
 Open access Journal Article DOI:10.1109/TCAD.2014.2370531

Helper Data Algorithms for PUF-Based Key Generation: Overview and Analysis
— Source link

Jeroen Delvaux, Dawu Gu, Dries Schellekens, Ingrid Verbauwhede

Institutions: Katholieke Universiteit Leuven, Shanghai Jiao Tong University, iMinds

Published on: 01 Jan 2015 - IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (IEEE)

Topics: Physical unclonable function, Key generation and Key (cryptography)

Related papers:

 Physical unclonable functions for device authentication and secret key generation

 FPGA Intrinsic PUFs and Their Use for IP Protection

 Silicon physical random functions

 Power-Up SRAM State as an Identifying Fingerprint and Source of True Random Numbers

 Physical one-way functions

Share this paper:

View more about this paper here: https://typeset.io/papers/helper-data-algorithms-for-puf-based-key-generation-overview-
3ayq5zet5p

https://typeset.io/
https://www.doi.org/10.1109/TCAD.2014.2370531
https://typeset.io/papers/helper-data-algorithms-for-puf-based-key-generation-overview-3ayq5zet5p
https://typeset.io/authors/jeroen-delvaux-2fm02hr5gt
https://typeset.io/authors/dawu-gu-15c5mfmdwv
https://typeset.io/authors/dries-schellekens-4674gze6w4
https://typeset.io/authors/ingrid-verbauwhede-1wg8fugmik
https://typeset.io/institutions/katholieke-universiteit-leuven-j400mi90
https://typeset.io/institutions/shanghai-jiao-tong-university-1zokxin6
https://typeset.io/institutions/iminds-2ewbbco8
https://typeset.io/journals/ieee-transactions-on-computer-aided-design-of-integrated-3lng4yft
https://typeset.io/topics/physical-unclonable-function-nxgzjrcc
https://typeset.io/topics/key-generation-27sf910j
https://typeset.io/topics/key-cryptography-1breo2wa
https://typeset.io/papers/physical-unclonable-functions-for-device-authentication-and-4tsc0jtbn3
https://typeset.io/papers/fpga-intrinsic-pufs-and-their-use-for-ip-protection-4zcbpcd9em
https://typeset.io/papers/silicon-physical-random-functions-51a41txofo
https://typeset.io/papers/power-up-sram-state-as-an-identifying-fingerprint-and-source-627kp580ji
https://typeset.io/papers/physical-one-way-functions-3b8omsfwkl
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/helper-data-algorithms-for-puf-based-key-generation-overview-3ayq5zet5p
https://twitter.com/intent/tweet?text=Helper%20Data%20Algorithms%20for%20PUF-Based%20Key%20Generation:%20Overview%20and%20Analysis&url=https://typeset.io/papers/helper-data-algorithms-for-puf-based-key-generation-overview-3ayq5zet5p
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/helper-data-algorithms-for-puf-based-key-generation-overview-3ayq5zet5p
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/helper-data-algorithms-for-puf-based-key-generation-overview-3ayq5zet5p
https://typeset.io/papers/helper-data-algorithms-for-puf-based-key-generation-overview-3ayq5zet5p

1

Helper Data Algorithms for PUF-Based Key

Generation: Overview and Analysis

Jeroen Delvaux1,2, Dawu Gu2, Dries Schellekens1 and Ingrid Verbauwhede1

1 ESAT/COSIC and iMinds, KU Leuven,

Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium

{jeroen.delvaux, ingrid.verbauwhede}@esat.kuleuven.be, dschelle@gmail.com
2 CSE/LoCCS, Shanghai Jiao Tong University,

800 Dongchuan Road, Shanghai 200240, China

dwgu@sjtu.edu.cn

Abstract—Security-critical products rely on the secrecy and
integrity of their cryptographic keys. This is challenging for low-
cost resource-constrained embedded devices, with an attacker
having physical access to the integrated circuit (IC). Physically
unclonable functions (PUFs) are an emerging technology in this
market. They extract bits from unavoidable IC manufacturing
variations, remarkably analogous to unique human fingerprints.
However, post-processing by helper data algorithms is indispens-
able to meet the stringent key requirements: reproducibility,
high-entropy and control. The novelty of our work is threefold.
We are the first to provide an in-depth and comprehensive
literature overview on HDAs. Second, our analysis does expose
new threats regarding helper data leakage and manipulation.
Third, we identify several hiatuses in current research.

Index Terms—physically unclonable function, helper data al-
gorithm, key generation.

I. INTRODUCTION

Maintaining the secrecy and integrity of cryptographic keys

at a low manufacturing cost is challenging. Especially for

resource-constrained embedded devices, with an attacker hav-

ing physical access to the integrated circuit (IC). Traditionally,

keys are stored in non-volatile memory (NVM), encapsulated

in the IC. Mature technologies are the following: EEPROM

and its successor Flash, battery-backed SRAM and fuses.

However, EEPROM/Flash requires floating-gate transistors,

increasing the manufacturing cost with respect to a regular

CMOS process. Batteries are costly as well. Furthermore,

NVM technologies tend to be vulnerable to physical attacks

due to their permanent robust electrical nature. Finally, ad-

ditional circuitry to protect against physical attacks is rather

expensive. Consider e.g. protective coatings or sensors to

detect invasion.

Physically unclonable functions (PUFs) are a promising

alternative for secure low-cost key generation. Essentially, they

Copyright (c) 2015 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

J. Delvaux, D. Gu, D. Schellekens and I. Verbauwhede: “Helper Data
Algorithms for PUF-Based Key Generation: Overview and Analysis,” in
IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6965637.
DOI: 10.1109/TCAD.2014.2370531.

are binary functions of which the behavior depends on IC

manufacturing variations. Therefore, they are rather analogous

to unique human biometrics. Most PUFs are compatible with

a regular CMOS process, benefiting manufacturing cost. Fur-

thermore, the secret is hidden in the physical structure of an IC,

which is a much less readable format. Also, invasive attacks

might damage the PUF and destroy the secret. Unfortunately,

output bits cannot be used directly as a key. Post-processing by

helper data algorithms (HDAs) is required to meet the stringent

key requirements: reproducibility, high-entropy and control.

Contribution. The novelty of our work is threefold:

• We are the first to provide an in-depth overview on HDAs,

comprehending a decade of research. Various schemes for

entropy compression, error-correction, bit selection and

manipulation detection are reviewed. This significantly

supersedes the glance in [44]. PUFs are regarded as a

black-box, making our manuscript generic.

• Our analysis reveals new threats regarding helper data

leakage and manipulation, most importantly the follow-

ing. We derive an exact formula for the leakage of

repetition codes in case of bias, demonstrating the well-

known (n − k) upper bound to be overly pessimistic.

We demonstrate that the leakage of soft-decision coding

has been underestimated. We describe divide-and-conquer

manipulation attacks for parallel codes, concatenated

codes and soft-decision codes. We disprove the intuitive

assumption that bit selection schemes have no leakage.

• We identify hiatuses in current research, offering a foun-

dation for future work.

Overview. The remainder of this manuscript is organized

as follows. Section II provides preliminaries. Section III

describes an accurate PUF reliability model, serving as a

reference. Section IV provides a high-level framework for PUF

HDAs. Entropy compression, error correction, bit selection and

manipulation detection are discussed in Sections V, VI, VII

and VIII respectively. Section IX identifies open problems in

current research. Section X concludes the work.

2

II. PRELIMINARIES

A. Notation

Vectors are denoted with a bold lowercase character, e.g. c.

All vectors are row vectors. Matrices are denoted with a bold

uppercase character, e.g. H. Functions are printed in italic,

e.g. Hamming weight HW(e). Random variables are denoted

with an uppercase character, e.g. X .

B. Probability Distributions

Random variables are described by their probability density

function (PDF) or cumulative distribution function (CDF), de-

noted by f and F respectively. Equation 1 considers a normal

distribution with mean zero and standard deviation σ = 1.

Equation 2 considers a binomial distribution with k successes

for n Bernoulli trials, each having success probability p.

FN (x′) =

x′∫

−∞

fN (x) dx =

x′∫

−∞

exp
(
−x2

2

)

√
2π

dx. (1)

FB (k′;n, p) =

k′∑

k=0

fB (k;n, p) =

k′∑

k=0

(
n

k

)
pk(1−p)n−k. (2)

C. Entropy

Consider a secret binary variable X , which is either a bit

or a bit vector. We define its entropy using logarithms to the

base 2, as it is the most natural choice. Equation 3 represents

the Shannon entropy and quantifies the average-case resistance

against a brute-force attack. However, we will focus on the

more conventional notion of min-entropy, as given by Equation

4, corresponding to the worst-case resistance.

H(X) = −EX [log2(P (X))]. (3)

H∞(X) = − log2

(
max
X

(P (X))
)
. (4)

Assume now that an attacker obtains additional information

about X , as described by the variable Y . We therefore define

the conditional entropy of X given Y . An attacker has typically

no control over Y , so we use the average-case resistance here.

Equations 5 and 6 correspond with the Shannon and min-

entropy respectively. We will focus again on the latter.

