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Abstract

Everyday social interactions are heavily influenced by our snap judgments about
others’ goals. Even young infants can infer the goals of intentional agents from
observing how they interact with objects and other agents in their environment:
e.g., that one agent is ‘helping’ or ‘hindering’ another’s attempt to get up a hill
or open a box. We propose a model for how people can infer these social goals
from actions, based on inverse planning in multiagent Markov decision problems
(MDPs). The model infers the goal most likely to be driving an agent’s behav-
ior by assuming the agent acts approximately rationally given environmental con-
straints and its model of other agents present. We also present behavioral evidence
in support of this model over a simpler, perceptual cue-based alternative.

1 Introduction

Humans make rapid, consistent intuitive inferences about the goals of agents from the most impover-
ished of visual stimuli. On viewing a short video of geometric shapes moving in a 2D world, adults
spontaneously attribute to them an array of goals and intentions [7]. Some of these goals are simple,
e.g. reaching an object at a particular location. Yet people also attribute complex social goals, such
as helping, hindering or protecting another agent. Recent studies suggest that infants as young as
six months make the same sort of complex social goal attributions on observing simple displays of
moving shapes, or (at older ages) in displays of puppets interacting [6].

How do humans make these rapid social goal inferences from such impoverished displays? On
one approach, social goals are inferred directly from perceptual cues in a bottom-up fashion. For
example, infants in [6] may judge that a triangle pushing a circle up a hill is helping the circle get
to the top of the hill simply because the circle is moving the triangle in the direction the triangle
was last observed moving on its own. This approach, which has been developed by Blythe et al. [3],
seems suited to explain the rapidity of goal attribution, without the need for mediation from higher
cognition. On an alternative approach, these inferences come from a more cognitive and top-down
system for goal attribution. The inferences are based not just on perceptual evidence, but also on
an intuitive theory of mind on which behavior results from rational plans in pursuit of goals. On
this approach, the triangle is judged to be helping the circle because in some sense he knows what
the circle’s goal is, desires for the circle to achieve the goal, constructs a rational plan of action that
he expects will increase the probability of the circle realizing the goal. The virtue of this theory-
of-mind approach is its generality, accounting for a much wider range of social goal inferences that
cannot be reduced to simple perceptual cues. Our question here is whether the rapid goal inferences
we make in everyday social situations, and that both infants and adults have been shown to make
from simple perceptual displays, require the sophistication of a theory-based approach or can be
sufficiently explained in terms of perceptual cues.
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This paper develops the theory-based approach to intuitive social goal inference. There are two main
challenges for this approach. The first is to formalize social goals (e.g. helping or hindering) and
to incorporate this formalization into a general computational framework for goal inference that is
based on theory of mind. This framework should enable the inference that agent A is helping or
hindering agent B from a joint goal inference based on observing A and B interacting. Inference
should be possible even with minimal prior knowledge about the agents and without knowledge of
B’s goal. The second challenge is to show that this computational model provides a qualitative and
quantitative fit to rapid human goal inferences from dynamic visual displays. Can inference based
on abstract criteria for goal attribution that draws on unobservable mental states (e.g. beliefs, goals,
planning abilities) explain fast human judgments from impoverished and unfamiliar stimuli?

In addressing the challenge of formalization, we present a formal account of social goal attribution
based on the abstract criterion of A helping (or hindering) B by acting to maximize (minimize)
Bs probability of realizing his goals. On this account, agent A rationally maximizes utility by
maximizing (minimizing) the expected utility of B, where this expectation comes from As model
of Bs goals and plans of action. We incorporate this formalization of helping and hindering into an
existing computational framework for theory-based goal inference, on which goals are inferred from
actions by inverting a generative rational planning (MDP) model [1]. The augmented model allows
for the inference that A is helping or hindering B from stimuli in which B’s goal is not directly
observable. We test this Inverse Planning model of social goal attribution on a set of simple 2D
displays, comparing its performance to that of an alternative model which makes inferences directly
from visual cues, based on previous work such as that of Blythe et al. [3].

