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Abstract  20 

High-throughput sequencing has revolutionized population and conservation genetics. RAD sequencing 21 

methods, such as 2b-RAD, can be used on species lacking a reference genome. However, transferring 22 

protocols across taxa can potentially lead to poor results. We tested two different IIB enzymes (AlfI and CspCI) 23 

on two species with different genome sizes (the loggerhead turtle Caretta caretta and the sharpsnout 24 

seabream Diplodus puntazzo) to build a set of guidelines to improve 2b-RAD protocols on non-model 25 

organisms while optimising costs. Good results were obtained even with degraded samples, showing the 26 

value of 2b-RAD in studies with poor DNA quality. However, library quality was found to be a critical 27 

parameter on the number of reads and loci obtained for genotyping. Resampling analyses with different 28 

number of reads per individual showed a trade-off between number of loci and number of reads per sample. 29 

The resulting accumulation curves can be used as a tool to calculate the number of sequences per individual 30 

needed to reach a mean depth ≥ 20 reads to acquire good genotyping results. Finally, we demonstrated that 31 

selective-base ligation does not affect genomic differentiation between individuals, indicating that this 32 

technique can be used in species with large genome sizes to adjust the number of loci to the study scope, to 33 

reduce sequencing costs and to maintain suitable sequencing depth for a reliable genotyping without 34 

compromising the results. Finally, we provide a set of guidelines to improve 2b-RAD protocols on non-model 35 

organisms with different genome sizes, helping decision-making for a reliable and cost-effective genotyping. 36 

  37 
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Introduction 38 

High-throughput sequencing technologies have revolutionized the fields of population and conservation 39 

genetics during the last ten years by providing easy access to genomic data from virtually any taxonomic 40 

group (Andrews & Luikart, 2014; Bellin et al., 2009; Davey & Blaxter, 2011; Hudson, 2008). Many studies have 41 

explored the potential of genomic analysis to address a variety of questions, such as population structuring 42 

(Girault, Blouin, Vergnaud, & Derzelle, 2014), inbreeding depression (Hoffman et al., 2014), local adaptation 43 

(Savolainen, Lascoux, & Merilä, 2013) or hybridization (Hohenlohe, Amish, Catchen, Allendorf, & Luikart, 44 

2011). Restriction site associated techniques (RAD) are based on massive sequencing after enzymatically 45 

reducing the fraction of the genome being analysed and can identify and score thousands of genetic markers, 46 

randomly distributed across the genome in many individuals simultaneously (Davey & Blaxter, 2011; 47 

Pecoraro et al., 2016). The advantage of these methodologies is that they can be carried out with no or 48 

limited previous sequence knowledge, since RAD tags can be analysed using pipelines for de novo loci 49 

identification if a reference genome is not available (Catchen, Hohenlohe, Bassham, Amores, & Cresko, 2013; 50 

Davey & Blaxter, 2011; Hapke & Thiele, 2016; Lu, Glaubitz, Harriman, Casstevens, & Elshire, 2012). These 51 

methods allow parallel and multiplexed sample sequencing of tag libraries, with a rapid and very cost-52 

effective procedures resulting in high genome coverage (Baird et al., 2008; Pecoraro et al., 2016). The RAD 53 

marker approach has the flexibility to assay different number of markers depending on the restriction 54 

enzyme of choice (Baird et al., 2008). 55 

 56 

Many studies focusing on population structure in non-model organisms have implemented different RAD 57 

technologies, such as RADseq (e.g. Lim et al., 2017; Xu et al., 2014), ddRAD (e.g. Lavretsky, DaCosta, Sorenson, 58 

McCracken & Peters, 2019; Portnoy et al., 2015), GBS (e.g. Carreras et al., 2017; Hess et al., 2015), and 2b-59 

RAD (e.g. Boscari et al., 2019; Galaska, Sands, Santos, Mahon, & Halanych, 2017). By shifting the realms of 60 

genomics from laboratory-based studies of model species towards studies of natural populations of 61 

ecologically well-characterized organisms, researchers can now start to address important ecological and 62 

evolutionary questions on a scale and precision that, only a few years ago, was unrealistic (Ekblom & Galindo, 63 
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2011). As for all genotyping-by-sequencing methodologies, the mean number of reads per locus (mean depth 64 

of coverage) is crucial to consider reliable the quality of markers and their genotypes (Sims, Sudbery, Ilott, 65 

Heger, & Ponting, 2014). Some recent population studies prioritised the number of sequenced individuals 66 

over depth of coverage or used improved bioinformatics pipelines to extract information from low coverage 67 

data (Buerkle & Gompert, 2013; Maruki & Lynch, 2014). However, when depth is generally low, statistical 68 

uncertainty of individual sequence data is high and calling of genotypes is difficult (Maruki & Lynch, 2017). 69 

