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Review

Helminth therapy or elimination: epidemiological, 
immunological, and clinical considerations
Linda J Wammes, Harriet Mpairwe, Alison M Elliott, Maria Yazdanbakhsh

Deworming is rightly advocated to prevent helminth-induced morbidity. Nevertheless, in affl  uent countries, the 
deliberate infection of patients with worms is being explored as a possible treatment for infl ammatory diseases. Several 
clinical trials are currently registered, for example, to assess the safety or effi  cacy of Trichuris suis ova in allergies, 
infl ammatory bowel diseases, multiple sclerosis, rheumatoid arthritis, psoriasis, and autism, and the Necator americanus 
larvae for allergic rhinitis, asthma, coeliac disease, and multiple sclerosis. Studies in animals provide strong evidence 
that helminths can not only downregulate parasite-specifi c immune responses, but also modulate autoimmune and 
allergic infl ammatory responses and improve metabolic homoeostasis. This fi nding suggests that deworming could 
lead to the emergence of infl ammatory and metabolic conditions in countries that are not prepared for these new 
epidemics. Further studies in endemic countries are needed to assess this risk and to enhance understanding of how 
helminths modulate infl ammatory and metabolic pathways. Studies are similarly needed in non-endemic countries to 
move helminth-related interventions that show promise in animals, and in phase 1 and 2 studies in human beings, into 
the therapeutic development pipeline.

Introduction
Parasitic worms have accompanied man throughout 
history.1 Infections with helminths such as roundworms, 
hookworms, whipworms, and schistosomes are often 
asymptomatic; only a few hosts carry high worm burdens 
and have overt clinical pathology.2 Moreover, mortality due 
to helminths is rare. These features suggest a long 
evolutionary coadaptation between these parasites and 
man. Key to this partnership is the immunological 
interaction between helminths and their mammalian 
hosts. Helminths polarise immune responses and 
modulate regulatory processes, which might account for 
their long-term survival within a host.3 In the course of the 
evolutionary relationship, helminths seem to have 
fundamentally aff ected the genetic com position of the 
host.4 In heavily exposed human popu lations, helminths 
seem to have particularly promoted selection for genes that 
control the expression levels of cytokines. This adaptation 
might represent an eff ort to overcome the regulatory 
responses induced by helminths. In the absence of worms, 
such an adaptation could be detrimental and predispose 
indivi duals to immune-mediated diseases including 
allergies and autoimmunity.3

In the 20th century, great eff ort was put into the 
worldwide control of infectious diseases. However, the 
decrease in parasitic and other infectious diseases was 
associated with a substantial increase in prevalence of 
chronic infl ammatory disorders such as asthma, auto-
immune diseases (type 1 diabetes, multiple sclerosis), 
and infl ammatory bowel disease.5 Although the 
prevalence of asthma and allergic disorders seems to 
have stabilised in developed countries, the prevalence 
has increased in developing countries.6 These epi demi-
ological results accord with the hygiene hypothesis or 
derivatives, such as the so-called old friends hypothesis7 
and the biodiversity hypothesis,8 which suggest that the 
removal of the regulatory eff ects of microorganisms and 
parasites—from populations genetically adapted to live 

with them—tends to lead to an imbalance in the immune 
system and an increase in immune-mediated diseases.9

Consequently, the question arises of whether helminths 
should be regarded as harmful pathogens or as benefi cial 
commensals. In low-resource settings deworming is 
advocated to prevent worm-associated morbidity,10 
whereas several research groups in high-income countries 
are investigating the therapeutic potential of worms and 
their secreted products in the treatment of infl ammatory 
diseases. This paradox needs to be carefully considered 
because the practical implications are manifold.

In this Review we summarise present knowledge about 
immunological and metabolic changes associated with 
chronic helminth infections, the possible consequences 
of deworming with respect to infl ammatory diseases, 
and the evidence as to whether a controlled use of worms 
to treat patients is benefi cial, with a view to use helminth-
derived molecules as new therapeutics.

Polarisation of immune responses: a double-
edged sword
The immune system is equipped with diff erent cell types 
that recognise and eliminate pathogens. Innate lymphoid 
cells,11 dendritic cells, and T cells seem key to the control 
of diff erent classes of incoming pathogens (fi gure 1). 
Type-1 immune responses protect against intracellular 
pathogens, type-2 responses combat helminths and 
ectoparasites, and type-17 cells seem to be important 
against extracellular bacteria and fungi.12 These responses, 
spearheaded by T-helper cells, can infl ict damage to 
tissues and organs if uncontrolled. Th1 and Th17 cells 
release pro-infl ammatory cytokines that recruit and 
activate macrophages and neutrophils, which can attack 
pathogens. However, their inappropriate activation is 
associated with autoimmune and infl ammatory diseases. 
Th2 cells trigger responses that disable, degrade, and 
dislodge parasites,3 but an overactivated Th2 immune 
response can lead to allergic disorders. Therefore, an 
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important component of the immune system is the 
regulatory network, with regulatory T cells (Tregs), which 
are capable of controlling activated eff ector T cells through 
expression of inhibitory molecules, at the frontline.13 
Moreover, there is evidence for subtypes of antigen-
presenting cells—including monocytes, macro phages, 
dendritic cells, and B cells—that contribute to suppression 
of the immune system, resolution of infl ammation, and 
tissue repair, and act as rheostats for homoeostasis.14

Helminth-induced immune regulatory network
Studies in the 1970s established that, in individuals infected 
with helminths, the proliferative response of lymphocytes 
to parasite antigens was lower than in those exposed but 
not infected.15,16 These investigations led to the concept that 
cellular immune hyporesponsiveness, induced by 
helminths to evade the host immune system,17 is part of a 
sophisticated immune regulatory network that operates 
during helminth infections.18 Non-lymphocytic adherent 
cells can suppress antifi larial responses in patients with 
Brugia malayi microfi lariae.19 These cells were probably 
representatives of regulatory antigen-presenting cells: 
alternatively activated macro phages, suppressory mono-
cytes, or regulatory dendritic cells.20–22 Subsequently, focus 
shifted to suppressory CD8+ T cells and then to regulatory 
CD4+ T cells.23 Find ings from animal models and several 
cross-sectional studies in human helminthiases have 
provided sup portive evidence for the enhanced number 
and expanded func tional capacity of Tregs during helminth 
infections.24,25 Importantly, helminth-derived molecules 
have been identifi ed that can drive Treg induction in 
mice.26,27 Regulatory B cells, defi ned as B10 cells producing 
interleukin 10, were also identifi ed during human helminth 
infections and are associated with the suppression of T-cell 
responses.28,29 Thus, helminths and their excretory-secretory 
molecules are endowed with the ability to act through a 
broad array of cellular mediators to temper host immune 
responses (fi gure 2).

