thus, we can rewrite the chain (3.2), for example, in terms of the generation instead of the bourdary
operator 0.

r v -1 -1 = - —r -
_)8 *6 RN %* ! RN * RN * Ly (%)— *
@D ) e am Va8 8 )8n 307 ~ )32n

(5.4)

We can say, in particular, that p is a source of the vector field E, or p generates E, or E is the
generation from p:



P (e, x)dV Y
T P _J.p/\'(‘x) 47‘[}"3

This generating is depicted in Fig. 2. Electric charge emits lines of force of E . It is a source of E. This
example shows visually that generations are coclosed, i.e.

=E'. (5.5)

0*t=0. (5.6)
Really, bisurfaces, which are orthogonal to the emitted lines, are closed (Fig. 8). This assertion is proved

1

by a simple identity g, ;0,, r—3 = 0. Accordingly, we mark generations by the cross x.
r

The generating B — A (magnetic field generates the magnetic covector potential), according to
3.5),

>\

s EEECs

Fig. 15-6. The magnetic fleld and
vector potential of a long solenoid.

Fig. 10.  Thas 1s from [17]
Lines of the vector field A depict the
field 4 =*4, which is the conjugation
of the covector field A from Fig. 9.

Tubes of force B, which is a source, emit
bisurfaces A, which is the generation

; (e, x)dy
T By = J-Bi'k T =

is depicted in Fig. 9. B, determines the potential 4, uniquely. This potential stands out against a

A, (B generates A), (5.7)

background of all gauge equivalent vector potentials [16].
However, the magnetic vector potential usually is depicted by lines of force of the vector A’ as in
Fig. 10 from [17], but Fig. 9 shows visually how B-tubes emit bisurfaces of 4 ..
Formula (5.7) is analogous to the Biot-Savarat law.
. ] k' ' dV A
ko i =2 ~[l" ry (X,X)
7 IJA A
The only distinction between (5.8) and (5.7) is that B, -tubes and 4, -bisurfaces have an outer

=B" (j generates B), (5.8)

orientation, but ;' -tubes and B’ -bisurfaces have an inner orientation.
A scalar field ¢(x) is depicted by hatching or darkening of the space. Fig. 11 shows how the closed
electric field £ ,= 0,¢ bounds ¢(x), i.e. how ¢ -field fills the closed E,-field, or how E', generates ¢,

T E, = J-Ei, M =¢(x) (E generates ¢); (5.9
E. is a source of ¢ and, at the same time, ¢ is a filling of £ ,. Note, Eq. (5.9) determines the potential

¢(x) uniquely as well as Eq. (5.7) determines 4, .



Fig. 11. Fig. 12,

The closed covector field £ generates A two—dimensior.lal "spherical” capacitor
the scalar function ¢ o generates potential ¢(x)

As an example, we apply Eq. (5.9) for a solution of the problem: “What potential is generated by a
thin two-dimensional ‘spherical’ capacitor?” So, in a two-dimensional (for simplicity) space there are two
concentric circles between which a given radial electric field E exists. It is necessary to find the potential
¢(x) in this space by the formula

(E-r)da
x) = |—2—, 5.10
000 =[5 (5.10)
where da is an element of the space (plane). We have (see Fig 12):
E-r=Er"+Er’ =Ecosa-(x—Rcosa)— Esino-Rsina = E(xcosa - R), (5.11)
r* =R*sin* o+ (x— Rcosa)” = R* + x° —2xRcosa.. (5.12)
If we write & for the small gap between the circles, then da = Rdda., and
2n
::ERSJCO“*+V/2da, u=R>/x>+1, v=-2R/x. (5.13)
2nx § u+vcosa
Integrating yields:
ERS| x R* +x%)x Rx
O(x)=—|— ( ) (5.14)

ﬁ-'_ 2 2N ez 2|
2R(R* X)) |R* - x|
I.e. $ =0 on the outside of the circles, that is at R <x, and ¢ = —E0 inside the circles, that is at R > x, just

as expected.
The generations have an important property: the generation generates zero,

T1=0. (5.15)
In other words, the generations are sterile as well as the Poincare generation (1.7). We prove this
assertion here for E’_from (5.5), i.e. we prove that the integral

EU(x)r (e, x"YdV ™

ikl
= 5.16
e, j 4mr (x,x") (5.16)
equals zero. Indeed, inserting £’ from (5.5) into (5.16) gives
L Ly k] ' A" A
T[,-E,;]EJ' p (") (x', x")r (x, x")dV " dV _0o (5.17)

dmr? (x', x") - drr’ (x, x")
To prove the last equality, fix the points x" and x. Then, because of the symmetry of the space, for each x'
exists such X' that the vector product 7'7“in x' and ' differ in the sign only. So, integrating over dV "

gives zero.
It can be shown that coclosed fields are sterile, i.e.



