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ABSTRACT

We have developed a new prior-based source extraction tool, XID+, to carry out photometry

in the Herschel SPIRE (Spectral and Photometric Imaging Receiver) maps at the positions

of known sources. XID+ is developed using a probabilistic Bayesian framework that provides

a natural framework in which to include prior information, and uses the Bayesian inference

tool Stan to obtain the full posterior probability distribution on flux estimates. In this paper,

we discuss the details of XID+ and demonstrate the basic capabilities and performance by

running it on simulated SPIRE maps resembling the COSMOS field, and comparing to the

current prior-based source extraction tool DESPHOT. Not only we show that XID+ performs

better on metrics such as flux accuracy and flux uncertainty accuracy, but we also illustrate

how obtaining the posterior probability distribution can help overcome some of the issues

inherent with maximum-likelihood-based source extraction routines. We run XID+ on the

COSMOS SPIRE maps from Herschel Multi-Tiered Extragalactic Survey using a 24-µm

catalogue as a positional prior, and a uniform flux prior ranging from 0.01 to 1000 mJy.

We show the marginalized SPIRE colour–colour plot and marginalized contribution to the

cosmic infrared background at the SPIRE wavelengths. XID+ is a core tool arising from the

Herschel Extragalactic Legacy Project (HELP) and we discuss how additional work within

HELP providing prior information on fluxes can and will be utilized. The software is available

at https://github.com/H-E-L-P/XID_plus. We also provide the data product for COSMOS. We

believe this is the first time that the full posterior probability of galaxy photometry has been

provided as a data product.

Key words: methods: statistical – galaxies: statistics – infrared: galaxies.

1 IN T RO D U C T I O N

Ever since the discovery of the far-infrared (IR) background by the

Cosmic Background Explorer (COBE; Puget et al. 1996), surveys

⋆ E-mail: p.d.hurley@sussex.ac.uk

have aimed to observe and detect the sources responsible. Most of

those sources are galaxies, with the far-IR emission coming from

dust.

While ground-based observatories such as SCUBA (Holland et al.

1999), and more recently SCUBA-2 (Holland et al. 2013) and

ALMA can make use of IR atmospheric transmission windows

to observe at the tail of the cosmic infrared background (CIB),

C© 2016 The Authors
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only space-borne facilities can observe at the peak (≈140 µm). The

first IR space telescope, the InfraRed Astronomical Satellite (IRAS;

Neugebauer et al. 1984), observed the whole sky in four bands

centred at 12, 25, 60, and 100 µm and revealed new populations

of galaxies that were optically faint but luminous in the IR (Soifer

et al. 1984).

While the Infrared Space Observatory (ISO; Kessler et al. 1996)

and the Spitzer Space Telescope (Werner et al. 2004) have provided

deep near- and mid-IR photometry over small fields, other smaller

space-borne facilities such as AKARI (Murakami et al. 2007) and

the Wide-field Infrared Survey Explorer (WISE; Wright et al. 2010)

have surveyed the entire sky at mid- to far-IR and near- to mid-IR

wavelengths, respectively. The most recent advance in IR astronomy

has been made with the ESA Herschel Space Observatory (Pilbratt

et al. 2010). Photometry from the Photoconductor Array Camera

and Spectrometer (PACS; Poglitsch et al. 2010) and Spectral and

Photometric Imaging Receiver (SPIRE; Griffin et al. 2010) have

given us an unprecedented view of the far-IR Universe by providing

observations that measure across the peak of the far-IR background

and at greater sensitivity and resolution than has been achieved

previously at these wavelengths, thereby definitively setting the

origin of the CIB.

With surveys such as the Herschel Multi-Tiered Extragalactic

Survey (HerMES; Oliver et al. 2012) and the Herschel ATLAS

survey (H-ATLAS; Eales et al. 2010), over 1000 deg2 of the sky

has been observed by the SPIRE instrument. However, due to the

relatively large beam size of the SPIRE, and the galaxy density

(≈30 per SPIRE beam for optical sources with B < 28), multiple

galaxies can be located within the SPIRE beam. This is referred to

as the problem of source confusion.

To obtain accurate photometry from the SPIRE maps, overcom-

ing the source confusion problem is essential. One way to solve

the problem is to use prior information to accurately distribute the

flux in the SPIRE maps to the underlying astronomical objects. For

example, if we know the location of a galaxy to a reasonable tol-

erance (e.g. from an optical image where resolution is better), we

may expect a galaxy to be found in the SPIRE maps at the same

location.

Several techniques have been developed that utilize the posi-

tions of sources detected at other wavelengths, usually 24 µm and

1.4 GHz, to disentangle the various contributions from discrete

sources to the SPIRE flux in a given beam element (e.g. Roseboom

et al. 2010, 2011; Chapin et al. 2011). This process is made possible

by the strong correlation between the 24-µm and 1.4-GHz popu-

lations and those observed at far-IR wavelengths; >80 per cent

of the cosmic IR background at SPIRE wavelengths can be ac-

counted for by 24-µm sources with S24 > 25 µJy (e.g. Marsden

et al. 2009; Pascale et al. 2009; Elbaz et al. 2010; Béthermin et al.

2012), while the strong correlation between the far-IR and radio

luminosity is known to hold across a wide range in redshift and

luminosity (e.g. Ivison et al. 2010). Up to the present day, most

of these techniques have used a maximum-likelihood optimization

approach, which suffers from two major issues. The first is that vari-

ance and covariance of source fluxes cannot be properly estimated.