On the basis of the ability of helminth infections to 
induce a regulatory network, helminths might protect 
against infl ammatory diseases.33 To investigate this 
hypothesis, human studies have so far included cross-
sectional association studies, anthelmintic trials, and 
trials of helminth therapy.

Associations between helminth infections and 
infl ammatory diseases
Atopy and allergy-related diseases
Animal models show that helminths might protect against 
allergic airway infl ammation.34 However, results for the 
association between worms and allergy-related conditions 
from cross-sectional studies of people are inconclusive  
(reviewed by Leonardi-Bee and colleagues,35 and Flohr and 
colleagues,36 and updated in table 1, which does not contain 
literature previously reviewed). For atopy, assessed as a 
positive skin-prick test to a panel of allergens, an inverse 
association with worms has been noted, with occasional 

exceptions.36 Results have been inconsistent for allergy-
related clinical syndromes, such as eczema, wheezing, and 
asthma. Factors that might aff ect this relationship are 
complex and include the timing, burden, or chronicity of 
helminth infections, helminth species, and host genetics.52

Multiple sclerosis
A 1966 case-control study highlighted the contribution of 
environmental factors in multiple sclerosis; the presence of 
piped water, a fl ush toilet, and sharing a room with one 
person or more were recorded as environmental factors 
associated with patients with multiple sclerosis compared 
with healthy controls.53 Moreover, in an ecological study, 
country prevalences of multiple sclerosis and Trichuris 
trichiura infections were almost mutually exclusive.54 
Correale and Farez55 compared helminth-infected and 
helminth-uninfected patients with multiple sclerosis and 
showed that new MRI lesions appeared less frequently in 
infected individuals during 5 years of follow-up. This 
diff erence seemed to be associated with an increased 
production of interleukin 10 and trans forming growth 
factor-β by peripheral blood mononuclear cells and the 
suppressive activity of Tregs.55 Furthermore, when a few 
patients infected with helminths were treated with 
anthelmintics because of their intestinal symptoms, the 
number of clinical relapses and MRI lesions increased, and 
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Figure 1: Polarisation of T-cell responses to incoming pathogens and environmental factors
At mucosal surfaces, epithelial and immune cells detect changes or danger in the environment. Dependent on the 
nature of the insult, cytokines are produced, which can drive the expansion of group 1, 2, or 3 innate lymphoid cells 
(ILC-1, ILC-2, and ILC-3) that in turn are associated with the induction of T-helper cells (ILC-1 is associated with Th1, 
ILC-2 with Th2, and ILC-3 with Th17). The diff erent T-helper cells combat invading microorganisms. However, when 
uncontrolled, similar T-cell responses can lead to pathological conditions (shown by broken arrows). DC=dendritic 
cell. IL=interleukin.  TSLP=thymic stromal lymphopoietin. IFN γ=interferon gamma.
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regulatory immune responses decreased in parallel.56 The 
murine model for multiple sclerosis (experimental auto-
immune encephalomyelitis) provided further evidence for 
a protective eff ect of helminths or their products57–60 on the 
clinical course and infl ammation in the CNS.

Rheumatoid arthritis
Epidemiological studies in 1975 in South Africa showed 
that the prevalence of rheumatoid arthritis in urban areas 
was similar between black Africans and white populations, 
whereas in rural areas the prevalence was much lower for 
black Africans.61 An association with parasitic infections 
was not proven, but several rodent studies have shown 
that helminth infections or helminth extracts can suppress 
or prevent arthritis.62 A case-control study in India showed 
that no patient with rheumatoid arthritis harboured 
circulating microfi lariae or fi larial antigens, by contrast 
with 40% of healthy controls.63

Infl ammatory bowel disease
The fi nding that the prevalence of infl ammatory bowel 
disease was higher in northern than in southern parts of 
Europe and the USA led to formulation of the 
infl ammatory bowel disease hygiene hypothesis.64 The few 
studies of the association between helminths and 
infl ammatory bowel disease have shown confl icting 
results.65–67 However, these studies used self-reported 
helminth infection in early life or immunological markers 
of exposure to helminths, which are very uncertain 
measurements, to defi ne helminth exposure. Studies in 
murine models have consistently shown that infection 
with worms protects against several forms of 
experimentally induced colitis.68

Diabetes
Type 1 diabetes is another autoimmune condition linked 
to the immune modulatory properties of helminths. In 
the non-obese diabetes mouse model, infection with 
several helminth species prevented type 1 diabetes.69 Data 
from the Chennai Urban Rural Epidemiology Study 
(CURES) in India showed that antifi larial IgG4 antibody 
concentration, as proxy for current fi larial infection, was 
greater in non-diabetics, which suggests that active 
fi larial infection might protect against type 1 diabetes.70

Type 2 diabetes is regarded as an infl ammatory 
disease,71 but has a diff erent pathogenesis and is aff ected 
by genetic, nutritional, and other lifestyle factors. In 
another CURES report, patients with type 2 diabetes had 
a lower prevalence of lymphatic fi lariasis than patients 
without diabetes.72 Moreover, patients with type 2 
diabetes and lymphatic fi lariasis had lower serum 
concentrations of pro-infl ammatory cytokines than did 
patients without lymphatic fi lariasis. This fi nding 
suggests that fi larial infections in type 2 diabetes can 
have regulatory functions, although the eff ect on disease 
severity was not investigated.

