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A nonlinear Helmholtz equation for optical materials with regimes of power-law 

type of nonlinearity is proposed.  This model captures broad beam evolution at any 

angle with respect to the reference direction in a wide range of media, including 

some semiconductors, doped glasses and liquid crystals.  Novel exact analytical 

soliton solutions are presented for a generic nonlinearity, within which known Kerr 

solitons comprise a subset.  Three new general conservation laws are also reported.  

Analysis and numerical simulations examine the stability of the Helmholtz power-

law solitons.  A new propagation feature, associated with spatial solitons in power-

law media, constituting a new class of oscillatory solution, is identified. 

 

PACS number(s): 42.65.Tg (optical solitons), 94.05.Fg (solitons and solitary waves), 

05.45.Yv (solitons, nonlinear dynamics of). 
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I. INTRODUCTION 

Spatial solitons are well-known in nonlinear optics and have been studied for many 

years [1-3].  They are robust, localized nonlinear waves exhibiting self-stabilizing and 

self-guiding properties.  Their remarkable stability under perturbation can be seen, for 

example, in the pair-wise collision between two solitons.  They can exhibit mutual 

transparency, passing through each other elastically (no change in shape or velocity) 

and inducing only a trajectory phase shift (a lateral displacement in the position of 

each soliton centre from its unperturbed path).  These features make spatial solitons 

ideal candidates for use in future Information Communication and Technology device 

applications [4-8].  Before such devices can be realized, it is necessary to have a 

thorough understanding of the interplay between diffraction and medium nonlinearity, 

and also of the limitations of conventional paraxial modelling. 

 The term ‘nonparaxial’ is often used to refer to ultranarrow or subwavelength 

optical beams [9-14], where the transverse waist 0w  and carrier wavelength λ  are 

comparable.  However, a “nonparaxial = ultranarrow” interpretation is insufficiently 

general.  In its widest sense, ‘nonparaxial’ means ‘not paraxial’ and refers to any 

situation where the paraxial approximation is violated.  A beam may be described as 

“paraxial” if it is (i) broad compared to the carrier wavelength, (ii) of moderate 

intensity, and (iii) propagating in (or at a negligible angle with respect to) the 

reference direction.  If all three criteria are not met simultaneously then the beam is, 

by definition, nonparaxial.  Here we are concerned with the Helmholtz scenario, 

where conditions (i) and (ii) are always met rigorously but condition (iii) is relaxed.  

For completeness, the physical and mathematical character of ultranarrow-beam and 

Helmholtz contexts will now be discussed. 
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Ultranarrow-beam nonparaxiality was effectively introduced by Lax et al. [9], 

who analysed the fully-vectorial Maxwell equations in terms of a single parameter-of-

smallness 0wε λ≡ .  It is now well-known that when ( )~ 1Oε , transverse spatial 

variations of the electric field on the λ -scale lead to appreciable divergence in the 

nonlinear polarization.  These steep gradients tend to produce strong coupling 

between components of the field.  In such cases, the evolution of the dominant 

transverse component can be well described through an order-of-magnitude analysis 

of Maxwell’s equations and retaining terms up to ( )2O ε .   The governing equation 

turns out to be of the nonlinear Schrödinger (NLS) type, augmented by a range of 

higher-order diffractive corrections [9-14]. 

Helmholtz nonparaxiality is concerned with off-axis effects [15].  It differs 

fundamentally from ultranarrow-beam contexts, and the arbitrary-angle aspects of 

optical propagation cannot be captured by ε -type order-of-magnitude analyses.  