H̃(X|Y) = −EY [EX [log2(P (X|Y))]]. (5)

H̃∞(X|Y) = − log2

(
EY

[
max
X

P (X|Y)
])

. (6)

D. Physically Unclonable Functions: Black-Box Description

The binary input and output of a PUF are referred to

as challenge c and response r respectively. The challenge-

response behavior is different for each IC due to manufac-

turing variations. Unfortunately, there are discrepancies with

a random oracle. First, the response bits are not perfectly

reproducible. Transistor-level noise sources are the main re-

sponsible. Environmental fluctuations, e.g. IC supply voltage

and outside temperature, make things worse. Second, the

response bits are non-uniformly distributed. The entropy is

non-maximum due to bias and correlations. Bias means that

0 and 1 do not occur with equal probability.

One often distinguishes between two categories of PUFs,

depending on their scalability. Weak PUFs have an array struc-

ture, with each cell producing one or more bits1. Addressing

the array provides a challenge-response mechanism. The total

bit-content scales linearly with the circuit area. Correlations

are primarily of spatial nature. Strong PUFs have a small

response space but a large challenge space, e.g. 1 bit and 128
bits respectively. The total bit-content is enormous and scales

exponentially with the circuit area. However, correlations are

much more severe: they originate from the functional behavior

which is composed from a limited number of circuit elements

only.

III. PUF RELIABILITY MODEL

There is considerable advantage in having a generic but

accurate PUF reliability model. First, a model provides more

insights than raw experimental data. Second, one can compre-

hend the full spectrum of PUFs rather than a single instance

only, by modifying model parameters. Third, it facilitates the

design and analysis of HDAs. We describe a well-validated

reliability model, serving as a reference later-on, although our

results do not fully depend on its assumptions. A probability

distribution describes the error rate of individual response

bits r̃. But first we provide a warning regarding the use of

‘averaged’ simplified models.

A. Naive, homogeneous

The most simple reliability model assigns an identical error

rate to each response bit, as used in e.g. [4], [41]. This naive

homogeneous approach does not correspond with PUF reality.

Nevertheless, one might be able to obtain accurate formu-

las for the average-case device failure rate within a certain

working range. We consider this a dangerous practice though,

especially for small-dimensioned constructions, operating on

a limited number of bits. Furthermore, the model does not

acknowledge that the device failure rate will show a spread

among ICs: yield issues arise in industry where customers

expect products to have a fixed quality level. Slightly better

is a split between stable and unstable bits, although one does

not always mention there to be a continuous transition rather

than a strict separation.

1This structure is not limited to memory-based PUFs, such as the SRAM
PUF. Also coating PUFs [39] map to an array. And also the ring oscillator PUF
[37], considering the most usable read-out modes such as neighbor chaining.

3

B. Accurate, heterogeneous

A heterogeneous approach draws the error rate Pe for each

response bit r̃ from a certain probability distribution. We

describe a comprehensible reliability model, first employed

in [36] and later validated with experimental PUF data in

[10], [24]. Error rate Pe is assumed to be independent and

identically distributed (i.i.d.) among response bits. Two hidden

variables are incorporated, representing manufacturing vari-

ability and noise respectively. Their contributions are assumed

to be additive and independent. Furthermore, both variables are

assumed to be normally distributed, as empowered by the cen-

tral limit theorem: each represents a complicated accumulation

of local circuit effects.

Variability component v has mean zero and a certain stan-

dard deviation σV among response bits, as shown in Figure

1(a). Also noise component ñ has mean zero and a certain

standard deviation σN , among an infinite set of evaluations. A

threshold value T implements an analog-to-digital conversion.

Equation 7 represents both the nominal and instantaneous

value of a certain response bit. A non-zero mean of either

v or ñ could be incorporated in T . The bit error rate is given

in Equation 8 and graphically represented by Figure 1(b). The

closer to the threshold, the more often a bit does flip.

0

(a)

f

0 1
N (0, σV) N (0, σN)@ ci

0.5

(b)

0

Pe(v)

T vi v

Fig. 1. Heterogeneous PUF reliability model. The noise PDF is centered
around the variability component vi for a certain challenge ci. The black
shaded area corresponds with Pe.

r =

{
1, if v > T

0, otherwise
, r̃ =

{
1, if v + ñ > T

0, otherwise
. (7)

Pe = P (r̃ 6= r) = FN

(−|v − T |
σN

)
. (8)

C. Entropy

Two variables uniquely quantify the reliability characteris-

tics of a PUF: T/σV and σN /σV . An attacker is typically

assumed to know their values. This is a not unreasonable,

given the many potential clues: dimensioning of the HDA,

measurement of system failure rates, helper data, etc. A non-

zero threshold value T does introduce bias, as defined by

Equation 9. Equation 10 represents the min-entropy. However,

there is some ambiguity: one could define an instantaneous

bias as well, as in Equation 11. Although discrepancies might

not be significant, care is advised when comparing various

work: former and latter bias represent a best-case and worst-

case respectively2.

B = P (r = 1) = 1− FN

(
T

σV

)
. (9)

H∞(r|B) = − log2(max(B, 1−B)). (10)

B̃ = P (r̃ = 1) =
1

σV

∫ ∞

−∞

fN

(
v

σV

)
FN

(
v − T

σN

)
dv.

(11)

D. Model Limitations

Each model has its limitations. We summarize effects which

are not taken into account. However, even for the basic hetero-

geneous model, HDA analysis is still lacking, as demonstrated

later-on.

Environmental perturbations are not taken into account. One

should distinguish between DC and AC variations. The latter

is a form of noise injection and could be incorporated by

increasing σN . DC variations are more complicated, as they

modify the nominal response behavior of the PUF. The error

rate is typically defined with respect to the response at a certain

DC reference environment. Increasing σN might capture this

effect well, as implicitly assumed in [11] and experimentally

validated for various PUFs using temperature and supply

voltage variations. Alternatively, [23] introduces an additional

hidden variable, again additive and normally distributed, with

experimental validation for various PUFs using temperature

variations.

Spatial and functional correlations are not included. How-

ever, correlation among v would imply correlation among

Pe(v) as well. Furthermore, for weak PUFs with a high bit-

content, and hence spanning a large IC area, a single set of

model parameters might be insufficient.

Temporal correlations are not included either. Response bit

samples r̃ are not necessarily independent, if the measurement

interval is short. This effect originates from low-frequency

noise. Or also, low-frequency perturbations of the environ-

ment.

PUF behavior might evolve over time due to transistor-aging

effects (NBTI, PBTI, HCI, etc.) [26]. The reference response

is typically defined at manufacturing time. Therefore, the error

rate is expected to increase gradually.

IV. FRAMEWORK FOR PUF-BASED KEY GENERATION

Figure 2 represents a framework for PUF-based key gener-

ation. We consider a low-cost resource-constrained embedded

device, prone to both physical and protocol attacks, as depicted

in Figure 2(a). Key storage in NVM comprehends two phases,

as shown in Figure 2(b). The first phase is a one-time enroll-

ment in a secure environment after device manufacturing. A

2Assuming v and n to be fully independent over their whole range.

4

unique key k is then defined and programmed in the device.

The second phase is in-the-field deployment, where an attacker

might be waiting.

Embedded

device

i o

Attacker

Physical

Protocol

(a)

NVM Application

k

k

i o
×

(b)

PUF HDA Rep Application

Helper dataHDA Gen
p

rIN

×
r̃IN k

p i o
p

p⋆

(c)

Fig. 2. Framework for PUF-based key generation. Enrollment steps are drawn
dashed. Physical attack pathways are drawn zigzag. One-time interfaces,
destructed after enrollment, are marked by the symbol ×.

PUF technology might alleviate the two drawbacks of

NVM: vulnerability to physical attacks and a high manufac-

turing cost. We assume the PUF to generate a lengthy string

of response bits rIN . For weak PUFs, this corresponds with

an array read-out. For strong PUFs, this would require the

evaluation of a list of challenges, provided by a pseudorandom

number generator starting from a fixed seed for instance. The

same two phases are present again. Helper data p = Gen(rIN)
is generated during enrollment. Gen can be implemented

off-chip to save resources. In-the-field, the IC performs a

reconstruction k = Rep(r̃IN ,p). Helper data can be stored

in insecure (off-chip) NVM, or by another party.

We avoid the regularly used term syndrome to indicate

helper data. This would be confusing since one popular

HDA component actually employs the syndrome of an error-

correcting code, as clarified later-on. We also stress that fuzzy

extractors [12], [13] comprehend only a subset of all HDAs.

Their definition offers two guarantees. First, correctness of re-

construction, given HD(rIN , r̃IN) ≤ t, with t a fixed parameter.

Second, output k is nearly uniform, assuming an attacker to

observe helper data p.

A. Key Requirements

We define five key requirements. They are straightforward

to satisfy for the traditional NVM scenario. For PUFs, this is

very different, implicating the need for a HDA. Most work on

HDAs considers the first two requirements only.

KeyReq1: reproducibility. This is always required. It is

common practice to define a maximum failure rate for the

key reconstruction phase, e.g. PFAIL ≤ 10−6. This is coupled

to a certain manufacturing yield: PUF noisiness and hence also

PFAIL shows a spread among devices.

KeyReq2: uniformly distributed. Keys are assumed to have

maximum entropy. For some applications, entropy loss can

be forgiven, given the use of a longer key. E.g. for the

computation of a HMAC, the application penalty might be

low.

KeyReq3a: PUF independency. One might have to program

a key which does not depend on the PUF. This does not

necessarily imply full control over the key bits: the HDA

might perform additional hashing for instance. Consider e.g.

symmetric key communication between two PUF devices with

the same HDA. Or e.g. the replacement of a malfunctioning

device with preservation of the key.