Although probabilistic genotyping methods are thought to overcome shortcomings of low-depth sequencing 70 

data, they may behave unpredictably when compared to high-depth data (Hendricks et al. 2018). Thus, any 71 

analysis involving individual genotypes is going to be limited by coverage (Chow, Anderson & Shedlock, 2019). 72 

For this reason, RAD sequencing techniques and laboratory protocols should be adjusted to target enough 73 

sequencing depth to obtain reliable genotypes while optimising sequencing costs. 74 

 75 

2b-RAD is a RAD methodology that uses IIB restriction endonucleases, which cleave genomic DNA upstream 76 

and downstream of the target sites producing 32-34 bp fragments (Wang, Meyer, McKay, & Matz, 2012). This 77 

method is simple and provides a cost-effective alternative to existing reduced representation genotyping 78 

methods, allowing its use in routine experimental laboratory (Baird et al., 2008; Luo et al., 2017; Wang et al., 79 

2012). One of the most interesting features of 2b-RAD is that the number of loci/marker density can be 80 

adjusted by using selective adaptors (Wang et al., 2012) to reduce the number of expected markers and 81 

increase the coverage per locus for a given sequencing effort. This RAD sequencing technique has been used 82 

to identify candidate genes associated with specific traits (Luo et al., 2017), to construct ultra-high density 83 

genetic maps (Fu, Liu, Yu, & Tong, 2016), to identify genomic regions under selection in population genetic 84 

studies (Pecoraro et al., 2016), and to perform genomic prediction for relevant traits in agricultural species 85 

(Palaiokostas, Ferraresso, Franch, Houston & Bargelloni, 2016). It has also been extended to microbial 86 

ecology (Pauletto et al., 2016).  87 

 88 
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In this paper, we provide a protocol for laboratory and bioinformatic analyses to optimise studies using 2b-89 

RAD sequencing on different non-model organisms. We focused our study on the sharpsnout seabream 90 

Diplodus puntazzo Walbaum, 1792 and the loggerhead turtle Caretta caretta Linnaeus, 1758 characterized 91 

by very different genome sizes. This study aims to unveil key elements to adapt library building of non-model 92 

organisms to best profit from this genomic method. Specifically, we focused our analyses on five main 93 

objectives. 1) Assess the effect of initial DNA quality and concentration on sequencing results. 2) Evaluate 94 

the performance of different IIB enzymes (i.e. AlfI and CspCI) on genomic library construction in the two 95 

species. 3) Calculate the optimum number of raw sequences needed per each combination of species and 96 

enzyme in order to achieve the maximum number of loci with an optimum depth per locus for a correct 97 

genotyping. 4) Assess if selective base ligation protocols have an impact on genetic differentiation among 98 

individuals. 5) Set guidelines for new population genomic studies on non-model organisms. Our study 99 

provides useful information for future studies on non-model species with different genome sizes, helping 100 

decision-making to obtain a reliable and cost-effective genotyping. 101 

102 
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Methods 103 

Samples 104 

We analysed two species with approximately three-fold different genome sizes. We consider the sharpsnout 105 

seabream (Diplodus puntazzo) genome size to be similar to that of Diplodus anularis (0.9Gb), its closest 106 

relative’s sequenced genome (www.genomesize.com). The loggerhead turtle (Caretta caretta) genome size 107 

was considered to be similar to the genome of Chelonia mydas (Wang et al., 2013), which measures 2,24Gb.  108 

Juveniles of D. puntazzo were collected in Blanes (N=12) and Xabia (N=12) (Spain) during recruitment using 109 

hand nets (Figure 1). Samples of C. caretta were taken from bycaught juveniles at the foraging ground off 110 

Valencia (Spain) (N=9) (Figure 1) and from dead hatchlings at the nesting ground west of Sirte (Lybia) (N=14) 111 

(Clusa et al., 2018). We also added a sample collected from a live female turtle nesting in Pulpí (Spain) as 112 

positive control (Carreras et al., 2018). Consequently, our study included 24 samples per species. All samples 113 

were stored in 96% ethanol. 114 

 115 

DNA extraction and library construction  116 

Genomic DNA was extracted using Qiagen® Qiamp blood and tissue kit following the manufacturer’s 117 

protocol. DNA concentration was measured with Nanodrop® or Qubit®, and DNA degradation assessed in 1% 118 

agarose gels. This information was recorded to be used in further statistical analysis. We coded the level of 119 

degradation as ‘high’ if the DNA was mostly located at the bottom of the run in the agarose gel or the smear 120 

intensity increased in direction top-to-bottom, and as ‘low’ if the DNA was mostly located at the top of the 121 

gel or the smear intensity faded in direction top-to-bottom. When possible we included samples that 122 

presented degraded DNA or low DNA concentration to test 2b-RAD efficiency for population genomics, as 123 

