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Primary immunodeficiencies (PID) are disorders that for the most part result

from mutations in genes involved in immune host defense and immunoregulation.

These conditions are characterized by various combinations of recurrent infections,

autoimmunity, lymphoproliferation, inflammatory manifestations, atopy, and malignancy.

Most PID are due to genetic defects that are intrinsic to hematopoietic cells.

Therefore, replacement of mutant cells by healthy donor hematopoietic stem cells

(HSC) represents a rational therapeutic approach. Full or partial ablation of the

recipient’s marrow with chemotherapy is often used to allow stable engraftment of

donor-derived HSCs, and serotherapy may be added to the conditioning regimen

to reduce the risks of graft rejection and graft versus host disease (GVHD). Initially,

hematopoietic stem cell transplantation (HSCT) was attempted in patients with severe

combined immunodeficiency (SCID) as the only available curative treatment. It was

a challenging procedure, associated with elevated rates of morbidity and mortality.

Overtime, outcome of HSCT for PID has significantly improved due to availability of

high-resolution HLA typing, increased use of alternative donors and new stem cell

sources, development of less toxic, reduced-intensity conditioning (RIC) regimens,

and cellular engineering techniques for graft manipulation. Early identification of

infants affected by SCID, prior to infectious complication, through newborn screening

(NBS) programs and prompt genetic diagnosis with Next Generation Sequencing

(NGS) techniques, have also ameliorated the outcome of HSCT. In addition, HSCT

has been applied to treat a broader range of PID, including disorders of immune

dysregulation. Yet, the broad spectrum of clinical and immunological phenotypes

associated with PID makes it difficult to define a universal transplant regimen. As

such, integration of knowledge between immunologists and transplant specialists is

necessary for the development of innovative transplant protocols and to monitor

their results during follow-up. Despite the improved outcome observed after HSCT,

patients with severe forms of PID still face significant challenges of short and long-term

transplant-related complications. To address this issue, novel HSCT strategies are
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being implemented aiming to improve both survival and long-term quality of life. This

article will discuss the current status and latest developments in HSCT for PID, and

present data regarding approach and outcome of HSCT in recently described PID,

including disorders associated with immune dysregulation.

Keywords: primary immunodeficiency diseases (PID), hematopoietic stem cell transplantation, transplantation

outcomes, immune dysregulation, severe combined immunodeficiency, graft manipulation, conditioning

regimens, precision medicine

OVERVIEW ON HEMATOPOIETIC STEM
CELL TRANSPLANTATION IN PRIMARY
IMMUNODEFICIENCY DISEASES

Primary immunodeficiencies (PID) are for the most part
monogenic disorders resulting from mutations in genes
involved in immune host defense and immunoregulation.
These conditions are characterized by various combinations
of recurrent infections, autoimmunity, lymphoproliferation,
inflammatory manifestations, atopy, and malignancy. By now,
more than 300 genetic causes of PID have been identified.
The International Union of Immunological Societies (IUIS)
Inborn Errors of Immunity Committee have classified them
in 9 groups according to their clinical and immunological
phenotype [Table 1; (1, 2)]. Most PID are due to genetic
defects that are intrinsic to hematopoietic cells. Therefore,
replacement of mutant cells by healthy donor hematopoietic
stem cells (HSCs) represents a rational therapeutic approach.
In particular, patients with severe combined immunodeficiency
(SCID) represent a medical emergency, as these infants are
highly susceptible to life-threatening infections. In these cases,
allogenic hematopoietic stem cell transplantation (HSCT)
provides a life-saving and curative treatment. Soon after the
report of the human major histocompatibility complex (MHC)
in 1967 (3), the first successful HSCT in PID included SCID and
Wiskott-Aldrich Syndrome (WAS) (4, 5). Overtime outcome
of HSCT for PID has significantly ameliorated and survival for
conventional PID is now reaching 90% (6, 7).

The progresses in the understanding of the pathological

bases of PID and the general principles of HSCT have been
crucial for outcome improvement. In particular, PID stemming
from defects in the hematopoietic compartment can be corrected
by HSCT. However, immunological diseases due to thymic
stromal or other extra-hematopoietic defects are unlikely to
be cured by HSCT. If a thymic stromal defect is present, the
hematopoietic stem cells cannot undergo a functional maturation
in the thymus, thus resulting in poor immune reconstitution and
poor HSCT outcomes. Table 2 summarizes classical indications
for HSCT in PID. However, it is now clear that decisions
regarding the indication and time to transplant must carefully
consider the risks of HSCT against the risks of further disease
evolution and must be individualized not only on the basis of
the specific PID but also on the characteristics of the single
patient. For example, PID adult survivors that are currently
treated with conservative treatment but whose clinical condition
are deteriorating represent a group of patients where transplant

decisions are often challenging. Nonetheless, Fox et al. reported
on 29 adults with various PID who underwent HSCT with an
overall survival of 85% (8), indicating that HSCT should be taken
into account also for this group of patients.

The development of alternative donor strategies and novel
graft manipulation techniques has also dramatically improved
access to allogeneic HSCT. The different donor sources used in
HSCT for PID are shown in Table 3. Donor selection criteria
must consider that many patients with PID come from families
with a high degree of consanguinity (9), with the risk that
matched related donor (MRD)—the gold standard for HSCT—
could be genotypically affected, even if still asymptomatic.
Although outcomes of HSCT from matched unrelated donors
(MUD) are equivalent to those frommatched siblings (10), many
patients come from ethnic minorities, that are underrepresented
in donor registries. But even when no HLA-matched (related
or unrelated) donor can be found, valid alternatives are now
available. Key studies demonstrated remarkable survival in PID
cohorts, using haplo-identical transplants with selective ex vivo
depletion of αβ T lymphocytes, which are directly involved
in graft versus host disease (GVHD), and B cells, which may
harbor Epstein–Barr virus (EBV), thus preserving passive innate
immunity from the donor and allowing for a faster time to
full immune reconstitution (11–14). Re-infusion of genetically
modified αβ T lymphocyte receptor bearing cells with an
added caspase suicide gene represents a recent modification to
the technique; if acute GVHD occurs, the administration of
rimiducid, a compound which activates the suicide gene, is able
to remove the targeted cells (15). Moreover, a different strategy
currently under investigation consists in the depletion of naive T
lymphocytes bearing the CD45RA marker, classically implicated
in acute GVHD, thus retaining the CD45RO-bearing T cells
which are more likely to contribute for antiviral activity (16).

Modified conditioning regimens contributed to improved
HSTC outcome. Table 4 describes the most common
conditioning strategies currently used in HSCT for PID
(17). Conditioning agents allow for creating space in the
bone marrow niche, facilitating donor stem cell engraftment.
Inclusion of immunosuppressive agents during conditioning
reduces the risk of graft rejection. However, irradiation-based
conditioning regimens and alkylating chemotherapy are
responsible for significant short-term and long-term transplant-
related mortality (TRM) and morbidity. The substitution of
cyclophosphamide with fludarabine and the development of
pharmacokinetics-based busulfan dosing as well as of treosulfan-
based conditioning, have shown decreased toxicity and are yet
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TABLE 1 | Classification of PID according to IUIS Primary Immunodeficiency Diseases Committee Report on Inborn Errors of Immunity (1, 2).

I. Immunodeficiencies affecting cellular and humoral immunity

a. Severe Combined Immunodeficiency (SCID) defined by CD3T cell lymphopenia

T– B+ NK– T– B+ NK+ T– B– NK- T– B– NK+

IL2RG (SCID-XL) IL7R ADA LIG4

JAK3 CD3δ AK2 (Reticular dysgenesis) RAG1

CD3ε RAG2

CD3ζ DCLRE1C (Artemis deficiency)

CORO1A NHEJ1 (Cernunnos XLF)

PTPRC (CD45 deficiency) PRKDC (DNA-PKcs deficiency)

FOXN1

b. Combined Immunodeficiencies (CID) generally less profound than SCID

II. CID with associated or syndromic features

III. Predominantly antibody deficiencies

a. Hypogammaglobulinemia

b. Other antibody deficiencies

IV. Diseases of immune dysregulation

a. Hemophagocytic Lymphohistiocytosis (HLH)

b. EBV susceptibility

c. Syndromes with autoimmunity

d. Immune dysregulation with colitis

V. Congenital defects of phagocyte number, function or both

a. Neutropenia

b. Functional defects

VI. Defects in intrinsic and innate immunity

a. Predisposition to invasive bacterial infections (pyogenes)

b. Predisposition to parasitic and fungal infections

c. Mendelian susceptibility to mycobaterial disease (MSMD)

d. Predominant susceptibility to viral infection

VII. Auto-inflammatory disorders

VIII. Complement deficiencies

IX. Phenocopies of PID

IL2RG, interleukin 2 receptor subunit gamma; JAK3, Janus kinase 3; IL7R, interleukin 7 receptor; CD3δ, CD3δmolecule; CD3ε, CD3εmolecule; CD3ς , CD3ς molecule; CORO1A, coronin

1A; PTPRC, protein tyrosine phosphatase, receptor type C; FOXN1, Forkhead box N1; ADA, adenosine deaminase; AK2, adenylate kinase 2; LIG4, DNA ligase 4; RAG1, recombination

activating 1; RAG2, recombination activating 2; DCLRE1C, DNA cross-link repair 1C; NHEJ1, non-homologous end joining factor 1; PRKDC, protein kinase, DNA-activated, catalytic

subunit.

associated with a satisfying stem cell engraftment (18, 19). An
alternative reduced intensity conditioning (RIC) regimen based
on melphalan and fludarabine is also associated with reduced
TRM risk, but an increased rate of mixed chimerism, especially
in the myeloid lineage (20).

GVHD is primarily due to the recognition of host MHC
antigens by donor’s naive T cells. Different methods of
GVHD prophylaxis are outlined in Table 5. Standard GVHD
prophylaxis consists of cyclosporine A or tacrolimus in
combination with methotrexate or mycophenolate mofetil.
Moreover, serotherapy with antithymocyte globulin (ATG) or
the anti-CD52 antibody alemtuzumab (Campath) can be added
to the conditioning regimen in order to obtain in vivo T-
cell depletion (21, 22). Ex vivo T-cell depletion has been
discussed above (see donor strategies). An alternative approach
to prevent GVHD in patients receiving T-cell replete mismatched
transplant is the use of cyclophosphamide after graft infusion.
Cyclophosphamide is selectively toxic to recently activated donor

lymphocytes, while preserving donor pluripotent hematopoietic
stem cells (23). Recently, Neven et al. demonstrated the efficacy of
this approach for patients with life-threatening inherited diseases
(24). Several new therapies for steroid-resistant or steroid-
dependent acute GVHD are currently under investigation (25);
further studies are required for all these new strategies, and for
some of them their role in the treatment of acute GVHD has yet
to be clearly defined.

Finally, the control of viral infections after HSCT is
fundamental for a good outcome. The development of T
lymphocytes specifically directed against viral epitopes represents
a powerful strategy to control infections through transplantation.
However, at present, only few specific viruses can be targeted
and donor banks of virus-specific or multi-virus specific T
lymphocytes are available only in specialized centers. Naik et al.
showed 81% partial or complete responses against targeted
viruses (26). Ongoing clinical trials will define the state of the art
of this approach.
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TABLE 2 | Indications for HSCT in PID.