KeyReq3b: mathematical restrictions. The key might have

to satisfy certain mathematical properties. Consider e.g. the

primality test of RSA.

KeyReq3c: full control. One might need the ability to

program any given key in the device. Consider e.g. symmetric

key communication with a legacy device. This requirement

supersedes KeyReq3a and KeyReq3b.

A trivial solution for KeyReq3 is to encrypt/decrypt appli-

cation keys with a PUF-derived key [33], [40]. The encrypted

application keys are stored in insecure (off-chip) NVM, or

by another party. For KeyReq3b in particular, one could

also use the PUF-derived key as a seed for a deterministic

keygen routine [38]. However, this might consume a lot of

resources. Various HDA components offer intrinsic support

for KeyReq3a, as clarified later-on.

B. Enrolled Reference: Bit Error Rate

Equation 8 describes the error rate of r̃, considering the

nominal value r as a reference. This is the best-case scenario,

as the latter is the most likely value of the former. Therefore,

it is very beneficial to perform a majority vote for the enrolled

response rIN , in order to approximate the nominal value. This

significantly relieves the burden, i.e. implementation overhead,

of Rep. Voting has no impact on the IC footprint, as it can

happen off-chip. Although the enrollment will take more time,

it is a one-time effort only. Equation 12 considers an enrolled

bit rIN for an odd number of votes q. Equation 13 represents

the error rate for r̃IN : the more votes, the better. Most formulas

in this manuscript only depend on the averaged error rate, as

given by Equation 14.

rIN =

{
1, if r̃(1) + r̃(2) + . . .+ r̃(q) > q−1

2

0, otherwise.
(12)

P IN
e = P

(
r̃IN 6= rIN

)
=

{
Pe, if r = rIN

1− Pe, otherwise

with P
(
r = rIN

)
= FB

(
q − 1

2
; q, Pe

)
.

(13)

EV

[
P IN
e

]
=

1

σV

∫ ∞

−∞

fN

(
v

σV

)
P IN
e (v) dv. (14)

C. Public Helper Data: Attack Scenarios

We stick to the widely accepted notion that helper data

should be public. Imposing constraints implicates the need

for secure on-chip NVM, as in Figure 2(b), undermining the

5

potential benefits of PUF technology. An attacker can perform

both read and write operations: the threats are identified as

leakage and manipulation respectively. The latter supersedes

the former: if blindly writing a 0 does not result in a failure,

then the previous value of the bit must have been a 0 too.

Helper data p unavoidably leaks information about the

response rIN . This entropy loss can be compensated at the

cost of more PUF bits, as clarified later. So it is mainly a

matter of accurately quantifying the leakage in order to fully

mitigate this threat. One typically assumes a single exposure

of the helper data. It is not unthinkable however that there is

more leakage when repeatedly exposing helper data for noisy

variants of rIN [5], assuming an on-chip implementation of

Gen. Especially in combination with fault injection attacks

on r̃IN . Preventing this would require some sort of one-time

interface to disable Gen.

Helper data manipulation comprehends two categories of

threats. First, it can facilitate physical attacks on either the

HDA or the application, as exploited in [28]. Second, protocol

attacks can be mounted via the I/O interface of the application,

as exploited in [8], [9], [17]. By observing o, one aims to

test hypotheses regarding the key k for a certain malicious

string p⋆. Below, we distinguish two types of applications, in

terms of vulnerability. Section VIII will provide an overview

of generic countermeasures, not depending on the HDA.

AppWeak: Output o depends exclusively on the key k and

known data, given a series of commands via i. Consider e.g.

an IC which returns a ← Encrypt(k,n) for a user-defined

nonce n. This would allow for IC authentication, by matching

a. An attacker can then distinguish between keys: o1 6= o2

if k1 6= k2. This is relevant, as helper data might allow to

(partly) reprogram the key.

AppStrong: Output o is persistently indifferent if any other

key than k is being processed. Consider e.g. a secure boot

application, decrypting processor code. A failure is bound to

occur if k is not reconstructed correctly. However, observing

failure rates might still be very informative for certain manip-

ulations.

D. Assembling a Helper Data Algorithm

A practical HDA is an assembly of components rather

than a single building block. One can typically distinguish

three consecutive steps3, as represented in Figure 3. First, bit

selection, discarding the least reliable bits. This alleviates the

burden of the second step: error-correction. An interaction of

former steps results in a reasonable failure rate PFAIL, but the

outgoing bits have non-maximum entropy. A third step per-

forms entropy compression. We discuss the steps in backwards

order, describing and analyzing individual proposals.

V. ENTROPY COMPRESSION

The entropy of rIN is non-maximum because of two reasons.

First, correlations and bias of the PUF. Second, leakage of the

HDA. Entropy compression ensures the key k to be nearly

3In various works, PUF-specific helper data is employed, especially for the
ring oscillator PUF and its variants [8]. These constructions are considered to
be out-of-scope here.

Select Correct Compress
r̃IN

r̃OUT

r̃IN

rOUT

rIN

k

P
F
A

IL

10−6

1

H
,

#
b

it
s

128

Fig. 3. Consecutive steps of a HDA. Typical profiles for failure rate PFAIL,
the number of bits and their total entropy.

uniform. This step is also referred to as privacy amplification,

although the latter term might be more applicable to its

original biometric context [22]. The total amount of entropy

is preserved, but the average per bit increases by having

more input than output bits. A hash function is the well-

established solution, as first proposed in [15]. One computes

k = Hash(rIN).
One mostly opts for a lightweight hash function. A popular

choice is SPONGENT, implemented in [17], [18], [27]. A

more bulky hash could be fine as well, especially if the

application requires its implementation anyway. E.g. SHA-

1 has been implemented in [38]4. According to the fuzzy

extractor definition [12], [13], one should opt for a univer-

sal hash function. Helper data then indicates the randomly

selected function instance. The universal Toeplitz hash, which

conveniently maps to an LFSR-based architecture, has been

implemented in [4], [25], [28]. There is no stringent need for

this however, although it would allow for a simple but secure

update of the key k.

VI. ERROR-CORRECTION SCHEMES

Error-correction, also referred to as information reconcilia-

tion, ensures the key to be reproducible. We discuss various

constructions.

A. Temporal Majority Voting

Majority voting, previously discussed for the enrollment,

can be performed during reconstruction as well [2]. However,

then it is not a one-time effort anymore and additional IC-

hardware (counters) is required. Equation 15 represents the

error propagation for an odd number of votes q. Low bit error

rates are successfully suppressed, but high rates remain high,

as shown in Figure 4. Therefore the method is never suffi-

cient by itself: further error-correction or prior bit-selection is

advised.

4More recent cryptanalytic results are mainly for collisions, so SHA-1 could
still be used for entropy compression.

6

POUT
e = 1− FB

(
q − 1

2
; q, P IN

e

)
with q odd. (15)

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
−6

10
−4

10
−2

10
0

P IN
e

P
O

U
T

e

q = 1 q = 3 q = 5 q = 7

Fig. 4. Temporal majority voting.

B. Exhaustive Search

The IC could perform an exhaustive search for the error

pattern [30]. However, this might consume too much resources

to be practical. The overhead also includes a secure check for

correctness, as a stopping criterion.

C. Secure Sketch: Code-offset and Syndrome Construction

Secure sketches, as defined in [12], [13], are the workhorse

of most HDAs. They allow for the construction of a

fuzzy extractor. Despite the rather generic definition, two

constructions dominate the implementation landscape,

as specified below. Both the code-offset and syndrome

construction employ a binary [n, k, t] block code C, with t
the error-correcting capability5. A variant of the code-offset

construction allows to fulfill KeyReq3a [41]. Instead of

outputting the error-corrected response, one could also feed

w into the entropy compression hash. Or alternatively m,

the message corresponding to the codeword, as it would

require less compression. The syndrome construction requires

a linear block code, as it employs the parity check matrix H.

Successful reconstruction is guaranteed for both constructions,

given HW(e) ≤ t.

Gen Rep

co
d

e-
o

ff
se

t

Random w ∈ C w̃← r̃IN ⊕ p = w ⊕ e

p← rOUT ⊕w Error-correct w̃ to w

rOUT ← p⊕w

sy
n

d
ro

m
e p← rOUT ·HT s← r̃IN ·HT ⊕ p = e ·HT

Determine e

rOUT ← r̃IN ⊕ e

The code-offset construction is employed in e.g. [4],

[24], [25], [41]. The syndrome construction is employed

in e.g. [27], [38], [42]. BCH codes in particular are very

popular: they are implemented in [27], [38], [42], [45], [46].

Also repetition codes are rather popular, due to their ease of

implementation [4], [25]. The latter is fundamentally different

from temporal majority voting, although there is some

similarity for the number of errors they can correct. Other

codes have been implemented as well, such as Reed-Muller

[4], [25], [41] and Golay [4], [41].

5The first use of error-correcting codes in a PUF context was in [14], [15].

1) Failure: Equation 16 represents the averaged failure rate

of both secure sketch constructions. The formula holds under

the i.i.d. assumption, as in the heterogeneous reliability model

of Section III. A proof is provided in appendix A. An identical

formula, when omitting both expected value operators, could

be derived easily from the naive homogeneous reliability

model [4]. However, as such one does not acknowledge PFAIL

to show a spread among ICs.

