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Abstract. We present a method—termed Helmholtz stereopsis—for reconstructing the geometry of objects from

a collection of images. Unlike existing methods for surface reconstruction (e.g., stereo vision, structure from motion,

photometric stereopsis), Helmholtz stereopsis makes no assumptions about the nature of the bidirectional reflectance

distribution functions (BRDFs) of objects. This new method of multinocular stereopsis exploits Helmholtz reci-

procity by choosing pairs of light source and camera positions that guarantee that the ratio of the emitted radiance

to the incident irradiance is the same for corresponding points in the two images. The method provides direct

estimates of both depth and surface normals, and consequently weds the advantages of both conventional stereopsis

and photometric stereopsis. Results from our implementation lend empirical support to our technique.
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1. Introduction

In this paper, we present Helmholtz stereopsis, a novel

method for reconstructing the geometry of a surface

that has arbitrary and unknown surface reflectance.

This method does not make the ubiquitous assump-

tion that the reflectance is Lambertian or of some other

parametric form, and it enables the reconstruction of

surfaces for which the reflectance is anisotropic, and for

which it varies from point to point across the surface.

Helmholtz stereopsis works by exploiting the symme-

try of surface reflectance—pairs of light source and

camera positions are chosen to guarantee that the rela-

tionship between pixel values at corresponding image

points depends only on the shape of the surface (and is

independent of the reflectance).

At a suitable scale, reflectance is accurately de-

scribed by the bidirectional reflectance distribution

function, or BRDF (Nicodemus et al., 1977). The

BRDF of a surface point, denoted fr (î, ê), is the ra-

tio of the outgoing radiance to the incident irradiance.

Here, î is the direction of an incident light ray, and

ê is the direction of the outgoing ray. These are typ-

ically written as directions in a coordinate frame at-

tached to the tangent plane of the surface. It is not an

arbitrary four dimensional function since, in general,

it is symmetric about the incoming and outgoing an-

gles: fr (î, ê) = fr (ê, î). This symmetry condition is a
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generalization of a principle of reciprocity described

by Helmholtz (1925, p. 231) and is commonly referred

to as Helmholtz reciprocity. (It has been pointed out in

the literature that reciprocity may not hold for some

surfaces (Helmholtz, 1925; Clarke and Parry, 1985;

Snyder et al., 1998)—a discussion of these cases is

outside the scope of this paper).

In computer vision and computer graphics, models

are used to simplify the BRDF. In computer vision, the

assumption that surfaces are Lambertian is the basis for

most reconstruction techniques. In computer graphics,

the vast majority of rendered images use the Phong

reflectance model which is composed of an ambient

term, a diffuse (Lambertian) term and an ad hoc spec-

ular term (Phong, 1975). While the isotropic Phong

model captures the reflectance properties of plastics

over a wide range of conditions, it does not effectively

capture the reflectance of materials such as metals and

ceramics, particularly when they have rough surfaces

or a regular surface structure (e.g., parallel grooves).

Much less common are a number of physics-based

parametric models (Oren and Nayar, 1996; Torrance

and Sparrow, 1967; Cook and Torrance, 1981; He et al.,

1992; Koenderink et al., 1999; Ashikhmin et al., 2000),

and each of these only characterizes a limited class of

surfaces. A recent alternative to parametric models is

the measurement of the BRDF and its representation by

a suitable set of basis functions (Koenderink and van

Doorn, 1996). In contrast to these approaches, this pa-

per is concerned with surfaces with arbitrary BRDFs—

those for which we have no information a priori. (Of

course, this includes all of the BRDF models mentioned

above.)

To see how Helmholtz reciprocity can be used for

stereopsis, consider obtaining a pair of images as shown

in Fig. 1. The first image is captured while the object

is illuminated by a single point light source, and the

second image is captured once the camera and light

source positions have been swapped. That is, the cam-

era’s center of projection is moved to the former loca-

tion of the light source, and vice versa. By acquiring

images in this manner, Helmholtz reciprocity ensures

that, for any visible scene point, the ratio of the emitted

radiance (in the direction of the camera) to the incident

irradiance (from the direction of the light source) is the

same for both images. This is not true for general stereo

pairs that are acquired under fixed illumination (unless

the BRDFs of the surfaces are Lambertian).