2 Computational Framework

Our framework assumes that people represent the causal role of agents’ goals in terms of an intuitive
principle of rationality [4]: the assumption that agents will tend to take efficient actions to achieve
their goals, given their beliefs about the world. For agents with simple goals toward objects or states
of the world, the principle of rationality can be formalized as probabilistic planning in Markov
decision problems (MDPs), and previous work has successfully applied inverse planning in MDPs
to explain human inferences about the object-directed goals of maze-world agents [2]. Inferences of
simple relational goals between agents (such as chasing and fleeing) from maze-world interactions
were considered by Baker, Goodman and Tenenbaum [1], using multiagent MDP-based inverse
planning. In this paper, we present a framework for modeling inferences of more complex social
goals, such as helping and hindering, where an agent’s goals depend on the goals of other agents.

We will define two types of agents: simple agents, which have object-directed goals and do not
represent other agents’ goals, and complex agents, which have either social or object-directed goals,
and represent other agents’ goals and reason about their likely behavior. For each type of agent and
goal, we describe the multiagent MDPs they define. We then describe joint inferences of object-
directed and social goals based on the Bayesian inversion of MDP models of behavior.

2.1 Planning in multiagent MDPs

An MDPM = (S,A, T ,R, γ) is a tuple that defines a model of an agent’s planning process. S is an
encoding of the world into a finite set of mutually exclusive states, which specifies the set of possible
configurations of all agents and objects. A is the set of actions and T is the transition function, which
encodes the physical laws of the world, i.e. T (St+1, St, At) = P (St+1|St, At) is the marginal
distribution over the next state, given the current state and the agent’s action (marginalizing over all
other agents’ actions). R : S × A → R is the reward function, which provides agents with real-
valued rewards for each state-action pair, and γ is the discount factor. The following subsections
will describe how R depends on the agent’s goal G (object-directed or social), and how T depends
on the agent’s type (simple or complex). We then describe how agents plan over multiagent MDPs.

2.1.1 Reward functions

Object-directed rewards The reward function induced by an object-directed goal G is straight-
forward. We assume that R is an additive function of state rewards and action costs, such that
R(S, A) = r(S)−c(S,A). We consider a two-parameter family of reward functions, parameterized
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Figure 1: (a) Illustration of the state reward functions from the family defined by the parameters ρg and δg .
The agent’s goal is at (6,6), where the state reward is equal to ρg . The state reward functions range from a unit
reward in the goal location (row 1) to a field of reward that extends to every location in the grid (row 3). (b)
Bayes net generated by multiagent planning. In this figure, we assume that there are two agents, i and j, with
i simple and j complex. The parameters {ρi

g, δi
g, ρi

o, ρ
j
g, δj

g} and β are omitted from the graphical model for
readability.

by ρg and δg, which captures the intuition that different kinds of object goals induce different rewards
in space. For instance, on a hot summer day in the park, a drinking fountain is only rewarding when
one is standing directly next to it. In contrast, a flower’s beauty is greatest from up close, but can
also be experienced from a range of distances and perspectives. Specifically, ρg and δg determine the
scale and shape of the state reward function, with ri(S) = max(ρg(1 − distance(S, i, G)/δg), 0),
where distance(S, i, G) is the geodesic distance between agent i and the goal. With δg ≤ 1, the
reward function has a unit value of r(S) = ρg when the agent and object goal occupy the same loca-
tion, i.e. when distance(S, i,G) = 0, and r(S) = 0 otherwise (see Fig. 1(a), row 1). When δg > 1,
there is a “field” of positive reward around the goal, with a slope of −ρg/δg (see Fig. 1(a), rows
2 and 3). The state reward is maximal at distance(S, i, G) = 0, where r(S) = ρg, and decreases
linearly with the agent’s geodesic distance from the goal, reaching a minimum of r(S) = 0 when
distance(S, i, G) ≥ δg .

Social rewards for helping and hindering For complex agent j, the state reward function in-
duced by a social goal Gj depends on the cost of j’s action Aj , as well as the reward function
Ri of the agent that j wants to help or hinder. Specifically, j’s reward function is the difference
of the expectation of i’s reward function and j’s action cost function, such that Rj(S,Aj) =
ρoEAi [Ri(S, Ai)] − c(S, Aj). ρo is the social agent’s scaling of the expected reward of state S
for agent i, which determines how much j “cares” about i relative to its own costs. For helping
agents, ρo > 0, and for hindering agents, ρo < 0. Computing the expectation EAi [Ri(S, Ai)] relies
on the social agent’s model of i’s planning process, which we will describe below.