Longitudinal studies of the consequences of 
deworming
Atopy and allergy-related diseases
The eff ect of worms on allergic conditions has been 
studied in children from worm-endemic areas with 
diff erent anthelmintic drugs for various periods of follow-
up. Table 2 shows an overview of placebo-controlled 
randomised trials and the appendix provides additional 
details about study populations, interventions, and eff ect 
sizes. A cluster-randomised trial in 1632 children from 
Ecuador that assessed albendazole versus placebo once 
every 2 months for 1 year showed no eff ect on skin-prick 
test responses.75 A randomised trial in 1566 rural children 
from Vietnam of benzimidazoles versus placebo every 
2 months for 12 months showed an increased risk of 
positive skin-prick test responses to allergens for those 
receiving benzimidazoles.76 A trial in Indonesia assessed 
albendazole treatment given every 3 months compared 
with placebo in 1364 children. A signifi cant increase in 
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Figure 2: Helminth-induced regulatory cell network
Helminths or their excreted or secreted products are able to drive a regulatory network of (A) innate and (B) 
adaptive immune compartments. Several surface markers and intracellular molecules characterise these diff erent 
cell subsets. Among the innate regulatory cells (A) are alternatively activated macrophages (AAMφ), myeloid-
derived suppressor cells (MDSC),30 regulatory dendritic cells (DCreg), and regulatory natural killer cells (NKreg).31 
The adaptive regulatory network (B) consists of regulatory T and B cell subsets; some of their phenotypic 
characteristics are indicated.32 The molecules are fully established (dark grey) or not fully established (light grey) 
markers. AA=alternatively activated. Mφ=macrophage. MGL=macrophage galactose type C lectin. NOS=nitric 
oxide synthase. NO=nitric oxide. ROS=reactive oxygen species. IDO=indoleamine 2,3-dioxygenase. PD-
L=programmed death ligand. CD=cluster of diff erentiation. IL=interleukin. tTreg=thymus-derived T-regulatory cell. 
pTreg=peripherally induced T-regulatory cell. Breg=B-regulatory cell. TGFβ=transforming growth factor beta. 

See Online for appendix



Review

www.thelancet.com/infection   Vol 14   November 2014 1153

cockroach reactivity (reactivity to skin-prick tests with 
cockroach allergens) was noted after 21 months but, 
overall, skin-prick test responses were not changed.79 None 
of these three trials showed any eff ects of anthelmintic 
treatment on clinical allergy outcomes. Since clinical 

allergy is quite rare in these areas, the power of the studies 
might have been insuffi  cient to detect signifi cant eff ects. 
Moreover, diff erences in species of prevalent helminths, in 
coprevalence of additional immunomodulating infec-
tions,33,82,83 in exposure to environmental pollutants, or in 

Helminth species Number of 
participants

Age (years) Outcome Eff ect size (CI) Eff ect 
direction

Atopy

Alcântara-Neves et al 2010, Brazil37 Trichuris trichiura; Ascaris lumbricoides; 
anti-ascaris IgE

283 1–4·2 asIgE 1·52 (0·66–3·50); 0·64 (1·30–1·39); 
7·29 (3·90–13·64)

NS; NS; ↑

Calvert et al 2010, South Africa38 Ascaris spp 3322 8–12 Skin-prick test 0·63 (0·42–0·94) ↓

Choi et al 2011, Korea39 Clonorchis sinensis 1116 30–86 Skin-prick test 1·86 (1·20–2·87) ↑

Djuardi et al 2013, Indonesia40 Wuchereria bancrofti 
(mother in pregnancy)

126 4 Skin-prick test; asIgE 0·35 (0·07–1·70); 0·43 (0·16–1·15) NS; NS

Hamid et al 2013, Indonesia41 Hookworm 315 5–15 Skin-prick test 0·46 (0·21–1·00) ↓

Mendonça et al 2012, Brazil42 Toxocara seropositivity 1148 4–11 Skin-prick test 0·74 (0·57–0·97) ↓

Moncayo et al 2012, Ecuador43 T trichiura; A lumbricoides; anti-ascaris IgE 149 wheezers,
227 controls*

7–19 Skin-prick test; 
Skin-prick test; asIgE

0·42 (0·17–0·99); 0·82 (0·41–1·64); 
5·34 (2·49–11·45)

↓; NS; ↑

Rodrigues et al 2008, Brazil44 Ascaris (early childhood); trichuris (early 
childhood); any worm (early childhood); 
any worm† (late childhood)

1055 4·4–11·3 Skin-prick test 0·63 (0·44–0·90); 0·58 (0·37–0·92); 
0·63 (0·45–0·87); 0·78 (0·57–1·06)

↓; ↓; ↓; NS

Supali et al 2010, Indonesia45 T trichiura; Brugia malayi 422; 574 2–90; 2–90 Skin-prick test 1·48 (0·79–2·76); 0·56 (0·35–0·88) NS; ↓

Wördemann et al 2008, Cuba46 A lumbricoides; hookworm; T trichiura; 
Enterobius vermicularis

1320 4–14 Skin-prick test No statistically signifi cant associations NS

Asthma-related symptoms

Alcântara-Neves et al 2010, Brazil37 T trichiura; A lumbricoides 682 1–4·2 Wheeze 2·60 (1·54–4·38); 1·09 (0·71–1·66) ↑; NS

Amberbir et al 2011, Ethiopia47 Any worm (hookworm, Ascaris spp, 
Trichuris spp)

876 3 Wheeze 0·74 (0·29–1·90) NS

Bager et al 2012, Denmark48 History of treatment for E vermicularis 
with mebendazole

924 749 0–14 Asthma IRR 1·07 (1·00–1·13) ↑

Mendonça et al 2012, Brazil42 Toxocara seropositivity 1148 4–11 Wheeze and asthma 1·21 (0·92–1·60) NS

Cobzaru et al 201249 Toxocara seropositivity 76 asthmatics,
88 controls*

5–16 Asthma 13·7 (6·31–29·86) ↑

Choi et al 2011, Korea39 C sinensis 1116 30–86 Wheeze; EIB 0·94 (0·54–1·62); 1·30 (0·87–1·92) NS; NS