We will show that three or more pairs of images ac-

quired in this manner provide a matching constraint,

Figure 1. The setup for acquiring a pair of images that exploits

Helmholtz reciprocity. First an image is acquired with the scene

illuminated by a single point source as shown on the left. Then, a

second image is acquired after the positions of the camera and light

source are exchanged as shown on the right.

which leads to a multinocular stereo imaging geom-

etry. These images contain sufficient information to

establish a constraint that can be used to solve the cor-

respondence problem (and thereby solve for depth). In

addition, they contain sufficient information to directly

estimate the surface normal at each point without tak-

ing derivatives of either the images or the depth map.

The direct estimation of surface orientation is similar

to photometric stereopsis, but here the BRDF may be

unknown and arbitrary.

The paper is organized as follows. In the next section,

we derive the relationship between image irradiance

values at corresponding pixels in a reciprocal pair of

images, and demonstrate a special case in which we can

recover depth from a single reciprocal pair. Section 3

describes the complete multinocular reciprocity-based

method in detail. Since the method combines the advan-

tages of conventional multinocular stereopsis (direct

estimation of depth) with those of photometric stereop-

sis (direct estimation of surface normals), the similar-

ities and differences of these methods are summarized

in Section 4 (see Fig. 4). Finally, Section 5 describes

the experimental results of our implementation.

2. Reciprocal Image Pairs

In order to examine the relationship between irradi-

ance values at corresponding image points, consider

the imaging geometry shown in the left half of Fig. 1.

As shown in that figure, ol and or denote the positions of

the camera and light source, respectively. We also de-

note by p and n̂ a point on the surface and its associated
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unit normal vector. The unit vectors v̂l = 1
|ol−p|

(ol −p),

and v̂r = 1
|or−p|

(or − p) denote the directions from p

to the camera and light source, respectively. Given this

system, the image irradiance at the projection of p is

given by

il = fr (v̂r, v̂l)
n̂ · v̂r

|or − p|2
(1)

where n̂ · v̂r gives the cosine of the angle between the

direction to the light source and the surface normal,
1

|or−p|2
is the 1/r2 fall-off from a unit-strength, isotropic

point light source, and fr is the BRDF.

Now, consider the reciprocal case in which the light

source is positioned at ol, and the camera observes p

from or. In this case, the image irradiance is

ir = fr (v̂l, v̂r)
n̂ · v̂l

|ol − p|2
. (2)

Because of Helmholtz reciprocity, we have

fr (v̂r, v̂l) = fr (v̂l, v̂r), and we can eliminate the BRDF

term in the above two equations to obtain

(

il

v̂l

|ol − p|2
− ir

v̂r

|or − p|2

)

· n̂ = w(d) · n̂ = 0. (3)

In this equation, il and ir are irradiance measure-

ments obtained from a radiometrically calibrated cam-

era. Also, for geometrically calibrated cameras and a

value for the binocular disparity (or equivalently the

depth d), the values for ol and or are known, and the

values for p, v̂l, and v̂r can be computed (we write

w(d) to denote this fact). It follows that only the sur-

face normal n̂ and the depth d are unknown. Note that

the vector w(d) lies in the plane defined by p, or and ol

(the epipolar plane).

Equation (3) provides a constraint on pixel values

of corresponding image points, and unlike similar con-

straints used by conventional stereopsis, this constraint

is independent of the BRDF—it depends solely on the

shape of the object (the depth d and surface normal n̂).

However, given that there are three degrees of freedom

and only a single constraint, we cannot, in general, re-

cover this information from a single pair of images. A

multinocular constraint that enables recovery of both

the depth and the normal field is developed in Section 3.

There are two more things to note about the con-

straint in (3). First, in deriving this constraint we ignore

interreflection effects. Second, an interesting historical

note is that 60 years ago (long before the definition of

the BRDF was introduced), Minnaert (1941) derived

a special case of this constraint that was used to in-

crease the number of lunar reflectance measurements

that could be made from Earth.

As mentioned above, in general we cannot recover

information about the surface from a single pair of im-

ages. However, in the next section we discuss a case

in which a single reciprocal pair can provide enough

information for depth reconstruction.

2.1. A Special Case: Fronto-Parallel Objects

This section describes a special case in which we can

recover the depth of the scene from a single reciprocal

pair. While the limitations may be too great to make this

special case useful in practice, it demonstrates some

important properties of Helmholtz stereopsis.