DNA degradation is a common issue when sampling non-model organisms (e.g. marine turtle studies 124 

targeting stranded individuals or dead embryos found after excavation of nests). A total of 24 individual 125 

libraries were constructed with each enzyme per species. Individual libraries were prepared adjusting the 126 

protocol from Wang et al. (2012). In brief, the construction of 2b-RAD libraries consisted of four main steps 127 

(for detailed protocol, see Annex I). i) Genomic DNA was digested by a IIB restriction enzyme providing short 128 



7 

 

(32-34 bp) sequences. Each individual sample was digested with AlfI and CspcI enzymes separately. ii) During 129 

ligation, adaptors were attached to the sticky ends of the digested sequences. This step is crucial in the library 130 

preparation process because at this point, adaptors can be customised to attach to any sticky end or to attach 131 

only to sticky ends with specific sequences, based on the last two bases of the adaptor. For this study we 132 

used degenerated bases (5’-NN-3’) for our adaptors (Figure 2). iii) In the amplification step, barcodes and 133 

Illumina primers were attached to the adaptors and sequences were amplified by PCR. At the end of this step 134 

the resulting fragment is expected to measure ~165 bp. Library products were run through a 1.8% agarose 135 

gel to check amplification success. The library DNA quality of each sample was coded as ‘good’ when the 136 

band of the agarose gel was bright or ‘bad’ when it was faint (Figure S1). iv) Purification was performed using 137 

magnetic beads to remove primers and sequences longer and shorter than 165 bp. At the end of this step, 138 

2b-RAD libraries were ready to be sequenced. The DNA concentration of purified libraries was quantified 139 

using a Real Time PCR. The 48 libraries of each species were pooled for SR50 single read sequencing (one 140 

species per lane) with a HiSeq 4000 Illumina at the DNA Technologies and Expression Analysis Cores at the 141 

UC Davis Genome Center.  142 

 143 

Genotyping 144 

Sequences were processed using customized scripts (Annex II). First, raw sequences were trimmed to 145 

eliminate ligation adaptors and then cut down to the same length (i.e. 32bp for CspCI and 34bp for AlfI). 146 

Processed sequences were used for genotyping using the STACKS vs 1.47 pipeline (Catchen, Amores, 147 

Hohenlohe, Cresko, & Postlethwait, 2011; Catchen et al., 2013). To construct a loci catalogue we used Stacks 148 

function denovo_map.pl setting the following parameters: a minimum depth of three reads to consider a 149 

stack within an individual (m = 3), up to three mismatches allowed between stacks (putative alleles) to merge 150 

them into a putative locus within an individual (M = 3), and two mismatches allowed between stacks (putative 151 

loci) during construction of the catalogue (n = 2). Individual genotypes were outputted as haplotype loci VCF 152 

files. We used 5 main filters to process loci found in our samples. We removed individual genotypes based 153 

on less than 5 reads, loci present in less than 70% of individuals, loci with outlier values of mean depth across 154 
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all individuals (those above the upper whisker of the R ‘boxplot’ , corresponding to 1.5 times the interquartile 155 

range from the data), loci with a major allele frequency higher than 99% and loci out of Hardy-Weinberg 156 

equilibrium (HWE) in at least one of the populations. In the case of C. caretta HWE was considered only for 157 

Libya, since Valencia is a feeding aggregation of individuals from different populations, and thus deviations 158 

from HWE are expected (Clusa et al, 2014). Filtering was performed with VCFtools vs 1.12 (Danecek et al., 159 

2011), with the exception of loci with a major allele frequency higher than 99%, which were identified by the 160 

function isPoly from the package ‘adegenet’ (Jombart, 2008) and the assessment of HWE, computed with the 161 

function hw.test from the package ‘pegas’ (Paradis, 2010) in R (R Core Team, 2018). We performed linear 162 

regression and Wilcoxon-Mann-Whitney test in R to assess whether initial and library DNA concentrations, 163 

initial DNA degradation and library quality influenced the number of total sequences and the final number of 164 

loci of each sample. 165 

 166 

Resampling analysis 167 

We used bioinformatic simulations for each species and enzyme to obtain several sample sets, each one 168 

presenting a different number of reads per individual. We used a customised script to create new sample 169 

sets with different number of reads per sample by performing a random selection with replacement of the 170 

real data up to different target numbers of raw reads per sample (Annex II).  We performed 10 iterations for 171 

each target number. Target numbers varied for each species to accommodate the data points to the expected 172 

accumulation curve results for the different genome sizes. For D. puntazzo we simulated 0.5, 1, 2, 4, 8 and 173 

10 million raw reads per sample for CspCI and AlfI enzymes. For C. caretta we simulated 4, 8, 12, 16 and 20 174 

million raw reads per sample for each enzyme. Each resampled set underwent the same process of loci 175 

identification and filtering as explained above with the exception of the filter removing loci out of Hardy-176 