Indeed, it will be shown that the potentially dominant Helmholtz contribution to 

evolution is geometrical and can be of any order irrespective of ε .  Here, we consider 

broad beams in two-dimensional planar waveguides that comprise a reference 

longitudinal direction (z) and a single effective transverse direction (x).  In uniform 

media, x and z are physically indistinguishable and this spatial symmetry is respected 

by Helmholtz diffraction [16].  The explicit assumption of broad beams means that 

( )1Oε  and the polarization-scrambling term ( )∇ ∇ ⋅E  in Maxwell’s equations [9-

14] is unimportant.  One may treat the associated refractive-index distributions within 

the scalar approximation, and the electric field as a TE (transverse electric) polarized 

mode. 
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In Helmholtz soliton theory [15], the governing equation is of the nonlinear 

Helmholtz (NLH) type.  The spatial coordinates appear on an equal footing and 

diffraction is fully two-dimensional, occurring in both x and z.  By omitting the 

slowly-varying envelope approximation (SVEA), the angular restriction inherent to 

paraxial models is lifted and propagation may occur at any angle with respect to the 

reference direction.  For Kerr media, where the refractive index varies with the square 

of the (local) optical field amplitude, exact analytical soliton solutions are now known 

[15,17].  Extensive numerical simulations have confirmed that they are stable robust 

entities surrounded by wide basins of attraction. 

The power-law nonlinearity is of fundamental interest in optics [18].  It is 

perhaps the simplest generalization of the ubiquitous Kerr law and models a material 

whose refractive index depends on the optical field amplitude raised to a power other 

than 2.  Various semiconductors, for example InSb [19] and GaAs/GaAlAs [20], 

doped filter glasses (such as CdSxSe1–x) [21], and liquid crystals (such as MBBA) 

[18], can possess power-law behaviour in their refractive index.  Power-law solitary 

waves have been investigated theoretically in the context of interface surface modes 

[22], and as elementary excitations in thin films [23] and slab waveguides [24].  

Snyder and Mitchell have also derived an exact soliton solution to a power-law NLS 

equation that describes the paraxial evolution of TE self-guided modes of a planar 

waveguide [25].   

In this Article, we consider the broad range of optical materials whose field-

dependent refractive-index distributions can possess power-law characteristics.  In 

Section II, we propose a novel NLH governing equation with a power-law 

nonlinearity that captures the Kerr response as a particular case.  The geometrical 

aspects of beam propagation are discussed and three new conservation laws reported.  
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Two novel exact analytical soliton families are then presented and the structure of 

these solutions is explored in detail.  In Section III, the advantages of using an elliptic 

evolution equation are reviewed and the stability of the new Helmholtz solitons is 

investigated both analytically and numerically.  Perturbed non-Kerr power-law 

solitons are discovered to have quite different behaviour, under perturbation, from 

their Kerr subset.  Conclusions are presented in Section IV. 

 

II. HELMHOLTZ POWER-LAW SOLITONS 

A. Model equation 

We consider a continuous-wave scalar electric field with angular frequency ω , 

   ( ) ( ) ( ) ( ) ( )*, , , exp , expE x z t E x z i t E x z i tω ω= − + + ,   (1)  

propagating in a uniform planar waveguide.  When the complex spatial envelope 

containing the field oscillations is assumed to vary on a scalelength much larger than 

λ , as it must for the scalar approximation to hold [10,16], ( ),E x z  satisfies the NLH 

equation [15], 

 ( ) ( )
2 2 2 2

2 2 2, , 0nE x z E x z
z x c

ω ∂ ∂
+ + = ∂ ∂ 

.    (2) 

This ‘broad beam’ model follows directly from Maxwell’s equations when nonlinear 

divergence is neglected.  The power-law nonlinearity is introduced through a 

refractive-index distribution ( ) 0
q

qn E n n E= + , where 0n  is the linear index, qn  is a 

nonlinear coefficient and the exponent may assume continuum values 0q >  [25].  