Consider the reciprocity constraint in (3). When the

stereo rig has a small baseline relative to the scene

depth, we can write

|ol − p|2 ≈ |or − p|2, (4)

and if the surfaces are nearly fronto-parallel, we have

n̂ · v̂l ≈ n̂ · v̂r ≈ 1. (5)

Using these approximations the matching constraint (3)

reduces to

il = ir. (6)

That is, correspondence can be established simply by

comparing pixel intensities across the epipolar lines in

the two images just as in standard stereo vision algo-

rithms. Recall that unlike standard stereo, we have lit

the scene differently for the two images.

Figure 2(a) shows a reciprocal image pair that satis-

fies these assumptions. Note that the specularities oc-

cur at the same locations in both images, as predicted

by Helmholtz reciprocity. Thus, the specularities be-

come features in both images which can actually aid

in establishing correspondence. Also note that shad-

owed regions correspond identically to half-occluded

regions in both images—if a point is in shadow in the

left image, it is not visible in the right image, and vice

versa.

To establish correspondence between the two im-

ages shown in Fig. 2(a), we implemented the “World

II” stereo algorithm described by Belhumeur (1993).
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Figure 2. Result of stereo matching applied to a reciprocal pair: (a)

a stereo pair of images acquired by swapping the camera and light

source, and (b) the disparity map.

We chose this algorithm both because it is intensity

based (not edge-based) and because it implicitly re-

solves half-occluded regions by linking them to depth

discontinuities. The result for our implementation of

this algorithm applied to the stereo pair in Fig. 2(a) is

shown in Fig. 2(b).

We also gathered a standard stereo pair (as shown in

Fig. 3(a)) in which the lighting remained fixed for both

the left and right images. The stereo pair in Fig. 3(a)

differs from that in Fig. 2 only in the illumination—the

positions of the cameras and the scene geometry are

identical. The result for our implementation of the same

algorithm applied to the standard stereo pair is shown

in Fig. 3(b). Note that we used the same procedure to

establish correspondences for the new pair of images.

Although the accuracy of the stereo matching may have

been improved by pre-filtering the images, we avoided

this to make the point that image intensity is very much

viewpoint dependent.

There are two things to note about the results. First,

the reciprocal images in Fig. 2 have significant specu-

larities, but they remain fixed in the images and do not

hinder stereo matching. Contrast this with the images

in Fig. 3. These also have specularities (as seen on the

Figure 3. Result of stereo matching applied to a conventional stereo

pair: (a) a stereo pair from the same camera positions as in Fig. 2,

but under fixed lighting; and (b) the disparity map.

frame and on the glass) and non-Lambertian effects,

but these effects change between images and signifi-

cantly hinder matching. Second, there is little texture

on the background wall, yet the reciprocal images allow

the stereo algorithm to estimate the depth discontinu-

ity at the boundary of the picture frame, because the

half-occluded regions and visible shadows are in

correspondence.

The properties of Helmholtz stereopsis are further

discussed in Section 4, but first we will develop a

multinocular constraint based on (3) that will allow

the recovery of depth and surface normals for general

surfaces.

3. Helmholtz Stereopsis

In this section we describe our method for reconstruct-

ing surfaces with arbitrary BRDFs using a form of

multinocular stereopsis. Before describing Helmholtz

stereopsis, however, it will be helpful to provide a

framework for general n-view stereopsis. (This is a

generalization of the correspondence problem in con-

ventional binocular stereopsis.) Consider n calibrated
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cameras whose centers of projection are located at

oc for c = 1, . . . , n. Define a camera centered at op

to be the principal camera. This camera is used to

parametrize the depth search, and while it could be one

of the cameras located at oc, it need not be a physical

camera (i.e., it can be virtual). Given a point q in the

principal image, there exists a one-parameter family of

n-point sets (q1, . . . , qn)—one point in each of the n

images—that could correspond to q. We parametrize

this family by the depth d , and by defining a discrete

set of possible values for d(d ∈ D = {d0, . . . , dND
})

we can index this family of n-point sets, Q(d) =

{qc(d), c = 1, . . . , n}.