HSCT curative HSCT partially

curative

HSCT controversial

SCID Cartilage Hair

Hypoplasia

CVID

CID∧ PGM3 deficiency Agammaglobulinemia

CGD STAT1-GOF Complement deficiencies

(other than C1q deficiency)

DOCK8 deficiency STAT3- GOF DGS

DOCK2 deficiency Severe congenital

neutropenia

IKBA deficiency

IPEX ADA2 deficiency NEMO deficiency

WAS CIQ deficiency

WIP deficiency CD25 deficiency

ARPC1B deficiency IL-10 deficiency

CD40 ligand deficiency IL-10 Receptor

deficiency

CD40 deficiency DNA double-strand

break repair disorders

XLP1, XLP2

APDS

MHC Class II deficiency

AD Hyper IgE syndrome

CTLA4 haploinsufficiency

LRBA deficiency

Familial HLH types 1–5

GATA2 deficiency

RAB27A deficiency

LAD I

Reticular Dysgenesis

∧Depending on the clinical and immunological phenotype. SCID, severe combined

immunodeficiency; CID, combined immunodeficiency; CGD; chronic granulomatous

disease; DOCK8, dedicator of cytokinesis 8; DOCK2, dedicator of cytokinesis 2;

IPEX, immune dysregulation, polyendocrinopathy, enteropathy, X-linked; WAS, Wiskott-

Aldrich syndrome; WIP, WASP interacting protein; ARPC1B, actin related protein 2/3

complex subunit 1B; XLP1, X-linked lymphoproliferative disease 1; XLP2, X-linked

lymphoproliferative disease 2; APDS, activated PI3K delta syndrome; MHC, major

histocompatibility complex; AD, autosomic dominant; CTLA-4, cytotoxic T-lymphocyte-

associated protein 4; LRBA, lipopolysaccharide (LPS)-Responsive and Beige-like Anchor

protein; HLH, hemophagocytic lymphohistiocytosis; GATA2, GATA binding protein

2; RAB27A, member RAS oncogene family; LAD, leukocyte adhesion deficiency;

PGM3, phosphoacetylglucosamine mutase; STAT1, signal transducer and activator of

transcription 1; STAT2, signal transducer and activator of transcription 2; GOF, gain of

function; ADA2, adenosine deaminase 2; CVID, common variable immune deficiency;

DGS, DiGeorge syndrome; NEMO, nuclear factor-kappa B essential modulator.

HEMATOPOIETIC STEM CELL
TRANSPLANTATION FOR INDIVIDUAL
PRIMARY IMMUNODEFICIENCY
DISEASES

The broad spectrum of clinical and immunological phenotypes
associated with PID makes it difficult to define a universal
transplant regimen. Here we describe the evidence regarding
the different approaches to HSCT for individual PID.
Table 6 shows an overview for each PID analyzed in
the text.

The literature review has been performed employing PubMed,
EMBASE, Web of Science, and Scopus databases, retrieving all
publications on the outcome of HSCT for individual PID. We
performed the search strategy using a free-text search (keywords)
and thesaurus descriptors search (MeSH and Emtree) for each
individual PID, adapted for all the selected databases. We
searched all articles published up to May 2019. Articles were
considered eligible according to the following inclusion criteria:
English language and publication in peer-reviewed journals.
Articles were excluded by title, abstract, or full text for irrelevance
to the investigated issue. Lastly, to identify further studies that
met the inclusion criteria, the references of the selected articles
were also reviewed.

X-Linked SCID, JAK3 Deficiency, and IL-7
Receptor Deficiency
X-linked SCID (X-SCID) is a X-linked recessive inherited
immunodeficiency that presents with the clinical features of
SCID in the first few months of life, i.e., failure to thrive, chronic
diarrhea, recurrent respiratory infection, and/or generalized
infections from opportunistic pathogens, or signs of graft
versus host reaction (skin rash, pancytopenia, abnormalities of
liver function) from transplacental acquired maternal T cells.
The immunological phenotype is characterized by the lack of
peripheral blood T and NK lymphocytes; B cells are usually
present, but immunoglobulin production is severely reduced, if
not absent. X-SCID is caused by mutations in the interleukin-2
receptor gamma (IL2RG) gene encoding for the common gamma
chain (γc) shared by cytokine receptors for interleukin (IL)-2, IL-
4, IL-7, IL-9, IL-15, and IL-21. The clinical and immunological
phenotype of X-SCID is virtually undistinguishable from that
of JAK3 (Janus Kinase 3) deficiency. JAK3 is coupled with
the common γ chain shared by the above cited cytokine
receptors andmediates their downstream signaling; its deficiency
is responsible for the autosomal recessive T– B+ NK– SCID.

Buckley et al. reported on a large cohort of patients with
SCID receiving HSCT, including 89 infants transplanted at Duke
between 1992 and 1998 (27).

The majority of patients with SCID were boys with X- SCID.
However, six had JAK3 mutations, 13 had adenosine deaminase
deficiency (ADA)-SCID, three had IL-7 receptor α chain defects,
and 21 infants had unclassified autosomal recessive SCID.

A total of 77 infants received T cell depleted, haploidentical
parental HSCT, and 12 received a MRD transplant. The survival
rate was just over 80 percent 3 months to 16.5 years post-
transplant. None of these patients received chemotherapy pre-
transplant or GVHD prophylaxis. GVHD developed in 28 of
the 77 infants who received T cell depleted, HLA haploidentical
marrow, but in most cases the GVHD was mild and did not
require treatment. Interestingly, B cell function was reconstituted
in <50% of the long-term survivors necessitating life-long
immunoglobulin replacement in those patients. It has been
demonstrated that signaling through the common γ-chain and
JAK3 is required to enable B cells to respond to IL-21 and
differentiate into plasmablasts (28). In the absence of donor
B cell engraftment, B lymphocytes from patients with X-SCID
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TABLE 3 | Donor stem cell sources in PID HSCT.

Donor source HSC content Access to

donor

Engraftment

time

Rate of

GVHD

Rate of TRM Advantages Disadvantages Other

MRD Rapid Short Low Low <30% patients have

MRD available, risk of

disease-carrier status

Considered standard

approach, primary

graft source in most

pediatric HSCT

MUD 3–5 × 10∧6 CD34+

cells/kg

or

300–500 × 10∧6

TNC/kg

Slow Short Increased Low Chance to obtain

more cells from donor

if needed

HLA mismatches

impact outcome

Probability to find

compatible donor

between 50 and 80%

TCRαβ/CD19-

depleted

haploidentical

donor

Rapid Short Low Low High rate of viral

infections, high

laboratory expertise

required, risk of

disease-carrier status

Increased access to

family donors

Cord blood unit 0.3–0.5 × 10∧6

CD34+ cells/kg

Rapid Long Low Increased Increased donor pool

for ethnic minorities

Longer immune

reconstitution, limited

amount of available

CD34+ cells, high rate

of viral infections,

unable to go back to

donor for more cells

Ideal in smaller

children where

adequate HSC dose

could be achieved

MRD, matched related donor; MUD, matched unrelated donor; TCR, T cell receptor; TNC, total nucleated cells; GVHD, graft versus host disease; TRM, transplant related mortality;

HLA, human leukocyte antigen; HSCT, hematopoietic stem cell transplantation; HSC, hematopoietic stem cell.

TABLE 4 | Common conditioning regimens used in PID HSCT, adapted from (17).

Conditioning regimens∧ Drug combination +/– Engrafment rate Toxicity

Myeloablative Conditioning (MAC)* Bu (90 ± 5mg × h/L iv) + Flu (160 mg/m2 ) Alemtuzumab or ATG High High

Reduced Intensity Conditioning (RIC) Bu (60 ±5mg × h/L iv) + Flu (180 mg/m2) Alemtuzumab or ATG Variable Low

Flu (150 mg/m2) + Melphalan (140 mg/m2) Alemtuzumab

Treosulphan (42 g/m2) + Flu (150 mg/m2)◦ None or Alemtuzumab

∧Thiotepa can be used in addition to current conditioning regimen when more myelosuppression is needed. *Bu/CY conditioning is associated with increased risk of VOD and

no longer recommended. ◦Regimen also assessed as reduced toxicity conditioning. Bu, busulfan; Flu, fludarabine; ATG, antithymocyte globulin; CY, cyclophosphamide; VOD,

veno-occlusive disease.

and JAK3 deficiency remain unable to produce antibodies,
even when robust donor T cell engraftment is achieved (29).
Furthermore, waning of T cell immunity has been observed at
long-term follow-up in several patients with X-SCID and JAK3
deficiency who did not receive conditioning chemotherapy at
the time of HSCT. These data argue in favor of including some
chemotherapy in the conditioning regimen for these patients, if
clinical conditions allow, in order to enable durable stem cell
engraftment and full T and B cell immune reconstitution.

Hamid et al. reported an overall survival of 72% following
HSCT of 43 patients with IL2RG/JAK3 SCID (30). Sixty-
eight percent of them had ongoing medical issues. B-lymphoid
and myeloid chimerism after HSCT were highly correlated.
Low-toxicity myeloablative conditioning (MAC) resulted in
better B-lymphoid/myeloid chimerisms and freedom from IVIG
replacement. The authors concluded that a dose of busulfan of
8 mg/kg in combination with cyclophosphamide might not be
myeloablative enough to ensure a robust donor HSC engraftment
with donor B-lymphopoiesis. Moreover, the authors speculate
that in conditioned recipients the thymic niche is consistently
reseeded from the bone marrow-derived donor stem cells leading
to ongoing thymopoiesis, while for unconditioned patients,

initial seeding of the thymic niche by infusedHSC is not generally
followed by reseeding, as donor stem cell engraftment does not
consistently occur in the bone marrow, and thymic seeding may
have a finite lifetime, leading eventually to thymic exhaustion.

IL-7 Receptor Deficiency is an autosomal recessive form
of SCID, with selective lack of T cells, but normal number of
B and NK lymphocytes (31). At variance with X-linked SCID
and JAK3 deficiency, where B cells are genetically impaired
in their capacity to respond to IL-21 and differentiate into
antibody-secreting cells, IL7R-deficient B cells are functional,
as long as T cell help is provided. This observation has
represented the rationale for performing HSCT in the absence
of conditioning for IL7R-deficient patients. Dvorak et al. have
reported the cases of two infants with SCID due to IL7R
deficiency, associated with maternal T cell engraftment in one
of them (32). The patients received HSCT from an unrelated
donor with conditioning consisting of alemtuzumab only, which
temporarily ablated circulating T cells in the patient with
maternal engraftment. Both patients showed slow, but sustained
T cell engraftment in the absence of myeloid or B cell donor
chimerism. However, reconstitution of donor-derived T cells was
sufficient to enable also humoral immune reconstitution. These
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TABLE 5 | Methods of GVHD prophylaxis and therapy.

I. Methods of GVHD prophylaxis

a. Pharmacotherapy

• Calcineurin inhibitor (Tacrolimus∧, Cyclosporin A*)

• Inhibitors of cell proliferation (Mycophenolate Mofetil,

Methotrexate*∧, PT-Cyclophosphamide)

• Corticosteroids

• mTOR inhibitors (e.g., Sirolimus, Everolimus)

b. Depletion of donor T-lymphocytes

• In vivo (Anti-T-lymphocyte globulin∼, Alemtuzumab)

• Ex vivo (CD34+ selection, CD3+ TCRαβ/CD19 depletion, CD3+

TCRαβ/CD19 depletion with iCasp9 suicide gene TCRαβ add-back, CD3+

CD45RA+ depletion)

II. GVHD Therapies

a. Corticosteroids

b. Immunosuppressive agents

c. Cytokine-receptor agonists

• Anti-interleukin-2R

• Anti-interleukin-6R

• Anti-TNFR

d. Extracorporeal photopheresis

• 8-Methoxypsor-alen (8-MOP) + UVA radiation

e. Mesenchymal stromal cells

III. New potential approaches under investigation

• PI3K inhibitors

• JAK inhibitors

• MEK inhibitors

• Aurora A inhibitors

• ROCK-1 inhibitors

• CDK2 inhibitors

*In Combination, Europe gold standard. ∧ In Combination, America gold standard.
∼ In Combination. GVHD, graft versus host disease; PT, Post-Transplant; TCR, T Cell

Receptor; TNFR, Tumor Necrosis Factor Receptor; PI3K, Phosphoinositide 3-kinase; JAK,

Janus kinase; MEK, mitogen-activated protein kinase kinase; ROCK-1, Rho-associated

kinase 1; CDK2, Cyclin-dependent kinase 2.

observations confirm that chemotherapy is not strictly required
to induce both cellular and humoral immune reconstitution in
patients with IL7R deficiency. However, it remains to be seen
whether in the absence of donor stem cell chimerism, robust
thymic T cell output will be maintained over time.