The second is that of overfitting when many of the input sources

are intrinsically faint. The list-driven algorithm developed for Her-

MES (DESPHOT; Roseboom et al. 2011; Wang et al. 2014) tried to

overcome this by using the non-negative weighted least absolute

shrinkage and selection operator (LASSO) algorithm (Tibshirani

1996; Zou 2006; ter Braak et al. 2010), a shrinkage and selection

method that introduces an additional penalty term in an attempt to

reduce the number of sources needed to fit the map. However, when

multiple sources are located close-by (i.e. within the SPIRE beam),

the method has been found to wrongly assign all the flux to one

source.

The solution to both of these problems is to fully explore the pos-

terior probability distribution with Bayesian inference techniques

such as Markov Chain Monte Carlo (MCMC) methods. By fully ex-

ploring the posterior, the variance and covariance between sources

can be properly estimated. Also, by considering the covariance be-

tween sources (i.e. how the flux of sources affect each other), the

probability of sources being very faint or bright is taken into ac-

count, removing the need for methods such as LASSO.

Up until the present day, use of MCMC techniques has been com-

putationally unfeasible. However, advances in computational tech-

nology and algorithms such as Hamiltonian Monte Carlo (HMC)

now make this sort of approach a viable alternative, as demonstrated

by Safarzadeh et al. (2015), who used an MCMC-based approach

to fit PACS simulated maps.

As part of the Herschel Extragalactic Legacy Project (HELP;

Vaccari 2016, Oliver, in preparation), we have developed an al-

ternative prior-based approach for source extraction in confusion-

dominated maps. Our new method, XID+, is built upon a Bayesian

probabilistic framework that provides a natural way in which to

introduce additional prior information. By using the Bayesian in-

ference tool (Stan; Stan Development Team 2015a,b) to sample the

full posterior distribution, we are also able to provide more accurate

flux density error estimates, whilst avoiding some of the issues as-

sociated with the maximum likelihood and LASSO fitting approach

used by DESPHOT. In this paper, we show that XID+ outperforms

DESPHOT when using just positional information. In Section 2, we

discuss the algorithm, and show how the software performs on sim-

ulated SPIRE maps in Section 3. In Section 4, we apply XID+ on

the HerMES COSMOS SPIRE maps, using a 24-µm catalogue as

a prior and show the resulting marginalized SPIRE colour–colour

plot and contribution to the CIB. We discuss how XID+ can make

use of flux prior information, delivered by the HELP project (Hur-

ley et al. in preparation) in Section 5 and make final conclusions in

Section 6.

2 X I D+ A L G O R I T H M

The basic goal of XID+ is to use the SPIRE maps to infer the

likely SPIRE flux of sources we already know about. Bayesian

inference is well suited to these requirements. It allows the use

of prior information and provides a posterior distribution of the

parameter(s) after taking into account the observed data.

We also want to provide a framework to do science directly with

the maps rather than adding the additional step of first creating

catalogues, which in essence is a form of lossy data compression.

We therefore adopt a Bayesian probabilistic modelling approach for

our XID+ algorithm. It aims to do the following:

(i) map out the posterior rather than the traditional maximum

likelihood point estimate, thereby providing a full account of the

flux uncertainty;

(ii) extend the use of prior information beyond just using posi-

tional information about sources.

In the following section, we describe our XID+ algorithm. As

this algorithm builds upon knowledge gained from the original XID

(a.k.a DESPHOT) algorithm used by HerMES (Roseboom et al. 2010,

2011; Wang et al. 2014), we describe XID+ in the context of how it

differs from DESPHOT.

MNRAS 464, 885–896 (2017)
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2.1 Basic model

Our data (d) are maps with n1 × n2 = M pixels. Our model as-

sumes the maps are formed from S known sources, with flux den-

sity f and a background term accounting for unknown sources.

The point response function (PRF) tells us the contribution each

source makes to each pixel in the map and is assumed to be

a Gaussian, with full width half-maximum (FWHM) of 18.15,

25.15, and 36.3 arcsec for 250, 350, and 500 µm, respectively

(Griffin et al. 2010). Our map can therefore be described as

follows:

d =

S
∑

i=1

P fi + N (0, �instrumental) + N (B,�confusion), (1)

where d is our model of the map, P is the PRF, fi is the flux density

for source i and two independent noise terms, one for instrumental

noise, the other for confusion noise that we model as Gaussian

fluctuations about B, a global background.

We can rewrite the above equation in the linear form:

d = A f , (2)

where d is flattened to a vector with M pixels, A is a sparse M × S
matrix pointing matrix. For SPIRE, the pointing matrix is calculated

by taking the Gaussian PRF for each band at a 1 arcsec pixel scale,

centring it on the position for each source and carrying out a nearest

neighbour interpolation to establish the contribution each source

makes to each pixel in the map.

As instrumental and confusion noise are independent, we can

combine the two noise terms into one covariance matrix such that

Nd = �instrumental + �confusion. Confusion noise will be correlated

across nearby pixels due to the PRF and across the three SPIRE

bands. Taking these correlations into account requires the full M ×

M covariance matrix, which vastly increases computational time.

For simplicity, we currently ignore the correlations and assume the

confusion noise is constant across the map. The covariance matrix

becomes a diagonal matrix, that is Nd,i i = σ 2
inst.,ii + σ 2

conf..

We can now define the likelihood as the Gaussian probability

function for the data given the flux densities:

L = p(d| f ) ∝ |Nd |
−1/2 exp

{

−
1

2
(d − A f )T Nd

−1(d − A f )
}

.