Kanobana et al 2013, Cuba50 Toxocara antibodies; hookworm; 
A lumbricoides

958 5–14 Asthma 1·51 (1·01–2·26); 0·53 (0·32–0·87); 1·29 
(0·73–2·28)

↑; ↓; NS

Moncayo et al 2012, Ecuador43 T trichiura; A lumbricoides; anti-ascaris IgE 149 wheezers,
227 controls*

7–19 Wheeze 0·72 (0·44–1·18); 0·90 (0·55–1·48); 
2·24 (1·33–3·78)

NS; NS; ↑

Walsh 2011, USA51 Toxocara antibodies 12 174 17–65 FEV1 Adjusted mean diff erence; −73 mL 
(–128·1 to –17·9; ie, reduced FEV1, 
increased bronchoconstriction)

↑

Wördemann et al 2008, Cuba46 A lumbricoides; hookworm; T trichiura; 
E vermicularis

1320 4–14 Skin-prick test No statistically signifi cant associations NS

Eczema

Amberbir et al 2011, Ethiopia47 Any worm (hookworm, Ascaris spp, 
Trichuris spp)

876 3 Eczema 0·39 (0·09–1·63) NS

Wördemann et al 2008, Cuba46 A lumbricoides; hookworm; T trichiura; 
E vermicularis

1320 4–14 Atopic dermatitis 0·23 (0·08–0·68); no statistically 
signifi cant associations‡

↓; NS; NS; 
NS

Rhinoconjunctivitis

Amberbir et al 2011, Ethiopia47 Any worm (hookworm, Ascaris spp, 
Trichuris spp)

876 3 Rhinitis 0·49 (0·12–2·09) NS

Wördemann et al 2008, Cuba46 A lumbricoides; hookworm; T trichiura; 
E vermicularis

1320 4–14 Rhinoconjunctivitis No statistically signifi cant associations‡ NS

If not indicated, eff ect size is odds ratio. asIgE=allergen-specifi c immunoglobulin E. EIB=exercise-induced bronchospasm. FEV1=forced expiratory volume in one s. IRR=incidence rate ratio. NS=not 
signifi cant. *Case-control study. †Ascaris spp (current infections) showed a signifi cant inverse association with infection intensity (p=0·008) whereas the inverse trend for T trichiura was not signifi cant (p=0·078). 
‡Wördemann and colleagues, in their fi nal model, also showed positive associations between rhinoconjunctivitis and history of hookworm (odds ratio 2·81 [95% CI 1·23–6·42]) or E vermicularis (odd ratio 1·34 
[1·00–1·79]), and between atopic dermatitis and history of E vermicularis (1·86 [1·34–2·58]).

Table 1: Completed studies that show associations between atopy or allergy-related diseases and helminths
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duration and timing of treatment, could have had a major 
eff ect on trial outcomes.

Early-life exposures aff ect the development of physio-
logical and immunological processes,84 and therefore 
the timing of an intervention might be an important 
element to determine trial outcomes. In support of this 
notion, a study in Cuba showed that infants growing up 
in the economic crisis in the 1990s had a reduced risk 
of developing asthma and rhino conjunctivitis later in 
life.85 Moreover, a trial in 2507 pregnant women in 
Uganda that compared single doses of albendazole and 
praziquantel versus matching controls (in a 2 × 2 
factorial design) showed that albendazole during 
pregnancy was associated with an increased risk of 
eczema in infancy77 and in the fi rst 5 years of life.78 
Praziquantel during pregnancy was also associated 
with an increased risk of eczema in infancy, but only in 
children whose mothers were infected with Schistosoma 
mansoni.77 However, albendazole treatment given every 
3 months to children was not associated with an 
increased risk of eczema in early childhood.78 These 
results suggest that in-utero events might be more 
important in priming or programming the child’s 
immune system than events in early childhood. 
Surprisingly, the Ugandan study showed no benefi cial 
eff ects of anthelmintic treatment during pregnancy on 
the immune responses to early childhood vaccines, and 
on none of the anticipated benefi ts for birthweight, 

resistance to infections, or improved child develo-
ment86,87 that would have compensated for the noted 
adverse eff ect on eczema.77,78

The time needed before an intervention has an eff ect 
could be important. A study in Ecuador compared 
skin-prick test reactivity and allergy-related symptoms in 
children (aged 6–16 years) from communities that had 
received 15–17 years of periodic ivermectin treatment 
with those from adjacent untreated com munities.88 The 
prevalence of skin reactivity to allergens in children from 
long-term treated com munities was double that of 
children from untreated com munities. Children from 
the treated communities also had a higher prevalence of 
recent eczema symp toms.88 Although the study was 
limited by the fact that the communities were not 
randomised, the results suggest that long-term 
interventions against helminths might be needed not 
only to change responsiveness to allergens or allergy-
related clinical outcomes but also to aff ect other 
infl ammatory disorders.

The studies described so far investigated cohorts 
representing the general population. Another approach 
has been to examine eff ects of anthelmintic treatment in 
people who already have an allergy-related disease. In a 
small trial of individuals aged 5–50 years with a history of 
asthma in the last 12 months from a schistosomiasis-
endemic area in Brazil,81 study participants received a 
single dose of albendazole and praziquantel, or placebo. 

 Study design and intervention Outcomes

Eff ects of anthelmintic treatment in healthy populations

Van den Biggelaar et al 2004, Gabon73 A placebo-controlled trial of every 3 months praziquantel and 
mebendazole in school children (aged 5–14 years)

Increased rate of skin-prick test conversion in treated children and a greater 
decrease in total IgE

Elliott et al 2005, Uganda74 A double-blind, placebo-controlled trial; single-dose albendazole in 
pregnancy, eczema events in the off spring

A weak eff ect on infantile eczema* but not statistically signifi cant

Cooper et al 2006, Ecuador 
(ISRCTN61195515)75

A non-blinded, cluster-randomised trial of albendazole twice every 
month for 1 year

No statistically signifi cant eff ect on skin-prick test†, wheeze, 
rhinoconjunctivitis, eczema, VFD, or EIB

Flohr et al 2010, Vietnam76 A double-blind, placebo-controlled trial among school children; single-
dose mebendazole given once then albendazole given daily for 
3 consecutive days once every 3 months