T*0=0. (5.18)
As a simple example, consider the constant coclosed density y =1. We have:

; r(x,x")dV"
T\yfj—( r3) =0, (5.19)

because of the symmetry of the space.
Thus, generating eliminates the sterile part of a source as well as the derivation eliminates the
closed part of a filling (4.1). Only closed part of a source generates. For example,

F(EA4E)=t'E,=. (5.20)

Therefore, we can calculate the potential of a non-potential field by the generative operator. The
solenoidal part E of the vector field (1.1), which satisfies divE = 0, curlE = -B, and which correspond

to sterile £, in Eq. (2.13), may be present in the integrand of Eq. (5.9), but its contribution is zero. In

contrast to Eq. (5.8), the standard formula ¢ = J-O Edl gives an ambiguous result for a non-potential field

E.
According to Eq. (5.20),
E=0,6 & T'E=¢ entails ¢$=1'0,¢6 & E,=0,}’ E,. (5.21)
In that sense, T and 0 are the mutually inverse operators (compare with (1.7)). For example, we have
; r! r . -1 -1
‘0, —-—=——and t'0, —=—-.
9, 4’ Amp? fo dnr  4nr

If relations between E and ¢ are £ =0¢, as in (3.2) — (3.6), and E — ¢, as in (5.4), we will write
E — ¢ and so on. For example ,

.‘.Hgi*cjkHp*pAH?i*é‘in)*(b/\'_)é‘i*é‘kH.” (5'22)
G *Gr s xS E *E T T, > F *Fl > (5.23)

instead of (3.1), (3.3)

6. The generative operator squared
We define the generative operator squared, I, by the equations (compare with (4.4), (4.5)) T

o= (-7 (Frt—tr iR, (6.1)
£B, = (-1 (Firt—trim)p, (6.2)

The result follows from the definition:
IV =Vii=1. (6.3)

Really, for examlpe,
V2 @ = (— 1) (*iia*)(—1)7 (%0 *0-0%0%) (0 ©) = ¥ O%O* @+ THI**O*00 =0,  (6.4)
because of (4.1), (5.18). Egs. (6.3) yields

- _JL ' (6.5)
4mr(x,x")
Thus, the generative operator squared makes a transition to four sections of a chain to the right and,
maybe, changes the sign. For example, according to (3.2) and (6.2) for p =0,
-1 dv" 1
3 (x)=*1*t8 (x)=—, ie. |0 .(x = ) 6.6
18, (0 =*1*48, ()=, ie. [8.( Vo) (6.6)

According to (3.5) and (6.1) for p =1,



tjo=—frij =— 4 e jﬂwg [1, (5.32)]. (6.7)
x x x 41r(x,x")

7. Various variants of Helmholtz’s decomposition
There are many different ways of the Helmholtz’s decomposition. Recall formula (1.1) E=E+E.

The simplest decomposition of the vector (density) field is

E=E+E=(0t+10)E, ie. E=0TE, E=10E. (7.1)
This decomposition does not use the conjugation. An explicit form of the decomposition is
[’ k] '
E=E'=01E, =20 j dV —Vx IE xrdv’ (7.2)
4’
. : Ek ’dVA NrdV!
E:E;:TaEi:Ia r, _J-(VE)I‘dV (7.3)
oo 4mir?
It is depicted in Figures 13 and 14.
i /F\"}*.
p*p“H§“*$5H¢*¢“ ?ka*angl*‘?iH‘b*‘bn
. " _ . .
Ta b Zi¥ B = a = L JE*T s B *[E S TIR T,
Fig. 13. E =atTE Fig. 14. E =t13E

E generates 11, and the boundary of Ilis E The boundary of E 15 p | which generates E

There is another decompisition of a vector field, which uses operators 0, 1 only:
E=E+E=(*{0*+*0t*)E, i.e. E=*{0*E, E=*07*E . (7.4)