Weinberg equilibrium. This filter was not applied because loci genotyping could be biased in the low depth 177 

datasets, artificially creating loci out of H-W equilibrium, since resampling was done with replacement. For 178 

this reason, this technique should not be used to artificially increase locus depth for a proper genotyping, as 179 

these genotyping errors are going to persist in the extended datasets. We calculated the formula that best 180 
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fitted the accumulation curve for each species and enzyme and plotted the curve with R package ‘ggplot2’ 181 

(Wickham, 2016).  We calculated the number of reads per individual needed to obtain a mean depth of 182 

coverage of 20x, since this threshold of quality is used in 2b.RAD studies (Resh, Galaska & Mahon, 2018; 183 

Whelan et al., 2019). We also estimated values for a coverage of 25x (Warmuth & Ellegren, 2019) to evaluate 184 

if with higher coverage we can detect an improvement in the number of total loci. 185 

 186 

Selective-base ligation simulation 187 

We assessed the potential impact of reducing the number of loci by selective-base-ligation in population 188 

genomic analyses. We bioinformatically selected trimmed reads of the corresponding combination of 189 

nucleotides to simulate the use of customised adaptors for selective-base ligation on each combination of 190 

species and enzyme (Annex II). This type of ligation is usually performed in the laboratory by designing 191 

adaptors that will attach only to reads having the target base at both sticky ends (Figure 2). The simulation 192 

of a selective-base-ligation aims to test whether the processing of a proportionally lower number of loci per 193 

individual results in the same genetic differentiation as for the whole sample set. We removed from this 194 

analysis all samples that had a final mean depth per locus < 10 to eliminate errors given by low depth of 195 

coverage. For D. puntazzo no samples were removed, while for C. caretta 5 samples were removed from the 196 

AlfI sample set and 7 form CspCI sample set. We used a customized script simulating the effects of building 197 

libraries with adaptors ending in 5’-WN-3’ (W = A and T) or 5’-SN-3’ (S = G and C) instead of 5’-NN-3’. These 198 

simulations aimed to select trimmed sequences by their first and last base and allocate them in separate 199 

folders. These selected sequences were then analysed with Stacks and loci were filtered with the same 200 

process as explained above for the whole dataset. We calculated the genetic differentiation between pairs 201 

of individuals using Prevosti distance with the R function prevosti.dist from the package ‘poppr’ 2.8.0 202 

(Kamvar, Tabima, & Grünwald, 2014; Kamvar, Brooks, & Grünwald, 2015) for the dataset containing all 203 

combinations (NN) and for the two simulated selective-base-ligation datasets. The pairwise genetic distance 204 

matrixes among individuals for each selective-base-ligation subset were compared to the original NN matrix 205 

with a Mantel test using Genalex v6.503 (Peakall & Smouse, 2012), then for each matrix we ran a Principal 206 
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Coordinate Analysis (PCoA) to evaluate whether individuals maintained the same clustering pattern among 207 

subsets, using the same program. To detect the eventual decrease of heterozygosity in the subsets compared 208 

to their original set of loci we calculated individual observed heterozygosities for the three datasets with 209 

VCFtools and used R to perform a Kruskal-Wallis test for each species and enzyme.  210 

  211 
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Results 212 

Library construction and loci identification in C. caretta 213 

In C. caretta extracted DNA ranged from 17.3 to 133.5 ng/μl, and showed high level of degradation in 38% of 214 

the samples probably due to the bad condition of the tissue used (Table S1). After adaptor ligation and 215 

amplification by PCR we observed generally good results with AlfI but much lower amplification success with 216 

CspCI with 46% of faint bands, as assessed with gel electrophoresis (Tables S1). After purification, library DNA 217 

concentration was similar for the two enzymes ranging between 6.7 and 52.3 ng/μl. The mean number of 218 

reads per sample was higher for AlfI digested samples, 7.6x106 reads per sample (max 10.1x106, min 4.0x106), 219 

than for CspCI digested samples, 6.6x106 reads per sample (max 10.7x106, min 2.6x106) mostly because some 220 

samples had low number of reads (Table S1). The trimming process discarded all the sequences that were 221 

shorter than 34bp for AlfI and 32bp for CspCI or missed the chosen restriction site, with an average (±SE) 222 

lower loss per sample in AlfI (19.2±2.1%) than in CspCI (41.9±4.7%) (Table 1). After the loci calling, C.caretta 223 

showed higher total number of loci with AlfI (66907 loci) than CspCI (25416 loci). The mean number of loci 224 

retained after all filtering steps were slightly higher for AlfI (72.9±0.4%) than for CspCl (69.4±0.9%), although 225 

their final mean depth was smaller (Table 1).  226 

 227 

Library construction and loci identification in D. puntazzo 228 

In D. puntazzo starting concentrations ranged from 22.3 to 43.1 ng/μl and none of the samples was degraded. 229 