Increase in skin-prick test positivity; no statistically signifi cant eff ect on 
changes in EIB†, fl exural eczema, wheeze, or rhinitis

Mpairwe et al 2011, Uganda 
(ISRCTN32849447, EMaBS)77

A double-blind, placebo-controlled trial; 2x2 factorial design; single dose 
albendazole and praziquantel in pregnancy, eczema events in the 
off spring

Increased rate of eczema among infants of mothers who received 
albendazole, and among infants of Schistosoma mansoni-infected mothers 
who received praziquantel

Ndibazza et al 2012, Uganda
(ISRCTN32849447, EmaBS)78

Double-blind, placebo-controlled trial of a single dose of albendazole 
given once every 3 months to pre-school children (age 15 months to 
5 years)

No statistically signifi cant eff ect on clinical eczema events‡

Wiria et al 2013, Indonesia,
(ISRCTN83830814, ImmunoSPIN)79

Household-based cluster-randomised, double-blind, placebo-controlled 
trial

Some evidence of an increase in skin-prick test response to cockroach at 
21 months but no overall statistically signifi cant eff ect on skin-prick test†, 
specifi c IgE, wheeze, or atopic dermatitis

Eff ects of anthelminthics in asthmatics

Lynch et al 1997, Venezuela80 A non-blinded, controlled trial of albendazole once a month for 1 year 
among asthmatics

Statistically signifi cant reduction in asthmatic crises, number of months on 
maintenance treatment, and salbutamol use in albendazole-treated group 
compared with previous year. No change in control group

Almeida et al 2012, Brazil81 Double-blind, placebo-controlled trial, single treatment with 
albendazole and praziquantel among asthmatics

No statistically signifi cant change in asthma severity scores, FEV1, or cytokine 
responses to house dust mites

Studies were individually randomised controlled trials, unless otherwise specifi ed. VFD=visible fl exural dermatitis. EIB=exercise-induced bronchospasm. FEV1=forced expiratory volume in 1 s. *Exploratory 
outcome. †Primary outcome. ‡Planned secondary outcome.

Table 2: Trials of anthelmintic treatment that examine the eff ects on atopy and allergy-related disease outcomes
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Investigators recorded no diff erences in asthma severity 
between the treatment groups during the 3 month follow-
up period. All participants were then treated with both 
drugs and worsening of asthma symptoms was recorded 
at 15 months, but there was no comparison group for this 
part of the study.81 Larger trials investigating the eff ect of 
the treatment of worms in people with established allergy-
related diseases are warranted.

Eff ect on other infl ammatory diseases
The eff ect of deworming on other chronic infl ammatory 
diseases has not been extensively studied, partly because 
(and inherent to the hypothesis) the prevalence of 
helminth infections and these conditions show little 
overlap. Bager and colleagues48 assessed the eff ect of 
anthelmintic treatment retro spectively on chronic infl am-
matory diseases, in a population cohort in Denmark.48 In 
this study 14% of more than 900 000 children were 
prescribed mebendazole, for probable Enterobius 
vermicularis infection (pinworm), a disease that is still 
endemic in the USA and Europe.89 Incidence for asthma, 
type 1 diabetes, juvenile arthritis, and infl ammatory bowel 
disease was not signifi cantly higher in treated children.48 
However, the authors suggest that mebendazole was 
usually prescribed on the basis of symptoms rather than 
parasitological diagnosis of pinworm infection. Moreover, 
enterobiasis in these children might not have been 
suffi  ciently chronic to induce immune regulation, and 
the treatment prescribed might have abrogated the 
possible benefi ts.

Immunological consequences
Several studies have assessed immune responses after 
anthelmintic treatment. Within clinical trials, Th1 and 
Th2 cytokine production to helminth antigens was 
enhanced after albendazole treatment in children 
(average age of 9 years) in Ecuador,90 and after 
praziquantel treatment of pregnant women in Uganda.91 
However, the eff ect of deworming on regulatory 
responses was not consistent. A decrease in interleukin 10 
might be expected after clearance of immunoregulatory 
helminth infections, but production of S mansoni-specifi c 
interleukin 10 was higher in women treated with 
praziquantel than in those given placebo in the Ugandan 
study91 (in line with earlier studies, which were not 
placebo-controlled92,93). By contrast, other studies have 
shown a decrease in interleukin-10 concentrations after 
anthelmintic treatment,76,90 which paralleled an increase 
in allergic reactivity measured by a skin-prick test.76 More 
advanced statistical methods, such as latent class 
analysis, might help to understand how complex 
immune response patterns are associated with disease 
outcomes; defi ned immune phenotypes can be in-
corporated into regression models with other important 
factors included in these associations, such as environ-
mental conditions.94 A complicating factor in the study of 
immune responses after anthelmintic treatment is that 

dead worms, or products released by dying worms, can 
stimulate immune reactivity too; thus treatment might 
boost responses by the release of parasite antigens into 
the host circulation and removal of parasite-induced 
immunosuppression.

Helminth treatment might result in an increased T-cell 
response to some non-helminth antigens,95,96 but very few 
studies have investigated allergen-specifi c cellular 
immune responses after anthelmintic treatment. The 
trial in Ecuador recorded no diff erences in cytokine 
production in response to cockroach and housemite 
(Dermatophagoides pteronyssinus) antigens after repeated 
treatment with albendazole.90 Additional trials are 
therefore needed to explore this issue.

Considerations for anthelmintic treatment
In conclusion, although anthelmintic trials are the design 
of choice to establish cause and eff ect, or to minimise 
confounding and the problem of reverse causation, they 
are based on several assumptions whose validity is 
unknown. First, the studies assume that the eff ect of 
worms is immediately removed after treatment and that 
development of allergy symptoms follows soon thereafter; 
however, the protective eff ects of worms might persist 
long after anthelmintic treatment. Second, any recorded 
eff ect might be due to the anthelmintic drug itself, or 
from the broader range of eff ects of the drug, and not 
because of the elimination of worms. Albendazole binds 
to tubulin and thereby interferes with the formation of 
microtubules in the cytoskeleton.97 As a result, albendazole 
can aff ect protozoa,98,99 fungi,100 and mammalian cells.101 In 
the trial in Uganda, maternal treatment with albendazole 
was associated with an increased incidence of infantile 
eczema, even in the children of mothers with no evidence 
of helminth infection.77 Therefore, results from 
anthelmintic trials should be interpreted with caution 
and it might be helpful to examine eff ects of a variety of 
anthelmintic drugs in additional trials.