RAG Deficiency
The Recombination Activating Genes 1 and 2 (RAG1, RAG2)
assemble as a heterotetramer that initiates the process of V(D)J
recombination in developing T and B cells, allowing for the
assembly of T cell receptor and immunoglobulin molecules, thus
for T and B cell development (33). Null mutations in RAG1 or
RAG2 cause autosomal recessive T– B– NK+ SCID in humans,
however hypomorphic mutations in the same genes have been
associated with a spectrum of clinical phenotypes, including
Omenn syndrome, atypical SCID and combined immune

deficiency with granulomas and/or autoimmunity (CID-G/AI)

(33). If untreated, severe RAG deficiency is inevitably fatal early
in life; furthermore, although CID-G/AI may allow survival into

late childhood or even adulthood, these patients are at high
risk of severe organ damage (especially in the lungs), chronic
and severe herpes virus infections, and severe autoimmune
manifestations, ultimately leading to reduced survival and poor
quality of life (34–36).

For several decades, the results of HSCT for RAG deficiency
had been less satisfactory than in other forms of SCID or CID,
especially when no matched related donors were available. A
multicenter study reported outcome of HSCT in 76 patients with
RAG deficiency (37). In this study, survival was ∼80% for 25
patients who received unmanipulated bone marrow graft from
matched related donors without myeloablative conditioning.
However, while T cell reconstitution was achieved, the CD4+
T cell count remained in the lower range of normal in
the majority of the patients, and reconstitution of B cell
immunity was observed less consistently, with more than half
of the patients requiring regular immunoglobulin replacement
therapy. In the same study, 39 patients received T-cell-
depleted transplantation from haploidentical donors. Among
those who received transplantation without chemotherapy or
with cyclophosphamide or fludarabine only (with variably
added serotherapy), only 25% of them engrafted and developed
sustained T-cell immunity, and none developed B cells.
Finally, survival was 60% among RAG-mutated patients who
received T-cell-depleted HSCT from a haploidentical donor
with chemotherapy conditioning (mostly with busulfan-based
regimens); the majority (82%) of these patients attained T
and B cell reconstitution, but 18% required immunoglobulin
replacement therapy. There was an association between use of
chemotherapy, stem cell engraftment and B cell reconstitution. A
recent retrospective study from the Primary Immune Deficiency
Treatment Consortium (PIDTC) reported on the outcome of
662 patients with SCID and related diseases who received
HSCT between 1982 and 2012, including 52 patients with RAG
deficiency (38). Among these, 28 presented with SCID, and 24
with atypical SCID or Omenn syndrome. Thirty-nine of these
patients received haploidentical HSCT, with no difference in
survival observed between those with SCID and those with
atypical SCID/Omenn syndrome. Overall survival for patients
with RAG deficiency was comparable to that observed for
patients with X-linked SCID and JAK3 deficiency and use of
conditioning regimen was not identified as an independent
contributor to overall survival. On the other hand, genotype,
donor type and conditioning regimen were found to affect the
quality of immune reconstitution. Patients with RAG deficiency
experienced poorer T- and B-cell reconstitution after HSCT.
Moreover, recipients of haploidentical transplantation attained
poorer B-cell reconstitution. Finally, use of reduced intensity
conditioning or myeloablative conditioning was associated with
better T-and B-cell reconstitution than no conditioning or
immunosuppression only. More limited data are available on
HSCT in patients with CID-G/AI (36). Twenty-six patients with
RAG deficiency presenting as CID-G/AI were transplanted at
a mean age of 5.2 years (35). In most cases, myeloablative
conditioning was used. At a median follow-up on 9 months, 18
patients (69.2%) were reported to be alive. As many of these
patients have been diagnosed late in the course of the disease,
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TABLE 6 | Overview of HSCT in individual PID.

Indication Main PID features Evidence summary Level of evidence based on

published patients

(<10; 10–100; >100)

X-linked SCID and JAK3

deficiency;

IL7R deficiency

Impaired γc signaling resulting in SCID T– B+

NK–;

Impaired IL7R signaling resulting in SCID T-

B+ NK+

HSCT required for survival. Conditioning is not

required to attain T cell reconstitution. However, in

the absence of conditioning, functional B and NK cell

reconstitution is typically not achieved in X-linked

SCID and JAK3 deficiency. In IL7R deficiency B and

NK cells are functional, thus no or low-dose

conditioning is indicated

>100 (X-linked SCID and JAK3

deficiency);

10–100 (IL7R deficiency)

RAG deficiency Impaired VDJ recombination, leading to

defective T and B cell development. Clinical

presentation: autosomal recessive T- B- NK+

SCID, Omenn syndrome, atypical SCID,

combined immune deficiency with granulomas

and/or autoimmunity (CID-G/AI)

Patients with SCID and Omenn: HSCT required for

survival. Use of RIC was associated with better T and

B cell reconstitution. Patients with CID-G/A: HSCT +

conditioning should be considered early in the

course of the disease

>100 (SCID, Omenn and leaky

SCID);

10–100 (CID-G/AI)

Adenosine deaminase

(ADA) deficiency

Metabolic disease that may affect different

tissues and organs; decreased cell survival

HSCT is curative. Gene therapy is an alternative

option. ERT can be used as bridge to HSCT or gene

therapy. Survival is superior after unconditioned

HSCT than after MAC or RIC

10–100

Reticular Dysgenesis T- B- NK- SCID, agranulocytosis, and

sensorineural deafness due to mutations in

AK2 gene

HSCT required for survival. Myeloablative

components in the conditioning regimens required to

achieve high-level donor myeloid engraftment and

avoid post-transplant neutropenia

10–100

DNA double-strand break

repair disorders

Heightened sensitivity to ionizing radiation due

to defects in components of the

non-homologous end joining (NHEJ) DNA

repair mechanism

Associated immunodeficiency can be resolved by

HSCT. Increased short- and long-term sensitivity to

the alkylator-based conditioning regimens. Better

survival with RIC than MAC

10–100

MHC class II (MHC-II)

deficiency

Lack of MHC-II expression is associated with

low CD4+ cell count, impaired antibody

production, defective T cell priming

Without successful HSCT, most patients succumb in

the first decade of life. Indication to HSCT depends

on clinical status of the patient and availability of a

matched donor, but survival is lower than in other

forms of PID

>100

CD40 ligand and CD40

deficiency

Defective CD40 signaling, leading to impaired

immunoglobulin class switch and defective

dendritic cell activation and T cell priming

HSCT is curative. Event-free survival: best with MAC

and absence of pre-existing organ damage (in

particular sclerosing cholangitis)

>100

DOCK8 deficiency Deficiency in DOCK8 is responsible for

abnormal cytoskeletal rearrangement. Patients

present with severe eczema,

immunodeficiency, autoimmunity, severe

allergies and increased risk for malignancy

HSCT curative, best outcome with RIC 10–100

DOCK2 deficiency Deficiency in DOCK2 lead to early-onset severe

bacterial and viral infections with T cell

lymphopenia, reduced naïve T cells, defective

antibody responses and impaired NK cell

function

HSCT curative, no conclusive data regarding

preferred conditioning regimens

<10

Functional T cell

immunodeficiencies

Defective pre-TCR and TCR signaling HSCT is required for survival in patients with CD3δ,

CD3ε, or CD3ζ defects. CD3γ deficiency may only

require HSCT in most severe cases. There is limited

experience in other TCR signaling defects. Overall,

conditioning is beneficial to achieve immune

reconstitution, but its intensity must be tailored to

minimize risks of organ toxicity

10–100

Wiskott-Aldrich Syndrome

and other

immunodeficiencies with

thrombocytopenia (WIP,

ARPC1B)

WAS: X-linked disorder with immunodeficiency,

eczema and thrombocytopenia. WIP:

autosomal recessive immunodeficiency with

mutations in the WIPF1 gene. Patients display

a WAS-like phenotype. ARPC1B: autosomal

recessive CID with immune dysregulation and

platelet abnormalities

HSCT curative. Low myeloid engraftment is

associated with increased risk of persistent

thrombocytopenia. High intensity conditioning

regimens result in reliable donor chimerism

>100 (WAS); <10 (WIP);

<10 (ARPC1B)

(Continued)
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TABLE 6 | Continued

Indication Main PID features Evidence summary Level of evidence based on

published patients

(<10; 10–100; >100)

Cartilage hair hypoplasia

(CHH)

Caused by mutations of the RMRP gene

involved in ribosomal RNA processing,

mitochondrial DNA replication and control of

gene transcription. Syndromic combined

immunodeficiency, with short stature, sparse

hair, and increased risk of autoimmunity,

Hirschsprung disease, bone marrow failure and

malignancies

HSCT can cure the immune deficiency and help

prevent infections, bone marrow failure and

malignancy. However, growth, cutaneous and

intestinal manifestations of the disease are not cured

10–100

AD hyper-IgE syndrome

due to dominant negative

STAT3 mutations (Job’s

syndrome)

Mutation in the STAT3 gene. The disease is

characterized by hyper-IgE, increased

occurrence of bacterial and Aspergillus

infections, mucocutaneous candidiasis,

somatic features (distinctive facies, scoliosis,

coronary and cerebral aneurysms) and

deficiency of Th17 and T follicular helper cells

There is inconclusive evidence that HSCT is

beneficial, although clinical and immunological

improvement has been reported in several cases.

However, the impact of transplantation on other

features (aneurysms, bone anomalies and possibly

intrinsic lung abnormalities) is not clear

10–100

Phosphoglucomutase 3

(PGM3) deficiency

Glycosylation defect presenting with variable

immunodeficiency, skeletal dysplasia,

neurodevelopmental delay, tendency to bone

marrow failure and organ (kidney, intestine,

heart) defects

HSCT may be curative, but limited experience. Other

manifestations of the disease: unlikely to be resolved

by HSCT. Intermediate intensity conditioning

recommended

<10

Chronic granulomatous

disease (CGD)

Mutations that affect the functionality of the

nicotinamide adenine dinucleotide phosphate

(NADPH) complex, with defective production of

microbicidal reactive oxygen species. The most

common form is X-linked

HSCT curative. Adequate level of donor myeloid

chimerism is fundamental to successfully correct the

clinical phenotype. To limit toxicity, alkylator-based

RIC are used

>100

Immuno-dysregulation,

Polyendocrinopathy,

Enteropathy, X-Linked

(IPEX syndrome)

Mutations in the FOXP3 gene, a master

transcriptional regulator for development of

CD4 regulatory T-cells. Patients experience

severe, multi-organ autoimmune phenomena

including enteropathy, chronic dermatitis,

endocrinopathy, hepatitis, nephritis and

cytopenia

Patients do not survive long-term without HSCT,

HSCT curative. Important to transplant before organ

damage develops. Medium-high RIC regimen may

suffice to correct the disease, unclear whether

serotherapy is needed

10–100

Activated PI3kinase delta

syndrome (APDS)

GOF mutations of PIK3CD or LOF mutations of

the PIK3R1 gene, encoding the regulatory

subunit p85a. Patients manifest defects in

T-cell function with deficiency of naive T cells

and an excess of senescent effector T cells,

defects in B-cell function with increased IgM,

reduced IgG2, and impaired vaccine

responses, recurrent sinopulmonary infections,

lymphoproliferation

HSCT can be curative. Serotherapy may help

prevent graft failure/rejection. Medium/high RIC

regimens are associated with improved chimerism

and immune function

10 - 100

STAT1 GOF STAT-1 GOF mutations impair STAT1

dephosphorylation or result in increased STAT1

phosphorylation. Patients experience chronic

mucocutaneous candidiasis, severe viral

infections, bacterial and mycobacterial

infections, and autoimmunity

There is need to improve approach to HSCT for this

disease. A sub-myeloablative regimen may be

needed. The role of serotherapy has to be evaluated

10–100

STAT3 GOF Mutations confer GOF in STAT3 leading to

secondary defects in STAT5 and STAT1

phosphorylation and the regulatory T-cell

compartment. Patients experience infections,

lymphoproliferation and autoimmunity

There is very limited experience with HSCT for this

disease. HSCT can be curative, and RIC with

serotherapy may suffice

<10

CTLA-4 deficiency Heterozygous mutations in CTLA4 leading to

haploinsufficiency and impaired CTLA4

dimerization or impaired ligand binding, result in

an autosomal dominant immune dysregulation

syndrome with immunodeficiency

There is very limited experience with HSCT for this

disease. HSCT can be curative, and RIC with

serotherapy may suffice

<10

(Continued)
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TABLE 6 | Continued

Indication Main PID features Evidence summary Level of evidence based on

published patients

(<10; 10–100; >100)

LRBA deficiency Immune dysregulation syndrome due to

mutations in LPS-responsive, beige-like anchor

(LRBA), resulting in hypogammaglobulinemia

with B-cell deficiency, functional T-cell defects,

aberrant autophagy, autoimmunity and chronic

diarrhea

There is very limited experience with HSCT for this

disease. HSCT can be curative

<10

X-linked

lymphoproliferative

disease (XLP) 1 and 2

XLP1 (due to mutations of the SH2D1A gene)

affects cytotoxic T and NK cell function.