A multinocular matching constraint provides a

method of deciding, given a set of image intensities

measured at the points Q(d), whether or not the hypoth-

esized depth value d could correspond to a true surface

point. In the case of traditional dense stereo, the sur-

face is assumed to be Lambertian, and the constraint

is simply I1(q1(d)) = I2(q2(d)) = · · · = In(qn(d))

where Ic(qc) is the intensity at point qc in the image

centered at oc. (Note that many other stereo methods

exist in which the constraint involves filtered intensities

as opposed to the image intensities themselves.)

Using this framework, we can proceed to develop a

matching constraint for reciprocal image pairs. What is

unique to Helmholtz stereopsis, is that this constraint is

independent of the BRDF, and that it allows the direct

recovery of both the depth and surface normals.

Suppose we capture NP reciprocal pairs of images

as described in Section 2, and suppose that each of

these pairs is captured from a different pair of posi-

tions (ol j , or j ), j = 1, . . . , NP. We can form NP lin-

ear constraints like that in (3). Define W(d) ∈ R
NP×3

to be the matrix in which the j th row is given by

w j (d)T = (il j
v̂l j

|ol j −p|2
− ir j

v̂r j

|or j −p|2
)T. Then the set of

constraints from (3) can be expressed as

W(d) n̂ = 0. (7)

Clearly, for a correct depth value d⋆, the surface nor-

mal lies in the null space of W(d⋆), and it can be es-

timated from a noisy matrix using singular value de-

composition. In addition, W(d⋆) will be rank 2, and this

can be used as a necessary condition when searching

for the surface depth (i.e., for solving the correspon-

dence problem). Note that at least three camera/light

source pairs are needed to exploit this constraint.

An implementation of a system that uses this

constraint for surface reconstruction is discussed

in Section 5. Next, we present a comparison of

Helmholtz stereopsis with some existing reconstruc-

tion techniques.

4. Comparison with Existing Methods

In principle, Helmholtz Stereopsis has a number of ad-

vantages when compared to conventional multinocu-

lar stereopsis and photometric stereopsis. This section

compares these methods in four separate categories.

A summary of the information in this section is con-

tained in Fig. 4. While our implementation may not

fully reveal these advantages (we do not make explicit

use of available half-occlusion indicators for detecting

depth discontinuities), we believe that future refine-

ments will.

4.1. Assumed BRDF

Most conventional dense stereo reconstruction meth-

ods assume that scene radiance is independent of view-

ing direction, i.e. that surface reflectance is Lamber-

tian. However, the majority of surfaces are not Lam-

bertian and therefore violate this assumption. For these

surfaces, large-scale changes in scene radiance occur

as specularities shift with viewpoint, and small-scale

changes occur everywhere on the surface. In addition, if

the BRDF is spatially varying, these changes may occur

differently at every point on the surface. Using tradi-

tional dense stereopsis, establishing correspondence in

this situation is difficult, if at all possible. Most sparse,

or feature-based, stereo methods also rely (albeit less

heavily) on the Lambertian assumption—if the BRDF

is arbitarary, the detected feature points may be view-

point or lighting dependent.

Whereas viewpoint is manipulated in conventional

stereopsis, in photometric stereopsis, the viewpoint re-

mains fixed while the illumination is varied. Photo-

metric stereo methods provide an estimate of the field

of surface normals which is then integrated to recover

the surface depth. Similar to conventional multinocu-

lar stereopsis, many photometric methods assume that

the BRDF is Lambertian (Langer and Zucker, 1994;

Silver, 1980; Woodham, 1981). The methods that do

not make this assumption either assume that the BRDF

is completely known a priori, or can be specified us-

ing a small number of parameters (Hayakawa, 1994;

Ikeuchi and Horn, 1981; Nayar et al., 1990; Tagare and

deFigueiredo, 1991). As mentioned in the introduc-

tion, these parametric BRDFs are often derived from
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Figure 4. A comparison of Helmholtz stereopsis with conventional multinocular and photometric stereopsis. A detailed discussion of the

entries in this table is given in Section 4.

physical models of reflectance and are restricted to a

limited class of surfaces. When the form of the BRDF

is unknown, or when the form of the BRDF is spatially

varying, there is insufficient information to reconstruct

both the geometry and the BRDF.