EV [PFAIL] = 1− FB

(
t;n,EV

[
P IN
e

])
. (16)

2) Leakage: Leakage of the code-offset construction (and

its variant) can be understood as a one-time pad imperfection.

The secret rOUT is XORed with a vector which is not fully

random: codeword w has entropy k < n. For the syndrome

construction, helper data can be understood as direct leakage:

each helper bit reveals a linear equation of response bits. As

proven in [12], [13], the min-entropy loss is at most (n− k)
bits for both secure sketch constructions6:

H̃∞((rOUT |BOUT)|p) ≥ H∞(rOUT |BOUT)− (n− k). (17)

Especially for repetition codes REP[n,1,n−1
2], with n odd,

there is an imminent threat: at most 1 bit of min-entropy can

remain. The devastating power of bias has been illustrated in

e.g. [43]. More recently, this warning has been repeated in

[21], although we consider their conclusions as exaggerated.

One seems to ignore that (n− k) is an upper bound only. We

are the first to derive an exact formula for the min-entropy

loss of REP, in the case of bias. Equation 18 is valid for both

secure sketch constructions, as proven in Appendix B. Figure

5 illustrates that Equation 17 is overly pessimistic.

H̃∞((rOUT |BOUT)|p) =

− log2

(
FB

(
n− 1

2
;n,min

(
BOUT , 1−BOUT

)))
.

(18)

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.2

0.4

0.6

0.8

1

n = 1

n = 3

n = 11n = 3n = 11

H̃
∞
((
r

O
U

T
|B

O
U

T
)|p

)

BIN ≈ BOUT

Fig. 5. Min-entropy loss for repetition code REP[11,1,5], REP[3,1,1] and
the degenerate case REP[1,1,0]. Solid curves correspond with Equation 18.
Dashed curves correspond with equation 17. Due to the symmetry around
B = 1

2
, only half of the spectrum is shown.

6The leakage upper bound is more generally applicable than bias only.

7

3) Manipulation: No generic manipulation attacks have

been published so far, but we make a few observations

for the code-offset construction. First, omitting the entropy

compression hash would enable related-key attacks (AppWeak

only). For the original method, one can inject a malicious

helper string p⋆ ← p⊕e, with HW(e) small. This would result

in a related key k⋆ ← k ⊕ e. For the variant, assuming the

conventional usage of linear codes, one can add a codeword:

p⋆ ← p⊕w, resulting in a related key k⋆ ← k⊕w.

Second, one can derive estimates of individual bit error rates

P IN
e . This requires the AppWeak and AppStrong assumption for

the original and variant respectively. The potential threats are

described later in Section VI-F, as this exposure is an integral

part of soft-decision coding. We introduce a synthetic error

for one particular bit: p⋆ ← p ⊕ e, with HW(e) = 1. By

measuring failure rate PFAIL before and after, one can derive

an estimate. A lot of measurements will be required though

to obtain a reasonable accuracy.

D. Codes in Parallel

Very often, it is not feasible to process all response bits

with a single code, due to the decoding complexity [4], [25],

[27]. This is resolved by subdividing r in x non-overlapping

sections of length n, processed independently by a smaller

code. To save area and power, sections are decoded one-by-

one.

1) Failure: Equation 19 is a trivial extension of Equation

16. Introducing sections is not without a penalty. More PUF

bits will be required to obtain the same failure rate and key

length, taking leakage into account. An illustration is provided

in Figure 6.

EV [PFAIL] = 1−
(
FB

(
t;n,EV

[
P IN
e

]))x
. (19)

0.2 0.25 0.3 0.35 0.4
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

[1023,348,87]

[1023,393,79]

[1023,443,73]

2X[511,148,53]

2X[511,166,47]

2X[511,184,45]

2X[511,202,42]

4X[255,55,31]

4X[255,71,29]

4X[255,79,27]

4X[255,91,25]4X[255,91,25]

code rate k/n

E
V
[P

F
A

IL
]

Fig. 6. Failure rate versus code rate for BCH codes, with EV [P
IN
e] = 5%.

Increasing x worsens the trade-off.

2) Leakage: Former leakage results can be applied to each

parallel instance separately.

3) Manipulation: A novel divide-and-conquer manipulation

attack aims at retrieving the section responses one-by-one. The

brute-force effort is drastically reduced: roughly x2k instead of

2xk, when omitting entropy compression. Linear codes, which

are consistently used in literature, are found to be secure.

Less conventional codes, which have not been employed in

literature so far, not necessarily. We provide some examples for

the code-offset construction, under the AppStrong assumption.

Consider a nonlinear code having at least three codewords.

Algorithm 1 can retrieve the section responses. It does not

matter whether 0 ∈ C. Set I is expected to contain a single

element in the end. Depending on the code, false positives

might occur in the occasional case that the sum of three

codewords is again a codeword. This can easily be resolved

with an extension of the algorithm.

Algorithm 1: ATTACK FOR NONLINEAR CODE-OFFSET

Input: List of codewords w1,w2, . . . ,wk′

Helper data p

Output: Response section r

I ← {1, 2, . . . , k′}
for i← 1 to k′ do

j ← mod (i, k′) + 1
Modify helper data: p⋆ ← p⊕wi ⊕wj

if key reconstruction failed then

I ← I\{i, j}
r← p⊕wI

Codes with some sort of non-uniformity for t would be

in danger as well. Consider e.g. the following scenarios. First,

1→ 0 and 0→ 1 errors might not be equivalent [47]. Second,

t might differ per codeword. Third, the error-correcting capa-

bility for each codeword might be correlated with the position

of the errors. In all former cases, an attacker can iterate again

over all potential codewords and test hypotheses via PFAIL.

E. Concatenated Codes

Concatenated codes, in the context of PUFs, have first been

proposed in [4]. They have also been adopted in e.g. [27].

They are particularly useful when EV [P
IN
e] is high. Consider

the concatenation of two block codes: [n2, k2, t2]◦ [n1, k1, t1],
with n1 an integer multiple of k2. A good design is as follows.

Code C2 should be able to correct many errors (a high ratio

t2/n2). Repetition codes in particular are very popular. Code

C1 only needs to correct a few errors (a low ratio t1/n1), but

therefore a high k1 to maintain entropy.

1) Failure: PFAIL depends on the decoder characteristics

of C2. We distinguish between repetition codes and all other

codes, as represented by Equation 20 and 21 respectively. As

before, they are the more accurate equivalent of a similar

formula in [4]. We assume the general case of x concatenated

codes in parallel. For repetition codes, the decoding behavior

is trivial: if the number of errors exceeds t2, a single error

will propagate always. For other codes, we assume that half

of the outgoing bits is expected to flip if t2 is exceeded.

EV [PFAIL] = 1−
(
FB

(
t1;n1, 1− FB

(
t2;n2, EV

[
P IN
e

])))x
.

(20)

EV [PFAIL] = 1−
(
FB

(
t1;n1,

1− FB

(
t2;n2, EV

[
P IN
e

])

2

))x

.

(21)

8

2) Leakage: Leakage formulas can again be applied inde-

pendently. The outgoing entropy of each parallel instance can

never exceed k1.

3) Manipulation: Divide-and-conquer manipulation attacks

are again a threat. There is inherently a parallel structure for

C2. And typically x > 1, endangering C1 too.

F. Soft-decision

Soft-decision decoding, in the context of PUFs, has been

introduced conceptually in [24], with a subsequent implemen-

tation in [25]. The error-correcting capabilities improve with

respect to traditional hard-decision decoding. Less PUF bits

are required for the same failure rate and key length, taking

leakage into account. The original proposal comprehends a

collaboration with the code-offset method, hereby exposing

all bit error rates P IN
e as public helper data7.

Unfortunately, the decoding effort increases significantly.

Soft-Decision Maximum-Likelihood (SDML) decoding offers

the best performance, by iterating over all codewords and

computing the likelihood each time. The computational com-

plexity is hence exponential with the code dimension k. There

are faster procedures for some codes at the cost of reduced

performance. Consider Generalized Multiple Concatenated

(GMC) codes: one exploits e.g. that a large Reed-Muller code

can be split recursively in two smaller Reed-Muller codes.

1) Leakage: Exposing a vector PIN
e of bit error rates is

stated not to result in additional min-entropy loss [24]. A

proof of Equation 22 has been derived for the heterogeneous

reliability model of Section III-B. Before arguing that the

leakage threat has been underestimated, we confirm that the

proof by itself is correct and provide some additional insights.

H̃∞((rOUT |BOUT)|PIN
e) = H∞(rOUT |BOUT). (22)

Exposure of Pe allows for a twofold ‘inversion’ of the curve

in Figure 1(b). This arms an attacker with an individual bias

BOUT
i for each bit, as represented by equation 23, in contrast to

an averaged bias BOUT . We observe that EV [B
OUT
i] = BOUT , a

fact which is implicitly embedded in the proof in [24]. We also

observe that Equation does 22 not extend to Shannon-entropy:

the average-case brute-force attack is accelerated.

BOUT
i =

fN

(
T+|vi−T |

σV

)

fN

(
T−|vi−T |

σV

)
+ fN

(
T+|vi−T |

σV

)

=
1

1 + exp
(

2T |vi−T |
(σV)2

) .
(23)

Unfortunately, one does not incorporate the interaction with

the code-offset method. Exposure of PIN
e might increase the

leakage of p, although the former does not leak by itself, as

represented by Equation 24. We demonstrate this for repetition

codes in particular in Figure 7.