Affected males are at high risk for fulminant

infectious mononucleosis, HLH, EBV-driven

lymphoma, bone marrow aplasia, and

hypogammaglobulinemia. XLP2 (with

mutations of XIAP) is characterized by

increased incidence of HLH and inflammatory

disease (especially of the gut), but not of

EBV-related lymphoma

HSCT can be curative. RIC is preferable to MAC.

There is a need to improve outcome for patients with

XLP2, and these patients may continue to

experience inflammatory intestinal disease even after

successful transplant

>100 (XLP1);

10–100 (XLP2)

PID, primary immunodeficiency; HSCT, hematopoietic stem cell transplantation; SCID, severe combined immunodeficiency; CID, combined immunodeficiency; JAK3, Janus kinase 3;

IL7R, interleukin-7 receptor; RAG, recombination activating gene; CD40, cluster of differentiation 40; DOCK8, dedicator of cytokinesis 8; DOCK2, dedicator of cytokinesis 2; WAS,

Wiskott-Aldrich syndrome; WIP, WASP interacting protein; ARPC1B, actin related protein 2/3 complex subunit 1B; AD, autosomal dominant; STAT3, signal transducer and activator of

transcription 3; GOF, gain of function; STAT1, signal transducer and activator of transcription 1; CTLA-4, cytotoxic T-lymphocyte-associated protein 4; LRBA, lipopolysaccharide (LPS)-

responsive and beige-like anchor protein; AK2, adenylate kinase 2; TCR, T-cell receptor; RMRP, RNA component of mitochondrial RNA processing endoribonuclease; FOXP3, Forkhead

box P3; LOF, loss of function; PIK3CD, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit delta; PIK3R1, phosphoinositide-3-kinase regulatory subunit 1; STAT5, signal

transducer and activator of transcription 5; SH2D1A, SH2 domain containing 1A; HLH, hemophagocytic lymphohistiocytosis; EBV, Epstein-Barr virus; RIC, reduced intensity conditioning;

ERT, enzyme replacement therapy; MAC, myeloablative conditioning.

when organ damage is already often manifest, it is believed that
transplant should be offered sooner, and conditioning regimen
should be tailored to facilitate stem cell engraftment, deplete
dysreactive T- and B-cell clones, while minimizing the risks of
organ toxicity.

Adenosine Deaminase (ADA) Deficiency
Adenosine deaminase (ADA) is an enzyme involved in purine
metabolism. ADA deficiency is responsible for a severe
immunodeficiency affecting all lymphoid lineages (T– B–
NK– SCID). Clinical manifestations of the disease include
severe infections since early in life, neurodevelopmental
delay, hearing defects, liver dysfunction, pulmonary alveolar
proteinosis, skeletal defects, increased risk of tumors (lymphoma,
dermatofibrosarcoma protuberans, and liver cancer), and
autoimmune manifestations (39). Most patients die early in
life unless treated by enzyme replacement therapy (ERT),
HSCT or gene therapy. In particular, use of ERT has been
shown to be efficacious in improving immune function,
hepatocellular abnormalities, pulmonary alveolar proteinosis,
and bone dysplasia. However, several patients have experienced
deterioration in lymphocyte counts and function over time,
which may contribute to reappearance of a higher risk of
infection and tumors. For these reasons, ERT is often considered
as a bridge treatment while prompting for HSCT or gene therapy.
A multicenter study included 54 patients with ADA-SCID who
have received HSCT from MRD, 15 patients who received
HSCT from MUD, 7 patient who were transplanted from
mismatched unrelated donors, and 30 from a haploidentical
donor (40). Overall survival was higher for patients who received

HSCT from MRD; within this group there were 46 (85.2%)
survivors, with 3 (5.6%) patients dying from treatment-related
causes. Furthermore, conditioning was not necessary for
patients receiving HSCT from MRD, as donor chimerism was
reported in 100% of those who did not receive conditioning
and in 80% of those who did. Overall survival in patients
who received HSCT from MUD was 67%. Lower survival
rates were recorded for patients who received a mismatched
unrelated donor transplantation or a haploidentical transplant
(29 and 43% overall survival rates, respectively). In these
group of patients most of the death were observed in the first
100 days after transplant, and were mainly due to infections.
When considering the role of conditioning, improved overall
survival was observed in unconditioned transplantations
(78%) as compared to patients who received myeloablative or
reduced intensity conditioning (56 and 67% overall survival
rates, respectively). Recently, a single center-experience with
unconditioned MRD transplantation for ADA-SCID showed
that 4 of 16 patients required a repeat procedure (39). These data
suggest that if ERT is used to induce immune reconstitution,
it should be discontinued before HSCT; alternatively, mild
conditioning should be used to deplete cells generated while
receiving ERT.

Reticular Dysgenesis (RD)
Mutations in the gene encoding adenylate kinase 2 (AK2)
are responsible for reticular dysgenesis (RD), clinically defined
by the combination of T– B– NK– SCID, agranulocytosis,
and sensorineural deafness. Hoenig et al. reported on clinical
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presentation, genetics, and treatment outcome for a total of 32
patients born between 1982 and 2011 (41). Thirty-one patients
received HSCT (one patient died for neonatal sepsis before
HSCT). Grafts derived from mismatched family donors (n
= 17, 55%), MRD (n = 6, 19%), and unrelated marrow or
umbilical cord blood donors (n = 8, 26%). Secondary or tertiary
transplants were required in 13 patients. At a mean follow-up
of 7.9 years after transplantation, 68% of patients were reported
alive. Interestingly, persistent or recurrent agranulocytosis due
to failure of donor myeloid engraftment has been reported
in all patients who died beyond 6 months after HSCT.
Transplant without conditioning resulted ineffective to overcome
agranulocytosis. In comparison with other PID, although long-
term survival is possible in the presence of mixed chimerism,
inclusion of myeloablative components in the conditioning
regimens was needed in order to achieve high-level donor
myeloid engraftment and avoid post-transplant neutropenia.

DNA Double-Strand Break Repair
Disorders
Inherited defects in components of the non-homologous end
joining (NHEJ) DNA repair mechanism are responsible for
heightened sensitivity to ionizing radiation. Patients with these
disorders have also increased short- and long-term sensitivity
to the alkylator-based conditioning regimens. Known causes
of radiosensitive T– B– NK+ SCID include deficiencies of
Artemis, DNA Ligase IV, DNA-dependent protein kinase

catalytic subunit (DNA-PKcs), and Cernunnos–XRCC4-like

factor (Cernunnos-XLF) (42), while ataxia-telangiectasia (AT)
and Nijmegen breakage syndrome are counted among non-
SCID forms of radiosensitive immunodeficiencies. Schuetz et al.
showed that the use of alkylating agents in Artemis deficiency,
although not affecting overall survival -that resulted equivalent
to that observed in patients with RAG-deficient SCID-, was
responsible for long-term sequelae on growth and development
due to the effect of chemotherapy on mutated somatic cells
(37). Slack et al. analyzed HSCT outcome data for a total of 87
patients with DNA ligase IV deficiency (n= 36), Cernunnos-XLF
deficiency (n = 17), Nijmegen breakage syndrome (n = 26), and
AT (n = 8) (43). Survival of patients who received conditioning
was 69% and was worse forMAC than for RIC.Moreover, GVHD
was more frequent in patients receiving MAC compared with
those receiving RIC (57 vs. 46%).Most deaths occurred early after
conditioning, suggesting reduced tolerance to chemotherapy.
Survival in patients with AT was only 25%. When the transplant
was successful, while immune-mediated complications resolved,
growth and developmental delay remained after HCT.

Major Histocompatibility Complex (MHC)
Class II Deficiency
MHC class II deficiency comprises a genetically heterogeneous
group of autosomal recessive disorders due to mutations in
transcription factors that drive expression of MHC class II
molecules. Without successful HSCT, most patients with MHC
class II deficiency succumb to infections in the first decade of life.
The immunological hallmarks of the disease include: lack of HLA
class II antigen expression, markedly reduced count of CD4+ T
cells, and lack of antigen-specific responses (44). The indication

to HSCT depends on clinical status of the patient and availability
of a matched donor. European Registry data show that survival
after HSCT for MHC class II deficiency is lower than in other
forms of combined immunodeficiency (45).

Siepermann et al reviewed the outcome of 76 transplants in 68
patients with this disease (46). MRD was available in 56 cases,
a partially matched related donor in 12 and MUD in eight.
In 41 patients, a myeloablative conditioning was used, mostly
with busulfan and cyclophosphamide in combination with T-cell
depleting serotherapy. Bone marrow was used as stem cell source
in 66 patients. Graft rejection was documented in 10 patients. Six
patients developed grade III or IVGVHD, with a high occurrence
of concurrent viral infections. Overall, there was a high mortality
rate, with 42 deaths, 4 of which in the pre-transplant phase and
38 post-transplant. The death rate by donor type was as follows:
MRD, 25 deaths/56 transplants; partially matched related donors,
8/12; MUD, 5/8. The main causes of death were viral, bacterial
or fungal infections, often associated with GVHD. Because
HSCT would not correct impaired MHC class II expression on
thymic epithelial cells and other stromal cells, thymic selection
may result in altered function and phenotype of T cells post-
transplant, which may in turn cause delayed and incomplete
immune reconstitution, and increased risk of infections.

Small et al. reported on the outcome of HSCT in 16
consecutive cases of MHC class II deficiency treated at Memorial
Sloan Kettering, New York (47). Eight of the patients had
required mechanical ventilation pre-transplant. Donors included
HLA-mismatched family members in 10 cases, MUD in 4, and
unrelated cord blood in 2. Seven patients received a T cell-
depleted transplant, six of whom were treated with busulfan
(16 mg/kg), combined with thiotepa and fludarabine (n = 3),
thiotepa and cyclophosphamide (n = 1), cyclophosphamide
and fludarabine (n = 1), or cyclophosphamide alone (n = 1).
All patients who received T-cell depleted transplants also
received ATG or alemtuzumab. Recipients of T cell-replete
transplant were treated with busulfan, cyclophosphamide and
fludarabine (n = 2), thiotepa and cyclophosphamide (n = 1),
melphalan, fludarabine and alemtuzumab (n = 2), fludarabine,
cyclophosphamide, anti-CD45 and alemtuzumab (n = 1), or
low dose cyclophosphamide, fludarabine, 200 cGy total body
irradiation (TBI) and post-transplant cyclophosphamide. Graft
failure occurred in 5 patients, all of which received a second
transplant. Eleven (69%) patients survived without GVHD at
a median follow-up of 5.7 years. CD4+ T cell reconstitution
was suboptimal and declined progressively over time, suggesting
defective thymopoiesis.

Elfeky et al. have reported on the use of unrelated cord
blood transplantation without serotherapy in 6 patients with
MHC class II deficiency, 5 of whom had chronic norovirus
infection (48). Other active infections at the time of transplant
included: CMV viremia, Pneumocystis jiroveci pneumonia,
Echovirus meningitis, and RSV pneumonitis. Conditioning
was with treosulfan (42 g/m2) and fludarabine (150 mg/m2).
All patients attained >90% donor chimerism by 28 days,
followed by stable mixed chimerism of >60% in all patients
except one. Patients had good reconstitution of total CD3+
and of CD4+ counts. Four patients were able to clear the
Norovirus infection. However, four patients remained dependent
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on IVIG replacement, one patient developed autoimmune
thrombocytopenia and pulmonary hemorrhage in the presence
of HHV6 pneumonitis and one patient suffered from grade
III GVHD.