The Kerr effect corresponds to 2q = , and the generalized form also provides a model 

for saturable media when 2q <  [22].  If 0
q

qn E n , which is usually satisfied for 

weak optical nonlinearities [2,3], then one has to an excellent approximation 
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2 2
0 02 q

qn n n n E+ .  To facilitate a comparison between Helmholtz and conventional 

(i.e. paraxial) models, the z  axis is chosen as the reference direction and the spatial 

part of the electric field is expressed as ( ) ( ) ( )0, , expE x z E u x z ikz= , where 0 0k n k=  

and 0 2k cω π λ≡ = .  Using Eq. (2), one may derive the normalized equation for the 

envelope u: 

      
2 2

2 2

1 0
2

qu u ui u uκ
ζ ζ ξ
∂ ∂ ∂

+ + ± =
∂ ∂ ∂

.     (3) 

The spatial coordinates are Dz Lζ =  and 02x wξ = , where 2
0 2DL kw=  is the 

diffraction length of a reference Gaussian beam with waist 0w .  The ±  sign flags a 

focusing/defocusing nonlinearity, respectively, ( )10 0

q

q DE n k n L=  and 

( )2 2 2 2 2
0 01 4 1k w n Oκ ε π= ≡  quantifies the (inverse) beam width.  Equation (3) has 

the three associated conserved quantities, 

    
*

2 * u uW d u i u uξ κ
ζ ζ

+∞

−∞

  ∂ ∂
= − −  ∂ ∂  
∫ ,             (4a) 

* * *
* ,

2
i u u u u u uM d u uξ κ

ξ ξ ζ ξ ξ ζ

+∞

−∞

    ∂ ∂ ∂ ∂ ∂ ∂
= − − +    ∂ ∂ ∂ ∂ ∂ ∂    
∫             (4b) 

and 

     
* *

2

1
2

1 1
2 1

qu u u uH d u
q

ξ κ
ξ ξ ζ ζ

+∞
+

−∞

 ∂ ∂ ∂ ∂
= − − ∂ ∂ ∂ ∂ + 
∫ ,             (4c) 

that represent the energy-flow, momentum and Hamiltonian, respectively.  

Conservation laws are of fundamental importance in physical systems, and integrals 

(4) can be used to monitor the integrity of the numerical scheme [26] used to solve 

Eq. (3). 
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When analysing beam propagation in uniform media, a fundamental symmetry 

of the governing equation should be rotational invariance.  This property follows 

directly from the fact that one has complete freedom to choose any orientation for the 

( ),x z  coordinate axes, relative to the beam [15].  For instance, if a beam is stable 

when the propagation and z axes are parallel, it must also be stable when there is an 

arbitrary angle θ  between them.  One should expect this intuitively since the physical 

properties of the beam must be frame-independent.  The SVEA breaks rotational 

invariance, limiting θ  to vanishingly-small values only [15]. 

One should also recognize that even the simplest experimental arrangements 

can possess intrinsically angular characters that are outside the remit of the paraxial 

approximation.  Two important examples are beam multiplexing and interface 

geometries.  We have recently analysed these configurations for Kerr media using 

Helmholtz soliton theory [27,28].  New qualitative phenomena were uncovered in 

angular regimes, and corrections to paraxial theory in excess of 100% were predicted.  

The analysis of arbitrary-angle interaction/interface geometries that involve non-Kerr 

power-law materials cannot proceed without first having detailed knowledge of the 

corresponding exact analytical Helmholtz solitons. 

 

B. Exact Helmholtz solitons 

Since model (3) is second-order in the longitudinal coordinate, one expects to 

find both forward- and backward-propagating solutions.  We have derived two exact 

analytical bright soliton solutions for a focusing nonlinearity, that are given by 
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( ) ( )2

2

2

, sech
1 2

1 4                             exp exp ,
2 21 2

q a V
u

V

i V i
V

ξ ζ
ξ ζ η

κ

κβ ζ ζξ
κ κκ

 ±
=   + 

 +    × ± −    +     
∓

            (5a) 