Adaptor ligation and amplification yielded successful amplifications with both enzymes although 17% of the 230 

samples digested with CspCl had faint bands (Table S2). After purification, library DNA concentration was 231 

slightly higher for Alfl ranging between 13.6 and 109.63 ng/μl. As for C. caretta the sequencing of AlfI in D. 232 

puntazzo resulted in slightly higher mean number of reads per sample than for CspCI (Table 1). After the loci 233 

calling and filtering higher number of loci were also found for D.puntazzo for AlfI (84382 loci) than for CspCI 234 

(31111 loci). The mean number of loci retained after all filtering steps was similar for AlfI (90.6±0.1%) than 235 

for CspCl (90.8±0.1%), although their final mean depth was almost double in the latter (Table 1).  236 

 237 
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Quality predictors of sequencing success 238 

In the two species analysed and for both restriction enzymes the number of raw reads was significantly 239 

correlated to the final number of loci (Table 2). For D. puntazzo, initial DNA concentration, DNA degradation 240 

and library DNA quality had no significant effect in the number of raw reads or number of loci. However, for 241 

CspCI in C. caretta, the initial DNA concentration showed a significant impact on number of reads and loci, 242 

and on library concentration (Table 2). The library DNA concentration explained sequencing success in both 243 

species since the regression between library DNA concentration and the number of reads and loci was 244 

significant in most cases, with the exception of Alfl in C. caretta and the number of loci with CspCl in D. 245 

puntazzo (Table 2). The impact of DNA degradation on sequencing success was only assessed in C. caretta 246 

since in D. puntazzo DNA had initial good quality (Tables S1 and S2). Interestingly, initial DNA degradation 247 

was not a good predictor of neither the number of reads nor loci (Table 2). However, library DNA quality and 248 

thus amplification success assessed in an agarose gel significantly increased the number of raw reads and 249 

final number of loci (Table 2).  250 

 251 

Resampling analysis 252 

We simulated the sequencing of different target number of reads per sample set and we obtained the total 253 

number of loci and mean depth for each simulation (Figure 3, Table S3). In all simulations, the mean depth 254 

of coverage was highly correlated to the number of reads per individual with an R2 >0.99. Based on the 255 

accumulation curve (Figure 3) we estimated the mean number of reads per individual and the corresponding 256 

number of loci for two mean depth of coverage, 20x and 25x (Table 3). For both species, AlfI needed a much 257 

higher number of reads per individual than CspCI to reach the desired coverage of 20x, due to the higher 258 

number of loci obtained with this enzyme. We found that, using a coverage of 25x, the total number of final 259 

loci improved in AlfI by 4% and by 7% for D. puntazzo and C. caretta respectively, and by 9% in CspCI for both 260 

species.  261 

 262 

Selective-base ligation simulation 263 
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The selective-base ligation subsets obtained from C. caretta retained between 22.2% and 31.5% of the total 264 

loci from their original sample sets (Table S4). In D.puntazzo the amount of loci retained was more variable 265 

between the two tested subsets (Table S4), ranging from 19.8% to 43.4%. In this species we also found that 266 

for CspCI enzyme the subsets presented lower coverage than the original set, which could be a consequence 267 

of the base composition of the regions where this enzyme is cutting and related with the characteristics of 268 

the genomes that make the results species specific (Seetharam & Stuart, 2013). Mantel tests in both species 269 

showed high correlation between the pairwise genetic distances among individuals assessed with all loci and 270 

assessed with a selective base ligation, for both CspCI and AlfI enzymes (Figure 4). This was also reflected in 271 

the PCoA, as C. caretta samples do not have the exact same pattern among subsets whereas D. puntazzo 272 

patterns match perfectly despite the lower number of loci retained in the different datasets (Figure S2). The 273 

Kruskal-Wallis test showed no significant differences in observed heterozygosity among any of the subsets 274 

and the original set of loci for both species and enzymes (Table S5).  275 

 276 

Protocol optimization 277 

We used the results obtained from these simulations to refine the laboratory protocol for 2b-RAD libraries 278 

preparation and sequencing. In fact, given the mean value of depth of coverage, the optimum number of loci 279 

and the size of the studied species genome, we can calculate the number of samples to be sequenced in one 280 

lane to optimize costs without compromising the results. To facilitate the decision-making process, based on 281 

our results, we constructed a flowchart (Figure 5) and a set of guidelines (Box 1) to help future studies design 282 

the most efficient and cost effective protocol to reach their goals.  283 

 284 

  285 
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Discussion 286 

In this study, we have shown that 2b-RAD protocol provides efficient results even with degraded samples 287 

and we demonstrated how this protocol can be optimised for population genomics of non-model species 288 

with different genome sizes. To prove this point, we analysed the sharpsnout seabream D. puntazzo and the 289 

loggerhead turtle C. caretta with two different enzymes, AlfI and CspCI, and performed bioinformatic 290 

simulations. Our simulations allow estimating the mean number of reads needed per individual to obtain a 291 

reliable genotyping and the corresponding expected number of loci. Moreover, our results indicate that 292 

selective-base ligation can be used without compromising pairwise genetic distances among individuals.  293 