7A variation has been proposed in [41]. Several PUF bits are clustered and
averaged to form soft-decision data. Measurement of Pe and its accompanying
exposure as helper data is not required, at the cost of performance loss.

H̃∞((rOUT |BOUT)|(p,PIN
e)) ≤ H̃∞((rOUT |BOUT)|p). (24)

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.2

0.4

0.6

0.8

1

H̃
∞

H̃∞((rOUT |BOUT)|(p,PIN
e))

H̃∞((rOUT |BOUT)|p)
H∞(rOUT |BOUT)

BIN ≈ BOUT

Fig. 7. Soft-decision leakage for a [3, 1, 1] repetition code. Solid lines
represent Equations 18 and 38. Dots represent independent simulation results
to verify the correctness of the latter.

Finally, exposure of PIN
e can facilitate modeling attacks,

assuming the use of a strong PUF. Reliability data has been

demonstrated to be a modeling asset for easy targets such as

the arbiter PUF [10], [11].

2) Manipulation: We are the first to warn against divide-

and-conquer manipulation attacks, although their relevance

would depend on implementation details. Due to the decoding

complexity, there is strong tendency for x > 1, even more

than for its hard-decision counterpart. We limit ourselves

to a conceptual illustration in Figure 8. We assume SDML

decoding with k > 1 and the AppStrong scenario. For ease of

understanding, assume that the response bits to be perfectly

reproducible, although extension to a more realistic setting is

not that hard. By setting P IN
e ← 1

2 , bit r does not contribute

to the likelihood computation anymore. By observing failures

for a few PIN
e patterns, one might be able to discard all-

but-one codewords. Note that also repetition codes (k = 1)

might be vulnerable, by setting Pe ←
(
1
2

1
2 . . . 1

2

)
: some

implementations might then select the first (or last/second)

codeword always.

G. Convolutional Codes

The popularity of block codes does not exclude other possi-

bilities. The use of convolutional codes has been proposed in

[17], [18]. They implement a hard-decision Viterbi algorithm.

H. Substring Matching

An alternative for error-correcting codes has been proposed

in [31], [32]. We limit ourselves to the basic idea only.

Consider a lengthy string of PUF bits r. During enrollment, a

shorter substring rSUB is selected at random, possibly consider-

ing r to be circular, and exposed as public helper data. Former

selection procedure is repeated for several strings: substring

indices are combined to obtain a key k of sufficient length.

During reconstruction, substrings are shifted along newly

generated strings r̃. The correct indices are retrieved via their

low Hamming distance. The scheme is able to fulfill KeyReq3a

and possibly also KeyReq3b and KeyReq3c if substring indices

are simply concatenated to form the key.

9

0 0 0 0 0 0 0
0 0 0 1 0 1 1
0 0 1 0 1 1 0
0 0 1 1 1 0 1
0 1 0 1 1 0 0
0 1 0 0 1 1 1
0 1 1 1 0 1 0
0 1 1 0 0 0 1
1 0 1 1 0 0 0
1 0 1 0 0 1 1
1 0 0 1 1 1 0
1 0 0 0 1 0 1
1 1 1 0 1 0 0
1 1 1 1 1 1 1
1 1 0 0 0 1 0
1 1 0 1 0 0 1

XXXX

XXX×
XX×X
XX××
X×XX

X×X×
X××X
X×××
×XXX

×XX×
×X×X
×X××
××XX

××X×
×××X
××××

1
2 0

1
2

1
2 0

1
2 0

0
1
2

1
2

1
2

1
2 0 0

0 0
1
2

1
2

1
2

1
2 0

0 0
1
2

1
2 0

1
2

1
2

w FAIL

PIN
e

Fig. 8. Soft-decision manipulation attack, illustrated for a [7,4,1] code.
We assume SDML decoding, deterministically iterating over all codewords
w, top-to-bottom as indicated by the arrow. We also assume that the first
codeword is selected in case of a likelihood tie.

1) Failure: Failure behavior has been studied in [9], so

we limit ourselves to qualitative insights. First, the longer the

substrings (while upscaling r as well to maintain its number

of indices), the lower PFAIL: the gap in Hamming distance

between correct and incorrect indices relatively increases.

Unfortunately, this is accompanied with a direct efficiency

overhead. Second, the shorter r (while maintaining the length

of rSUB), the lower PFAIL: there is less competition between

indices then. However, more substrings are required to obtain

a key of equal length.

2) Leakage: The leakage concept is slightly different that

for error-correcting codes. Before, we examined the direct

entropy loss of a secret response r. The challenge list 〈c〉
is known: PUF correlations would amplify the helper data

leakage, although this effect has not been quantified in this

and previous work. Now, one should examine to which extent

an attacker can retrieve the link between a known list 〈c〉
and a non-secret substring of the response rSUB. For a perfect

non-correlated PUF, the leakage would be zero, unlike before.

However, correlations are by no means hidden and hence easy-

to-exploit: there is imminent danger for the most vulnerable

strong PUFs.

3) Manipulation: Helper data manipulation attacks have

been applied successfully in [9], working under either the

AppStrong or AppWeak assumption. They gradually append

bits to the substrings rSUB, in terms of exposure. The danger

is twofold. First, exploitation of PUF correlations is facilitated.

Second, if r is non-circular, substring indices can be retrieved

directly, independent of the PUF.

VII. BIT SELECTION SCHEMES

Bit selection is the crude (or lightweight) version of soft-

decision coding: the least reliable bits are simply discarded.

This lowers the burden of the subsequent error-correction step.

There is a good symbiosis with temporal majority voting: only

low bit error rates sustain selection, which can be dealt with

effectively [2]. For high loss ratios, it might even be possible to

omit the error-correction step [3]. The overhead of bit selection

greatly differs for weak and strong PUFs. The former case is

more problematic: there is a direct cell/area loss. For strong

PUFs, the challenge generator only needs to make a few skips.

We are the first to disprove the intuitive assumption that

bit selection does not leak. We demonstrate there to be an

amplification of bias. Furthermore, we derive formulas de-

scribing the drop in EV [Pe], given the heterogeneous reliability

model of Section III. Previously derived formulas for the error-

correction step are compatible. We now discuss the proposals

one-by-one and compare them afterwards.

A. Global Thresholding

Imposing a global threshold for P IN
e is the most intuitive

idea. This has first been proposed in [36], with employment

later-on in [2], [3], [17], [19], [37].

1) Failure: We discard all bits with |v−T | ≤ δv. Equation

25 represents the ratio of discarded bits. Equation 26 is the

averaged bit error rate, hereby embedding Equation 13.

Loss =
1

σV

∫ T+δv

T−δv

fN

(
v

σV

)
dv. (25)

EV

[
POUT
e

]
=

1

σV(1− Loss)

(∫ T−δv

−∞

fN

(
v

σV

)

P IN
e (v) dv +

∫ ∞

T+δv

fN

(
v

σV

)
P IN
e (v) dv

)
.

(26)

2) Leakage: Equation 27 represent the bias of the outgoing

bits. We later illustrate graphically that there is an entropy loss:

|BOUT − 1
2 | > |B − 1

2 |.

BOUT =
1− FN

(
T+δv
σV

)

1− FN

(
T+δv
σV

)
+ FN

(
T−δv
σV

) . (27)

3) Manipulation: The scheme is highly vulnerable to helper

data manipulation, even under the AppStrong assumption.

Assume each selected bit to have discarded neighbors to its

left and right. By shifting a selected index and observing

the failure rate P FAIL, one can check whether bits are equal.

Repeated exploitation of this principle can reveal all response

bits, except for one degree of freedom. The former has been

described in [17], although one does not recognize there to be a

problem if Loss is small: clusters of selected bits counteract the

attack. However, in combination with other HDA components,

or under the AppWeak assumption, it might be resolvable.

4) Format: The helper data format comprehends a trade-

off between its size and its on-chip interpretation effort. We

argue that one should make a choice based on Loss. In [3],

one assigns a dedicated helper bit to each response bit. This is

efficient if Loss ≈ 50%. In [17], a list of helper data indices

represents the relative distances between consecutive selected

10

bits, which if efficient if Loss is high. If Loss is low, one can

represent distances between consecutive discarded bits instead.

However, representing distances with a fixed number of bits

is not necessarily efficient. As a resolution, the same authors

later proposed a run-length encoding scheme in [18].

B. Local Thresholding: 1-out-of-n

A local equivalent of global thresholding has been proposed

in [37]. Response rIN is subdivided in non-overlapping sec-

tions of length n. For each section, only the most reliable bit

is retained. Equation 28 represents the ratio of discarded bits.

A potential decrease in helper data size would be the main

advantage with respect to global thresholding.

Loss =
n− 1

n
. (28)

1) Failure: The failure behavior can be analyzed via or-

der statistics [1]. We reorder section bits according to their

variability component: v(1) < v(2) < . . . < v(n). Equation 29

represents the joint PDF of v(1) and v(n), assuming the non-

degenerate case n > 1. Equation 30 represents the averaged

bit error rate, hereby embedding Equation 13.

f(v(1), v(n)) =
n(n− 1)

(σV)2
fN

(
v(1)

σV

)
fN

(
v(n)

σV

)

(
FN

(
v(n)

σV

)
− FN

(
v(1)

σV

))n−2

with v(1) < v(n).