1 2

2

q
a q

q
η 

≡  + 
,              (5b) 

and ( )2 2q qβ η≡ + .  Here, η  is the amplitude parameter and V  is the conventional 

transverse velocity parameter.  The forward solution (upper signs) describes an 

exponentially-localized beam evolving with respect to the +z axis at an angle 

( )1tan 2 Vθ κ−= , where 90 90θ− ° ≤ ≤ + ° , and 0θ >  is defined in an anti-clockwise 

sense [21].  The forward and backward solutions in (5), depicted in Fig. 1, can be 

combined into a single soliton whose propagation direction is determined solely by θ : 

             
( ) 2, sech cos sin

2

1 4                        exp sin cos exp .
2 22

qu a

i i

ζξ ζ η ξ θ θ
κ

κβ ζ ζξ θ θ
κ κκ

  = +  
  
 +    × − + −        

        (6) 

The profile of solitons (5) and (6) captures the angular beam-broadening factor 

( ) 1 221 2 cosVκ θ
−

+ =  (see Fig. 2), that can be non-negligible even in moderate-angle 

regimes.  For instance, when 60θ = ± °  an observer in the ( ),x z  frame perceives the 

beam width to have doubled compared to its on-axis value [22].  The origin of the 

relation 2 2tan 2 Vθ κ=  thus lies in x–z equivalence, where the full generality of the 

zz∂  operator has been retained.   Importantly, 22 Vκ  can be of any order of magnitude 

as 90θ → ± ° , independently of the system nonlinearity, and even though ( )1Oκ .  

At 90θ = ± ° , where 22 Vκ →∞ , one finds that 
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      ( ) 2 1 4, sech exp exp
2 22

qu a i iζ κβ ζξ ζ η ξ
κ κκ

 +   = −         
∓ ,                (7) 

and the beam thus appears to be infinitely broad in ξ .  Transforming to the ( ),x z  

frame [21,43], it can be seen that (7) describes a soliton beam propagating in the x∓  

direction, respectively (i.e. perpendicularly to the z axis).  These two results (infinite 

width in ξ  and evolution along x∓ ) are physically consistent with each other.  We 

note that there is no analogue of (7) in paraxial theory. 

Helmholtz solitons possess a range of generic features that arise from spatial 

symmetry.  These features have no counterpart in paraxial theory, and include angular 

and intensity-dependent corrections to the beam wavevector, and the explicit 

appearance of the longitudinal phase term ( )exp ikz− .  The absence of this factor from 

the paraxial solutions [25] prevents one from transforming rigorously between the 

( ),ξ ζ  and ( ),x z  coordinate frames. 

For the new power-law solitons (5), it is possible to evaluate the conserved 

quantities analytically for arbitrary values of the exponent q.   

       ( )1 21 4W Pκβ= ± + ,              (8a) 

      ( )
2

1 4 2
1 2

VM P Q
V

κβ κ
κ

= +  
+

∓ ,             (8b) 

       ( )
2

1 1 1 4 2
2 2 1 2
WH P Q

V
κβ κ

κ κ κ
 = − + −      +

,            (8c) 

where the upper (lower) signs denote the invariants of the forward (backward) beam.  

The additional parameters P  and Q  that appear in Eqs. (8) are given by 

  ( )
2

12P q
a
η γ −= ,              (9a) 
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     ( ) ( )
2 2

1 12 2 2 1 ,Q q q
q a

η γ γ− −    = − +       
             (9b) 

and 

   ( ) ( ) ( )
( )
1
2

1
2

y
y

y
γ

Γ Γ
≡

Γ +
,               (9c) 

where Γ  is the gamma function.  Analysis of Eqs. (8b) and (8c) reveals that for the 

forward soliton, the energy-momentum relationship V VH M H M V∂ ∂ = ∂ ∂ =  holds, 

where V∂  denotes the derivative with respect to velocity V .  New results for paraxial 

solitons appear as particular cases of Eqs. (8) and (9). 