CD40 Ligand and CD40 Deficiencies
CD40 ligand (CD40L) is a cell surface molecule that is
predominantly expressed by activated CD4+ T cells and plays
a critical role in stimulating B cell maturation and plasma blast
differentiation during the germinal center reaction, as well as in
inducing dendritic cell and monocyte/macrophage activation by
interacting with its receptor CD40 (49).

CD40L deficiency in humans causes X-linked hyper-IgM
syndrome, a condition characterized by recurrent infections
sustained by bacteria, viruses, and opportunistic pathogens
(including Cryptosporidium, Pneumocystis jiroveci, and CMV)
and neutropenia. The immunological phenotype includes
hypogammaglobulinemia with normal to elevated levels of IgM,
and markedly reduced number of switched memory B cells.
Although the clinical phenotype may have variable severity,
many patients—if left untreated—succumb early in life to
infections, and even with immunoglobulin replacement therapy
and antimicrobial prophylaxis there is an increased risk of severe
biliary tract disease and liver failure, especially secondary to
Cryptosporidium infection, and of peripheral neuroectodermal
tumors (50).

Thomas et al. were the first to report in 1995 successful
correction of CD40L deficiency by allogeneic HSCT (51).

In 2004, Gennery et al. reported on the European experience
with HSCT in 38 patients with this disease (52). Sixteen patients
had a past history of P. jiroveci pneumonia, and 19 patients had
experienced Cryptosporidium infection. Twenty patients had
abnormal liver function at the time of transplant, and 15 of them
had evidence of sclerosing cholangitis at liver biopsy. Donors
included 14 MRD, 22 unrelated donors (15 of which were fully
matched to the recipient), and 2 phenotypically matched parents.
Twenty-nine patients received myeloablative conditioning with
busulfan (12–20 mg/kg) and cyclophosphamide (200 mg/kg),
with the addition of alemtuzumab or thiotepa in one patient
each. Nine patients received RIC, which included fludarabine
and melphalan in 8 patients, 5 of which also received ATG;
one patient received TBI with partial hepatic shielding, and
cyclophosphamide. Thirty-four patients engrafted with full or
mixed chimerism; 4 patients showed autologous reconstitution,
and one of them received a second transplant from a different
donor with conditioning. Despite the fact that 20 patients
had abnormal liver function, veno-occlusive disease (VOD)
was seen in only 4 cases. However, GVHD grade II-IV was
seen in 14 patients, and was fatal in 6 with pre-existing
infection. One patient developed fulminant liver failure and
required an orthotopic liver transplantation, but died of
disseminate cryptosporidiosis. Of 4 patients who had received
liver transplantation prior to HSCT, 3 died. Overall, 22 patients
(58%) were cured and expressed CD40L on the cell surface;
20 of these no longer required immunoglobulin replacement
therapy. There were 12 deaths, all of which were associated with
infections. In particular, Cryptosporidium and adenovirus were

frequently involved. Pre-existing lung damage was a negative
prognostic factor for survival. Furthermore, among patients who
received HSCT from an unrelated donor, the outcome was
significantly worse for the 7 patients who were transplanted
from a 1-Antigen mismatched donor (4 of which died, and 1
showed autologous reconstitution) than among the 15 whose
donors were fully matched (with 3 deaths and 2 autologous
reconstitutions in these cases).

Jacobsohn et al. reported on the use of non-myeloablative
conditioning (fludarabine 180 mg/m2; busulfan 6.4 mg/kg;
horse ATG 160 mg/kg) in two unrelated patients with CD40L
deficiency and cholangiopathy (53). Both patients received HSCT
from their HLA-matched siblings. One patient attained full
donor chimerism, whereas mixed chimerism (25–45%) was
observed in myeloid and lymphoid cells of the other patient.
Both immunological and clinical improvement were noted in
both patients.

Mitsui-Sekinaka reported on 29 patients with CD40L
deficiency who received HSCT in Japan (54). The median age
at transplant was 7 years. Donors included: MRD (n = 13),
MUD (n = 13), 6/6 or 5/6 matched unrelated cord blood (n
= 3). Sixteen patients received myeloablative conditioning with
busulfan (16 mg/kg) and cyclophosphamide (200 mg/kg), with
the addition of ATG in 2 patients. One patient received TBI
(12Gy) and cyclophosphamide. Ten patients received RIC. Five
patients had pre-transplant organ damage; three of them received
myeloablative conditioning, and 2 received RIC regimens. The
overall survival was 100% at 10 years and 65.9% at 30 years.
Among patents without pre-transplant organ damage, full donor
chimerism was observed in 14/16 (87.5%) of those who received
myeloablative conditioning, and in 4 of 8 (50%) treated with
RIC regimens. Twenty of the 25 living patients fully engrafted,
and 22 (88%) remained free of IVIG substitution. Graft failure
was seen in 3 patients despite myeloablative conditioning. Mixed
chimerism was seen in 3 patients, 2 of which had received a
RIC regimen. All three continued to require IVIG replacement
therapy for more than 1 year after HSCT. Post-transplant
complications included pulmonary aspergillosis in 4 patients, P.
jiroveci pneumonia in 2, C. parvum infection in 2, and viral
encephalitis in 2.

De la Morena et al. have compiled a recent study of
long-term outcome in 176 patients with CD40L deficiency,
including 67 who received HSCT (55). The majority (n = 47)
of the patients received unrelated donor HSCT; 37 patients
received HSCT from a matched donor; 17 from a 1-antigen
mismatched donor; 2 from 2-antigen-mismatched donor; and 2
from a haploidentical donor. No information of donor/recipient
matching was available in 2 cases. Myeloablative conditioning
was used in 41 patients, and RIC in 20. No information on type of
conditioning was available for 6 patients. Among 65 patients for
whom information on engraftment was available, 57 engrafted.
In particular, engraftment was achieved in 93% of those who had
received myeloablative conditioning, and in 85% of those who
had received a RIC regimen. Nine patients required a second
HSCT. At the close of the study, 57 (85%) of these 67 patients
were surviving. Infections and transplant-related complications
(VOD andGVHD)were themain causes of death. Liver disease at
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the time of transplantation represented a negative risk factor for
survival. An improved outcome of HSCT for CD40L deficiency in
recent years has been confirmed by Ferrua et al. who reported on
130 patients who received transplantation between 1993 and 2015
(56). In this series, overall survival and event-free survival were
78.2 and 58.1%, respectively. Results were significantly better for
transplants performed in year 2000 or later and in patients <10
years old at the time of HSCT. Event-free survival was superior
when matched sibling donors, myeloablative conditioning, and
bone marrow as a source of stem cells were used. Pre-existing
organ damage and sclerosing cholangitis in particular, were
negative predictive factors.

CD40 deficiency is inherited as an autosomal recessive
trait, and its clinical and immunological phenotype mirrors
what observed in males with CD40L deficiency (57). The first
patient with this disease who received HSCT was an infant
with severe respiratory infections, chronic diarrhea, failure to
thrive, and disseminated C. parvum infection complicated by
sclerosing cholangitis (58). She received peripheral blood stem
cells (PBSC) transplant from her matched brother, upon RIC
regimen with fludarabine (150 mg/m2), melphalan (100 mg/m2)
and rabbit ATG (12.5 mg/kg). The post-transplant course was
complicated by severe respiratory infection and distress, leading
to death on day +16. Mazzolari et al. were the first to report
on successful HSCT for CD40 deficiency (59). The patient
was a 3-year-old child with a history of recurrent infections
and neutropenia. She received HSCT from her matched sibling
(who was heterozygous for the mutation), upon myeloablative
conditioning with busulfan (16 mg/kg) and cyclophosphamide
(200 mg/kg). Stable multilineage full donor chimerism was
observed, associated with correction of the disease phenotype.
Al-Saud et al. have reported on HSCT in 6 patients with
CD40 deficiency (60). Five patients had a history of respiratory
tract infections; two had C. parvum infection and sclerosing
cholangitis and one patient had CMV viremia. Neutropenia was
present in 4 patients. Five of the 6 patients received MRD HSCT,
and one was transplanted from a 1-antigen mismatched sibling
donor. Myeloablative conditioning with busulfan (16 mg/kg) and
cyclophosphamide (200 mg/kg) was used in all patients, one
of which also received ATG (10 mg/kg). Complications post-
transplant included: drug-induced nephrotoxicity and VOD in
one patient each. All patients survived at a median follow-up of
54 months. At the time of last follow-up, mean donor chimerism
was 66.6% (range: 16–100%) in lymphocytes, and 75.5% (range:
51–100%) in myeloid cells.

DOCK8 Deficiency
Dedicator of cytokinesis 8 (DOCK8) deficiency is responsible for
abnormal cytoskeletal rearrangement, resulting in defective cell
migration and adhesion and abnormal cell structure (61, 62).
Severe eczema, immunodeficiency with increased susceptibility
to bacterial and viral infections, autoimmunity, severe allergies
and increased risk for malignancy represent the main clinical
features (63).

Given the poor outcome on conservative treatment, a number
of case reports and small series report on transplanted patients
(64–72). Recently, Aydin et al. reported on HSCT outcome data

for 81 patients from 22 centers transplanted at a median age of 9.7
years (range, 0.7–27.2 years) between 1995 and 2015 (63). After a
median follow-up of 26 months, 68 (84%) patients were reported
to be alive. Causes of death were infections (n = 5), GVHD
(n = 5), multiorgan failure (n = 2), and preexistent lymphoma
(n = 1). Transplant from MRD, age younger than 8 years at
HSCT and RIC represent the main positive prognostic factor for
survival after HSCT in this cohort. Interestingly, not all disease-
related conditions responded equally well to transplantation:
infections and eczema resolved quicker than food allergies or
failure to thrive.

DOCK2 Deficiency
The Dedicator of cytokinesis 2 (DOCK2) protein is a guanine
exchange factor that regulates activation of Rac1 and actin
polymerization upon activation of various surface receptors
expressed by hematopoietic cells. Dobbs et al. identified biallelic
deleterious DOCK2mutations in 5 unrelated children with early-
onset severe bacterial and viral infections, whose immunological
phenotype included T cell lymphopenia, markedly reduced
number of naïve T cell, defective antibody responses and
impaired NK cell function; two of them had reduced B cell
count (73). Two of these patients died of viral pneumonitis
and of Klebsiella pneumoniae sepsis at 6 years and at 20
months of life, respectively. The remaining three patients were
successfully treated by allogeneic HSCT. Different donor types
and conditioning regimens were used in these three patients. In
particular, one of them received a T-cell-depleted haploidentical
transplantation from his father followingMACwith busulfan and
fludarabine at 9 months of age; a second patient was treated at 3.8
years of life with a MUD HSCT following RIC with treosulfan,
fludarabine, and alemtuzumab; a third patient received at 3
years of age MRD HSCT following MAC with busulfan and
cyclophosphamide. All three patients have successfully engrafted
and are immune reconstituted.

Functional T Cell Immunodeficiencies
Numerous genetic defects have been identified that allow T cell
development but affect proximal or distal steps in intracellular
signaling, thereby causing T cell dysfunction (74).