Lu and Little (1999) presented a hybrid method with

controlled lighting and object rotation that was used to

estimate both surface structure and a non-parametric

reflectance map. This is similar to our method in that it:

(1) is an active imaging technique that exploits changes

in viewpoint and illumination; and (2) considers a gen-

eral, non-parametric BRDF. However, the method re-

quires that the BRDF is both isotropic and uniform

across the surface (the present method makes no such

assumptions).

Another reconstruction method for surfaces with ar-

bitrary BRDFs was introduced (along with our prelim-

inary work on Helmholtz stereopsis) by Magda et al.

(2001). In addition to recovering depth, the method

also enables the recovery of a 2-D slice of the apparent

BRDF (a coupling of the reflectance and orientation

information) at each point on the surface. It does not,

however, enable the explicit recovery of the normal

field, and it requires many more images of the object.

The assumptions made about surface reflectance for

three reconstruction techniques—conventional, photo-

metric, and Helmholtz stereopsis—are summarized di-

agrammatically in Fig. 5. Note that many natural sur-

faces actually have surface reflectance in the rightmost

region of the figure and cannot be accurately recon-

structed by conventional techniques.

In Helmholtz stereopsis, because the relationship be-

tween image intensities of corresponding points does

not depend on viewpoint, non-Lambertian radiometric

events such as specularities appear fixed to the surface

of the object. In contrast with conventional stereo (fixed

Figure 5. A summary of the assumptions made about surface

reflectance by three reconstruction techniques. Both conventional

multinocular stereopsis and photometric stereopsis assume the

BRDF is Lambertian or of some other known parametric form. Yet,

many natural surfaces (e.g., human skin, the skin of a fruit, glossy

paint) do not satisfy these assumptions. In contrast to the other meth-

ods, Helmholtz stereopsis makes no assumption about the BRDF.

illumination) images, these radiometric events become

reliable features, and they actually simplify the corre-

spondence problem.

4.2. Recovered Surface Information

In conventional binocular or multinocular stereopsis,

depth is readily computed. Typically, the output of

the system is a discrete set of depth values at pixel

or sub-pixel intervals—a depth map. In most cases,

unless a regularization process is used to smooth the

depth estimates, the normal field found by differenti-

ating the recovered depth map will be very noisy. In-

stead of direct differentiation of the depth map, regu-

larized estimates of the normal field can be obtained,

for example, based on an assumption of local planarity

(Deverney and Faugeras, 1994), or through the use of

an energy functional (Belhumeur, 1996). In contrast to

these methods, photometric stereopsis provides a di-

rect estimate of the field of surface normals which is
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then integrated (in the absence of depth discontinuities)

to obtain a surface. Helmholtz stereopsis is similar to

photometric stereopsis (and different from the regular-

ization techniques used in conventional stereopsis) in

that the normal field is directly estimated on a point-

by-point basis using the photometric variation across

reciprocal image pairs.

In this way, Helmholtz stereopsis combines the ad-

vantages of conventional and photometric methods by

providing both a direct estimate of the surface depth

and the field of surface normals. It also provides infor-

mation about the location of depth discontinuities (see

below). Note that for applications such as image-based

rendering and image-based modeling, a good estimate

of the normal field is critical for computing intensities

and accurately measuring reflectance properties.

4.3. Constant Intensity Regions

Dense stereo and motion methods work best when the

surfaces are highly textured; when they are not tex-

tured, regularization is needed to infer the surface.

This can be achieved, for example, using a statisti-

cal prior (Geiger et al., 1992; Matthies, 1992; Poggio

et al., 1985; Belhumeur, 1996) or through surface evo-

lution (Faugeras and Keriven, 1998). Sparse stereo and

motion methods also have difficulty in these regions.

These methods only reconstruct the geometry of corre-

sponding feature points, so by their nature, they cannot

directly reconstruct smoothly curving surfaces whose

reflectance properties are constant. In contrast, photo-

metric stereo techniques and Helmholtz stereopsis are

unaffected by lack of texture, since they can effectively

estimate the field of normals which is then integrated

to recover depth (see Fig. 6).