 

C. Recovery of paraxial solitons 

It would be erroneous to conclude that the Helmholtz operator ζζκ∂  can be 

omitted from Eq. (3) whenever ( )1Oκ .  The arbitrary magnitude of the term 22 Vκ  

demonstrates that angular effects cannot generally be captured by ultranarrow-beam 

(i.e. single-parameter κ -type) corrections.  Compelling evidence of the multi-fold 

character of ζζκ∂  can be found, for example, in attempts to recover Synder and 

Mitchell’s paraxial soliton [25] from (5); this cannot be achieved simply by setting 

0κ = .  Instead, recovery is possible if and only if (a) 0κ →  (broad beams), (b) 

0qκη →  (moderate intensities) and (c) 2 0Vκ →  (negligible propagation angles, 

strictly 0θ → ° ).  This simultaneous multiple limit, which is an algebraic statement of 

0ζζκ∂ → , defines the paraxial approximation.  When applied to the forward 

Helmholtz soliton, one obtains 

     ( ) ( )
2

2, sech exp
2

q Vu a V iV iξ ζ η ξ ζ ξ β ζ
  

+ − + −     
   

.               (10) 



11. 

That is, the paraxial limit maps a forward Helmholtz beam onto its NLS counterpart.  

While (a) represents the scalar approximation, and (b) is equivalent to 0 02 q
qn n E  

(i.e. the weak-nonlinearity approximation implicit in the derivation of both Eq. (3) 

and the corresponding paraxial equation), condition (c) is a geometrical contribution 

that depends solely upon the choice of reference frame [15].  Interestingly, the fact 

that convergence of the Helmholtz beam to the paraxial solution requires 0θ → °  (and 

does not occur for 180θ → ± ° ) emphasises the absence of backward waves in 

paraxial theory [25].  We also mention that by applying the multiple limit to Eqs. (8), 

one finds the paraxial conserved quantities, namely W P , M VP  and 

21
2H V P P Qβ− + .  Thus, P  is identical to the beam power of the corresponding 

paraxial soliton. 

  The elimination of ζζκ∂  from conventional narrow-beam models must be 

carried out with care.  In particular, one should ensure that all angular effects in the 

unscaled system can be safely neglected.  Approximating ζζκ∂  by a perturbation 

series (for example, in ξξ∂  operators [10,29]) destroys the bi-directionality of the 

governing equation.  The resulting model is then parabolic, rendering finite-angle 

regimes inaccessible. 

 

III. STABILITY OF POWER-LAW SOLITONS 

Preserving the full generality of zz∂  allows Eqs. (2) and (3) to support forward 

and backward waves, so propagation may occur at any angle with respect to the 

reference direction.  Ellipticity is thus a key feature of both models.  Stable 

propagation in elliptic models has been known for several years [26].  A linear 

stability analysis reveals that Helmholtz and paraxial plane waves, in materials with 
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arbitrary dispersive nonlinearity, are modulationally stable in the same parameter 

regimes [30].  For the power-law nonlinearity [25], plane waves with intensity 0I  

possess a region of modulational instability in the long-wave spectral domain 

4
02 qK qIξ < , where Kξ  is the transverse wavenumber of the perturbation.  We also 

mention that numerical simulations confirm excellent agreement between the 

predictions made by NLH-type models, such as Eq. (3), and those of nonlinear 

Maxwell equations [31].   

 

A. Analytical predictions  

Spatial symmetry allows one to analyse the stability of Helmholtz solitons 

using the well-known Vakhitov-Kolokolov (VK) integral criterion [2,32].  By rotating 

the ( ),x z  coordinate axes so that the reference and propagation directions coincide, 

an isolated Helmholtz beam with ( )1Oκ  and ( )1Oη =  in this “on-axis” frame of 

reference can be regarded as quasi-paraxial.  The VK criterion states that a localized 

soliton can be stable against small perturbations if 0dP dβ > , where P  is the beam 

power and β  is the longitudinal wavenumber.  From Eq. (9a), it is straightforward to 

show that 

   ( ) ( )2
2 3 21

22 1 2

21 2 1
2 2

q
q

q

qdP q
d q q

γ β
β

−
−

+  
= − 

 
.          (11a) 