 294 

In the case of the loggerhead turtle, where several samples had highly degraded DNA, we found that the 295 

quality of the initial DNA did not affect the number of raw reads nor the final number of loci, for both 296 

enzymes. In fact, the DNA short length for proper IIB enzyme functioning (i.e. 32-34bp digested fragment) 297 

reduces the probability of missing loci even in highly degraded samples. This is a highly valuable characteristic 298 

of 2b-RAD methodology, since not all studies can easily access high quality samples. For instance, marine 299 

turtle genetic studies usually rely on sampling of stranded individuals (Clusa et al., 2016) or dead embryos 300 

found at nests after excavation (Clusa et al., 2018), due to the complexity of their behaviours and the paucity 301 

of individuals. In such cases, a genomic protocol capable of providing optimal results with degraded samples 302 

is invaluable.  303 

The library quality after adaptor ligation and amplification was a good predictor of sequencing success. The 304 

electrophoresis gel after the library amplification of the loggerhead turtle clearly showed that AlfI resulted 305 

in a better amplification than CspCI, which failed to yield a clear band in 46% of individuals. Moreover, the 306 

sequencing success was poor for samples with faint amplification bands, which resulted in lower number of 307 

reads per individual and thus lower number of loci. We thus suggest discarding samples with poor library 308 

DNA quality to help optimising sequencing costs. In the case of the sharpsnout seabream, both enzymes 309 

showed good results after the amplification, although a few individuals yielded poorer amplification that 310 

resulted in significantly lower number of loci, as observed also in the loggerhead turtle were the difference 311 
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in library quality with the two enzymes was even greater. Moreover, AlfI provided higher number of loci than 312 

CspCI in both species as expected, since AlfI recognition sequence has six fixed nucleotides, while CspCI has 313 

seven fixed nucleotides. Therefore, AlfI is expected to have a greater density of restriction sites across any 314 

genome than CspCI, and potentially yield more loci as observed in the kissing bug Rhodnius ecuadoriensis 315 

(Hernandez-Castro et al. 2017).  316 

 317 

Obtaining more loci, though, reduces depth of coverage per locus for the same mean number of reads per 318 

individual. As expected, when using CspCI enzyme our sample sets showed higher values of mean depth then 319 

when using AlfI in both species, despite poorer amplification success for CspCl in the loggerhead turtle. A low 320 

mean depth per locus leads to less accurate genotype calling and thus higher percentage of missing data 321 

across loci (Casso, Turon & Pascual, 2019; Maruki & Lynch, 2017; Chow et al., 2019), and for this reason a 322 

good depth coverage is important to consider data reliable. Since library construction and sequencing 323 

produces a variable number of reads per locus, a mean depth of 20x would guarantee that the minimum of 324 

five reads per genotype is consistently achieved across most loci for each sample. This would result in fewer 325 

genotypes lost and thus more loci retained over all samples. Our simulations on resampling analyses, allowed 326 

the construction of the accumulation curve relating the number of reads per sample and the resulting 327 

number of loci as well as the linear correlation between the mean depth per locus and the number of reads 328 

per individual. Based on the combination of these two functions the number of individuals to be sequenced 329 

in one lane can be calculated easily, simplifying decision-making and analysis design for optimizing population 330 

genomic studies at the lowest cost. The amount of reads per individual required by the sharpsnout seabream 331 

would allow including a fair number of individuals per lane for each enzymes, since both yielded good library 332 

DNA quality across samples. However, in the case of the loggerhead turtle, only AlfI enzyme should be used 333 

according to library DNA quality. In this case, the amount of reads needed to achieve an adequate coverage 334 

would be very large and the number of loci obtained very high, due to the size of the genome. Under these 335 

circumstances, the number of individuals of loggerhead turtle to be included in one sequencing lane would 336 

be too small and not affordable by most research groups.  337 
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 338 

The difference between the two species is mostly related to the crucial role played by the genome size. 339 

Species with large genomes will likely produce more loci (due to a greater number of regions yielding the 340 

enzyme recognition site) and would need a greater sequencing effort to reach the suitable number of reads 341 

per sample for an adequate genotyping. Using a selective-base ligation the number of individuals can be 342 

adjusted to the needs of the study considering the number of loci projected by the accumulation curve. Our 343 

simulations of customized adaptors with selective base ligation, which extremities would end in –WN or –344 