2.1.2 State-transition functions

In our interactive setting, T i depends not just on i’s action, but on all other agents’ actions as well.
Agent i is assumed to compute T i(St+1, St, A

i
t) by marginalizing over Aj

t for all j 6= i:

T i(St+1, St, A
i
t) = P (St+1|St, A

i
t) =

∑

Aj 6=i
t

P (St+1|St, A
1:n
t )

∏

j

P (Aj
t ∈ Aj 6=i

t |St, G
1:n)

where n is the number of agents. This computation requires that an agent have a model of all other
agents, whether simple or complex.

Simple agents We assume that the simple agents model other agents as randomly selecting actions
in proportion to the softmax of their expected cost, i.e. for agent j, P (Aj |S) ∝ exp(β · c(S, Aj)).

Complex agents We assume that the social agent j uses its model of other agents’ planning pro-
cess to compute P (Ai|S, Gi), for i 6= j, allowing for accurate prediction of other agents’ actions.

We assume agents have access to the true environment dynamics. This is a simplification of a more
realistic framework in which agents have only partial or false knowledge about the environment.
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2.1.3 Multiagent planning

Given the variables of MDP M , we can compute the optimal state-action value function Q∗ :
S×A → R, which determines the expected infinite-horizon reward of taking an action in each state.
We assume that agents have softmax-optimal policies, such that P (A|S,G) ∝ exp(βQ∗(S,A)),
allowing occasional deviations from the optimal action depending on the parameter β, which deter-
mines agents’ level of determinism (higher β implies higher determinism, or less randomness). In
a multiagent setting, joint value functions can be optimized recursively, with one agent representing
the value function of the other, and the other representing the representation of the first, and so on
to an arbitrarily high order [10]. Here, we restrict ourselves to the first level of this reasoning hier-
archy. That is, an agent A can at most represent an agent B’s reasoning about A’s goals and actions,
but not a deeper recursion in which B reasons about A reasoning about B.

2.2 Inverse planning in multiagent MDPs

Once we have computed P (Ai|S, Gi) for agents 1 through n using multiagent planning, we use
Bayesian inverse planning to infer agents’ goals, given observations of their behavior. Fig. 1(b)
shows the structure of the Bayes net generated by multiagent planning, and over which goal infer-
ences are performed. Let θ = {ρi

g, δ
i
g, ρ

i
o}1:n be a vector of the parameters of the agents’ reward

functions. We compute the joint posterior marginal of agent i’s goal Gi and θ, given the observed
state-sequence S1:T and the action-sequences A1:n

1:T−1 of agents 1:n using Bayes’ rule:

P (Gi, θ|S1:T , A1:n
1:T−1, β) ∝

∑

Gj 6=i

P (A1:n
1:T−1|S1:T , G1:n, θ, β)P (G1:n)P (θ) (1)

To generate goal inferences for our experimental stimuli to compare with people’s judgments, we
integrate Eq. 1 over a range of θ values for each stimulus trial:

P (Gi|S1:T , A1:n
1:T−1, β) =

∑

θ

P (Gi, θ|S1:T , A1:n
1:T−1, β) (2)

This allows our models to infer the combination of goals and reward functions that best explains the
agents’ behavior for each stimulus.

3 Experiment

We designed an experiment to test the Inverse Planning model of social goal attributions in a simple
2D maze-world domain, inspired by the stimuli of many previous studies involving children and
adults [7, 5, 8, 6, 9, 12]. We created a set of videos which depicted agents interacting in a maze.
Each video contained one “simple agent” and one “complex agent”, as described in the Computa-
tional Framework section. Subjects were asked to attribute goals to the agents after viewing brief
snippets of these videos. Many of the snippets showed agent behavior consistent with more than
one hypothesis about the agents’ goals. Data from subjects was compared to the predictions of the
Inverse Planning model and a model based on simple visual cues that we describe in the Modeling
subsection below.

3.1 Participants

Participants were 20 adults, 8 female and 12 male. Mean age was 31 years.