(3)

The maximum likelihood solution to this equation can be found by

setting χ = (d − A f )T Nd
−1(d − A f ), finding the minimum and

rearranging such that

f =
(

AT N−1
d A

)−1
AT N−1

d d. (4)

Equation (4) can be solved directly, either by brute-force matrix

inversion or via other linear methods. As discussed in Roseboom

et al. (2010, 2011) and Wang et al. (2014), linear approaches ignore

prior knowledge that fluxes cannot have negative flux density. They

are also incapable of discriminating between real and spurious so-

lutions, which can result in overfitting. To overcome these issues,

Roseboom et al. (2011) used the non-negative weighted LASSO

algorithm (Tibshirani 1996; Zou 2006; ter Braak et al. 2010).

LASSO is a shrinkage and selection method for linear regression

and works by treating sources either as ‘inactive’ with flux density

set to zero, or ‘active’. It switches sources on one at a time, with

the order determined by reduction in chi-squared gained by turning

them on. The process continues until some tolerance is reached.

For XID+, we want to map out the entire posterior, p( f |d), rather

than find the maximum likelihood solution. This has the benefit that

Figure 1. Our probabilistic model for XID+. Boxes represent repeated di-

mensions, open circles as variables, dots as deterministic (or fixed) variables.

Created with DAFT (http://daft-pgm.org/).

it gives us more complete information on how certain we are about

the predicted fluxes. The posterior can be defined as

p( f |d) ∝ p(d| f ) × p( f ), (5)

where p(d| f ) is our likelihood, defined in equation (3) and p( f ) is

our prior on the fluxes. For our simplest model, we use a uniform

distribution for p( f ), with an upper bound of 1000 mJy and lower

bound of 0.01 mJy.

In our probabilistic framework, we can illustrate our model for

the map, defined in equation (2) via a probabilistic graphical model

(PGM). Fig. 1 shows a plate diagram (Bishop 2006) for our PGM

of the basic XID+ model, where boxes indicate repeated values such

as source (i), pixel (j), and band (λ). Open circles correspond to

random variables and dots are deterministic (or fixed) variables,

with their relative positions in the boxes indicating what indices

they repeat over. For our simplest model, the positional vector of

sources (ri ) can be described by sky coordinates, αi and δi, and

are treated as deterministic (i.e. known).1 The PRF is assumed to

be a Gaussian, with FWHM of 18.15, 25.15, and 36.3 arcsec for

250, 350, and 500 µm, respectively (Griffin et al. 2010). Both these

deterministic variables are used to make the pointing matrix Ai, j, λ,

which gives the contribution source i makes to each pixel j in the

map at wavelength λ. Each source has its own flux fi, λ, which is a

random variable. By multiplying f, A for all sources and pixels, and

adding our global estimate for the background B, we can make our

model for the map, m, which we can compare to the data D.

2.1.1 Stan

Now that we have our probabilistic model, we need to sample from

it to obtain the posterior. We use the Bayesian inference tool, Stan,

which is ‘a probabilistic programming language implementing full

Bayesian statistical inference with MCMC sampling’. Stan uses

the adaptive HMC No-U-Turn Sampler (NUTS) of Hoffman &

Gelman (2014) to efficiently sample from the posterior. It does this

1 In reality, positional information is often uncertain. However, these uncer-

tainties are relatively small in comparison to the SPIRE beams. For example,

the 24-micron source catalogues in Le Floc’h et al. (2009) are accurate to

≈2 arcsec in respect to K-band catalogues; this corresponds to a ninth of the

FWHM of the SPIRE beam at 250 microns.
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by using the gradient information, allowing fast traversing of high

dimensional and highly correlated joint posterior distributions.

Stan has its own modelling language, in which one con-

structs probabilistic models. Our model for Stan can be found in

Appendix A.

2.1.2 Estimating convergence

As with all MCMC routines, one needs to run enough chains and

run them long enough to be confident that the global minimum has

been found and that it has been thoroughly sampled. As default, we

run four separate chains from different initial positions in parameter

space. We also discard the first half of the chain as ‘warm up’ to

ensure that the chains have converged to the posterior distribution.

We then assess the convergence of each parameter by comparing the

variation between and within chains using the diagnostics described

in Gelman et al. (2013), which can be summarized as follows: Each

chain is split in two and the between-chain (BC) and within-chain

(WC) variance is calculated. BC and WC are then used to calculate

the marginal posterior variance. This in turn can be used to estimate

the potential scale reduction R̂, which reduces to 1 as the number

of iterations tends to infinity. An R̂ value >1.2 suggests that chains

require more samples. We provide R̂ for each parameter.

Due to the nature of MCMC, samples from MCMC routines are

correlated. Inference from correlated samples is less precise than

from the same number of independent draws. In order to check there

are enough independent draws, we estimate the effective number

of samples n̂eff, defined in Gelman et al. (2013). We require n̂eff to

be 10 times the number of chains and provide the estimate for each

parameter.

2.2 Map segmentation

The survey fields in HELP vary in size from 0.3 to 290 deg2. Ideally,

source photometry and background estimation would be done on

the full image. In practice, this will be computationally unfeasible.

DESPHOT segmented the map by locating islands of high signal to

noise ratio (SNR) pixels enclosed by low SNR pixels.

We adopt a simpler tiling scheme that splits map data into equal

area diamonds based on the Hierarchical Equal Area isoLatitude

Pixelization of a sphere (HEALPIX). The resolution of the pixels are

determined by the HEALPIX level, with default for XID+ set at 11,

which corresponds to ≈1.718 arcmin. When fitting each tile, the

perimeter being fitted is extended by one HEALPIX pixel with a res-

olution that is two levels higher (i.e. default is level 13 with a

resolution of ≈25.77 arcmin) such that all sources that could fore-

seeably contribute to sources within the HEALPIX pixel of interest

are taken into account. To give an example of the dimensionality,

our fit to a mock simulation (described in the following section)

uses a HEALPIX tile at order 9, fitting over 600 sources on average

to ≈10 500 pixels at 250 microns, ≈5500 pixels at 350 microns,

and ≈2500 pixels at 500 microns. That means for each tile we are

fitting over 1800 parameters simultaneously.