An explicit form of the decomposition is

. cOpgELriav” ' '
El=wfoxE! =2g" [LEN 00 =I(VXE)X3rdV : (7.5)
° 4mr 4mr
A - gy Elridv” (E'r)dV
Ei=%pt*xE =glp 222 _y[ =" 7.6
x " TE, '[ 4mr’ '[ 4mr? (7.6)
Eq. (7.5) is depicted in Fig.15.
G, p*p |—>Ei*|—> anEi*‘?iH‘b*‘i’n'—}Fi*H
o ey :.: o “! = %Lﬂd a
_'_'_,_:-'—"
G JEx g Ol (*|E s TTH Jgr'j*Ezl—}HEHme'k*;?il—}---
: . : - wl L
o
Fig. 15. E =*td*E Fig. 16. E=-0*3*{E.
E s conjugated to B = * &’ —1 makes the transition from E to F.
The boundary of B, 15 J g, IT is the boundary of *F, and
which generates £;, and El=*E, EL 15 the boundary of xﬂ

Egs. (1.3), (1.4) use the generative operator squared, }, and two the boundary operators, 0, e.g., for
(1.4), E'=-0%*0*{E' . Itis depicted in Fig. 16. (Note, according to (6.2), 1 E'=—*t*TE").

Eq. (1.5) uses the operators § and 0 in another order then Eq. (1.4): E'=-0*t0*E' .



Also we can offer the operator V* and two operators 1 for obtaining £’ , for example,

2y ' " i
V’E"xr")dV Jxr dv 7.7

B =**1VE] = | [I( PR ;-

4mr

8. An example of the use of the simplest decomposition (7.1)
Consider a semi-infinite straight thin wire carrying an electric current / along the positive z-axis. Let
the current density j is singular in the wire territory:

j.=138(R0) if z>0, and j =0 if z<0, (8.1)
where R =4/x”> +y* , and 8(R,0) satisfies IS(R,O) 2nRdR =1. So,
Vj=-0,p=18(x,0), (8.2)

where 8(x,0) satisfies jS(x,O)dV =1.
Our aim is to decompose the density j into solenoidal and irrotational parts by applying Eq. (7.1) to j:

j=j+j=V><J-Jxr (f,x)dV +J‘(V J )I'3(x,x)dV _VxB-0E. 83)
o x 4mtr” (x,x") 4mr’ (x,x")

We have step by step. The Biot-Savarat law yields:

jxr' (o, x")d V" IdI'xr'(x, x'
B= | e =] rler), (8.4)
4mtr’ (x,x") 4mr’ (x,x")
Iy ¢ dz' Iy z Ix z ) 5 5
T An ZJ;O[X2+y2+(Z—Z')2]3/2 47'cR2[ r] y 47‘cR2[ r] ( y) (8.5)

Jj=VxB for all points except the semi axis z (z >0, x = y = 0), where the magnetic field is singular, is

1 1 1 . . /
jx:_aB = - al jy:asz:_ y37 jz:axBy_ayBx:_ - L.C. J:_ d

9 9
o7 417’ 4y . 47 o 4mr

VxB for z>0, x =y =0 can be determined from (8.5) by the Stokes theorem for a circle of radius R
when R — 0:

(8.6)

3 -

I 12n
VxB VxB)da=¢Bdl=——|—ydx+xdy=—»|dop=1. 8.7
[(VxB)da=§Bdl = [ ydv+ xdy ancp (8.7)

Thus, according to (8.7), (VxB), = I3(R,0) . In other words, the solenoidal part j of the current j,

j=r* J=V>B = OE

A z

" Fig. 17. / \

The decomposition of a straight current into solenocidal and irrotational parts



Ir z
j=— +I1—,ifz>0, j=-
! 4173 z J 47y

consists of radial converged field tubes (8.6) and the semi axis z > 0.
The irrotational part is

Ir

if z<0, (8.8)

3 5

) 15(x",0)r(x,x")dV' Ir(x
o) - [ LDV Tx()
x 4mr’ (x,x") 4nr (x)

The decomposition is depicted at Fig. 17. Field tubes are used instead of common field lines

because the current density j is a vector density. One can see that the components of the decomposition
extend over all space, despite j is localized. Many authors pointed out this fact [1].

(8.9)

9. The Minkowski space. Tandem-closed fields
Chains (3.1) — (3.4) use the Euclidean metric tensor for conjugating, g, = diag{+1,+1,+1}, but

chains of electromagnetic fields use g, = diag{+1,-1,-1,-1}:
T a0 BB (DA ,(MALD)O (O, (FC(D)... ©.1)
We denote the electromagnetic tensor B, = —F,, instead of F,, in orderto j’ =0 ﬁBfB instead of

common ;! = —(EBFAO‘B , and our magnetic vector 4-potential A satisfies B, =20,,A ;. So, e.g,

B, =B>=0,A,—-0,A,,and A, =4, A" =-A4"; B, =E, =0,A,—0,A,,and A, =A" = ¢.