4.4. Depth Discontinuities

Depth discontinuities present difficulties for both tra-

ditional and photometric stereopsis. When there is a

depth discontinuity, it does not make sense to integrate

the normal field that is output by photometric stereo

techniques. Likewise, traditional stereo algorithms of-

ten have trouble locating depth discontinuities. This

difficulty arises for two reasons. First, if a background

object has regions of constant intensity and the dis-

continuity in depth occurs within one of these regions,

it is quite difficult to reliably locate the boundary of

the foreground object. Second, depth discontinuities

Figure 6. A summary of the surface properties required for Lam-

bertian surface reconstruction by conventional and Helmholtz stereo

techniques. Even when the BRDF is Lambertian, conventional stere-

opsis is only capable of recovering surface geometry in regions of

texture (i.e., varying albedo) or high curvature (i.e., edges). Neither

photometric stereopsis nor Helmholtz stereopsis suffer from this

limitation.

induce half-occlusion in adjacent regions of the im-

age, and these regions, which are not visible in at

least one of the images, often confuse the matching

process.

Helmholtz stereopsis simplifies the task of detect-

ing depth discontinuities since, as seen in the exam-

ple in Fig. 2, the lighting setup is such that the shad-

owed and half-occluded regions are in correspondence.

The shadowed regions in the images of a Helmholtz

pair can therefore be used to locate depth discontinu-

ities. As shown in that example, if one uses a stereo

matching algorithm that exploits the presence of half-

occluded regions for determining depth discontinuities

(Belhumeur, 1993; Belhumeur and Mumford, 1992;

Cox et al., 1992; Geiger et al., 1992), these shadowed

regions may significantly enhance the quality of the

depth reconstruction.

4.5. Active vs. Passive Imaging

Like photometric stereopsis and unlike conventional

stereopsis, Helmholtz stereopsis is active. The scene is

illuminated in a controlled manner, and images are ac-

quired as lights are turned on and off. Clearly a suitable

optical system can be constructed so that the camera

and light source are not literally moved, but rather a

virtual camera center and light source are co-located.

Alternatively, as will be shown in the next section, a

simple system can be developed that captures multi-

ple reciprocal image pairs with a single camera and a

single light source.
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5. Implementation and Results

In the previous sections a number of claims were made

about the capabilities of Helmholtz stereopsis as a re-

construction technique. This section describes an im-

plementation of a Helmholtz stereo system, and gives

results that support those claims. Specifically, in this

section, we give examples of:

– the reconstruction of surfaces with arbitrary, spa-

tially varying BRDFs (surfaces that are neither

Lambertian nor approximately Lambertian)

– direct recovery of both surface depth and the field of

surface normals

– the reconstruction of surfaces in regions of constant

image brightness

5.1. Capturing Reciprocal Images

To demonstrate Helmholtz stereopsis, we constructed

a system that enables the acquisition of multiple re-

ciprocal image pairs with a single camera and a single

light source. These are mounted on a wheel as shown

schematically in Fig. 7(a). First, suppose an image is

captured with the wheel in the position shown in this

figure. If the wheel is rotated by 180◦ and another im-

age is captured, these two images will form a recip-

rocal pair, and corresponding image irradiance values

will satisfy the constraint in (3). It is clear that we can

capture any number of reciprocal pairs by rotating the

wheel through 360◦ while stopping to capture images

at reciprocal positions.

Figure 7. (a) A wheel is used to capture multiple reciprocal image

pairs employing a single camera and a single light source. By rotating

the wheel through 360◦, any number of fixed-baseline pairs can be

captured. For example, images captured at ol2 and or2 will form a

reciprocal pair. (b) An example of the wheel design shown in (a).

The light source consists of a standard 100 W frosted incandescent

bulb fitted with a small aperture.

A picture of such a system is shown in Fig. 7(b). The

camera is a Nikon Coolpix 990, and the light source

consists of a standard 100 W frosted incandescent bulb

fitted with a small aperture. The camera is both geo-

metrically and radiometrically calibrated. The former

means that the intrinsic parameters and the extrinsic pa-

rameters of each camera position are known, while the

latter means that we know the mapping from scene ra-

diance values to pixel intensities (including optical fall-

off, vignetting, and the radiometric camera response).

Since the lamp is not an ideal isotropic point source,

it also requires a radiometric calibration procedure in

which we determine its radiance as a function of output

direction.