The choice of HEALPIX pixel size affects the computational time

of XID+. The required CPU time is found to scale linearly with the

amount of data (i.e. number of image pixels).

2.3 Uncertainties and covariances

DESPHOT provides an estimate of the covariance matrix associated

with the fluxes (N f ) from (AT N−1
d A)−1. Due to the Cramer–Rao

inequality, this estimate is a lower limit. It also assumes the DESPHOT

algorithm is linear, which is not strictly true having introduced

LASSO and non-negative priors. As a result, the uncertainties are

unreliable. For XID+, we have the full posterior, allowing the true

variance to be properly characterized. This not only gives us a

better estimate for marginalized uncertainty for each source, but it

also provides the covariance information between sources (as seen

in Fig. 6).

3 SI M U L AT I O N S

In order to test and quantify the performance of XID+, we use

simulated SPIRE maps of the COSMOS field, a good example of a

deep map, that is, where confusion noise (σ conf.) is much larger than

instrumental noise (σ inst.). In order to get realistic clustering, we use

the mock catalogues from the latest version of the Durham semi-

analytic model, GALFORM (Cowley et al. 2015; Lacey et al. 2016).

The model is designed to populate Millennium-class, dark matter

only, N-body simulations with a WMAP7 cosmology and minimum

halo mass of 1.9 × 1010 h−1M⊙. The dust model is motivated

by the radiative transfer code GRASIL (Silva et al. 1998) and can

accurately reproduce the predictions for rest-frame wavelengths

λrest > 70 µm. We pass this mock catalogue through the HerMES

mapmaker pipeline (e.g. Levenson et al. 2010; Viero et al. 2013) to

generate a mock HerMES observation, with similar noise properties

to the observed COSMOS field.

A mock 100-µm input catalogue, similar to what would be ex-

pected of a PACS catalogue, is generated by taking the mock cata-

logue and making a cut at a flux limit of 50 µJy (similar to that used

for a 24-µm input catalogue), giving a total of 64 719 sources over

3.4 deg2. We use this as our prior input catalogue for both XID+

and DESPHOT. In order to compare performance, we look at three

measures: precision, flux accuracy, and flux uncertainty accuracy.

For XID+, we only consider sources whose output median flux is

above 1 mJy. Likewise, with DESPHOT, we only consider sources that

have a maximum likelihood flux of greater than 1 mJy.

3.1 Flux precision

Precision is a measure of how well the flux is believed to be con-

strained. For our posterior sample, this relates to the spread of the

sample and so we use the interquartile range (75th–25th percentile;

IQR) as our measure of precision. Fig. 2 shows the 16th, 50th, and

84th percentile (i.e. median and median ±σ ) of the IQR for six bins

in true flux. IQR is normalized as a function of input flux for both

XID+ and DESPHOT. As one would expect, IQR/STrue decreases as a

function of input flux, indicating a higher precision is achieved for

the brighter sources. While 250 and 350 µm outputs achieve a sim-

ilar level of precision, the outputs for 500 µm do not reach the same

level of precision. In comparison to DESPHOT, XID+ is marginally

less precise for all three bands, though as we show later, DESPHOT’s

smaller precision comes at a price of severely underestimating

uncertainty.

3.2 Flux accuracy

Flux accuracy is a measure of how far away the estimated flux

is from the truth. We use the difference between the median flux

estimate from our posterior and the true flux from the simulation,

normalized by true flux, as our estimate of flux accuracy. Fig. 3

shows how flux accuracy changes as a function of input flux for all

three bands. As before, we show the 16th, 50th, and 84th percentile
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Figure 2. The 16th, 50th, and 84th percentiles for inverse precision, or IQR of XID+ (coloured line and shaded region) and DESPHOT (black dashed lines), as a

function of true flux, for the 250-µm (blue), 350-µm (green), and 500-µm (red) SPIRE bands.

Figure 3. The 16th, 50th, and 84th percentiles for flux accuracy of XID+ (coloured line and shaded region) and DESPHOT (black dashed lines), as a function of

true flux, for the 250-µm (blue), 350-µm (green), and 500-µm (red) SPIRE bands. A horizontal thick line is shown at zero for clarity.

for six bins in true flux. For 250 µm, XID+ reaches an offset smaller

than 10 per cent by ≈5 mJy, whereas DESPHOT underestimates the

flux for all but the very brightest sources. For 350 and 500 µm, the

offset from the truth is less than 10 per cent by ≈10 mJy, whereas

DESPHOT continues to underestimate for all but the very brightest

sources. There remains a slight offset of ≈5 per cent for all fluxes.

This is likely due to our inability to model the correlated component

of the confusion noise.

3.3 Flux uncertainty accuracy

Estimated flux values should be within 1σ of the true value

68.27 per cent of the time and within 2σ 95.45 per cent of the

time. We can quantify how many sigma away the true value is from

the median, in terms of a Z score. A Z score of 1 corresponding

to being 1σ above the median. Fig. 4 shows the flux uncertainty

accuracy (or Z score) as a function of input flux. For DESPHOT, un-

certainties are assumed to have a normal distribution, truncated at

zero. With XID+, we have the full posterior and do not have to make

an assumption on the shape of the uncertainty distribution. If we

assume the posterior has good frequentist coverage, then we can

calculate uncertainty accuracy by taking the percentile at which the

true flux value falls within the posterior, and convert the percentile

to a corresponding sigma level.