3.2 Stimuli

We constructed 24 scenarios in which two agents moved around a 2D maze (shown in Fig. 2).
The maze always contained two potential object goals (a flower and a tree), and on 12 of the 24
scenarios it also contained a movable obstacle (a boulder). The scenarios were designed to satisfy
two criteria. First, scenarios were to have agents acting in ways that were consistent with more
than one hypothesis concerning their goals, with these ambiguities between goals sometimes being
resolved as the scenario developed (see Fig. 2(a)). This criterion was included to test our model’s
predictions based on ambiguous action sequences. Second, scenarios were to involve a variety of
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perceptually distinct plans of action that might be interpreted as issuing from helping or hindering
goals. For example, one agent pushing another toward an object goal, removing an obstacle from
the other agent’s path, and moving aside for the other agent (all of which featured in our scenarios)
could all be interpreted as helping. This criterion was included to test our formalization of social
goals as based on an abstract relation between reward functions. In our model, social agents act to
maximize or minimize the reward of the other agent, and the precise manner in which they do so
will vary depending on the structure of the environment and their initial positions.
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Figure 2: Example interactions between Small and Large agents. Agents start as in Frame 1 and progress
through the sequence along the corresponding colored paths. Each frame after Frame 1 corresponds to a probe
point at which the video was cut off and subjects were asked to judge the agents’ goals. (a) The Large agent
moves over each of the goal objects (Frames 1-7) and so the video is initially ambiguous between his having
an object goal and a social goal. Disambiguation occurs from Frame 8, when the Large agent moves down and
blocks the Small agent from continuing his path up to the object goal. (b) The Large agent moves the boulder,
unblocking the Small agent’s shortest path to the flower (Frames 1-6). Once the Small agent moves into the
same room (6), the Large agent pushes him onto the flower and allows him to rest there (8-16).

Each scenario featured two different agents, which we call “Small” and “Large”. Large agents were
visually bigger and are able to shift both movable obstacles and Small agents by moving directly
into them. Large agents never fail in their actions, e.g. when they try to move left, they indeed move
left. Small agents were visually smaller, and could not shift agents or boulders. In our scenarios,
the actions of Small agents failed with a probability of about 0.4. Large agents correspond to the
“complex agents” introduced in Section 2, in that they could have either object-directed goals or
social goals (helping or hindering the Small agent). Small agents correspond to “simple agents” and
could have only object goals.

We produced videos of 16 frames in length, displaying each scenario. We showed three snippets
from each video, which stopped some number of frames before the end. For example, the three
snippets of scenario 6 were cut off at frames 4, 7, and 8 respectively (see Fig. 2(a)). Subjects were
asked to make goal attributions at the end of both the snippets and the full 16-frame videos. Asking
subjects for goal attributions at multiple points in a sequence allowed us to track the change in their
judgments as evidence for particular goals accumulated. These cut-off or probe points were selected
to try to capture key events in the scenarios and so occurred before and after crucial actions that
disambiguated between different goals. Since each scenario was used to create 4 stimuli of varying
length, there was a total of 96 stimuli.

3.3 Procedure

Subjects were initially shown a set of familiarization videos of agents interacting in the maze, illus-
trating the structural properties of the maze-world e.g. the actions available to agents and the possi-
bility of moving obstacles) and the differences between Small and Large agents. The experimental
stimuli were then presented in four blocks, each containing 24 videos. Scenarios were randomized
within blocks across subjects. The left-right orientation of agents and goals was counterbalanced
across subjects. Subjects were told that each snippet would contain two new agents (one Small and
one Large) and this was highlighted in the stimuli by randomly varying the color of the agents for
each snippet. Subjects were told that agents had complete knowledge of the physical structure of the
maze, including the position of all goals, agents and obstacles. After each snippet, subjects made
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a forced-choice for the goal of each agent. For the Large agent, they could select either of the two
social goals and either of the two object goals. For the Small agent, they could choose only from the
object goals. Subjects also rated their confidence on a 3-point scale.

3.4 Modeling

Model predictions were generated using Eq. 2, assuming uniform priors on goals, and were com-
pared directly to subjects’ judgments. In our experiments, the world was given by a 2D maze-world,
and the state space included the set of positions that agents and objects can jointly occupy without
overlapping. The set of actions included Up, Down, Left, Right and Stay and we assume that
c(S, A ∈ {Up,Down, Left, Right}) = 1, and c(S, Stay) = 0.1 to reflect the greater cost of
moving than staying put. We set β to 2 and γ to 0.99, following [2].