From inspection of Eq. (11a), it can be seen that the slope of ( )P β  is always positive 

provided 4q < ; when this inequality is met, ( )P β  increases monotonically.  The 

character of soliton stability is often connected to the curvature of ( )P β  [33].  For 

power-law nonlinearity,  
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      ( ) ( )22
2 5 21

22 2 1 2

21 2 1 2 3
2 2 2

q
q

q

qd P q
d q q q

γ β
β

−
−

+   
= − −  

  
.           (11b) 

The curvature is positive when critq q< , zero when 4
3critq q= = , and negative when 

4critq q< <  (see Fig. 3).  The existence of such a critical point (characterized by a 

change in the sign of 2 2d P dβ ) suggests that one should expect a qualitative change 

in the behaviour of a perturbed soliton when critq q≈ . 

 

B. Numerical perturbative analysis 

We now evaluate the robustness of the new power-law Helmholtz solitons (5) 

against perturbations to their shape, through consideration of the initial condition  

           ( ) ( )2
2

1 4,0 sech exp
1 2

qu a iV
V
κβξ ξ ξ
κ

 +
= −  + 

,                        (12) 

where ( )2 2 qβ = + .  The input beam corresponds to a perturbed canonical (i.e. 

1η = ) soliton that is launched at an angle ( )1tan 2 Vθ κ−=  relative to the reference 

direction.  Through a rotational transformation, it can be seen that (12) is entirely 

equivalent to an on-axis Helmholtz beam whose width has been reduced by a factor of 

( )1 221 2 Vκ+ .  Results are presented for a range of launching angles, 10θ = ° , 30°  

and 50° , which represent weak, moderate, and strong perturbations, respectively.  

These angles are clearly non-trivial, and lie outside the remit of the paraxial 

approximation.  When 310κ −=  ( 410κ −= ), the transverse velocities are 3.94V ≈  

( 12.47V ≈ ), 12.91V ≈  ( 40.82V ≈ ), and 26.65V ≈  ( 84.27V ≈ ), respectively.   

When θ  deviates from zero, self-reshaping oscillations appear in the 

parameters (amplitude, width, and area = amplitude ×  width) of the evolving beam.  
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The nature of these oscillations depends upon the nonlinearity exponent q .  For 

1q = , sustained self-oscillation dominates the long-term evolution, and a stationary 

state does not appear to emerge as ζ →∞ .  Over propagation lengths longer than 

those shown in Fig. 4(a), the reshaping oscillations are modulated by a slowly-varying 

envelope function. 

For 2q = , it is known that the reshaping oscillations strictly vanish as ζ →∞  

to leave a stationary beam [see Fig. 4(b)].  Thus, in Kerr media, one finds that the 

input beam can transform asymptotically into an exact Helmholtz soliton [34].  For 

quasi-paraxial beams, the properties of this asymptotic Helmholtz Kerr soliton can be 

predicted by combining geometrical considerations with inverse-scattering 

perturbation techniques [35].  For 3q = , small perturbations tend to give rise to 

sustained self-oscillation in the beam parameters, similar to the behaviour found in the 

case of 1q = , but of generally longer period.  However, as the perturbation increases, 

self-focusing is insufficient to balance initial diffractive spreading.  The peak 

amplitude decreases monotonically with distance, and the beam loses its solitonic 

properties [see Fig. 4(c)]. 