For the 250-µm band, and sources �25 mJy, XID+ produces a Z
score distribution that is slightly above that expected if uncertainties

are correctly estimated (i.e. distribution is centred around zero, with

width ≈1). Above 25 mJy, the median Z score increases, indicating

that flux uncertainties are being under estimated. In comparison,

for all fluxes, the uncertainty distribution from DESPHOT are above

1 and increases to over 2 for the brighter sources. There are also

a large number of sources with a Z score greater than 3 (as seen

by the higher density in bins at a Z score of 3). This indicates that

DESPHOT is a poor estimator with the majority of sources in DESPHOT

lying more than 1σ away from their true flux. The flux uncertainty

accuracies for 350 and 500 µm show a similar behaviour, though

not as severe.

3.4 Convergence

As described in Section 2.1.2, we provide R̂ as an estimate of con-

vergence and n̂eff as a measure of independence within the sample.

Fig. 5 show the histogram for R̂ and n̂eff for the three bands, with

our thresholds for the statistics shown by dotted lines. In our fit to

the simulated SPIRE maps, we use four chains, each with 1500 iter-

ations (half of which are discarded as warm up). This leads to over

99.99 per cent of the sources having an R̂ and n̂eff within the thresh-

old for all three bands, indicating our solution is well converged.

In cases where convergence has not been reached, the number of

iterations can be increased.

3.5 Correlated sources

For sources that are close together (i.e. within FWHM of the PRF),

the uncertainty on the flux estimates can be correlated. One of the

advantages of obtaining the full posterior is that we get a proper
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Figure 4. The 16th, 50th, and 84th percentiles for Z score, or flux density error of XID+ (coloured line and shaded region) and DESPHOT (black dashed lines),

as a function of true flux, for the 250-µm (blue), 350-µm (green) and 500-µm (red) SPIRE bands. A horizontal thick line is shown at zero for clarity.

Figure 5. R̂ and n̂eff values for all sources fitted in the simulation. The

majority of sources have converged and have enough effective samples.

estimate of uncertainty and its correlation. This is particularly ap-

parent when comparing flux estimates with DESPHOT, which, by using

the LASSO algorithm forces one source to have all the flux and the

other nearby source to zero. Fig. 6 shows an example of two sources

that are 2 arcsec apart. The 250-µm flux estimate from both XID+

and DESPHOT are shown in green and blue, respectively. The pos-

terior provided by XID+, fully captures the correlated uncertainty,

where as the ‘winner takes all’ approach from DESPHOT clearly fails

to estimate the true flux for both sources.

Figure 6. Joint and marginalized posterior plot of two correlated sources

that are 2 arcsec apart, with 1σ , 2σ and 3σ contours overplotted. The true

flux is shown by the green circle and green dashed lines. DESPHOT (blue error

bar and vertical filled region spanning 1σ ) assigns all the flux to one source

which is actually the fainter of the two, whereas with XID+ we get the full

uncertainty information from the posterior.

3.6 Defining detections

For sources close to or below the noise level of the map, the data

will be unable to constrain our model. The flux posterior for these

sources will be a subtle combination of the flux prior and an upper

limit imposed by the noise level of the map. This results in a non-

Gaussian posterior flux distribution for those sources that cannot

be constrained. To illustrate how the shape of the posterior flux

distribution changes, Fig. 7 shows the 84th−50th
50th−16th

percentiles of the

flux posterior distribution as a function of the 50th percentile for

the three SPIRE bands. For 250 and 350 µm, uncertainties become

Gaussian around 4 mJy, while for 500 µm, it occurs around 6 mJy.

In principle, the full posterior distribution could be used for all

objects, including those not fully constrained by the data. However,

Fig. 7 provides a convenient way in which to define the level at

which there are robust detections. We note that these limits will

change depending on prior list and the maps being fitted.
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Figure 7. The 84th−50th
50th−16th

percentiles of the flux posterior distribution as a function of the 50th percentile for the three SPIRE bands. The posterior is approximately

Gaussian when the ratio is around 1. For 250 and 350 µm, this occurs at around 4 mJy, while for 500 µm, it occurs around 6 mJy.

Figure 8. The 16th, 50th, and 84th percentiles for flux accuracy of XID+ (coloured line and shaded region) and the median flux accuracy for LAMBDAR

(black dashed line), as a function of true flux, for the 250-µm (blue), 350-µm (green) and 500-µm (red) SPIRE bands. A horizontal thick line is shown at zero

for clarity.

3.7 Comparison to stacking

To further demonstrate the performance of XID+, we compare the

average XID+ fluxes for objects grouped into six stellar mass and six

redshift bins, against those from stacking. Stacking takes the posi-

tion of known sources and for each source, cuts out a thumbnail from

a map centred on the source position. By averaging the thumbnail

images, one reduces the noise and produces an image of the average

galaxy and an average flux estimate for the list of known sources

used to make the stack. Fig. B1 in Appendix B shows the 250, 350,

and 500 µm stacked, average true flux from the simulation, and

average XID+ fluxes for 36 different groups of objects. For objects

above the detection limit defined in Section 3.6, the average flux of

the groups from XID+ (in red) is able to recover the true average flux

(in green), all be it with the same minor underestimate (≈5 per cent)

seen in the flux accuracy plots. In comparison, the stacked flux (in

blue) performs at a similar level. As expected, the performance for

both methods deteriorate when the number of objects in the stack

is low. This stacking comparison shows that for groups of objects

above the detection limit, XID+ reaches a comparable performance

to stacking, but with the distinct advantage in having the flux for

every objects, compared to stacking which provides an average flux,

assuming the underlying flux distribution is Gaussian.