An example of a set of images captured using this

system is shown in Fig. 8. For all results shown in

this paper the diameter of the wheel was 38 cm and

the distance from the center of the wheel to the scene

was approximately 60 cm. The reconstructions were

performed from the viewpoint of a virtual principal

camera located at the center of the wheel. We chose this

camera to be orthographic to ensure uniform sampling

of object space.

5.2. Using the Matching Constraint

In Section 3, we derived a matrix constraint that can be

used to recover the surface depth and orientation corre-

sponding to each pixel q in the principal view. How this

constraint should be used was not specified; there are

a number of possible methods, many of which can be

adapted from conventional stereo algorithms. Our goal

is to demonstrate the feasibility of Helmholtz stereop-

sis in general, so a discussion of possible methods is

outside the scope of this paper. Instead, we have cho-

sen one particularly simple implementation which will

be described here. Results for four different surfaces

follow in the next section.

For each pixel q, and for each depth value d ∈ D =

{d1, d2, . . . , dND
} we can construct a matrix Wq(d) as

in (7). If the hypothesized depth corresponds to a true

surface point, this matrix will be rank 2, and the surface

normal will be uniquely determined as the unit vector

that spans its 1-D null space. (Note that since each row

of W (we denote these wT

j ) lies in the epipolar plane

defined by p, ol j , and or j , no two rows of W will be

collinear, so rank(W) ≥ 2).

In the presence of noise, W is generally rank 3, and

we require a measure for the coplanarity of the row vec-

tors wT

j . Since we know that rank(W) ≥ 2, a suitable
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Figure 8. An example of 6 reciprocal images pairs captured using the rig described in Fig. 7. Reciprocal image pairs are arranged vertically.

measure (and one that works well in practice) is the ratio

of the second to third singular values of W. Given a ma-

trix Wq(d), we compute the singular value decompo-

sition W = UΣVT where Σ = diag(σ1, σ2, σ3), σ1 ≥

σ2 ≥ σ3. Then, our support measure used in the depth

search is the ratio

rq(d) =
σ2

σ3

. (8)

Note that at correct depth values, the ratio rq(d) will be

large.

The condition shown in (7) is a necessary condition

that will be satisfied by true values of surface depth,

but it is not sufficient. One way to resolve the ambi-

guity is to make some assumptions about the shape of

the surface. (The BRDF remains arbitrary). One of the

simplest methods, analogous to SSD matching in con-

ventional binocular stereo, is to assume that the surface

depth is locally constant. In the search for the depth at

principal image point q◦, we consider the ratio rq(d)

at this point as well as at points in a small rectangular

window W around q◦. Then, the estimated depth at this

point is given by

d⋆
q◦

= arg max
d∈D

∑

q∈W

rq(d). (9)

Once we have estimated the depth d⋆, the linear least-

squares estimate of the normal is

n̂⋆
q◦

= arg min
n̂

‖Wq◦
(d⋆)n̂‖2, ‖n̂‖ = 1, (10)

which is simply given by the right singular vector cor-

responding to the smallest singular value of Wq◦
(d⋆).

Note that the depth map that is recovered using (9)

will have low resolution due to the assumption of local

depth constancy. This initial estimate of the depth can

be refined using the high frequency information pro-

vided by the field of surface normals. An example of

this will be shown in the next section.

As a final note, this algorithm makes no attempt at de-

tecting half-occluded regions even though this informa-

tion is available through the visible shadows. We have

chosen this method simply to demonstrate that reci-

procity can be exploited for reconstruction. As shown

in the next section, despite the simplicity of the method,

the surface reconstructions are quite good.

5.3. Results

Figures 9–12 show the results of applying this pro-

cedure to four different objects. Each figure consists

of: (a) one of the input images of the object, (b) the

depth recovered using (9), and (c) the recovered field

of surface normals. Note that the viewpoints of the dis-

played images differ slightly from the reconstruction

viewpoints due to the use of a virtual principal camera.

Figure 9 is a demonstration of a surface reconstruc-

tion in the case of nearly constant image brightness.

This surface (a wax candle) is a member of the class

of surfaces described at the top of Fig. 6, and it is an

example of a case in which conventional stereopsis has

difficulty. Notice that Helmholtz stereopsis accurately

estimates the normal field, even though the depth esti-

mates are poor. The poor depth estimates are expected

since at a principal image point q, the ratio rq(d) will

be nearly constant for a small depth interval about the

true surface depth. The normals are accurate, however,

since each corresponding Wq(d) will have nearly the

same null space.