Helminth therapy in human beings
A more direct approach, which avoids the pitfalls described, 
is to study the eff ects of helminths with live infective 
stages, or to mimic the eff ects through helminth-derived 
molecules. Helminth therapy began in the 1990s with use 
of Trichuris suis ova and later Necator americanus larvae.

Trichuris infections
T suis is a pig whipworm that colonises the human gut 
for a short period. T suis ova have been particularly 
studied as a therapy in infl ammatory bowel disease.68 
After two open-label trials assessing the safety of T suis 
infection in patients with infl ammatory bowel disease 
showed promising results (about 70% remission in 
Crohn’s disease102,103), Summers and colleagues104 set out 
to study the eff ect of T suis ova in a fi rst placebo-
controlled, double-blind, randomised trial including 
54 patients with ulcerative colitis.104 The ulcerative colitis 
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disease activity index in the T suis ova group improved 
signifi cantly compared with the placebo group; however, 
the number of remissions was not signifi cantly diff erent. 
Another group characterised the local immune 
responses surrounding trichuris worms, by studying a 
patient who self-medicated with T trichiura, the human 
whipworm.105 In this patient, during colitis, the T cells 
producing only interleukin 17 were abundant, whereas 
after trichuris infection more multifunctional T cells 
were induced, producing cytokines including 
interleukin 22.105 In a murine asthma model, treatment 
with interleukin 22 improved airway constriction and 
limited airway infl ammation.106 In addition to the 
induction of regulatory cells, trichuris worms seem to 
modify the cytokine signature of local infl ammatory 
cells. Inter leukin 22, together with type-2 cytokines, 
might contribute to tissue repair and restore gut 
homoeostasis.107 However, an accumulation of inter-
leukin 17 and interleukin 22 coexpressing cells was 
associated with colorectal cancer, a result that warrants 
careful consideration of this molecule.108 In October, 
2013, the outcome of a trial undertaken in 250 patients 
with infl ammatory bowel disease showed no strong 
benefi cial eff ect of T suis ova.109 The full details of the 
results are yet to be published.

A safety trial of T suis ova in patients with multiple 
sclerosis was a starting point for a planned phase 2 trial. 
The trial followed up fi ve patients with relapsing–
remitting multiple sclerosis after inoculation with T suis 
ova.110 Although most patients had mild gastrointestinal 
symptoms, the number of new lesions shown by MRI 
was lower during T suis ova treatment than before 
treatment, or after treatment was discontinued. This 
result was not accompanied by a change in circulating 
Tregs or alternatively activated monocytes, which 
suggests that such cells might be recruited in aff ected 
tissues and absent in peripheral blood.

A randomised controlled trial of T suis ova in 
100 patients with allergic rhinitis showed that the therapy 
induced gastrointestinal symptoms and T suis-specifi c 
antibody responses without any eff ect on rhinitis 
symptom scores, medication use, or skin-prick test 
reactivity.111 However, this trial has been criticised because 
the time between infection with T suis ova and the start of 
the hay fever season might have been too short for 
suffi  cient regulatory responses to develop.112

As of June, 2014, 18 clinical trials are registered to 
assess the safety or effi  cacy of T suis ova in allergies, 
infl ammatory bowel diseases, multiple sclerosis, 
rheumatoid arthritis, psoriasis, and autism (table 3).

Sponsor Phase Status Condition

Interventions involving Trichuris suis ova

EUCTR2007–006099–12-DK Statens Serum Institut, Denmark 2 Completed Allergic rhinitis

NCT01070498 Beth Israel, Boston, USA 1 Completed Food allergy

NCT01279577/EUCTR2006–000720–13-DE Dr Falk Pharma, Frankfurt, Germany 2 Ongoing Crohn’s disease

ACTRN12608000241336 Asphelia Pharaceuticals, San Diego, USA 1 Not yet recruiting Crohn’s disease

NCT01434693 Coronado Biosciences, USA 1 Completed Crohn’s disease

NCT01576471 Coronado Biosciences, USA 2 Ongoing Crohn’s disease

NCT01433471 New York University, New York, USA 2 Recruiting Ulcerative colitis

NCT01953354 NIAID, Bethesda, Maryland, USA 2 Recruiting Ulcerative colitis

NCT01413243/EUCTR2009–015319–41-DE Charité, Berlin, Germany 2 Recruiting Multiple sclerosis

NCT00645749 University of Wisconsin, Madison, USA 2 Ongoing Multiple sclerosis

NCT01006941 Rigshospitalet, Copenhagen, Denmark 2 Completed Multiple sclerosis

EUCTR2011–006344–71-DE Immanuel Hospital, Berlin, Germany 2 Unknown Rheumatoid arthritis

NCT01836939 Mount Sinai School of Medicine, New York, USA 2 Ongoing Psoriasis

NCT01948271 Tufts Medical Center, Boston, USA 1 Recruiting Psoriasis

NCT02011269 Coronado Biosciences, USA 2 Not yet recruiting Psoriasis

NCT01040221 Montefi ore, New York, USA 1 Recruiting Autism

NCT01734941 Hadassah Medical Organization, Jerusalem, Israel 2 Recruiting Autism

NCT02140112 Coronado Biosciences, USA 2 Recruiting Autism

Hookworm larvae intervention

NCT00232518 University of Nottingham, UK 2 Completed Allergic rhinoconjunctivitis

NCT00469989 University of Nottingham, UK 2 Completed Asthma

NCT00671138 Princess Alexandra Hospital, Brisbane, Australia 2 Unknown Coeliac disease

NCT01661933 Princess Alexandra Hospital, Brisbane, Australia 1&2 Recruiting Coeliac disease

NCT01470521/EUCTR2008–005008–24-GB University of Nottingham, UK 2 Recruiting Multiple sclerosis

NIAID=National Institute of Allergy and Infectious Diseases.