3.8 Performance with a shallower prior list

So far, we have shown the performance of XID+ with the type of

prior lists that are available for the HerMES fields (i.e. both relatively

deep and selected at a similar wavelength to the SPIRE bands). We

now demonstrate the expected performance of XID+ for H-ATLAS

fields, where the prior list is likely to be derived from shallow,

optical ancillary data.

We use the same simulated maps as before, but now our prior list

only use sources with an r-band magnitude < 19.8 or a 250-µm flux

>15.48 mJy. With this cut, our prior list contains 5536 sources. Not

only does this cut mimic the type of ancillary data available in the H-

ATLAS fields (i.e. shallow optical data and additional bright SPIRE

sources detected via blind source detection), but is the same cut used

to test the Lambda Adaptive Multi-band Deblending Algorithm in

R (LAMBDAR; Wright et al. 2016).

Fig. 8 shows the flux accuracy of XID+, using the shallower prior

list. Although the dispersion in accuracy is worse at the lower fluxes,

the median accuracy remains close to zero for all fluxes. For the 250

µm, we compare our flux accuracy with that obtained by LAMB-

DAR. While the flux accuracy of XID+ is relatively constant from

10 mJy, the flux accuracy of LAMBDAR only reaches comparable

accuracy levels at fluxes greater than 70 mJy, illustrating XID+ can

reach far lower flux levels than LAMBDAR. We note both preci-

sion and flux uncertainty accuracy are similar to that obtained in

Sections 3.1 and 3.3.

4 C OSMOS FI ELD

Having satisfactorily demonstrated the performance on simulations,

we have run XID+ on the HerMES COSMOS SPIRE maps from the
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Figure 9. The marginalized SPIRE colour–colour probability density (in black) for the sources used in the simulation (left), XID+ fit to simulated sources

(centre), and XID+ fit of MIPS 24-µm sources in the COSMOS field (right). Overplotted are the redshifted spectral energy distributions for a red star-forming

galaxy (thick line) and blue star-forming galaxy (thin line) as defined by Berta et al. (2013).

Table 1. Contribution to the CIRB at the SPIRE wavelengths from various measures, including the absolute measurement made by FIRAS.

CIRB 250 µm CIRB 350 µm CIRB 500 µm

(nWm−2sr−1) (nWm−2sr−1) (nWm−2sr−1)

FIRAS (Lagache & Puget 2000) 11.8 ± 2.9 6.4 ± 1.6 2.7 ± 0.7

SPIRE-resolved sources (Oliver et al. 2010) 1.73 ± 0.33 (15 per cent) 0.63 ± 0.18 (10 per cent) 0.15 ± 0.07 (6 per cent)

XID+ with 24-µm sources 5.573 ± 0.003 (47 per cent) 2.805 ± 0.002 (45 per cent) 1.24 ± 0.002 (46 per cent)

Stacking of 24-µm sources (Béthermin et al. 2012) 7.40+1.42
−1.43 (73 per cent) 4.50+0.90

−0.90 (63 per cent) 1.54+0.30
−0.30 (55 per cent)

2nd Data release. As a prior, we take the MIPS 24-µm catalogue

(Le Floc’h et al. 2009), which covers an area of 2.265 deg2 and

includes 52 092 sources with a 24-µm flux density above 60 µJy,

which corresponds to a signal-to-noise cut of 3.

Fig. 9 shows the marginalized probability density of our MIPS

24-µm prior catalogue in SPIRE colour–colour space and is con-

structed by combining the 1500 samples from the posterior, for all

52 092 sources. The redshift tracks for a red and blue star-forming

galaxy spectral energy distribution template, empirically derived

from Herschel sources (Berta et al. 2013), are overplotted and run

through the highest density region at redshifts of around 2 to 3. As

a comparison, we show the true colour distribution for our mock

simulation used in Section 3 and the corresponding distribution

from the XID+ fit. The probability distribution from the fit to the

simulation is far wider than the truth. This is not surprising as, at

present, the three SPIRE bands are being fit independently, and

so any correlation in colour is being dispersed by confusion noise

and non-detections. Interestingly, the fit to the real COSMOS data

shows a more constrained probability distribution. Whether this is

a consequence of slightly different selection, or less variation in

spectral energy distribution shape will require further investigation.

Table 1 shows the total contribution to the CIB at 250, 350, and

500 µm from our MIPS 24-µm prior catalogue, alongside the Far

Infrared Absolute Spectrophotometer (FIRAS) absolute measure-

ments from Lagache & Puget (2000), the contribution to the CIRB

from SPIRE-resolved sources (Oliver et al. 2010) and the contribu-

tion from stacking MIPS 24-µm sources (Béthermin et al. 2012).

By going to a depth of 60 µJy in the 24-µm catalogue, we can

explain 47, 44, and 46 per cent of the nominal measured values

at 250, 350, and 500 µm (Lagache & Puget 2000). This compares

favourably to the 15, 10, and 6 per cent that SPIRE resolves at

the (40 beams)−1 depth (Oliver et al. 2010). We resolve less of the

CIRB than achieved by stacking MIPS 24 µm, with the missing

contribution belonging to those sources that XID+ cannot constrain.

However, unlike stacking, we know how that flux is distributed

amongst sources. The remaining CIRB that is not associated with

micrometre sources, will be coming from other sources not detected

at 24 µm.

Our final data product consists of a catalogue, summarizing the

SPIRE fluxes via the 16th, 50th, and 84th percentile (i.e. median

and median ±σ ); the median background; and the convergence

statistics. We also make available on request, the 3000 samples

from the posterior probability distribution, each of which can be

thought of as a possible catalogue in probability space.