SN, proved that this type of reduction in the number of loci does not affect genetic differentiation between 345 

pairs of individuals. Therefore, the use of a selection of sequences for each sample instead of the whole set, 346 

would allow reducing costs by fitting more samples in one lane without compromising overall genetic 347 

differentiation. In both species we found that the subsets from the simulated selective-base ligation had a 348 

proportionally similar lower number of raw sequences and final loci than the original sets (~25%). However, 349 

some differences were observed according to the base and enzyme used in each species suggesting that the 350 

species’ genome base composition may affect the outcome. Nonetheless, the high levels of correlation that 351 

we found between the subsets and the original sets, regardless of the number of loci retained, indicate that 352 

they are reliable sources of information. In fact, the slightly lower correlation in genetic distances of C. caretta 353 

and its differences in PCoAs patterns among subsets were probably a consequence of the bigger genome size 354 

of the species, resulting in a lower coverage. This type of selective ligation would be particularly interesting 355 

in the case of species with large genomes such as C. caretta. Considering the size of this species genome 356 

(2.24Gb) and referring to our resampling simulation, we would need 13.5-17.4 million reads per sample to 357 

achieve 20x-25x of coverage, therefore only 20-25 samples could be sequenced in the same lane of a platform 358 

providing 340 million reads per run as in the present study. A selective-base ligation would allow reducing 359 

the costs of sequencing while ensuring good loci coverage, without influencing the outcome. In fact, since 360 

the selective-base ligated set would need only ~25% of the original set, between 3.4 and 4.4 million reads 361 

per sample are expected to reach the adequate coverage (Warmuth & Ellegren, 2019). Therefore, as much 362 

as 78-100 samples could fit in the same Illumina lane, greatly reducing costs without compromising genetic 363 
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differentiation between individuals. Nevertheless, the number of loci required for a study depends on the 364 

scope, the type of analysis performed, and the target species. For instance, selective-base ligation would be 365 

less powerful for studies aiming to identify adaptation, since the probability of finding candidate genes can 366 

decrease when analysing only a small fraction of the genome (Ahrens et al., 2018). 367 

 368 

Finally, we show that 2b-RAD methodologies can be reliable even for degraded DNA samples. Following our 369 

set of guidelines, researchers can optimize effort, time, and sequencing cost of 2b-RAD library building for 370 

non-model species while maintaining good sequencing depth for a proper genotyping (Box 1, Figure 5). 371 

 372 

 373 

 374 

BOX 1 

Guidelines for the optimisation of a 2b-RAD protocol with non-model species. 

 Use 2b-RAD instead of other RAD sequencing techniques if you have degraded samples. 

 If the target species has a big genome size, consider performing a selective-base ligation to retain 

20-40% of total loci. 

 If the species genome is small, proceed without selective base-ligation. 

 Test different IIB enzymes with the target species. 

 Use library quality and concentration as predictors of sequencing success.  

 Sequence the test samples with conservative conditions to obtain good coverage. 

 Calculate an accumulation curve in a preliminary analysis with the test samples to identify the 

number of reads needed per individual and the total number of loci corresponding to a coverage 

≥20x. 

 If the total number of loci is adequate for the selected type of study, proceed to sequence the 

rest of your samples to obtain the mean number of reads needed according to the curve. 

 If the total number of loci is too high for the selected study, use a selective base ligation for library 

building to reduce the amount of loci. 

 The number of samples to be sequenced in the same lane is a trade-off between the number of 

reads per individual, the number of reads provided per lane and available budget.  

 If the total number of loci is adequate but the cost of sequencing is over budget, use a selective 

base ligation for further 2b-RAD library building to reduce the amount of reads needed per 

sample and therefore fit more samples in one lane. 
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Conclusions 375 

Genomic population studies are increasing in species without reference genomes that rely on restriction-site 376 

associated DNA sequencing techniques, although some protocols require good quality DNA. Moreover, 377 

transferring protocols across taxa can potentially lead to poor results, such as low number of recovered 378 

markers or inadequate genotyping due to differential genomic features. Researchers working with species 379 

with large genome sizes or needing lower number of markers can adjust the number of loci by performing 380 

selective-base ligation, allowing the sequencing of a larger number of samples, without altering genomic 381 

differentiation between individuals as observed by our simulations. The optimal number of samples per lane 382 

can, therefore, be adjusted as a trade off with the desired target number of loci and the species genome size 383 

for an adequate mean depth of coverage for a correct genotyping. Our results and guidelines aim to improve 384 

2b-RAD protocols on non-model organisms with different genome sizes, helping initial decision-making for a 385 

reliable, faster and cost-effective genotyping for population genomic studies.  386 

 387 

  388 
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Tables 592 

Table 1. Summary of sequencing outcome. Mean (±SE) values per individual are given for TR: total number 593 

of reads, TMR: number of trimmed reads, IL: initial number of loci, FL: final number of loci after filtering, RL: 594 

percentage of loci retained after filtering, and FMD: final mean depth of coverage per locus. 595 