(29)

EV

[
POUT
e

]
=

∫ ∞

−∞

∫ T−|v(n)−T |

−∞

f(v(1), v(n))P
IN
e (v(1)) dv(1)dv(n)

+

∫ ∞

−∞

∫ ∞

T+|v(1)−T |

f(v(1), v(n))P
IN
e (v(n)) dv(n)dv(1).

(30)

2) Leakage: Equation 31 represent the bias of the outgoing

bits. We will again demonstrate graphically that there is a bias

amplification and hence entropy loss.

BOUT =

∫ ∞

T

∫ v(n)

2T−v(n)

f(v(1), v(n)) dv(1)dv(n) (31)

3) Manipulation: As for global thresholding, bit equalities

can be extracted, although limited within a section. In case of

bias (B 6= 1
2), there is an additional entropy loss.

4) Extension: A generalization of the scheme has been

proposed in [37] as well. One selects k out of n bits, with

k ∈ [1, n]. With n equal to the length of rIN , there would be an

equivalency with global thresholding. Also, the manipulation

threat increases for the non-degenerate case k > 1.

C. Local Thresholding: Index-Based Syndrome

A variation on 1-out-of-n selection has been proposed

in [43], with employment in [46] later-on. The index-based

syndrome (IBS) scheme is able to satisfy KeyReq3a. The

most reliable 0 or 1 within each segment is selected, with

equal probability. Or more accurately: the selected bit either

minimizes or maximizes (v − T), as the target value is not

necessarily available. Equation 28 still represents the ratio of

discarded bits.

1) Failure: Equation 32 represents the averaged bit error

rate, again embedding Equation 13 hereby.

EV

[
POUT
e

]
=

1

2

∫ ∞

−∞

f
(
v(1)
)
P IN
e (v(1)) dv(1)

+
1

2

∫ ∞

−∞

f
(
v(n)

)
P IN
e (v(n)) dv(n) with

f
(
v(n)

)
=

n

σV
fN

(
v(n)

σV

)(
FN

(
v(n)

σV

))n−1

and

f
(
v(1)
)
=

n

σV
fN

(
v(1)

σV

)(
1− FN

(
v(1)

σV

))n−1

.

(32)

2) Leakage: As proven in [43], there is no leakage under

the i.i.d. assumption. Stated otherwise: BOUT = 1/2.

3) Manipulation: A similar manipulation threat as for 1-

out-of-n selection is present.

4) Extension: An integration with local error-correction has

been proposed in [16], referred to as C-IBS. The trade-off

between EV [P
OUT
e] and Loss is improved somewhat, at the cost

of increased implementation complexity. One selects a random

codeword within each segment: either
(
0 1 . . . 0

)
or(

1 0 . . . 1
)

8, both having an odd number k of alternating

bits. Each codeword is decoded to a single bit: Equation 28

still represents the ratio of discarded bits. Up to (k − 1)/2
bit errors can be corrected, without introducing helper data.

Again, there is no leakage: BOUT = 1/2.

D. Comparison

Global thresholding offers the best-trade-off between

EV [P
OUT
e] and Loss, as shown in Figure 9. The 1-out-of-

n selection scheme is significantly worse, although the k-

out-of-n extension can lessen the gap. IBS has the lowest

performance, although C-IBS can offer some improvement.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10
−6

10
−4

10
−2

10
0

IBS

1-out-of-n
global

Loss

E
V

[P
O

U
T

e

]

Fig. 9. Bit selection: trade-off between EV [Pe] and Loss. The ingoing bits
obey σN /σV = 0.2 and T = 0. We assume the enrollment majority vote
to be ideal (q = ∞). All formulas are represented with solid lines, although
only global thresholding is of continuous nature. Dots represent independent
simulation results, to confirm the correctness of the formulas. For C-IBS, we
only have simulation results (codewords of length 3).

For leakage, the order of preference is reversed. IBS and

C-IBS do not amplify bias, as shown in Figure 10. Rather the

opposite: they remove all bias. For the two other schemes: the

8Choosing other codewords would lower the performance.

11

larger Loss, the more bias amplification. Global thresholding

amplifies bias the most.

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.2

0.4

0.6

0.8

1

(C-)IBS

1-out-of-n
global
(0.9)

1-out-of-n
global

(0.5)

B

H
∞
(r̃

O
U

T
)

Fig. 10. Bit selection: leakage. The ingoing bits obey σN /σV = 0.2.
Between brackets, Loss is indicated. Dots represent independent simulation
results, to confirm the correctness of the formulas.

VIII. DETECT MANIPULATION AND NON-MALICIOUS

FAILURES

The IC can employ a scheme to detect helper data ma-

nipulation and abort its operation prematurely. Four schemes

are represented in Figure 11. Minor variations can be applied

to all, but our main purpose here is to provide an overview

of the design flavors and associated issues. All require a

cryptographic function, but resources can be shared with the

application or the entropy compression step. There is a thin

border with schemes for detecting non-malicious failures, due

to PUF noisiness. One can then either warn the application

that the key is invalid or launch a retrial.

HDA

Hash

=

Hash(p,k)p(a)

IC

r̃ k
HDA

Hash

=

Hash(k)p(b)

IC

r̃ k

HDA

NVM

Verif

Sign(kS ,p)p(c)

IC

r̃ k

kP

HDA

Hash

⊕

p(d)

IC

r̃ k

Fig. 11. Helper data manipulation detection.

The scheme in Figure 11(a) stores Hash(k,p) as public

helper data [6]. It offers full protection against attacks via

the application interface: any modification to p will be de-

tected with extremely high probability. Instead of the key k,

one can also use the error-corrected response r as a secret

hash input. The latter protects the entropy compression hash

against manipulation-enhanced physical attacks. The former

does not offer any protection. Both offer full failure detection:

a modification in k is almost certainly detected.

Figure 11(b) represent a simplification of the former

scheme: only a hash of the key is stored [20], [31]. Unfor-

tunately, there is no protection against application interface

attacks which rely on the AppStrong assumption. Note that sev-

eral HDAs have already been attacked under this assumption,

as summarized in this manuscript. These attacks only require

the measurement of failure probabilities for the original key (it

does not matter whether the observable failure is generated by

either the application or the detection scheme). Furthermore,

no protection against manipulation-enhanced physical attacks

is offered. There is full failure detection though.

Figure 11(c): One can also use a digital signature [39].

Although public key cryptography is perhaps not so very

lightweight. One assumes tamper-proof storage of the public

key (no manipulation), partly opposing the advantage of PUF

technology. One can employ one-time programmable NVM

as well as hard-wired read-only NVM, but the latter would

imply the same key pair for many ICs: there are large-scale

consequences then in case of compromise. During enrollment,

one signs p with the private key. There is full protection

against manipulation-enhanced physical attacks. In the original

proposal, there is a second signature for the key k too. This

would provide full failure detection.

Figure 11(d): In [17], one employs a scheme where the

key depends on the helper data. There are no strong security

guarantees under the AppWeak assumption. E.g. related-key

attacks on the application. A minimum of helper data seems

to be the main benefit. We note that the XOR could have been

omitted by hashing p together with HDA output: this would

consume less resources and perhaps offer better security (no

related-key attacks). There is no detection of failures.

IX. OPEN PROBLEMS

We identify various topics with little coverage in open

research so far. They are suggested as further work.

A. Global Optimization

HDA design comprehends method exploration as well as

configuring parameters. Experience and insights of the de-

signer seem to determine global decision making. We argue

that computer-aided optimization might lead to better results.

This implicates the automated evaluation of leakage, failure

rates, bit loss, implementation complexity, etc. for a given

design instantiation. Analytic formulas as well as simulations

can be employed.

B. Secure Testing

For industrial applications, secure post-manufacturing test-

ing of a HDA is a must. The traditional trade-off between

testability and security still applies. However, the ability to

correct errors is a major complication for obtaining a high

12

fault coverage. A built-in self-test for a conventional fuzzy

extractor has been designed in [7]. HDA components perform

part of the testing functionality, to minimize overhead.

C. Physical Attacks

HDAs are not necessarily secure against physical attacks.

Side-channel analysis has been applied successfully to a code-

offset secure sketch and Toeplitz hash function in [28]. A

masking countermeasure for the code-offset secure sketch,

taking benefit of code linearity, has been presented in [29]. One

mixes a random codeword into the HDA input, by performing

p ⊕ wRAND, with compensation later-on. The generation of

wRAND requires a secure true random number generator in

addition to message encoding. Extension to Toeplitz hashing

is possible due to internal linearity.

D. Reverse Concept

For certain applications, an IC might communicate with

a resource-rich server, using symmetric key cryptography. A

reverse fuzzy extractor [42] reduces the workload of the IC

by shifting Rep to the server and implementing Gen on the

IC instead, as the latter consumes less resources. Although

originally proposed as part of an authentication protocol, it

directly applies to key generation. The IC could generate a

non-deterministic key k̃ ← Hash(r̃) and send helper data to

the server for reconstruction. However, repeated helper data

exposure might increase the leakage threat. Therefore one

recommends the syndrome secure sketch, as the n−k leakage

upper bound is provably still valid [5]. Extension to other HDA

methods is to be studied.

E. Correlations

As in prior work, correlations are not taken into account

properly. Quantifying correlations is hard and PUF-dependent.

