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Abstract

Rapid antigenic evolution in the influenza A virus hemagglutinin precludes effective vaccination

with existing vaccines. To understand this phenomenon, we passaged virus in mice immunized with

influenza. Neutralizing antibodies selected mutants with single amino acid hemagglutinin

substitutions that increased virus binding to cell surface glycan receptors. Passaging these high

avidity-binding mutants in naïve mice, but not immune mice, selected for additional hemagglutinin

substitutions that decreased cellular receptor binding avidity. Analyzing a panel of monoclonal

antibody hemagglutinin escape mutants revealed a positive correlation between receptor binding

avidity and escape from polyclonal antibodies. We propose that in response to variation in

neutralizing antibody pressure between individuals, influenza A virus evolves by adjusting receptor

binding avidity via amino acid substitutions throughout the hemagglutinin globular domain, many

of which simultaneously alter antigenicity.

Influenza A virus remains an important human pathogen due largely to its ability to evade

antibodies specific for its attachment protein, the hemagglutinin (HA). This “antigenic drift”

is due to accumulation of amino acid substitutions in HA epitopes recognized by antibodies

that neutralize viral infectivity by blocking interaction of HA with sialic acid residues on host-

cell membranes (1–3). The H1 subtype HA has four antigenic sites recognized by monoclonal

antibodies with high neutralizing activity, designated Sa, Sb, Ca, and Cb (4). How can HA

escape polyclonal antibodies given that the frequency of variants with simultaneous multiple

point mutations is exceedingly low (5)? A popular model posits sequential selection by

different individuals whose antibody responses focus on different individual antigenic sites

(6,7).

To better understand how antigenic drift occurs in human populations, we revisited classical

experiments modeling drift in outbred Swiss mice (8). We generated three separate infectious

stocks of the mouse-adapted strain A/Puerto Rico/8/34 (H1N1) (PR8) in MDCK cells using
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reverse genetics. Each stock was serially passaged in naïve mice or mice immunized with

inactivated virus. Mice were infected intranasally with virus prepared from lung homogenates.

After nine passages, HA gene sequencing revealed no detectable mutations in viruses passaged

in naïve mice (Fig. 1A). By contrast, each lineage from vaccinated mice contained a

predominant population with a different single amino acid substitution: residue 158 (E to K,

lineage I), 246 (E to G, lineage II), or 156 (E to K, lineage III). Residue 158 is located at the

interface of the Sa/Sb antigenic sites, residue 156 is in the Sb site, and residue 246 is located

outside the defined epitopes (4) (Fig. 1B). E158K, initially detected in lineage I following

passage 2, predominated by passage 3 (Table S1). In lineage II, E246G abruptly emerged during

passage 3. In lineage III, E158K and E156K co-dominated from passage 2–7, with E156K

predominating following passage 8. None of the lineages exhibited changes in the

neuraminidase gene.

We measured the mutants’ ability to escape antibody responses by hemagglutination inhibition

(HAI) and virus neutralization assays using immune serum pooled from 45 PR8-vaccinated

mice. Each mutant escaped antibody responses in these ternary (virus, antibody & cell) assays

(Fig. 1C–D), despite demonstrating only minor (E156K, E158K) or no (E246G) decreases in

anti-HA antibody binding (Fig. 1E). More precise antigenic analysis using ELISA confirmed

that the amino acid substitutions had limited effects on individual monoclonal antibody binding

(Fig. S1). E156K modified Sb antigenicity, but had no effect on the other sites. E158K altered

binding of a subset of Sa- and Sb- specific monoclonal antibodies. Notably, just one of 16

monoclonal antibodies tested exhibited (slightly) altered binding to E246G, consistent with

the observation that the substitution resides outside defined antigenic sites (4).

HA mutations can decrease HAI antibody activities by increasing the viral HA binding avidity

for cell surface glycan receptors (9,10)(11). Relative to wt virus, such “adsorptive mutants”

exhibit enhanced agglutination of erythrocytes treated with V. cholerae neuraminidase receptor

destroying enzyme (RDE) to remove terminal sialic acids, the cellular HA ligand. Strikingly,

relative to wt virus, each mutant better agglutinated RDE-treated erythrocytes (Fig. 1F).

Mutant-virus hemagglutination was also more resistant to competition from horse serum “non-

specific” inhibitors (Fig. S2), confirming increased cellular receptor binding avidity. Mutant

viruses also exhibited higher binding avidity than wt virus to both α2–3 and α2–6 sialylated

glycans in a dose-dependent, direct glycan receptor-binding assay (Fig. S3).