In (9.1), O and C are hypothetic fields.

Besides closed and coclosed fields, there are tandem-closed fields, i.e.fields, which are closed and
coclosed simultaneously. We mark these fields by the pair of signs xo. For example, an electromagnetic

plane wave makes up an tandem-closed field B°*, B w - Indeed, if

Bl=E'=e"", B)=B,=¢"", By=—¢"", By=-B =", 9:2)
then
aﬁgiﬁ: 805104_835;3: 0, 8[x§w]: 83§lo+80§31:0. (9.3)

In this case, both the fields of a tandem are closed. We name such a tandem an end-tandem because a
chain ends at the tandem. Obviously, an end-tandem is the end of two (complementary) chains. For
example

0@)B(*) B, (DA (MAOQ(*)0,.(A)C (CIO)... 9.4)
0@)B ()BT (AIT,,,(0) 0, (MO L@ R (FR ,(0) ... 9.5)

v

Electromagnetic field B, in chain (9.4) is the boundary of the magnetic vector potential A  :

B =20,A,,A=-A ! = —ie” ™ however the same electromagnetic field B“" in chain (9.5) is the

2
Xo X V]

boundary of the electric three-vector potential I1°": B%=9 TT%", TT!"=1I1,,=ie"™". Some next

Xo

sections of the chains are

0"=_0 - ——lﬂf Y2 e oo = We C,=-C= —“%Re (9:6)
1+i(t+z) .. 1-i(t+2) . +2) o
Qm:_QlAO:%e > Q13:Q1A3:%e > 13103:]5103:_( 4 )e ’ ©.7)

Because Laplacian realizes a transition to four sections of a chain to the left and, maybe, changes the
sign, we have, according to (9.4),
BP=%9*x0Q%=-V?> Q7. 9.8)

But, the same field B " ,according to (9.5), equals



BP=0%p*xQW=V>Q° (9.9)

Now we have arrived at an interesting conclusion:
sumn of strnilar terms of complementary chatng 12 a harmonic field f the transition

to four positions to the left fromm the terms comes to an end m an end-tandem. 9.10)

Really,
VIQU =VA(Q+ Q) =~ B+ BU=0. 0.11)

By the way, we can consider the harmonic field Q" as a plane polarized electromagnetic plane

wave because it satisfies the wave equation (9.11). By analogy with (9.2) we have from (9.6), (9.7)
1 1

0) =0 V=B =1, 0 =024 00=B, =~ ©0.12)

But it is a very strange wave. The Poynting vector, S = (Ex B)/2, has the z -component directed

opposite to the direction of wave propagation: S, = —1/8, and the wave is accompanied by electric j

and magnetic J, , currents:
Ji :agQiB:éis va :3a[x va]zlzlxuv- (9.13)
We present here another example of the end-tandem which is very simple. Let
g, =diag{+1,+1}, i,/ =1,2. Then a' and a, are the tandem-closed fields if a} =y, a’ = x. Really:
a,=*a, =y, a, =*a, =x,and 0,a, =0, d,a, =0.So, we have two complementary chains:
0(0)a’ (*)a (8)b(*)b, (D) c ), (*)c (0)-, (9.14)
0(@)a ,(*)a’ (d)d ) (*)d, ()¢ (¥)c ) (0)-, (9.15)
where
2 3 2 3 2 2 3 3
b=xy, cl=c,= a4 y_’ cizczzu+x—, d?=d, =—x—+y—, c=c' = —y—, c,=c’= S
x e 4 12 <7 - 4 12 2 2 x e 6 x° = 6
(9.16)
According to (9.10), ¢, = ¢ ,+ ¢, must be harmonic. Really,
x2y y3 y2x x3
¢ =Cte= 4 1 czzfz‘l'fz:T_Ea 9.17)

and 0 ¢, +0 ¢ =0,¢,+0,c, =0.This is OK.

10. Conclusion

Usefulness of concepts of differential forms and tensor densities in the electromagnetism is shown.
Concepts of boundary and its filling, source and its generation are introduced. These concepts extend an
understanding of electrodynamics because they explain mutual relations between the electromagnetic
fields.
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