There is work in the construction of integrated PUF models,

capturing bit error rates, correlations and possibly other ef-

fects. Furthermore, leakage of HDA components should be

reevaluated: correlations are expected to increase the min-

entropy loss. Finally, data-dependencies are not taken into

account when correcting errors: there is margin to improve

performance [35].

F. Leakage Reduction

Although leakage can be compensated, one might still aim

to reduce it. We question the practical value of two rather

unusual approaches.

In [45], the leakage of two HDAs is evaluated: the code-

offset construction and IBS. Their calculation assumes an

attacker to have knowledge of r. Therefore, discarded IBS

bits are regarded as leakage too, although helper data does

not reveal their value. We argue that leakage gets irrelevant

if cause and effect are reversed. A supposedly more secure

version of IBS is proposed: candidate bits are discarded with

a fixed probability (e.g. 50%) before applying the standard

procedure based on reliability and nominal value. Under the

conventional attacker model as described in Section IV, this

would be an efficiency burden only, not improving security.

In [34], one spams the attacker with fake helper data

instances as a form of obfuscation. These instances have the

same probability distribution as the genuine one and are all

sorted according to a random permutation. The IC is able to

distinguish fake and genuine via reconstruction trial-and-error.

Manipulation detection is crucial: otherwise an attacker can do

the same, by modifying an instance and observing PFAIL. The

method might be relevant if the total entropy of the PUF is

hardly sufficient to generate a secret key: the loss of valuable

entropy is reduced. However, a typical PUF is not bothered by

this limitation. The scheme is actually very costly compared to

an increase in the number of PUF bits. The workload for the

resource-constrained IC and the resource-rich attacker scales

roughly the same in terms of the number of fake instances.

X. CONCLUSION

We provided a first in-depth overview on HDAs for PUF-

based key generation, comprehending a decade of research.

Furthermore, our analysis revealed various new threats re-

garding helper data leakage and manipulation. Finally, we

identified hiatuses in current research, offering a foundation

for future work.

ACKNOWLEDGEMENT

The authors greatly appreciate the support received. The

European Commission through the ICT programme under

contract FP7-ICT-2011-317930 HINT. The Research Council

of KU Leuven: GOA TENSE (GOA/11/007), the Flemish

Government through FWO G.0550.12N and the Hercules

Foundation AKUL/11/19. The national major development

program for fundamental research of China (973 Plan) under

grant no. 2013CB338004. J. Delvaux is funded by IWT-

Flanders grant no. 121552.

APPENDIX A

PROOF OF FAILURE RATE USING SECURE SKETCH

We derive a proof for Equation 16, holding under the i.i.d.

reliability assumption. All incoming bits will then obey a

certain PDF f(P IN
e). We make use of the Poisson-binomial dis-

tribution, as defined by Equation 33. This generalizes the bino-

mial distribution, with the success probabilities p1, p2, . . . , pn
of each trial not necessarily equal.

FP (k′; 〈p1, p2, . . . , pn〉) =
k′∑

k=0

fP (k; 〈p1, p2, . . . , pn〉)

=

k′∑

k=0

1

k!

dk
n∏

i=1

(1− pi(1− t))

dtk
|t=0.

(33)

13

EV [PFAIL] = 1−
∫ 1

0

∫ 1

0

. . .

∫ 1

0

(
n∏

i=1

f(Pei)

)

FP (t; 〈Pe1, . . . , Pen〉) dPe1dPe2 . . . dPen = 1−

FP

(
t; 〈
∫ 1

0

f(Pe1)dPe1, . . . ,

∫ 1

0

f(Pen)dPen〉
)

= 1− FP (t; 〈E[Pe], . . . ,E[Pe]〉)
= 1− FB (t;n,E[Pe])

(34)

APPENDIX B

PROOF OF REP LEAKAGE USING SECURE SKETCH

We derive a proof for Equation 18. First, we apply definition

6 and simplify using Bayes’s theorem:

H̃∞((rOUT |BOUT)|p)

= − log2

(
Ep

[
max
rOUT

P
(
(rOUT |BOUT)|p

)])

= − log2

(
∑

p

max
rOUT

P
(
rOUT |BOUT

)
P
(
p|rOUT

)
) (35)

For the code-offset construction, we assume the enrollment

to be ideal: P(w|rOUT) = 1/2. We assume the following

codewords:
(
0 0 . . . 0

)
and

(
1 1 . . . 1

)
. The leakage

does not depend on this, but it makes the derivation more

comprehensible. We elaborate Equation 35 as shown below,

introducing the variable ∆ = HW(p).

= − log2

(
n∑

∆=0

(
n

∆

)
1

2
max

((
BOUT

)∆
(1−BOUT)n−∆,

(
1−BOUT

)∆(
BOUT

)n−∆
))

= − log2

(
FB

(
n− 1

2
;n,min(BOUT , 1−BOUT)

))

(36)

For the syndrome construction, the enrollment is fully

deterministic: maxP(p|rOUT) = 1. We assume the following

helper data: p =
(
r1 ⊕ r2 r1 ⊕ r3 . . . r1 ⊕ rn

)
. Again,

the leakage does not depends on this, but it makes the

derivation more comprehensible. We elaborate Equation 35

as shown below, again introducing the variable ∆, and obtain

an equality with Equation 36.

= − log2

(
n−1∑

∆=0

(
n− 1

∆

)
max

((
BOUT

)∆
(1−BOUT)n−∆,

(
1−BOUT

)∆(
BOUT

)n−∆
))

(37)

APPENDIX C

REP LEAKAGE USING SOFT-DECISION CODING

Equation 38 represents the min-entropy of outgoing soft-

decision bits when including joint leakage of p and Pe.

Unfortunately, the expression does not simplify well.

H̃∞((rOUT |BOUT)|(p,Pe))

= − log2

(
Ep,Pe

[
max
rOUT

P
(
(rOUT |BOUT)|(p,Pe)

)])

= − log2

(
1

(σV)n

n∑

i=0

(
n

i

)∫ ∞

T

fN

(
v1
σV

)
. . .

∫ ∞

T

fN

(
vi
σV

)∫ T

−∞

fN

(
vi+1

σV

)
. . .

∫ T

−∞

fN

(
vn
σV

)

max(BOUT
1 . . . BOUT

i (1−BOUT
i+1) . . . (1−BOUT

n),

(1−BOUT
1) . . . (1−BOUT

i)BOUT
i+1 . . . BOUT

n)/

(BOUT
1 . . . BOUT

i (1−BOUT
i+1) . . . (1−BOUT

n)+

(1−BOUT
1) . . . (1−BOUT

i)BOUT
i+1 . . . BOUT

n)

dvndvn−1 . . . dv2dv1

)

(38)

REFERENCES

[1] M. Ahsanullah, V.B. Nevzorov and M. Shakil: “An Introduction to Order
Statistics,” in Atlantis Studies in Probability and Statistics, vol. 3, Atlantis
Press, 2013.

[2] F. Armknecht, R. Maes, A.-R. Sadeghi, B. Sunar and P. Tuyls: “Memory
Leakage-Resilient Encryption Based on Physically Unclonable Func-
tions,” in ASIACRYPT 2009, LNCS vol. 5912, pp. 685–702, Dec. 2009.

[3] M. Bhargava and K. Mai: “An Efficient Reliable PUF-Based Crypto-
graphic Key Generator in 65nm CMOS,” in Design, Automation & Test

in Europe, DATE 2014, 6 pp., Mar. 2014.

[4] C. Bösch, J. Guajardo, A.-R. Sadeghi, J. Shokrollahi and P. Tuyls:
“Efficient Helper Data Key Extractor on FPGAs,” in Cryptographic

Hardware and Embedded Systems, CHES 2008, LNCS vol. 5154, pp.
181–197, Aug. 2008.

[5] X. Boyen: “Reusable cryptographic fuzzy extractors,” in ACM Conference

on Computer and Communications Security, CCS 2004, pp. 82–91, Oct.
2004.

[6] X. Boyen, Y. Dodis, J. Katz, R. Ostrovsky and A. Smith: “Secure Remote
Authentication Using Biometric Data,” in EUROCRYPT 2005, LNCS vol.
3494, pp. 147–163, May 2005.

[7] M. Cortez, G. Roelofs, S. Hamdioui and G. di Natale: “Testing PUF-
Based Secure Key Storage Circuits,” in Design, Automation & Test in

Europe, DATE 2014, 6 pp., Mar. 2014.

[8] J. Delvaux and I. Verbauwhede: “Key-recovery Attacks on Various RO
PUF Constructions via Helper Data Manipulation,” in Design, Automation

& Test in Europe, DATE 2014, 6 pp., Mar. 2014.

[9] J. Delvaux and I. Verbauwhede: “Attacking PUF-Based Pattern Matching
Key Generators via Helper Data Manipulation,” in CT-RSA 2014, LNCS
vol. 8366, pp. 106–131, Feb. 2014.

[10] J. Delvaux and I. Verbauwhede: “Side Channel Modeling Attacks on
65nm Arbiter PUFs Exploiting CMOS Device Noise,” in Int. Symposium

on Hardware-Oriented Security and Trust, HOST 2013, pp. 137–142,
Jun. 2013.

[11] J. Delvaux and I. Verbauwhede: “Fault Injection Modeling Attacks on
65nm Arbiter and RO Sum PUFs via Environmental Changes,” in IEEE

Transactions on Circuits and Systems I: Regular Papers, vol. 61, no. 6,
pp. 1701–1713, Jun. 2014.