E156K and E158K mutants were again selected when different PR8 stocks (propagated in

either eggs or MDCK cells) were passaged in PR8-immunized BALB/c or C57BL/6 mice,

indicating that these are particularly adept escape mutants. As these substitutions modify

antigenicity (unlike E246G and previously described adsorptive mutants (10)), this suggests

that polyclonal antibody escape favors substitutions that simultaneously increase cellular

receptor binding and diminish antigenicity.

These findings prompted us to examine the cellular receptor binding avidities of forty

monoclonal antibody selected HA-escape mutants (4). Each amino acid substitution in the

panel exerts similar relatively minor effects on HA antigenicity (4). Surprisingly, twenty three

mutants exhibited altered binding to RDE treated-erythrocytes (Fig. 2A,Table S2). There was

a strong correlation between cellular receptor binding and polyclonal antibody HAI escape

(Fig. 2B). Substitutions modifying receptor binding cover all four antigenic sites (Fig. 2A,C).

Of eighteen substitutions that enhance receptor binding, eleven increased HA positive charge

(Fig. 2D) (Table S2). Since virions possess ~ 900 HA monomers (12), increased positive charge

may enhance cellular receptor binding by increasing charge attraction with negatively charged

cell surfaces (13). Retrospective analysis supports a relationship between H3 HA charge and

receptor binding (14).
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Upon further passaging in vivo selected virus populations in mice vaccinated with homologous

inactivated virus (e.g., E156K virus passaged in E156K-vaccinated mice), we detected minor

virus populations with novel amino acid substitutions distant from the sialic acid binding site,

often distant from defined neutralizing epitopes (Table S3, Fig. S4). Substitutions that

enhanced receptor binding (Fig. 3A) enhanced polyclonal HAI antibody escape (Fig. 3B).

Optimizing viral fitness requires balancing host cell receptor binding of input virus with release

of progeny virus. Strikingly, passaging in vivo selected mutants in naïve mice selected mutants

(Table S3) with reduced cellular receptor binding avidity (Fig. 3A). Mutations selected by

naïve mouse passage decreased polyclonal HAI antibody escape (Fig. 3B). E158K- and

E246G-derived mutants were inhibited at similar levels as wt PR8, demonstrating the central

role of cellular receptor binding in E158K and E246G single point mutants escape from

polyclonal antibodies (see also Fig. 1E). E156K viruses with secondary mutations acquired in

naïve mice still escaped wt-specific polyclonal antibodies better than wt virus, despite a return

to wt binding avidity, demonstrating that E156K alteration of Sb antigenicity contributes to

immune escape.

Despite the absence of antibody selection, some secondary mutations selected in naïve mice

modified HA antigenicity (Fig. S1). A227T, located near the sialic acid-binding site, reduced

binding of the Sa-specific antibody, IC5-2A7. R220G reduced binding of the Sa-specific

antibody, H2-6A1. Thus, antigenic drift can be a by-product of Darwinian selection for

mutations that optimize host cell receptor binding during influenza virus transmission between

immune (increased receptor binding) and naïve individuals (decreased receptor binding).

To demonstrate an independent role for cellular receptor binding avidity in polyclonal antibody

mediated evolution, we co-infected mice with wt PR8 and AM6, an absorptive mutant with a

substitution (P186S) in the receptor binding site that does not modify antigenicity (10,15) (Fig.

S5A). AM6 was rapidly selected in vaccinated but not naïve mice (Fig. S5B). Next, we

coinfected mice with E246G virus (minor antigenic change/high receptor binding) and E246G/

A227T (greater antigenic change/low receptor binding). Vaccinated mice selected E246G

while naïve mice selected E246G/A227T (Fig. S5D), confirming the critical role of binding

avidity in antibody-driven viral evolution.

To extend our drift model, we passaged E156K/R220G in mice given a high vaccine dose to

generate severe antibody selection pressure. This resulted in the evolution of E156K/R220G/

I244T (no selection occurred in naïve mice). I244T, located in the Sa/Ca interface (Fig. S6A),

increased cellular receptor binding (Fig. 3C), and as predicted, increased polyclonal HAI

antibody escape to levels exhibited by the E156K progenitor (Fig. 3D). Thus, during these

passages between naïve and immune individuals, influenza A virus exhibited three cellular

receptor binding avidity changes that were completely concordant with immune pressure. All

of these changes were accompanied by amino acid substitutions that reduced the binding of

different monoclonal antibodies (Fig. S6B).