The CD3 complex consists of CD3γ, CD3δ, CD3ε, and
CD3ζ chains that associate with the T cell receptor (TCR)
and mediate signal transduction. Genetic defects that cause
complete lack of CD3δ or CD3ε chain expression lead to a
block of T cell development and are a cause of SCID (75,
76). CD3ζ deficiency is characterized by a reduced number
of circulating T cells that are non-functional and display a
restricted TCR repertoire (77). Altogether, CD3δ, CD3ε and
CD3ζ deficiencies are responsible for a severe immune deficiency
and require HSCT early in life (78). However, somatic mosaicism
with gene reversion or second-site mutations restoring protein
expression may allow residual T cell development and more
prolonged survival, leading to atypical presentations of the
disease (79). Of note, haploidentical HSCT in the absence of
conditioning is typically associated with poor outcome (78, 80).
As compared to CD3δ, CD3ε, and CD3ζ deficiencies, mutations
in CD3G gene causing CD3γ deficiency are responsible for
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a less severe phenotype, with residual production of T cells.
These patients are at higher risk of autoimmune manifestations
that may occasionally be severe enough to warrant HSCT (81).
Ozgür et al. have reported on an infant with CD3γ deficiency
and severe inflammatory bowel disease, recurrent pulmonary
infections, and candidiasis who received HSCT from his matched
sister following RIC with fludarabine, cyclophosphamide and
rabbit ATG, but failed to engraft. A second transplant was
performed 5 months later from the same donor using a more
intense conditioning with busulfan (8 mg/kg), fludarabine and
cyclophosphamide. In spite of engraftment and initial signs of
immune reconstitution, the patient died of a sudden respiratory
distress on day +50 (82). Another patient was reported by Rowe
et al. who received MUD HSCT at 32 months of age because
of intractable enteropathy, autoimmune hemolytic anemia, and
granulomatous-lymphocytic interstitial lung disease (GLILD),
but died of severe GVHD at month+15 (81).

The Zeta-chain-associated protein kinase 70 (ZAP-70) was
first described in 1994 as a critical molecule for T cell
receptor signal transduction (83–85). When the TCR is engaged,
ZAP70 is recruited to the plasma membrane where it binds
to the phosphorylated CD3ζ. ZAP-70 becomes activated and
phosphorylates a number of signal transduction proteins
(SLP76, Cbl, Vav) activating several TCR-mediated pathways.
Homozygous mutations in the kinase domain of ZAP-70 result
in a combined immunodeficiency disease characterized by
susceptibility to bacterial, herpes virus, and fungal infections.
There is a marked decrease in CD8+ T cells with normal
numbers of CD4+ T cells, NK cells, and B cells. In some
cases, ZAP-70 deficiencymay also manifest with atypical clinical
and immunological phenotypes, including autoimmunity and
immune dysregulation (86–89). The role of HSCT and the
optimal donor source and conditioning regimen for ZAP-70 are
evolving. Fagioli et al described successful cord blood transplant
in two patients using a myeloablative regimen with busulfan,
cyclophosphamide, and ATG (90). There was reversal of the
phenotype in both patients despite mixed chimerism in the
first patient. Kim et al. described emergency transplant in a 9-
month-old, critically ill infant with ZAP-70 deficiency using a
matched sibling donor, and an infusion of bone marrow cells
without conditioning. There was initial engraftment followed
by progressive loss of chimerism over the ensuing 3 months
(91). However, the initial infusion of stem cells stabilized the
clinical situation and allowed a subsequent transplant using
the same donor and a myeloablative regimen with busulfan
and cyclophosphamide. The largest HSCT study comprising 8
patients was reported by Cuvelier et al. (92). All 8 patients
survived and were disease-free. Three matched sibling recipients
were transplanted without conditioning and all three had stable,
mixed donor T-cell chimerism, but low B-cell chimerism (4–
9%) and no or very low myeloid chimerism. Despite the low
B-cell chimerism, all three had normal IgG levels and response
to vaccinations, and did not require IVIG. Five patients received
a myeloablative regimen—three T-cell depleted haplos and two
umbilical cord blood-. All five had full donor chimerism in all
compartments. Of note, the patients were all very young with ages
ranging from 3 weeks to 27 months. In conclusion, HSCT with a

chemotherapy-based regimen resulted effective in reversing the
clinical and immunological phenotype of ZAP-70 deficiency.

The Linker for Activation of T cells (LAT) is also part
of TCR/CD3 signalosome. LAT mutations in humans have
been associated either with a T– B+ NK+ SCID phenotype in
infancy (93) or with CID and profound immune dysregulation
(manifesting as autoimmune cytopenias and lymphoproliferative
disease) allowing survival into late childhood (94). In this latter
group of patients, lymphopenia was progressive, and a high
proportion of TCRγδ+ T cells was present. Bacchelli et al. have
reported on the outcome of HSCT in 5 patients with SCID
due to LAT deficiency from a single family (93). Two patients
receivedMRD transplantation without conditioning: one of them
was reported to be alive and well, but the other one died
of severe acute GVHD. Two patients received MUD HSCT;
conditioning was with busulfan and fludarabine, and again one
survived and one died of multiorgan failure (MOF) related to
toxicity of chemotherapy. Finally, a fifth patient received two
haploidentical transplants from the same donor: graft failure
was observed after the first unconditioned transplant; the second
transplant was performed with conditioning based on melphalan
only, but the patient died of MOF. Among the 3 patients with
LAT deficiency presenting with CID and immune dysregulation
and reported by Keller et al. two died of infections prior to
receiving HSCT, whereas the remaining patient was successfully
reconstituted after HSCT from his matched sibling donor, who
was heterozygous for the LAT mutation (94).

Coronin-1A is involved in neutrophil- and macrophage-
mediated phagocytosis and in TCR-induced activation of T
lymphocytes. Shiow et al. described a female patient with
bi-allelic loss-of-function mutations in the CORO1A gene,
who presented with failure to grow and delayed language and
motor development, recurrent upper and lower respiratory
tract infections, oral thrush, severe vaccine-associated varicella
and rotavirus diarrhea (95). Immunological investigations
revealed severe T cell lymphopenia, markedly reduced
number of naive CD4+ T cells, poor proliferative response
to mitogens and antigens, and impaired antibody response upon
immunization with the neoantigen φX-174. Unrelated cord
blood transplantation was attempted at age 4 years with a RIC
regimen consistent of melphalan, fludarabine and alemtuzumab,
leading to full donor engraftment, immune reconstitution and
resolution of infections. While null mutations in the CORO1A
gene cause a SCID phenotype, hypomorphic mutations in the
same gene are associated with milder clinical and immunological
phenotypes, that include T cell lymphopenia, oligoclonal
expansion of memory T cells and aggressive EBV-driven
lymphoproliferative disease in three siblings (96). One of these
patients received haploidentical HSCT from her pheno-identical
mother, but died of GVHD.

Recent data indicate the need to consider HSCT in the
treatment also of other functional T cell defects, even when
they present with a delayed-onset. These conditions include Ras
Homolog gene family member H (RhoH) deficiency (97), T
lymphocyte-specific protein tyrosine kinase (LCK) deficiency

(98, 99), Serine/threonine kinase 4 (STK4) deficiency (100, 101),
and IL-2-inducible T cell kinase (ITK) deficiency (102–106).
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Wiskott-Aldrich Syndrome and Other
Immunodeficiencies With Congenital
Thrombocytopenia
The Wiskott-Aldrich syndrome (WAS) is an X-linked disorder
characterized by the triad of immunodeficiency, eczema, and
thrombocytopenia. The immunodeficiency may manifest
as recurrent and/or chronic infections, autoimmunity and
increased susceptibility to malignancies, especially EBV-
associated lymphoma (107). WAS has an estimated incidence
of 1 in 100,000 live male births, and is caused by mutations
of the WAS gene, which encodes the WAS protein (WASP),
expressed in all non-erythroid hematopoietic cells and involved
in signal transduction and cytoskeleton remodeling. The WASP
protein plays a crucial role in formation of the immunological
synapse and in migration of lymphoid and myeloid cells in
response to chemotactic signals (108). Variable severity of the
clinical phenotype has been reported in patients with WAS
mutations. In most cases, patients suffer since early in life from
severe eczema, bloody diarrhea, and recurrent infections (107).
Otitis media, and bacterial upper and lower respiratory tract
infections are particular common, however patients are also
at risk for recurrent, chronic and/or severe viral infections,
especially those sustained by herpesviruses, papillomavirus,
and molluscum contagiosum. Autoimmune manifestations
are also frequent, in particular haemolytic anemia, arthritis,
inflammatory bowel disease, and IgA nephropathy. There is
an increased risk of EBV-driven lymphoproliferative disease,
lymphoma and leukemia.

However, in some patients, clinical manifestations of the
disease are less severe. In particular, Villa et al. have demonstrated
that hypomorphic mutations, and especially missense mutations
in exons 2 and 3 of the gene affecting interaction of WASP with
WIP and stability of the WASP protein, cause isolated X-linked
thrombocytopenia (XLT) (109), which may even be intermittent
(110). The immunological phenotype includes progressive
lymphopenia, impaired T cell proliferation in response to anti-
CD3, defective NK cytolytic function, reduced levels of IgM
with elevated IgA and IgE, impaired production of antibodies
(especially to polysaccharide antigens), and reduced number of
switched memory B cells (107).

Historical data had indicated that in the absence of definitive
therapy, WAS males have a short life span (6.5 years) (111),
however use of antimicrobial prophylaxis, prompt treatment
of infections and of severe autoimmune manifestations,
and regular administration of immunoglobulins have led to
improved survival, so that most WAS patients reach adulthood.
Nonetheless, patients with WAS continue to have decreased life
expectancy and poor quality of life due to an increased risk of
life-threatening infections, autoimmune complications, severe
bleeding episodes, andmalignancies. Furthermore, although XLT
has been considered a milder form of the disease, with superior
survival as compared to typical and severe WAS, nonetheless
XLT patients are also prone to the same complications of
WAS patients (112). Allogeneic HSCT can cure the disease.
Successful HSCT was first reported in 1968 (4), and several
large retrospective analyses are now available. Moratto et al.

reported on a large, multicenter, retrospective study of 194
patients with WAS who received HSCT between 1980 and 2009
(113). Bone marrow was used as the primary source of stem
cells in 78.4% of the patients. The 194 patients received a total
of 204 transplantations; 10 patients (6 of which had received a
mismatched family donor T-cell-depleted transplant) required a
second transplantation because of graft failure. The vast majority
of the patients (88.1%) received a myeloablative conditioning
with busulfan-cyclophosphamide or busulfan-fludarabine.
RIC with either treosulfan or melphalan in association with
fludarabine was more often used in patients transplanted in
more recent years. Overall survival was 84% and was even
higher (89.1% 5-year survival) for those who received HSCT
since year 2000. HSCT from mismatched family donors or
cord blood was associated with worse survival. Among patients
who received unmatched related donor HSCT, those who were
transplanted at a young age had more favorable outcome as
compared to patients transplanted at age >5 years. Patients who
went to transplant in better conditions had a lower rate of post-
transplant complications. Stable full chimerism was achieved
by 73.3% of the patients who survived at least 1 year. Mixed
chimerism was associated with an increase rate of incomplete
immune reconstitution and of post-transplant autoimmunity.
Furthermore, patients who attained <50% donor myeloid
chimerism were at higher risk of persistent thrombocytopenia.
Recently, Elfeky et al. reported on 100% overall survival in
34 consecutive patients with WAS who underwent a variety
of transplantation procedures at a single center. Graft source,
patient age, and conditioning did not influence the development
of post-transplantation complications (114).