[12] Y. Dodis, L. Reyzin and A. Smith: “Fuzzy Extractors: How to Generate
Strong Keys from Biometrics and Other Noisy Data,” in EUROCRYPT
2004, LNCS vol. 3027, pp. 523–540, May 2004.

[13] Y. Dodis, R. Ostrovsky, L. Reyzin and A. Smith: “Fuzzy Extractors:
How to Generate Strong Keys from Biometrics and Other Noisy Data,”
in SIAM J. Comput., vol. 38, no. 1, pp. 97–139, Mar. 2008.

14

[14] B. Gassend: “Physical Random Functions,” Master’s Thesis, Chapter 4,
MIT, Feb. 2003.

[15] B. Gassend, D.E. Clarke, M. van Dijk and S. Devadas: “Silicon physical
random functions,” in ACM Conference on Computer and Communica-

tions Security, CCS 2002, pp. 148–160, Nov. 2002.
[16] M. Hiller, D. Merli, F. Stumpf and G. Sigl: “Complementary IBS:

Application specific error correction for PUFs,” in Int. Symposium on

Hardware-Oriented Security and Trust, HOST 2012, pp. 1–6, Jun. 2012.
[17] M. Hiller, M. Weiner, L.R. Lima, M. Birkner and G. Sigl: “Breaking

through fixed PUF block limitations with differential sequence coding
and convolutional codes,” in: Int. Workshop on Trustworthy Embedded

Devices, TrustED 2013, pp., Nov. 2013.
[18] M. Hiller and G. Sigl: “Increasing the Efficiency of Syndrome Coding

for PUFs with Helper Data Compression,” in Design, Automation & Test

in Europe, DATE 2014, 6 pp., Mar. 2014.
[19] M. Hofer and C. Böhm: “An Alternative to Error Correction for SRAM-

Like PUFs,” in Cryptographic Hardware and Embedded Systems, CHES
2010, LNCS vol. 6225, pp. 335–350, Aug. 2010.

[20] T. Kevenaar, G.-J. Schrijen, A. Akkermans, M. Damstra, P. Tuyls and
M. van der Veen: “Robust and Secure Biometrics: Some Application
Examples,” in Information Security Solutions Europe, ISSE 2006, pp.
196–203, Oct. 2006.

[21] P. Koeberl, J. Li, A. Rajan and W. Wu: “Entropy Loss in PUF-based Key
Generation Schemes: The Repetition Code Pitfall,” in Int. Symposium on

Hardware-Oriented Security and Trust, HOST 2014, 6 pp., May 2014.
[22] J.-P. Linnartz and P. Tuyls: “New Shielding Functions to Enhance

Privacy and Prevent Misuse of Biometric Templates,” in Audio- and

Video-Based Biometric Person Authentication, AVBPA 2003, LNCS vol.
2688, pp. 393–402, Jun. 2003.

[23] R. Maes: “An Accurate Probabilistic Reliability Model for Silicon
PUFs,” in Cryptographic Hardware and Embedded Systems, CHES 2013,
LNCS vol. 8086, pp. 73–89, Aug. 2013.

[24] R. Maes, P. Tuyls and I. Verbauwhede: “A soft decision helper data
algorithm for SRAM PUFs,” in Int. Symposium on Information Theory,
ISIT 2009, pp. 2101-2105, Jun. 2009.

[25] R. Maes, P. Tuyls and I. Verbauwhede: “Low-Overhead Implementation
of a Soft Decision Helper Data Algorithm for SRAM PUFs,” in Crypto-

graphic Hardware and Embedded Systems, CHES 2009, LNCS vol. 5747,
pp. 332–347, Sep. 2009.

[26] R. Maes and V. van der Leest “Countering the effects of silicon aging
on SRAM PUFs,” in Int. Symposium on Hardware-Oriented Security and

Trust, HOST 2014, pp. 148–153, May 2014.
[27] R. Maes, A. Van Herrewege and I. Verbauwhede: “PUFKY: A Fully

Functional PUF-Based Cryptographic Key Generator,” in Cryptographic

Hardware and Embedded Systems, CHES 2012, LNCS vol. 7428, pp.
302–319, Sep. 2012.

[28] D. Merli, D. Schuster, F. Stumpf and G. Sigl: “Side-Channel Analysis of
PUFs and Fuzzy Extractors,” in Int. Conference on Trust and Trustworthy

Computing, TRUST 2011, LNCS vol. 6740, pp. 33–47, Jun. 2011.
[29] D. Merli, F. Stumpf and G. Sigl: “Protecting PUF Error Correction by

Codeword Masking,” in Cryptology ePrint Archive, No. 2013/334, IACR,
16 pp.

[30] E. Öztürk, G. Hammouri and B. Sunar: “Towards Robust Low Cost
Authentication for Pervasive Devices,” in Int. Conference on Pervasive

Computing and Communications, PerCom 2008, pp. 170–178, Mar. 2008.
[31] Z. Paral and S. Devadas, “Reliable and efficient PUF-based key gener-

ation using pattern matching,” in Int. Symposium on Hardware-Oriented

Security and Trust, HOST 2011, pp. 128–133, Jun. 2011.
[32] Z. Paral, S. Devadas and Verayo Inc.: “Reliable PUF value generation

by pattern matching,” Patent WO 2012099657, Jul. 2012.
[33] D. Schellekens: “Design and Analysis of Trusted Computing Platforms,”

PhD thesis, KU Leuven, 213+22 pages, 2013.
[34] B. S̆korić and N. de Vreede: “The Spammed Code Offset Method,” in

IEEE Transactions on Information Forensics and Security, vol. 9, no. 5,
pp. 875–884, May 2014.

[35] B. S̆korić and P. Tuyls: “An efficient fuzzy extractor for limited noise,”
in Symposium on Information Theory in the Benelux, pp. 193–200, 2009.

[36] B. S̆korić, P. Tuyls and W. Ophey: “Robust Key Extraction from Physical
Uncloneable Functions,” in Applied Cryptography and Network Security,
ACNS 2005, LNCS vol. 3531, pp. 407–422, Jun. 2005.

[37] G.E. Suh and S. Devadas: “Physical Unclonable Functions for Device
Authentication and Secret Key Generation,” in Design Automation Con-

ference, DAC 2007, pp. 9–14, Jun. 2007.
[38] G.E. Suh, C.W. O’Donnell, I. Sachdev and S. Devadas: “Design and Im-

plementation of the AEGIS Single-Chip Secure Processor Using Physical
Random Functions,” in Int. Symposium on Computer Architecture, ISCA
2005, pp. 25–36, Jun. 2005.

[39] P. Tuyls, G.-J. Schrijen, B. S̆korić, J. van Geloven, N. Verhaegh
and R. Wolters: “Read-Proof Hardware from Protective Coatings,” in
Cryptographic Hardware and Embedded Systems, CHES 2006, LNCS
vol. 4249, pp. 369–383, Oct. 2006.

[40] P. Tuyls, B. S̆korić and T. Kevenaar: “Security with Noisy Data: Private
Biometrics, Secure Key Storage and Anti-Counterfeiting,” Springer, 2007.

[41] V. van der Leest, B. Preneel and E. van der Sluis: “Soft Decision
Error Correction for Compact Memory-Based PUFs Using a Single
Enrollment,” in Cryptographic Hardware and Embedded Systems, CHES
2012, LNCS vol. 7428, pp. 268-282, Sep. 2012.

[42] A. Van Herrewege, S. Katzenbeisser, R. Maes, R. Peeters, A.-R. Sadeghi,
I. Verbauwhede and C. Wachsmann: “Reverse Fuzzy Extractors: Enabling
Lightweight Mutual Authentication for PUF-Enabled RFIDs,” in Finan-

cial Cryptography and Data Security, FC 2012, LNCS vol. 7397, pp.
374–389, Feb. 2012.

[43] M.-D. Yu and S. Devadas: “Secure and Robust Error Correction for
Physical Unclonable Functions,” in IEEE Design & Test of Computers,
vol. 27, no. 1, pp. 48–65, Jan. 2010.

[44] M.-D. Yu, D. M’Raı̈hi, S. Devadas and I. Verbauwhede: “Security and
Reliability Properties of Syndrome Coding Techniques Used in PUF
Key Generation,” in Government Microcircuit Applications & Critical

Technology Conference, GOMACTech 2013, pp. 1–4, Mar. 2013.
[45] M.-D. Yu, D. M’Raı̈hi, R. Sowell and S. Devadas: “Lightweight and

Secure PUF Key Storage Using Limits of Machine Learning,” in Crypto-

graphic Hardware and Embedded Systems, CHES 2011, LNCS vol. 6917,
pp. 358-373, Sep. 2011.

[46] M.-D. Yu, R. Sowell, A. Singh, D. M’Raı̈hi and S. Devadas: “Per-
formance metrics and empirical results of a PUF cryptographic key
generation ASIC,” in Int. Symposium on Hardware-Oriented Security and

Trust, HOST 2012, pp. 108–115, Jun. 2012.
[47] H. Zhou, A. Jiang and J. Bruck: “Nonuniform Codes for Correcting

Asymmetric Errors in Data Storage,” in IEEE Transactions on Informa-

tion Theory, vol. 59, no. 5, pp. 2988–3002, 2013.