Based on these findings, we propose a new hypothesis for antigenic drift (Fig. S7). Immune

individuals select single point mutants with increased receptor binding avidity and under

optimal circumstances (for the virus), diminished antigenicity. Transmission to a non-immune

individual leads to selection of mutants with decreased receptor binding. Since binding avidity

alteringsubstitutions exist throughout the globular domain, they frequently modify

antigenicity, even when this is not a selecting factor. Repeating the cycle, results in constant

modulation of binding avidity along with steady alterations in antigenicity, even in the absence

of antibody selection. Our model posits that cellular receptor binding alone exerts selection

pressure for a substantial fraction of substitutions in defined antigenic regions, explaining the

fixation of 30% of mutations in the globular domain outside defined antigenic regions (16).
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The properties of recent human isolates are consistent with this model. A/Panama/2007/99, the

2003–2004 vaccine strain, did not match the circulating A/Fujian/411/02 strain by HAI assays.

This difference was attributed to two amino acid substitutions (17). Remarkably, one

substitution is at residue 156, which we identify as playing a critical dual role in Sb antigenicity/

receptor binding avidity, while the other is at residue 155, which is immediately adjacent to

the sialic acid binding site, and also located in the Sb site. During the antigenic evolution of

H3N2 viruses from 1968 to 2003, a limited number of amino acids (in one case, a single N to

K substitution increasing positive charge) dictate HAI escape from polyclonal sera (18).

This model complements recent work emphasizing the importance of HA receptor specificity

in influenza virus species and organ tropism (19). Receptor specificity and affinity are

intimately related physiochemically, as demonstrated by our observation that each of the first

generation absorptive mutants (E156K, E158K, E246G) exhibits a unique avidity profile

against the panel of sialylated oligosaccharides (Fig. S3). Since host selection for optimal HA

receptor binding avidity generates mutants with altered receptor binding specificity, this is a

confounding factor in interpreting the evolutionary selection forces that generate IAV isolates

with altered glycan specificities.

In our model, antigenic drift is accelerated by sequential passage of influenza A virus between

immune and non-immune individuals (Fig. S7), which in the human population, are nearly all

children. Therefore, decreasing the naïve population size by increasing pediatric influenza A

virus vaccination rates will likely retard antigenic drift and temporally extend the effectiveness

of influenza vaccines. Monitoring binding avidity of circulating viral isolates may facilitate

the accurate prediction of mutants with epidemic potential.
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Fig. 1. In vivo influenza virus passaging selects for mutants with altered binding avidity

(A) HA and NA genes were sequenced in lung homogenates from 3 independent PR8 stocks

serially passaged in vaccinated and naïve Swiss mice. (B) Location of in vivo selected HA

amino acid substitutions in mutant viruses. (C) PR8 and mutant viruses were tested for escape

from anti-PR8 polyclonal antibodies by HAI using turkey erythrocytes or (D) virus

neutralization assays using MDCK cells. Data are expressed as inverse dilutions of serum and

are representative of three (HAI) or two (virus neutralization) experiments. Means +/− SEM

are shown in panel D. (E) Polyclonal antibody binding to HA was assessed by flow cytometry

after adding different dilutions of polyclonal antibody to L929 cells infected with the indicated

virus followed by the addition of anti-mouse FITC. Shown is mean florescence intensity (MFI)
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after normalizing HA expression based on the binding of a mixture of Ca monoclonal

antibodies or a NA specific monoclonal antibody (for the H3 HA/PR8 NA virus). Polyclonal

antibodies bind nearly exclusively to HA, as inferred from their low binding to the H3 HA/

PR8 NA infected cells. Data are representative of three independent experiments. (F) Cellular

receptor binding avidities were determined by hemagglutination of turkey erythrocytes pre-

treated with RDE. Data are expressed as the maximal amount of RDE that allowed full

agglutination. Data are representative of three independent experiments.
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Fig. 2. Numerous HA amino acid substitutions simultaneously modulate receptor binding and
escape from polyclonal antibodies

(A) Cellular avidities of 40 viruses with single HA amino acid substitutions were determined

using RDE-treated turkey erythrocytes. The percentages of viruses within each antigenic group

with altered binding are shown. (B) Individual mutants were tested for their abilities to escape

PR8 polyclonal antibodies by HAI. Data are plotted as ability to escape polyclonal antibodies

vs cellular receptor binding avidity. Means are represented as dots and the 95% confidence

interval is represented by dashed lines. (C) Locations of HA amino acid substitutions that

promote increased avidity are shown in yellow. (D) Net charge change of mutant viruses was

determined. n = number of viruses in each group. Means +/− SEM are shown.
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Fig. 3. Removal of polyclonal antibody selection promotes decreased receptor binding of in vivo

selected mutants

(A) Mutant viruses were tested for agglutination of RDE-treated turkey erythrocytes.

REV=virus with amino acid reversion of original mutation. (B) Mutant viruses were tested for

escape from PR8 polyclonal antibodies by HAI. Receptor binding avidities (C) and ability to

escape PR8 polyclonal antibodies (D) were also determined for the virus that was isolated after

further passage in heavily vaccinated mice.
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