Figure 10 shows the results for a surface that is

clearly non-Lambertian. The specularities on the nose,

teeth and feet attest to this fact. Note that the recon-

struction method is not expected to succeed in regions

of very low albedo (e.g., the background and the iris
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Figure 9. (a) One of 36 input images (18 reciprocal pairs), (b) the recovered depth map, and (c) a quiver plot of the recovered field of surface

normals. As expected, even though we obtain a poor estimate of the depth due to lack of texture, the surface normals are accurately recovered.

(Note that the image in (a) is taken from a position above the principal view used for reconstruction.)

Figure 10. As in the previous figure: (a) one of 34 input images (17 reciprocal pairs), (b) the recovered depth map, and (c) a quiver plot of

the recovered field of surface normals. As evidenced by the specularities in (a), the surface is non-Lambertian. Regions of very small albedo

(e.g., the iris of the eyes, the background) are sensitive to noise and erroneous results are expected there. Elsewhere, the depth and orientation

are accurately recovered. A 9 × 9 window was used in the depth search.
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Figure 11. A reconstruction for the marked interior region of a

ceramic figurine shown in (a). (b) and (c) are the depth map, and

normal field. The low resolution of the depth map is caused by the

11 × 11 window used in the depth search, but this does not affect

the accuracy of the estimated surface normals. Eighteen reciprocal

image pairs were used.

of the eyes) since these regions are very sensitive to

noise.

Figures 11 and 12 show two more examples of sur-

face reconstructions. Again, note that the recovered sur-

face normals are accurate despite the low resolution of

the depth estimates, even in regions of nearly constant

image brightness.

As mentioned at the end of the last section, it is

possible to obtain a more precise surface reconstruc-

tion by integrating the estimated normal field. The ex-

amples above demonstrate that this field is accurately

estimated, even in regions where the depth is not. To

illustrate how surfaces can be reconstructed in this way,

we enforced integrability (using the method of Frankot

Figure 12. A reconstruction for the face of a plastic doll shown

in (a). (b) and (c) are the estimated depth map and normal field.

Eighteen reciprocal image pairs and a 9 × 9 window were used.

Figure 13. The surface that results from integrating the normal field

shown in Fig. 9(c). Every third surface point is shown, and the surface

is rotated for clarity.

and Chellappa (1988) with a Fourier basis) and inte-

grated the vector fields shown in Figs. 9(c) and 12(c).

The results are shown in Figs. 13 and 14. As seen in

these figures, the high resolution information provided

by the surface normals enables the recovery of precise

surface shape—more precise than what we would ex-

pect from most conventional n-view stereo methods.

Note that it would be possible to obtain similar recon-

structions using photometric stereopsis, but this would

require an assumed model of reflectance at each point

of the surfaces.
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Figure 14. Three views of the surface that results from integrating the normal field shown in Fig. 12(c). To demonstrate the accuracy of the

reconstruction, we have refrained from texture-mapping the albedo onto the recovered surface, and a real image taken from each corresponding

viewpoint is displayed. The specularities on the doll’s face clearly show that the surface is non-Lambertian.

6. Conclusion

This paper introduces Helmholtz stereopsis—a sur-

face reconstruction method based on the principle of

Helmholtz reciprocity. The method has two main ad-

vantages over both conventional n-view stereopsis and

photometric stereopsis. First, it allows for the recovery

of the shape of surfaces that have arbitrary, unknown,

and possibly spatially varying BRDFs; and second, it

provides point-wise estimates of both the depth and the

surface normals.

This paper shows empirically that the reciprocity

condition satisfied by the BRDF can be exploited for

surface reconstruction, yet there are a number of possi-

bilities for future work. The method could be adapted

to locate depth discontinuities based on the correspon-

dence between shadowed and half-occluded regions.

This correspondence is a unique and powerful prop-

erty of reciprocal image pairs. In addition, the analysis

and construction of alternative imaging configurations

may identify those that minimize ambiguities or are op-

timal from an estimation standpoint. While the results

from the current implementation are promising, future

improvements can only serve to produce more detailed

and accurate reconstructions. We hope that this will

open future avenues of research that exploit the reci-

procity constraint.
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