5 D I SCUSSI ON

We have run XID+ on simulated maps of the COSMOS field and

compared it to DESPHOT using three main metrics: flux accuracy,

precision, and uncertainty accuracy. On accuracy, XID+ performs

significantly better in all three bands, and although appearing

marginally less precise, the loss of precision relates to more re-

alistic estimates for flux uncertainties.

The higher performance gained by XID+ comes from fully cap-

turing the posterior probability distribution on flux estimates. By

exploring the posterior, we get a proper handle on uncertainties and

no longer have to employ penalisation techniques such as LASSO,

which are known to behave erratically.

By using a probabilistic approach, we have a framework where we

can introduce prior information on the source fluxes in a transparent

manner. For this basic version, we use a simple uniform prior, with

bounds at 10−2 and 103 mJy. However, as can be seen in Fig. 6,

where sources are correlated, if we have prior knowledge on the

flux of one of the sources, it can help us determine a more precise

flux for the other.

As demonstrated by Safarzadeh et al. (2015), these priors could

come from fitting spectral energy distribution models to multiwave-

length ancillary data. Another alternative is to use machine-learning
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algorithms to ‘learn’ the expected flux from the statistical popula-

tion. As part of HELP, the testing and benchmarking of suitable

methods for deriving SPIRE flux priors will be presented in Hurley

et al. (in preparation).

More generally, the probabilistic model used in XID+ can easily

be expanded, allowing distributions such as the flux distribution (or

number counts) to be modelled explicitly. In principle, and with ad-

ditional information such as redshifts, the probabilistic model could

become detailed enough to simultaneously fit luminosity functions

and the location of locus of the star formation rate M* relation at

different redshift and we will explore these expansions in future

papers.

6 C O N C L U S I O N S

In this paper, we have introduced the prior-based source detection

software, XID+. By using the Bayesian inference tool Stan, we are

able to fully sample the posterior probability distribution, which in

turn gives a better understanding of the uncertainty associated with

the source flux.

Having run XID+ on simulated maps, we have shown this is ex-

tremely advantageous for maps that are confusion limited, such as

the Herschel observations that are part of HerMES. In comparison to

the current maximum likelihood based software DESPHOT, XID+ per-

forms far better in all three main metrics: flux accuracy, precision,

and uncertainty accuracy.

We have run XID+ on the HerMES COSMOS SPIRE maps from

the 2nd Data release, using the MIPS 24-µm catalogue (Le Floc’h

et al. 2009) as our prior. Using the full posterior, we have created a

marginalized SPIRE colour–colour plot, illustrating the probability

distribution of our MIPS 24-µm catalogue in SPIRE colour–colour

space. We have also shown that the MIPS 24-µm sources contribute

47, 44, and 46 per cent to the CIB at 250, 350, and 500 µm. We

provide the catalogue as part of the fourth HerMES data release2

and posterior probability distribution samples as a data product as

part of HELP.3 As far as we are aware, this is the first time the full

posterior probability distribution is made available as a data product

for list-driven photometry.

AC K N OW L E D G E M E N T S

We thank the anonymous referee for suggestions that greatly en-

hanced this work. The research leading to these results has received

funding from the European Union Seventh Framework Programme

FP7/2007-2013/ under grant agreement number 607254. This pub-

lication reflects only the author’s view and the European Union is

not responsible for any use that may be made of the information

contained therein.

SO acknowledges support from the Science and Technology Fa-

cilities Council (grant number ST/L000652/1) and MB is supported

under EPSRC grant EP/J016934/1. HCSS/HSpot/HIPE are joint de-

velopments by the Herschel Science Ground Segment Consortium,

consisting of ESA, NASA Herschel Science Center, and HIFI,PACS

and SPIRE consortia.

SPIRE has been developed by a consortium of institutes led by

Cardiff University (UK) and including University of Lethbridge

(Canada); NAOC (China); CEA, LAM (France); IFSI, University

of Padua (Italy); IAC (Spain); Stockholm Observatory (Sweden);

Imperial College London, RAL, UCL-MSSL, UKATC, University

2 http://hedam.lam.fr/HerMES/index/dr4
3 Data products will be made publicly available at the end of HELP in

December 2017; however, early access can be granted on request.

of Sussex (UK); and Caltech, JPL, NHSC, University of Colorado

(USA). This development has been supported by national fund-

ing agencies: CSA (Canada); NAOC (China); CEA,CNES, CNRS

(France); ASI (Italy); MCINN (Spain); SNSB(Sweden); STFC,

UKSA (UK); and NASA (USA). This research has made use of

data from HerMES project (http://hermes.sussex.ac.uk/). HerMES

is a Herschel Key Programme utilizing Guaranteed Time from the

SPIRE instrument team, ESAC scientists and a mission scientist.

The HerMES data were accessed through the Herschel Database in

Marseille (HeDaM – http://hedam.lam.fr) operated by CeSAM and

hosted by the Laboratoire d’Astrophysique de Marseille.

This work is based in part on observations made with the Spitzer
Space Telescope, which is operated by the Jet Propulsion Labo-

ratory, California Institute of Technology under a contract with

NASA. Special thanks goes to Yannick Roehlly for organization of

code, and Louise Winters for management within HELP. This paper

make use of MATPLOTLIB (Hunter 2007) and ASTROPY, a community-

developed core PYTHON package for Astronomy (Astropy Collabo-

ration et al. 2013).

R E F E R E N C E S

Astropy Collaboration et al., 2013, A&A, 558, A33

Berta S. et al., 2013, A&A, 551, A100
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APPENDI X A

Stan code for XID+.