Species C. caretta D. puntazzo 

Enzyme AlfI CspcI AlfI CspcI 

TR 7.6±0.3x106 6.6±0.4x106 7.1±0.3x106 6.5±0.3x106 

TMR 6.2±0.4x106 4.2±0.5x106 5.3±0.2x106 4.3±0.2x106 

IL 48740±1489 17811±1010 75971±130 27989±40 

FL 35576±1124 12455±732 68978±115 25421±27 

RL 72.9±0.4% 69.4±0.9% 90.6±0.1% 90.8±0.1% 

FMD 11.5±0.7 19.3±2.4 29.2±1.4 52.2±2.3 

 596 
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 597 

Table 2. Statistical analyses of potential quality predictors. In bold are shown significant p-values after FDR correction. na: tests not available due to insufficient 598 

samples with bad initial DNA quality or low library DNA quality. 599 

 600 

   Caretta caretta Diplodus puntazzo 

      CspCI AlfI CspCI AlfI 

Explanatory variable Response Variable Test  F or W p value F or W p value F or W p value F or W p value 

Raw reads Final loci Linear Regression 17.7 0.000 30.4 0.000 4.7 0.041 34.4 0.000 

Initial DNA 

concentration 

Raw reads Linear Regression 15.4 0.001 2.7 0.115 0.5 0.469 0.4 0.522 

Final loci Linear Regression 5.2 0.032 2.1 0.159 0.0 0.959 1.5 0.236 

Library DNA 

concentration 
Linear Regression 15.8 0.001 0.0 0.986 3.2 0.087 0.3 0.611 

Initial DNA degradation 

Raw reads Wilcoxon-Mann-Whitney 60.0 0.682 61.0 0.726 na na na na 

Final loci Wilcoxon-Mann-Whitney 44.0 0.170 45.0 0.194 na na na na 

Library DNA 

concentration 
Wilcoxon-Mann-Whitney 34.0 0.048 44.0 0.174 na na na na 

Library DNA 

concentration 

Raw reads Linear Regression 14.2 0.001 2.0 0.174 22.6 0.000 6.3 0.020 

Final loci Linear Regression 20.3 0.000 3.2 0.086 0.4 0.559 6.2 0.021 

Library DNA quality 
Raw reads Wilcoxon-Mann-Whitney 19.0 0.002 13.0 0.037 na na 25.0 0.261 

Final loci Wilcoxon-Mann-Whitney 12.5 0.001 6.0 0.005 na na 9.0 0.018 

 601 

  602 
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Table 3. Estimated number of loci and reads needed to obtain different mean depth per locus as 603 

derived from the accumulation curve. The table shows the number of reads per individual and the 604 

total number of loci per set corresponding to a mean depth of coverage of 20x and 25x for each species 605 

and enzyme. 606 

 607 

  Caretta caretta Diplodus puntazzo 

  AlfI CspCI AlfI CspCI 

20x 
Reads (106) 13.5 6.1 3.5 1.7 

Loci 142910 49588 68079 22225 

25x 
Reads (106) 17.4 7.9 4.6 2.2 

Loci 152998 53842 70571 24173 

  608 
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Figures 609 

 610 

 611 

Figure 1. Sampling sites. White triangles show sampling sites for C. caretta, Libya is a nesting ground 612 

while Valencia is a foraging ground. Black triangles show sampling sites for D. puntazzo. 613 
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 614 

Figure 2. Selective-base ligation. In 2b-RAD protocol, after IIB enzyme digestion, specific fragments 615 

can be selected to reduce the density of markers to be amplified by designing customised adaptors 616 

with one fully degenerated base (N) and one partially degenerated base (S = G and C bases, W = A and 617 

T bases).   618 
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 619 

  620 

Figure 3. Accumulation curves resulting from the resampling analysis. The graphs show the number 621 

of final loci (circles) and the mean depth per locus (squares) obtained after filtering, for C. caretta (top) 622 

and D. puntazzo (bottom).   623 
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 624 

 625 

Figure 4. Mantel test of genetic differentiation between selective-base subsets and original sets. X-626 

axes show Prevosti distance between pairs of individuals for each one of the four original sample sets 627 

(with fully degenerated bases –NN-). Y-axis show Prevosti distance between the same pairs of 628 

individuals for subsets obtained from bioinformatic simulations of selective base ligation (either –SN- 629 

or –WN-) for each species and enzyme. Dark grey shows genetic differentiation for S (G and C bases) 630 

subsets and light grey for W (A and T) subsets. Correlation coefficient (r) is given for each test above 631 

the lines for S and below for W. The red line represents the expected correlation function when no 632 

deviation in genetic distances is found in the selective-base subsets compared to NN. 633 

 634 

  635 
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 636 

Figure 5. Flowchart for 2b-RAD laboratory protocol.  This flowchart is meant to aid decision making 637 

for 2b-RAD laboratory protocols when studying non-model species. Together with the guidelines listed 638 

above this chart aims to make 2b-RAD studies not only easier but also more cost-effective.  639 