The WASP-interacting protein (WIP) plays a critical role
in stabilizing WASP (115), and is involved in formation of a
DOCK8-WIP-WASP complex that links the TCR to the actin
cytoskeleton (116). In 2012, the first case of an autosomal
recessive immunodeficiency due to mutations of theWIPF1 gene
(causingWIPdeficiency) was reported in an infant with a history
of recurrent bacterial and viral infections and thrombocytopenia,
associated with T cell lymphopenia, decreased T cell proliferation
to mitogens, reduced NK cell function, and elevated serum IgE,
resembling WAS (117). Consistent with a role for WIP in
stabilizing WASP, both WIP and WASP protein expression
were abrogated in patient’s lymphocytes. The patient received
an unrelated cord blood transplantation with chemotherapy,
and full resolution of the disease was observed. Al Mousa et al.
have reported on 4 patients with WIP deficiency manifesting
with recurrent infections and thrombocytopenia (118). The first
patient received MRD HSCT using MAC (busulfan 16 mg/kg,
cyclophosphamide 200 mg/kg) with full donor engraftment, and
was reported to be alive and well 12 years after transplant. The
second patient received a MDR transplantation with the same
regimen, but in spite of donor engraftment she died 3 months
post-HSCT secondary to CMV pneumonitis. The third and
fourth patients received an unrelated cord blood transplantation;
MAC was with busulfan (16 mg/kg), cyclophosphamide (200
mg/kg) and rabbit ATG (40 mg/kg), and both were reported to be
alive and well 2 and 4 years post-HSCT, respectively. Pfajfer et al.
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have described a 2-year-old WIP-deficient male with a history
of severe CMV respiratory tract infection requiring mechanical
ventilation, intermittent bloody diarrhea, profound CD4+ T cell
lymphopenia, thrombocytopenia, and hypergammaglobulinemia
(119). Because the clinical conditions were deemed to be
too severe to attempt HSCT with conditioning, sequential
infusions of peripheral lymphocytes and stem cells from
his HLA-phenoidentical, CMV-seropositive mother were
performed, resulting in clearance of CMV and sustained mixed
donor T cell chimerism. The child was then treated with a
TCRαβ/CD19-depleted PBSC transplantation from the mother
(120); conditioning was with treosulfan (36 g/m2) and melphalan
(140 mg/m2), and repetitive secondary-prophylactic, CMV-
specific donor lymphocyte infusions were given, resulting in
successful engraftment with a 1-year follow-up.

Recently, several groups have described ARPC1B deficiency,
an autosomal recessive form of CID associated with immune
dysregulation and platelet abnormalities that resemble what
observed in Wiskott-Aldrich syndrome (WAS) (121–123). The
Actin-Related Protein Complex 1B (ARPC1B) is a key factor
for the assembly and maintenance of the ARP2/3 complex that
is involved in actin branching. Somech et al. described two
ARPC1B-deficient brothers with clinical and laboratory features
suggestive of WAS, including skin rash, thrombocytopenia with
bloody diarrhea, and recurrent infections (124). Both patients
manifested lymphopenia (affecting CD8+ more than CD4+ T
cells), a restricted T cell repertoire with presence of clonotypic
expansions, and markedly defective T cell proliferation in
response to anti-CD3. One of the patients succumbed of veno-
occlusive disease following HSCT from MRD, and the other
one died at 5 years of age after adenoviral infection leading to
multiorgan failure.

Finally, Brigida et al. have reported biallelic ARPC1B
mutations in 6 unrelated patients that presented with an
early-onset disease characterized by autoimmunemanifestations,
thrombocytopenia and severe infections (125). In this series,
two patients underwent a TCRαβ/CD19-depleted mobilized
PBSC transplantation from parental donors; both patients were
reported to be alive and well-after transplant.

Cartilage Hair Hypoplasia
Cartilage hair hypoplasia (CHH) is an autosomal recessive
disorder due to mutations of the non-coding RMRP gene,
whose transcript is involved in ribosomal RNA processing,
mitochondrial DNA replication, and regulation of target gene
transcription. Patients with CHH present with disproportionate
short stature with metaphyseal dysplasia, thin and sparse hair,
increased risk of bone marrow failure, Hirschsprung disease,
joint hypermotility, immunodeficiency, immune dysregulation,
and increased risk of malignancies. The immunodeficiency
of CHH is of variable severity: some patients have minimal
abnormalities of cellular and/or humoral immunity, whereas
others maymanifest with significant hypogammaglobulinemia or
with profound T cell immunodeficiency resembling SCID. Such
patients are at significantly increased risk of serious infections,
including life-threatening varicella (126).

Berthet et al. reported on a female with CHH and a SCID
phenotype (127). HSCT was performed from her matched sister
at 16 months of age following conditioning with busulfan and
cyclophosphamide. The post-transplant course was uneventful,
and the child attained full and sustained donor chimerism,
with reconstitution of cellular and humoral immunity. Skeletal
abnormalities remained unchanged.

Guggenheim et al. described three patients with CHH who
received HSCT because of severe lymphopenia and T cell
immunodeficiency detected shortly after birth (128). One of them
was transplanted from a 9/10 MUD, and another patient received
a bone marrow transplantation from her haploidentical father
upon in vitro T-cell depletion with Campath. Both of these
patients received conditioning with busulfan (20 mg/kg) and
cyclophosphamide (200 mg/kg). The third patient received an
unconditionedMRDHSCT. All three patients achieved rapid and
sustained immune reconstitution with a follow up of 5, 15, and
20 years.

Finally, Bordon et al. have reviewed the European experience
of HSCT in 16 patients with CHH, 13 of which received
transplantation in early childhood, whereas the remaining three
were transplanted at adolescence age (129). All patients had
signs of combined immunodeficiency with (n = 5) or without
(n = 11) autoimmunity or inflammatory manifestations. Two
of them were transplanted after developing EBV-related non-
Hodgkin lymphoma. Donors included a MRD in 5 cases, a MUD
in 7, a haploidentical parent in 3, and a mismatched unrelated
donor in 1 patient. Thirteen patients receivedMACwith busulfan
(16–20 mg/kg) and cyclophosphamide (120–200 mg/kg) or
fludarabine. Two patients received a fludarabine/melphalan RIC
regimen, and one patient received conditioning with treosulfan,
cyclophosphamide and alemtuzumab. Ten of the 16 patients
(63%) survived. The six who died included all 3 who had received
haploidentical HSCT. Four of the 6 deaths were observed during
the first year after transplant, and were due to severe infections
(in spite of full donor chimerism in 3 of them). Two late deaths
were observed, both with incomplete immune reconstitution.
Viral and fungal infections were a significant problem after
transplant, and were seen in 8 of the 16 patients. Surviving
patients showed significant improvement of lymphocyte count
and function. Donor chimerism was assessed in 12 patient, and
was full in 9; 3 patients had mixed chimerism (70–80% on
myeloid cells, 90–94% on T cells). Lung function stabilized or
improved in the 7 patients who had pre-existing bronchiectasis.

Autosomal Dominant Hyper-IgE Syndrome
Due to Dominant Negative STAT3

Mutations (Job’s Syndrome)
Dominant negative germline mutations in STAT3 result in
an autosomal dominant Hyper IgE (AD-HIES) syndrome
characterized by eczema, skin abscesses, recurrent pneumonias
leading to pneumatocoeles, and skeletal and connective tissue
abnormalities. The role of HSCT in AD-HIES is still under
investigation. Hsu et al. assessed the extent of donor chimerism
necessary to reverse the phenotype in two male patients with
STAT3 mutations and somatic mosaicism (130). Despite 33%
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donor T-cell chimerism, they still developed infections, including
chronic mucocutaneous candidiasis. Yanagimachi et al. reported
on the follow-up of two patients treated with HSCT (131). In
both patients IL-17 production in circulating cells and serum
IgE levels returned to normal after HSCT, and the frequency of
infections decreased. However, despite 100% donor chimerism,
the first patient developed recurrent pulmonary aspergillosis.
The second patient had mixed chimerism 10 years following
transplant with CD3 49% donor and whole blood 17% donor.
This patient developed new pneumatocoeles after HSCT.

Nester et al. also described an unsuccessful HSCT in a patient
who received MRD HSCT, but died 6 months after HSCT from
pulmonary fibrosis (132). Similarly, Gennery described a 7-year-
old girl who had successful engraftment from a 10/10 HLA
matched donor, but 4 years after transplant, the IgE levels started
rising, and recurrent staphylococcal and pseudomonas infections
developed, leading the authors to conclude that HSCT is not
efficacious in AD-HIES (133). However, analysis of outcome at a
later follow-up in this patient and in another patient who received
HSCT at the same institution at the age of 13 years demonstrated
improvement in the frequency and severity of infections in both
patients (134).

There were two other reports of successful HSCT for AD-
HIES. Goussetis et al. described two teenagers, both with high-
grade non-Hodgkins lymphoma, who received myeloablative
HSCT with busulfan, cyclophosphamide and etoposide (135).
Similarly, Patel et al. carried out a T-cell depleted haploidentical
related donor HSCT in a 14-year-old girl (136). At 1 month, the
donor CD3 chimerism was 3%, requiring a donor lymphocyte
infusion. This increased the donor chimerism to 100% by 2
months following transplant.

In conclusion, while HSCT does not correct extra-
hematopoietic manifestations of the disease, including skoliosis
which may predispose to respiratory tract infections, it seems
to have a beneficial effect on the frequency and severity of
infections. If performed early in the course of the disease,
along with adequate physical therapy, it may represent a
valid therapeutic option, especially for patients with matched
donors. Its role in patients who lack matched donors has yet to
be established.

IgE levels are typically elevated also in patients with
Phosphoglucomutase 3 (PMG3) deficiency. PMG3 is an
enzyme involved in multiple glycosylation pathways and PMG3
mutations are responsible for an autosomal recessive disease
characterized by skeletal dysplasia, severe immunodeficiency,
often associated with neurodevelopmental delay and tendency
to bone marrow failure (137), and in some patients with renal,
intestinal, and heart defects. The immunodeficiency may be as
severe as SCID; other patients show variable degrees of cellular
and humoral immunodeficiency. Stray-Pedersen reported on two
patients with PGM3 deficiency who underwent HSCT from a
matched cord blood donor, and a matched sibling at 4 months
and 6 years of life, respectively (137). No details on conditioning
were provided. Both patients were successfully cured. Bernth-
Jensen et al. have reported the case of an infant with PGM3
deficiency presenting with a T– B– NK+ SCID phenotype
(138). He received conditioning with treosulfan, fludarabine, and

ATG, but died of treatment-related multiorgan failure before
transfusion of allogeneic hematopoietic stem cells.

Chronic Granulomatous Disease (CGD)
Chronic granulomatous disease (CGD) is caused by gene
mutations that affect the functionality of the nicotinamide
adenine dinucleotide phosphate (NADPH) complex, resulting
in defective production of microbicidal reactive oxygen species
(CGD) (139). The most common form of CGD is inherited as
an X-linked trait (XL-CGD) and reflects mutations of the CYBB
gene encoding for the gp91phox subunit of the NADPH oxidase
complex. Autosomal recessive (AR) forms (AR-CGD) are due
to mutations of the genes that encode for the p22phox, p47phox,
p67phox, and p40phox subunits. The main clinical features of CGD
include recurrent bacterial and fungal infections—in particular,
infections from catalase-positive organisms as Staphylococcus
aureus, Burkholderia cepacia and Aspergillus species- and a high
rate of inflammatory complications, such as inflammatory bowel
disease; granuloma formation in the liver, lungs, and skin; and
inflammation leading to strictures that affect the gastrointestinal
and urinary tracts (140, 141). The annual mortality of patients
managed conservatively ranges from 2 to 5% (142) and it has been
shown that patients treated with HSCT presented a lower rate of
infections and lower rates of hospitalization (143, 144). However,
CGD harbors the defect in the myeloid lineage and an adequate
level of donor myeloid chimerism is fundamental to successfully
correct the clinical phenotype. The use of non-MAC regimens
for T lymphocyte-depleted MRDHSCT showed an increase need
for donor lymphocyte infusions to correct poor donor chimerism
with subsequent increased risk for GVHD and an overall survival
of 70% (145). Currently, to limit toxicity in patients often
undergoing HSCT with concomitant infections, alkylator-based
RIC are used. Gungor et al. reported a TRM of 7% (4/56 patients)
and 2-year overall survival of 96% with the use of busulfan-
based RIC (18). Morillo-Gutierrez et al. described an approach
using a treosulfan-based RIC, with a TRM of 8% (6/70 patients)
and 2-year overall survival of 90% (146). However, in both
studies a limited number of patients lost the graft, proving the
difficulties in finding the balance between adequate ablation and
conditioning-related toxicity. Donor choice is another important
aspect for CGD. Recently, it has been shown that many female
carriers of X-linked CGD present autoimmune manifestations,
not related to degree of lyonization, and therefore they may not
be ideal as HSC donors (147, 148).