Table 3: Overview of registered clinical trials on helminthic therapy
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Necator americanus larvae
Live N americanus larvae (human hookworm) can establish 
long-term infections in man (with longevity of several 
years). The safety of N americanus larvae was assessed in a 
dose-ranging study in the UK. Inoculation with 50 larvae 
or more resulted in substantial gastrointestinal symp-
toms.113,114 However, inoculation with ten larvae was 
suffi  cient to achieve an infection intensity equivalent to 
50 eggs per gram of faeces in healthy volunteers and 
induced a modest immunological response, as measured 
by eosinophil counts, IgE concentrations, and hookworm-
specifi c IgG concentrations.114

Further safety studies showed that in patients with 
allergic rhinitis, the lung passage of hookworm larvae 
did not cause deterioration in airway reactivity115 and that 
hookworm-induced type-2 responses did not potentiate 
an allergen-specifi c IgE response.116 The randomised 
controlled trial of N americanus infection in patients with 
asthma, with ten larvae, did not show any benefi cial 
eff ects against asthma symptoms.117 A randomised 
controlled trial of N americanus infection in patients with 
coeliac disease showed no eff ect on the clinical response 
to wheat challenge.118 However, these trials were  
undertaken with a maximum of only 16 volunteers in 
each group. The immunological responses in peripheral 
blood and the mucosal tissue were investigated after 
hookworm therapy. In participants infected with 
hookworm, unstimulated mucosal cells produced less 
interferon-γ  and interleukin 17 than in uninfected 
participants, whereas cells stimulated with the wheat 
protein gliadin showed a greater production of Th2 
cytokine.119 When hookworm-specifi c responses were 
assessed, peripheral blood mononuclear cells and 
mucosal cells produced higher concentrations of Th2 
cytokines in hookworm-infected participants.120 In 
parallel, a strong downregulation of interleukin 23, 
thought to originate from an innate cell source, was 
reported that could account for the suppression of Th17 
responses noted in the earlier study.119 These data show 
that helminth therapy might be able to change local and 
systemic immune responses. However, many more and 
larger studies are needed, and to be completed in a 
standardised manner, to fi rmly establish the extent of 
immune modulation that is achievable and its potential 
to change clinical outcomes. Five clinical trials are 
registered to use N americanus larvae for allergic rhinitis, 
asthma, coeliac disease, and multiple sclerosis (table 3).

Challenges in helminth immunotherapy
Helminthic therapy has some drawbacks. N americanus, 
and possibly T suis, could have pathogenic eff ects in 
people, particularly at high doses. Patients undergoing 
helminth infection should be monitored closely for 
infection intensity and for possible extraintestinal 
manifestations of the infection.121 The long-term results 
of helminth immunotherapy have not yet been assessed; 
24 weeks has been the longest follow-up time for clinical, 

parasitological, and immunological outcomes. The 
question remains whether these parameters would 
change after a longer period of time. The advantage of 
the introduction of hookworm infections is that only 
occasional inoculations would be needed, whereas T suis 
ova would need to be given every 2–3 weeks because it is 
not a natural human infection. However, this implies 
that hookworm infections are less controllable because 
they lead to chronic infestations. The timing of infection 
is another issue since evidence suggests that the 
protective immune modulatory eff ects might be most 
eff ectively established in early life.78,84 Moreover, the full 
development of immunomodulatory eff ects might take 
years. In this respect, introduction of parasites as a 
preventive measure in early life would be the most 
eff ective way to control infl ammatory diseases.

Although immune regulatory responses are desired to 
counteract infl ammatory disorders, they could be 
detrimental for other immune-associated conditions; 
defence against incoming pathogens might be impaired, 
and anti-tumour immune responses could be com-
promised. Eff orts by the scientifi c community are being 
made to inhibit Tregs in cancer by immuno therapy.122 
Moreover, immunosuppressive agents, such as 
glucocorticoids, and the increasingly prescribed tumour 
necrosis factor (TNF) inhibitors for infl ammatory bowel 
disease and rheumatoid arthritis, are associated with an 
increased risk of (myco)bacterial and some viral 
infections, such as herpes zoster.123,124 However, helminth-
induced immunoregulation might be more selective than 
present forms of immunotherapy. For example, evidence 
shows that B cells can escape Treg control when toll-like 
receptors (TLR) 4 and TLR 9 are triggered, which happens 
during viral and bacterial infections.125 Further studies of 
the eff ect of helminth co-infection on susceptibility to 
other infections and to cancer, which can be undertaken 
in endemic settings, will be helpful, alongside helminth 
therapy trials in non-endemic settings, to assess these 
aspects of the safety of helminth therapy.

Helminth-derived molecules
Because helminth infections have clinical and pathological 
results, focus is shifting towards helminth-derived 
molecules to substitute treat ment using whole parasites.126 
Several helminthic products with immune-modulating 
properties have been defi ned.127 Although studies in animal 
models have shown promise, no helminth-derived 
molecule has been given to human beings. The fi larial-
derived glycoprotein ES-62 is the best characterised 
candidate molecule for therapeutic trials. This 
phosphorylcholine-coupled glycoprotein (fi rst described in 
1989128) has benefi cial eff ects in a mouse model of 
arthritis,129 and reduces the production of pro-infl ammatory 
cytokines in synovial cells from patients with rheumatoid 
arthritis.129 Additionally, fi larial-derived glycoprotein ES-62 
inhibits mast cell histamine release, which shows that it 
might protect against allergic diseases.130
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Heligmosomoides polygyrus excreted-secreted products 
suppress murine allergic airway infl ammation.131 
AvCystatin, a molecule secreted by Acanthocheilonema 
viteae, inhibits the development of allergic airway 
infl ammation and acute colitis in mice.132 In-vitro Th2 
responses of peripheral blood mononuclear cells in 
patients allergic to grass pollen are substantially reduced 
by the addition of AvCystatin to cultures.133 Furthermore, 
although less well characterised, soluble products from 
S mansoni, T suis, and Trichinella spiralis can suppress 
clinical signs of murine experimental autoimmune 
encephalomyelitis by modulation of dendritic cells.134