 

C. Representation of perturbed solitons 

One way of representing the evolving beam is in the ( ),
m m

u uζ∂  plane (see 

Fig. 5).  The trajectories associated with perturbed 1q =  solitons can then be 

associated with quasi-periodic orbits.  For 2q = , where the reshaping oscillations 

vanish asymptotically, the trajectory winds on to a fixed point with 

( ) 0
m m

u uζ ζ ζ∂ = ∂ ∂ =  as ζ →∞ .  This fixed point represents a stationary 

Helmholtz soliton, and its precise location on the 
m

u  axis depends upon the initial 
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perturbation.  We have classified the Helmholtz solitons with 2q =  as fixed point 

attractors, and those with 1q =  as limit cycle attractors [30].  Helmholtz solitons with 

3q =  are conditionally stable.  These designations arise from the similarity between 

the phase portraits in Fig. 4 and those found in other nonlinear dynamical systems 

[36].  The fixed-point and limit-cycle terminology has been discussed in more detail 

elsewhere [30]. 

 The stability properties of Helmholtz solitons are mapped in Fig. 6, as a 

function of nonlinearity index q and the launching angle θ  (that determines the 

magnitude of the perturbation).  When 4
30 q< < , a perturbed beam exhibits limit-

cycle reshaping oscillations, while for 54
3 2q< <  one observes fixed-point oscillations.  

The existence and nature of the bifurcation point at 4
3critq = , predicted by the VK 

criterion, has thus been confirmed numerically.  Numerical analysis has also 

identified a second bifurcation, occurring at 5
2q = , at which point the reshaping 

oscillations revert from the fixed-point type back to limit-cycle type. 

 The existence of the second bifurcation point was not predicted from 

examining the ( )P β  curves, which show no particular feature at 5
2q = .  Nonlinear 

analysis [2,33,37] will inevitably be required to quantify this bifurcation further, and 

also to describe fully the internal mode-type oscillations uncovered in numerical 

simulations [33,37].  However, we find that the single (arbitrary) power-law 

introduces new complexities into the nonlinear analyses used earlier [33,37].  

Moreover, stability analysis of NLH models also presents further complications, such 

as the inclusion of backward waves, and the fact that two initial conditions are 

required to solve elliptic equations. For example, the ζζκ∂  operator hinders the 

decoupling of the real and imaginary parts of the perturbation field.  Such decoupling 
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allows solution of linearized eigenvalue problems associated with paraxial governing 

equations [2,38,39]. 

 

VI.   CONCLUSIONS 

A novel NLH equation describing optical beam propagation in a wide range of 

power-law materials [18-25] has been presented.  Novel exact analytical forward- and 

backward-propagating bright soliton solutions have been derived, for which known 

Kerr solitons [15] are obtained when 2q = .  Ellipticity of the governing equation is 

an essential feature if one is to describe beam evolution [34], interaction [27] and 

interface [28] regimes involving oblique angles.  The analysis of such scenarios in 

general power-law media requires a detailed knowledge of exact Helmholtz solitons 

(5) and also the corresponding conservation laws (8), both of which have been 

reported here for the first time.  The geometrical properties of beam propagation have 

been explored in detail, and known paraxial solutions emerge from the new 

Helmholtz solutions in an entirely physical multiple limit. 

Arbitrary-angle regimes are outside the scope of classic paraxial models, and it 

has been shown analytically that ζζκ∂  can be strongly perturbative in off-axis 

configurations.  Exact Helmholtz power-law solitons (5) have been found to be robust 

entities that propagate stably over arbitrarily long distances when 0 4q< < .  Analysis 

and simulations have led directly to the identification of a new class of oscillatory 

solution associated with perturbed Helmholtz solitons in power-law media with 

4
30 q< <  and 5

2 4q< < .  These oscillatory solutions have no counterpart in Kerr 

( 2q = ) media.  Our stability results also have implications for paraxial solitons. 
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For completeness, we comment on the behaviour of the predicted exact 

Helmholtz soliton (5) when 4q ≥ .  It is well known that, in this regime, the power-

law NLS model predicts an unphysical collapse of a localized beam to zero transverse 

size and infinite amplitude [2,25,39].  Numerical analysis reveals that this type of 

“blow up” can be suppressed in Eq. (3) and that, instead of such singular behaviour, 

the beam tends to undergo smooth diffractive spreading toward a zero-amplitude state 

(see Fig. 7). We thus find that an instability is also present in the 4q ≥  power-law 

Helmholtz model, but that the character of this instability may be profoundly different 

from that of its paraxial counterpart (where the contribution from ζζκ∂  is neglected).  