For the other parameters (namely ρg, δg and ρo) we integrated over a range of values that provided a
good statistical fit to our stimuli. For instance, some stimuli were suggestive of “field” goals rather
than point goals, and marginalizing over δg allowed our model to capture this. Values for ρg ranged
from 0.5 to 2.5, going from a weak to a strong reward. For δg we integrated over three possible
values: 0.5, 2.5 and 10.5. These corresponded to “point” object goals (agent receives reward for
being on the goal only), “room” object goals (agent receives the most reward for being on the goal
and some reward for being in the same room as the goal) and “full space” object goals (agent receives
reward at any point in proportion to distance from goal). Values for ρo ranged from 1 to 9, from
caring weakly about the other agent to caring about it to a high degree.

We compared the Inverse Planning model to a model that made inferences about goals based on
simple visual cues, inspired by previous heuristic- or perceptually-based accounts of human action
understanding of similar 2D animated displays [3, 11]. Our aim was to test whether accurate goal
inferences could be made simply by recognizing perceptual cues that correlate with goals, rather than
by inverting a rational model. We constructed our “Cue-based” model by selecting ten visual cues
(listed below), including nearly all the applicable cues from the existing cue-based model described
in [3], leaving out those that do not apply to our stimuli, such as heading, angle and acceleration.
We then formulated an inference model based on these cues by using multinomial logistic regression
to subjects’ average judgments. The set of cues was as following: (1) the distance moved on the last
timestep, (2) the change in movement distance between successive timesteps, (3+4) the geodesic
distance to goals 1 and 2, (5+6) the change in distance to goals 1 and 2 (7) the distance to Small, (8)
the change in distance to Small, (9+10) the distance of Small to goals 1 and 2.

3.5 Results

Because our main interest is in judgments about the social goals of representationally complex
agents, we analzyed only subjects’ judgments about the Large agents. Each subject judged a to-
tal of 96 stimuli, corresponding to 4 time points along each of 24 scenarios. For each of these 96
stimuli, we computed an empirical probability distribution representing how likely a subject was
to believe that the Large agent had each of the four goals ‘flower’, ‘tree’, ‘help’, or ‘hinder’, by
averaging judgments for that stimulus across subjects, weighted by subjects’ confidence ratings. All
analyses then compared these average human judgments to the predictions of the Inverse Planning
and Cue-based models.

Across all goal types, the overall linear correlations between human judgments and predictions
from the two models appear similar: r = 0.83 for the Inverse Planning model, and r = 0.77
for the Cue-based model. Fig. 3 shows these correlations broken down by goal type, and reveals
significant differences between the models on social versus object goals. The Inverse Planning
model correlates well with judgments for all goal types: r = 0.79, 0.77, 0.86, 0.81 for flower, tree,
helping, and hindering respectively. The Cue-based model correlates well with judgments for object
goals (r = 0.85, 0.90 for flower, tree) – indeed slightly better the Inverse Planning model – but much
less well for social goals (r = 0.67, 0.66 for helping, hindering). The most notable differences come
on the left-hand sides of the bottom panels in Fig. 3. There are many stimuli for which people are
very confident that the Large agent is either helping or hindering, and the Inverse Planning model
is similarly confident (bar heights near 1). The Cue-based model, in contrast, is unsure: it assigns
roughly equal probabilities of helping or hindering to these cases (bar heights near 0.5). In other
words, the Cue-based model is effective at inferring simple object goals of maze-world agents, but
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is generally unable to distinguish between the more complex goals of helping and hindering. When
constrained to simply differentiating between social and object goals both models succeed equally
(r = 0.84), where in the Cue-based model this is probably because moving away from the object
goals serves as a good cue to separate these categories. However, the Inverse Planning model is more
successful in differentiating the right goal within social goals (r = 0.73 for the Inverse Planning
model vs. r = 0.44 for the Cue-based model).