//Full Bayesian inference fit XID
data {

int<lower=0> nsrc;//number of sources
//———-PSW———-
int<lower=0> npix psw;//number of pixels
int<lower=0> nnz psw; //number of non neg entries in A
vector[npix psw] db psw;//flattened map

vector[npix psw] sigma psw;//flattened uncertianty map (assuming no covariance between pixels)
real bkg prior psw;//prior estimate of background
real bkg prior sig psw;//sigma of prior estimate of background
vector[nnz psw] Val psw;//non neg values in image matrix

int Row psw[nnz psw];//Rows of non neg valies in image matrix
int Col psw[nnz psw];//Cols of non neg values in image matrix
vector[nsrc] f low lim psw;//upper limit of flux
vector[nsrc] f up lim psw;//upper limit of flux

//———-PMW———-
int<lower=0> npix pmw;//number of pixels
int<lower=0> nnz pmw; //number of non neg entries in A
vector[npix pmw] db pmw;//flattened map
vector[npix pmw] sigma pmw;//flattened uncertianty map (assuming no covariance between pixels)
real bkg prior pmw;//prior estimate of background
real bkg prior sig pmw;//sigma of prior estimate of background
vector[nnz pmw] Val pmw;//non neg values in image matrix

int Row pmw[nnz pmw];//Rows of non neg valies in image matrix

int Col pmw[nnz pmw];//Cols of non neg values in image matrix
vector[nsrc] f low lim pmw;//upper limit of flux (in log10)
vector[nsrc] f up lim pmw;//upper limit of flux (in log10)

//———-PLW———-
int<lower=0> npix plw;//number of pixels
int<lower=0> nnz plw; //number of non neg entries in A
vector[npix plw] db plw;//flattened map
vector[npix plw] sigma plw;//flattened uncertianty map (assuming no covariance between pixels)
real bkg prior plw;//prior estimate of background
real bkg prior sig plw;//sigma of prior estimate of background
vector[nnz plw] Val plw;//non neg values in image matrix

int Row plw[nnz plw];//Rows of non neg valies in image matrix
int Col plw[nnz plw];//Cols of non neg values in image matrix
vector[nsrc] f low lim plw;//upper limit of flux
vector[nsrc] f up lim plw;//upper limit of flux

}

parameters {
vector<lower=0.0,upper=1.0>[nsrc] src f psw;//source vector
real bkg psw;//background
vector<lower=0.0,upper=1.0>[nsrc] src f pmw;//source vector
real bkg pmw;//background
vector<lower=0.0,upper=1.0>[nsrc] src f plw;//source vector
real bkg plw;//background
real<lower=0.0,upper=8> sigma conf psw;

real<lower=0.0,upper=8> sigma conf pmw;

real<lower=0.0,upper=8> sigma conf plw;

}
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model {
vector[npix psw] db hat psw;//model of map

vector[npix pmw] db hat pmw;//model of map
vector[npix plw] db hat plw;//model of map

vector[npix psw] sigma tot psw;

vector[npix pmw] sigma tot pmw;

vector[npix plw] sigma tot plw;

vector[nsrc] f vec psw;//vector of source fluxes
vector[nsrc] f vec pmw;//vector of source fluxes
vector[nsrc] f vec plw;//vector of source fluxes

// Transform to normal space. As I am sampling variable then transforming I don’t need a Jacobian adjustment
for (n in 1:nsrc) {
f vec psw[n] <- f low lim psw[n]+(f up lim psw[n]-f low lim psw[n])∗src f psw[n];

f vec pmw[n] <- f low lim pmw[n]+(f up lim pmw[n]-f low lim pmw[n])∗src f pmw[n];

f vec plw[n] <- f low lim plw[n]+(f up lim plw[n]-f low lim plw[n])∗src f plw[n];

}

//Prior on background
bkg psw ∼ normal(0,1);

bkg pmw ∼ normal(0,1);

bkg plw ∼ normal(0,1);

// Create model maps (i.e. db hat = A∗f) using sparse multiplication
for (k in 1:npix psw) {
db hat psw[k] <- bkg psw∗bkg prior sig psw+bkg prior psw;

sigma tot psw[k]<-sqrt(square(sigma psw[k])+square(sigma conf psw));

}
for (k in 1:nnz psw) {
db hat psw[Row psw[k]+1] <- db hat psw[Row psw[k]+1] + Val psw[k]∗f vec psw[Col psw[k]+1];

}

for (k in 1:npix pmw) {
db hat pmw[k] <- bkg pmw∗bkg prior sig pmw+bkg prior pmw;

sigma tot pmw[k]<-sqrt(square(sigma pmw[k])+square(sigma conf pmw));

}
for (k in 1:nnz pmw) {
db hat pmw[Row pmw[k]+1] <- db hat pmw[Row pmw[k]+1] + Val pmw[k]∗f vec pmw[Col pmw[k]+1];

}

for (k in 1:npix plw) {
db hat plw[k] <- bkg plw∗bkg prior sig plw+bkg prior plw;

sigma tot plw[k]<-sqrt(square(sigma plw[k])+square(sigma conf plw));

}
for (k in 1:nnz plw) {
db hat plw[Row plw[k]+1] <- db hat plw[Row plw[k]+1] + Val plw[k]∗f vec plw[Col plw[k]+1];

}

// likelihood of observed map|model map
db psw ∼ normal(db hat psw,sigma tot psw);

db pmw ∼ normal(db hat pmw,sigma tot pmw);

db plw ∼ normal(db hat plw,sigma tot plw);

}
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APPENDIX B

Figure B1. The average flux from simulated objects, grouped by stellar mass and redshift. The flux from stacking is shown in blue, the average true flux for

each group in green, and the average XID+ flux for the group in red. For average fluxes above the detection limit, XID+ is just as capable of returning true

average flux as stacking, but with the added advantage of having the flux for each object.
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