This phenomenon is of interest in terms of universal amplitude equations involving 

Helmholtz-type generalization of the linear wave operator.  However, consideration of 

higher-order nonparaxial effects is likely to be necessary for a full investigation of 

this phenomenon in the specific context of nonlinear optical beams. 

The considerations in this Paper are of fundamental physical and mathematical 

interest, examining the structure and stability of novel exact solitons of non-integrable 

elliptic wave equations.  Helmholtz soliton theory is proposed as essential for the 

accurate modelling of non-trivial angular contexts in nonlinear optics, and 

implications are expected for a wide range of experimental regimes. 
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FIGURE CAPTIONS 

 

FIG. 1.  Geometry of the (a) forward and (b) backward soliton solutions of Eq. (5), 

given by the upper and lower choice of signs, respectively.  The propagation angle in 

both solutions has been defined so that 0θ >  is always measured in an anti-clockwise 

sense relative to the +z direction. 

 

FIG. 2.  Angular beam broadening of 3q =  Helmholtz solitons (4) for 0θ = °  (solid 

line), 30θ = °  (dashed line), 45θ = °  (dotted line) and 60θ = °  (dot-dash line, where 

the beam width has doubled relative to its on-axis value).  The solid line represents 

the paraxial solution (7), where broadening is absent and the beam has the same width 

irrespective of the transverse velocity V. 

 

FIG. 3.  Beam power P  as a function of the parameter β  (the longitudinal phase in 

the corresponding paraxial model [25]), obtained from Eq. (9a).  When critq q< , the 

curvature is positive, 2 2 0d P dβ > .  For 4
3critq q= = , P  vs. β  is a straight line 

( 2 2 0d P dβ = ).  When 4critq q< < , the curvature is negative ( 2 2d P dβ  < 0). 
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FIG. 4.  Universal reshaping oscillations in the peak amplitude mu  for initial 

condition (12) when (a) 1q = , (b) 2q = , and (c) 3q = .  Part (b) corresponds to the 

reshaping of Kerr solitons [32].  Solid curves: 10θ = ° , dashed curves: 30θ = ° , dot-

dash curves: 50θ = ° .  As ζ →∞ , the oscillations in (b) are, strictly, vanishing.  This 

is not the case for the other two q  values, and the oscillations present survive in the 

long-term evolution. 

 

FIG. 5. (a) Phase plane for Kerr solitons, where 2q = .  Perturbed initial conditions 

lead to trajectories that slowly spiral on to a node (stable fixed point) in the phase 

plane.  This asymptotic soliton state has well-defined propagation-invariant 

parameters (i.e. amplitude and width).   (b) Trajectories for the 1q =  power-law 

nonlinearity wind on to a slowly-varying orbit that is characterized by quasi-periodic 

parameters. 

 

FIG. 6. Schematic diagram illustrating the classification of canonical ( 1η = ) soliton 

stability characteristics depending upon the nonlinearity index q.  

 

 

FIG. 5.  Diffractive instability of the Helmholtz soliton (4) when 4.2q =  for four 

different values of the nonparaxial parameter κ .  Solid: 310κ −= ; dashed: 

30.5 10κ −= × ; dotted: 410κ −= ; dot-dash: 40.5 10κ −= × .  The self-focusing “blow up” 

singularity of the corresponding paraxial (parabolic) model is suppressed by the 

Helmholtz operator ζζκ∂ , even when 0κ . 
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FIGURE 2 
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FIGURE 3 
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FIGURE 4 
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FIGURE 5 
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FIGURE 6 
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FIGURE 7 
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