Several other general trends in the results are worth noting. The Inverse Planning model fits very
closely with the judgments subjects make after the full 16-frame videos. On 23 of the 24 scenarios,
humans and the Inverse Planning model have the highest posterior / rating in the same goal (r =
0.97, contrasted with r = 0.77 for the Cue-based model). Note that in the one scenario for which
humans and the Inverse Planning model disagreed after observing the full sequence, both humans
and the model were close to being ambivalent whether the Large agent was hindering or interested
in the flower. There is also evidence that the reasonably good overall correlation for the Cue-based
model is partially due to overfitting; this should not be surprising given how many free parameters
the model has. We divided scenarios into two groups depending on whether a boulder was moved
around in the scenario, as movable boulders increase the range of variability in helping and hindering
action sequences. When trained on the ‘no boulder’ cases, the Cue-based model correlates poorly
with subjects’ average judgments on the ‘boulder’ cases: r = 0.42. The same failure of transfer
occurs when the Cue-based model is trained on the ‘boulder’ cases and tested on the ‘no boulder’
cases: r = 0.36. This is consistent with our general concern that a Cue-based model incorporating
many free parameters may do well when tailored to a particular environment, but is not likely to
generalize well to new environments. In contrast, the Inverse Planning model captures abstract
relations between the agents and their possible goal and so lends itself to a variety of environments.
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Figure 3: Correlations between human goal judgments and predictions of the Inverse Planning model (a) and
the Cue-based model (b), broken down by goal type. Bars correspond to bins of stimuli (out of 96 total) on
which the average human judgment for the probability of that goal was within a particular range; the midpoint
of each bin’s range is shown on the x-axis labels. The height of each bar shows the model’s average probability
judgment for all stimuli in that bin. Linear correlations between the model’s goal probabilities and average
human judgments for all 96 stimuli are given in the y-axis labels.

The inability of the heuristic model to distinguish between helping and hindering is illustrated by
the plots in Fig. 4. In contrast, both the Inverse Planning model and the human subjects are often
very confident that an agent is helping and not hindering (or vice versa).

Fig. 4 also illustrates a more general finding, that the Inverse Planning model captures most of
the major qualitative shifts (e.g. shifts resulting from disambiguating sequences) in subjects’ goal
attribution. Figure 4 displays mean human judgments on four scenarios. Probe points (i.e. points
within the sequences at which subjects made judgments) are indicated on the plots and human data
is compared with predictions from the Inverse Planning model and the Cue-based model.

On scenario 6 (depicted in Fig. 2(a) but with goals switched), both the Inverse Planning model and
humans subjects recognize the movement of the Large agent one step off the flower (or the tree in
Fig. 2(b)) as strong evidence that Large has a hindering goal. The Cue-based model responds in the
same way but with much less confidence in hindering. Even after 8 subsequent frames of action it
is unable to decide in favor of hindering over helping.
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While the Inverse Planning model and subjects almost always agree by the end of a sequence, they
sometimes disagree at early probe points. In scenario 5, both agents start off in the bottom-left room,
but with the Small agent right at the entrance to the top-left room. As the Small agent tries to move
towards the flower (the top-left goal), the Large agent moves up from below and pushes Small one
step towards the flower before moving off to the right to the tree. People interpret the Large agent’s
action as strong evidence for helping, in contrast with the Inverse Planning model. For the model,
because Small is so close to his goal, Large could just as well stay put and save his own action costs.
Therefore his movement upwards is not evidence of helping.
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Figure 4: Example data and model predictions. Probe points are marked as black circles. (a) Average subject
ratings with standard error bars. (b) Predictions of Inverse Planning model interpolated from cut points. (c)
Predictions of Inverse Planning model for all points in the sequence. (d) Predictions of Cue-based model.

4 Conclusion

Our goal in this paper was to address two challenges. The first was to provide a formalization of
social goal attribution incorporated into a general theory-based model for goal attribution. This
model had to enable the inference that A is helping or hindering B from interactions between A
and B but without prior knowledge of either agent’s goal, and to account for the range of behaviors
that humans judge as evidence of helping or hindering. The second challenge was for the model to
perform well on a demanding inference task in which social goals must be inferred from very few
observations without directly observable evidence of agents’ goals.

The experimental results presented here go some way to meeting these challenges. The Inverse
Planning model classified a diverse range of agent interactions as helping or hindering in line with
human judgments. This model also distinguished itself against a model based solely on simple
perceptual cues. It produced a closer fit to humans for both social and nonsocial goal attributions,
and was far superior to the visual cue model in discriminating between helping and hindering.

These results suggest various lines of further research. One task is to augment this formal model of
helping and hindering to capture more of the complexity behind human judgments. On the Inverse
Planning model, A will act to advance B’s progress only if there is some chance of B actually
receiving a nontrivial amount of reward in a future state. However, people often help others towards
a goal even if they think it very unlikely that the goal will be achieved. This aspect of helping could
be explored by supposing that the utility of a helping agent depends not just on another agent’s
reward function but also his value function.
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