Extracts from S mansoni adult worms and excreted-
secreted products of the canine hookworm Ankylostoma 
caninum have shown benefi cial eff ects in murine models 
of colitis.135 Although treatment with S mansoni extracts 
did not improve the clinical score of colitis, it diminished 
local infl ammation and myeloid cell infi ltration in colon 
tissue. In parallel, lower Th1 and Th17 responses and 
enhanced expressions of interleukin 10 and transforming 
growth factor-β in T cells were recorded in local tissues.135 
These results show that changed immune responses do 
not always lead to clinical improvements, and a longer 
follow-up might be needed for a clinical improvement to 
be detectable. Finally, lacto-N-fucopentaose III (LNFPIII; 
a LewisX-containing glycan that is found in S mansoni 
eggs) suppresses experimental autoimmune encephalo-
myelitis by enhancement of interleukin 10 and Th2 
cytokines,136 and improves psoriasis by reducing 
interferon-γ production in the skin.137 Taken together, 
these encouraging results from animal models warrant 
further studies and possible clinical trials, to assess their 
benefi cial eff ects.

An emerging frontier: immunometabolism and 
helminth infections
Immunometabolism is an emerging specialty, which 
investigates the interaction between nutrients, meta-
bolism, and the immune system.138 Macrophages might 
have a central role in the crosstalk between the immune 
system and organs controlling whole-body energy 
metabolism. Classically activated macrophages in 
adipose tissue can produce pro-infl ammatory cytokines, 
such as TNF, which interfere with the insulin-signalling 
pathway and lead to the development of insulin 
resistance, whereas alternatively activated macrophages 
improve insulin sensitivity.139 Interleukin 4, a key Th2 
cytokine implicated in helminth immunity, plays an 
important part in the development and maintenance of 
alternatively activated macrophages in adipose tissue140 
and in the control of peripheral insulin sensitivity.141 
Helminth infections might therefore have benefi cial 
eff ects on metabolic disorders. First, worms, as 
multicellular complex organisms, use host nutrients for 
their survival; and second, they are the strongest natural 
stimuli for type-2 immune responses, which was 
confi rmed by the identifi cation of several 
helminth-derived molecules that can skew immune 
responses towards Th2 cells.142,143 A study in mice by Wu 
and colleagues140 showed that eosinophils were a key 
source of alternatively activated macrophage-inducing 
inter leukin 4 in adipose tissue, and that helminth-
induced eosinophilia resulted in alternatively activated 
macro phage induction and a sustained improvement in 
glucose tolerance.140 Further, LNFPIII, an immuno-
modulatory glycan144 present in human milk145 and on S 
mansoni eggs, improves whole-body glucose tolerance in 
high fat diet-induced obese mice through the restoration 
of insulin sensitivity in white adipose tissue, partly 
through increased interleukin-10 production by 
macrophages and dendritic cells.146 These studies 
emphasise the possible metabolic advantages of 
harbouring helminths that, if supported in people, would 
open new possibilities for helminths and helminth-
derived molecules as thera peutics to control a group of 
diseases that are major causes of morbidity worldwide.
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Treg
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(helminths, helminth
excretory products)
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Figure 3: Immunological eff ects of deworming and worming
Helminth-infected individuals (left panel) express enhanced Th2 responses but these are kept under control by the 
increased number or functional capacity of Tregs. After deworming (right panel), removal of immune suppression 
could lead to overt infl ammation, which is characteristic of several infl ammatory diseases; Th1, Th2, or Th17 
responses are more active as Tregs decrease in number or function. Treatment with experimental helminth 
infection or with helminth-derived immunomodulatory molecules could restore the immune regulation noted 
during natural chronic helminth infections. Th=T-helper cells. Tregs=T-regulatory cells.

Search strategy and selection criteria

We searched PubMed for articles in English published from 
Jan 1, 1950, to Feb 20, 2014, with the search terms: 
“helminth”, “worm”, “immunology”, “allergy”, “asthma”, 
“atopy”, “infl ammatory diseases”, “multiple sclerosis”, 
“infl ammatory bowel diseases”, “rheumatoid arthritis”, 
“diabetes”, “randomised clinical trial”, and “helminthic 
therapy”. Animal studies were excluded, except for those that 
were in-vivo studies of helminth infections or helminth-
derived molecules and infl ammatory diseases. We included all 
helminth therapy trials but excluded deworming trials that 
were not placebo-controlled. 
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Conclusions and future perspectives
In summary, a paradox exists between eff orts to deworm 
populations with helminth-associated morbidities, and 
initiatives to test helminthic therapy on patients with 
hyperinfl ammatory diseases (fi gure 3). Large-scale 
deworming activities are mainly implemented in the 
tropics and subtropics, whereas helminthic therapy trials 
in patients with hyperinfl ammatory diseases are done in 
affl  uent countries.

Murine models support the hypothesis that helminths 
or their products could be benefi cial for infl ammatory 
conditions. Human studies in poor-resource settings have 
been less consistent, which could be accounted for by the 
presence of other modulating infections and because the 
clinical eff ects of deworming might take time to establish. 
Further deworming trials should take these issues into 
account and plan for longer follow-up periods. Mass 
deworming programmes are advocated,147 which creates 
opportunities to investigate prospectively whether 
deworming leads to an increased prevalence of allergic 
and other infl ammatory diseases. Well designed trials, in 
the context of large-scale deworming pro grammes, would 
allow the (as-yet uncertain) benefi ts of this intervention in 
human populations to be assessed,148,149 and weighed 
against potential adverse eff ects on infl ammatory and 
metabolic disease risks. Human trials of the therapeutic 
use of helminths in resource-rich settings might elucidate 
the role of helminths in human physiology, metabolism, 
and immunology. Although some positive results have so 
far been reported in infl ammatory bowel disease and 
multiple sclerosis, not much benefi t has been seen in the 
treatment of asthma and allergies. Further trials need to 
be less modest in the number of patients included, the 
duration of helminth infection, and, if safety data allow, 
the dose of infection used, while accounting for the 
possibility of accumulating low-dose infections.
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