Diseases of Immune Dysregulation
Outcomes for HSCT in immune dysregulation diseases are
currently suboptimal. The timing of HSCT and an aggressive
control of autoimmunity and hyperinflammation pre-HSCT
are critical for a good outcome. Immunosuppressive agents
-including targeted therapies-, such as sirolimus for immune
dysregulation, polyendocrinopathy, enteropathy X-linked
(IPEX) syndrome (149), sirolimus or phosphoinositide 3-kinase
(PI3k) inhibitor for PIK3CD mutations (150, 151), Janus
kinase (JAK) inhibitors in signal transducer and activator of
transcription (STAT)1 and STAT3 gain-of-function (GOF)
(152), abatacept in lipopolysaccharide-responsive and beige-like
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anchor protein (LRBA) deficiency and cytotoxic T-lymphocyte
associated protein 4 (CTLA4) haploinsufficiency (153), could be
used to control disease before HSCT.

Immune dysregulation, polyendocrinopathy, enteropathy,

X-linked (IPEX) is a recessive genetic disease that present
in infancy with intractable enteropathy, erythroderma, and
severe autoimmune manifestations, including type 1 diabetes
mellitus, blood cytopenias, autoimmune hepatitis, nephropathy,
and myopathy (154). IPEX is due to mutations in the FOXP3
gene, which encodes for the Forkhead box protein 3, that plays
a crucial role in regulatory T (Treg) cell function and hence
in immune tolerance. Consistent with this, most patients with
IPEX lack CD4+ CD25+ FOXP3+ Treg cells. Other immune
abnormalities include elevated serum IgE, eosinophilia, and
elevated levels of autoantibodies. If untreated, IPEX is usually
fatal in the first years of life. Medical management of IPEX with
immunosuppressive agents (tacrolimus, rapamycin, and others)
may alleviate symptoms of the disease, but also exposes to an
increased risk of infections and is often insufficient to control
progression of the disease. Several groups have explored the role
of allogeneic HSCT in correcting the IPEX phenotype (155–
160). The largest series of HSCT for IPEX has been reported by
Barzaghi et al. and included 58 patients (161). The majority of
the patients (n = 37) received RIC (eg, fludarabine plus non-
myeloablative doses of busulfan, treosulfan, or melphalan) or
minimal intensity (eg, fludarabine plus low dose radiation or
cyclophosphamide) conditioning. Aminority of patients received
MAC included busulfan plus cyclophosphamide, busulfan of>14
mg/kg or cumulative area under the curve of 80–90mg h/L
(when available) plus fludarabine, or treosulfan. Donor types
were as follows: MRD (n = 31); MUD (n = 21); haploidentical
donors (n = 5); and other mismatched related donor (n =

1). Stem cells sources included bone marrow (n = 35), PBSC
(n = 12), and cord blood (n = 13). Alemtuzumab or ATG
were used in 49 of the 58 patients. Fifteen patients died (26%),
and the estimated overall survival at 15 years was 73.2%. The
majority of deaths occurred in the first year after HSCT, and were
mainly due to infections. Multivariate analysis showed that type
of conditioning, donor type, and age at transplantation did not
affect survival. The only variable that had a significant impact
on survival was the clinical status of the patients at the time of
transplant, which was graded using an organ involvement index.
Acute GVHD was reported in 19 patients (grade III or IV in
9) while chronic GVHD was observed in 6 of 52 patient who
survived beyond 100 days. Full donor chimerism was observed in
31 of 53 patients who were evaluated. However, only 17 of these
31 patients with full donor chimerism were alive and disease-
free; three had died, and 11 had autoimmune manifestations or
GVHD. Mixed chimerism was observed in 18 patients, and in
50% of them (n= 9) it was associated with disease remission. The
Treg cells were 100% of donor origin in 3 of these 9 patients. Five
of the 18 patients with mixed chimerism have died, and 4 were
reported to be alive with autoimmune manifestations. Overall,
a similar remission rate was observed among patients with full
(54%) or mixed (50%) chimerism. Graft failure was observed in
4 patients.

PIK3CD and PIK3R1 genes encode for a p110δ catalytic
molecule and a p85α regulatory subunit, respectively.
These proteins are part of the heterodimeric complex
phosphoinositide 3-kinase (PI3K)-δ that catalyzes conversion of
phosphatidylinositol (4,5) bisphosphate to phosphatidylinositol
(3,4,5) trisphosphate, which represents a second messenger
for AKT kinase activation, leading to phosphorylation
and inactivation of the transcription factor FOXO1 and
activation of the mammalian target of rapamycin (mTOR)
and S6 kinase (162). Type 1 and type 2 activated PI3K-δ

syndrome (APDS) are caused by heterozygous gain-of-function
mutations of p110δ and exon-skipping mutations of p85α,
respectively, both resulting in hyperactivation of the PI3Kδ

complex (163, 164). Clinically, these patients present with
immunodeficiency—mainly characterized by acute and chronic
viral infections, and recurrent respiratory infections since
childhood- and immune dysregulation with autoimmune
manifestations, lymphoproliferative disease and increased risk
of lymphoma. A variable degree of hypogammaglobulinemia,
increased frequency of transitional B cells associated with
progressive B-cell lymphopenia and a decrease in naïve T
lymphocytes with increased proportion of effector/effector
memory T cells represent the most typical immunologic
abnormalities (150, 165, 166). Conservative treatment with
antibiotic prophylaxis and intravenous immunoglobulins is not
always sufficient to manage infections and immunosuppressive
agents may not adequately control the development of life-
threatening episodes of lymphoproliferation. HSCT represent
a potentially curative treatment. Recently, two case series
by Nademi et al. (167) and Okano et al. (168) reported
on APDS patients treated with HSCT. In the two series
a comparable survival rate was observed (9/11 and 7/9,
respectively). No severe GVHD was reported. HSCT resulted
successful in improving humoral immunity. Favorable factors
for effective engraftment were HSCT from MRD, use of more
intense conditioning, and inclusion of alemtuzumab. On the
other hand, a more aggressive conditioning regimen could
explain the higher incidence of viral reactivation observed
after HSCT.

Signal Transducer and Activator of Transcription-1

(STAT1) GOF mutations reduce the dephosphorylation of
activated STAT1 in the nucleus leading to increased levels of
STAT1. This shifts the balance away from STAT3-mediated
induction of IL-17 T-cell generation. Levels of IL-17 and IL-22
are decreased. This results in a combined immunodeficiency
with variable clinical phenotype that includes both infections
and immune dysregulation. In particular, disease manifestations
include recurrent chronic mucocutaneous candidiasis (CMC),
bacterial and mycobacterial infections, severe viral infections
(especially Herpesviridae infections and progressive multifocal
leukoencephalopathy), recurrent and severe autoimmune blood
cytopenias, autoimmune hypothyroidism, diabetes mellitus,
hepatitis, and intracranial hemorrhages (169–172). Treatment
with the JAK1/2 inhibitor ruxolitinib has been shown to be
effective in reducing the severity of the disease manifestations
(152). Leiding et al. reported on 15 patients with STAT1 GOF
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mutations treated with HSCT (173). Although the primary
engraftment was 74%, there was a 50% rate of secondary graft
failure. Thus, there were 6 primary graft failures and 6 secondary
graft failures. Only one of the four patients receiving a RIC
regimen (fludarabine, melphalan, alemtuzumab) engrafted,
indicating that a higher dose regimen was required for reliable
engraftment. Three patients who received a myeloablative
regimen had complete donor chimerism. However, the results
with the myeloablative regimen were complicated by three early
deaths before day 50.

Signal Transducer and Activator of Transcription-3

(STAT3) GOF mutations cause an autosomal dominant disease
characterized by early-onset lymphoproliferation, recurrent
infections, autoimmunity and, in some cases, growth retardation
(174, 175). Forbes et al have reported 6 patients with STAT3
GOF mutations who have received treatment with Jakinibs
and tocilizumab (176); three patients were reported to be
alive and stable, albeit with limited follow-up (range: 3–18
months), whereas the remaining three of these had no or
minimal response, and ultimately died, including one patient
who received HSCT and succumbed of adenovirus pneumonia
and post-transplant hemophagocytic lymphohistiocytosis.
Milner et al. have reported on two patients with STAT3 GOF
mutations who have received HSCT for refractory autoimmunity
(175). One of them received a 10/10 MUD transplant with
conditioning consisting of alemtuzumab, treosulfan (36 g/m2)
and cyclophosphamide (200 mg/kg) and died at day +138 of
severe GVHD and adenovirus infection, whereas the other
one received HSCT from a 9/10 unrelated donor with reduced
intensity conditioning (fludarabine, melphalan, alemtuzumab)
and was reported to be alive and in complete remission with 80%
donor chimerism.

Cytotoxic T-Lymphocyte antigen 4 (CTLA4) competes with
the co-stimulatory receptor CD28 for its ligands CD80 and
CD86 on antigen presenting cells. CTLA4 binds these receptors
with a higher affinity than CD28 and removes them from
the surface, resulting in reduction in APC-mediated activation
of T-cells. Furthermore, CTLA-4 plays an important role in
Treg function which are responsible for maintaining self-
tolerance and immune homeostasis through suppression of
T cell proliferation and differentiation (177, 178). CTLA4

deficiency due to heterozygous germline mutations in CTLA4
leading to haploinsufficiency and impaired CTLA4 dimerization
or impaired ligand binding, result in an autosomal dominant
immune dysregulation syndrome with immunodeficiency (177,
178). In a series of 133 patients, the penetrance was 60–
70% (179). The median age of onset was 11 years. Patients
manifested with hypogammaglobulinemia, lymphoproliferation,
and autoimmune blood cytopenias, as well as lymphomas.
mTOR inhibitors have been used to inhibit the CD28 signaling
pathway. Slatter et al. described HSCT in 8 patients with
CTLA4 deficiency (180). All received MUD after reduced
intensity conditioning. Six of the 8 patients are alive and well
with donor chimerisms of 85–100%. Two patients received
only fludarabine and 4Gy TBI and both did well. Of note,
four of the 8 patients developed GVHD despite having well-
matched donors and three of the four received alemtuzumab,

suggesting a role for pre-transplant immunosuppression or post-
transplant cyclophosphamide.

Mutations in LPS-responsive, beige-like anchor (LRBA)
are responsible for an immune dysregulation syndrome
resulting in a heterogeneous phenotype characterized by
hypogammaglobulinemia with B-cell deficiency, functional
T-cell defects, aberrant autophagy, autoimmunity and chronic
diarrhea (181). LRBA acts as a chaperone for CTLA4, enabling
recycling of the molecule and the suppressive capacity of T
regs. In the absence of LRBA, CTLA4 is targeted to lysosomal
degradation (153). HSCT has been carried out in LRBA

deficiency. Bakhtiar et al. described a 12 year old with
enteropathy, polyarthritis, and immune hemolytic anemia who
received a matched sibling transplant from his 15 year-old
brother after conditioning with melphalan 140 mg/m2, thiotepa
10 mg/kg, fludarabine, and ATG 20 mg/kg/day for 3 days (182).
The patient was 100% donor by day 19 post-HSCT, and this
level of chimerism remained stable, leading to reversal of the
disease phenotype. Tesi et al. reported on a 15 year old male
with LRBA deficiency with immune hemolytic anemia, low
IgG, low B-cells, and low NK cells (183). HSCT from her HLA
pheno-identical mother after conditioning with Treosulfan
14 g/m2/day × 3 days, fludarabine, and ATG resulted in 98%
donor chimerism and reversal of the phenotype. Seidel et al
described a 10-year-old who received an HSCT from her HLA
matched mother after conditioning with melphalan, ATG,
and fludarabine. Chimerism was 100% donor (184). Finally,
Gamez-Diaz et al. have reported on three patients who received
HSCT for LRBA deficiency (185). Two of them were successfully
cured, after receiving HSCT at the age of 10 and 12 years from
the HLA-phenoidentical mother and an HLA-matched sibling,
respectively. Conditioning in both was with fludarabine (150
and 160 mg/m2, respectively), melphalan (140 mg/m2) and ATG
(60 mg/kg); thiotepa (10 mg/kg) was added in the conditioning
regimen for the second patient. Bone marrow was used as
source of stem cells. The first patient developed adenovirus
viremia post-HSCT. Other complications in this patient included
suspected graft failure with pancytopenia at day +60 requiring
a stem cell boost, and hepatitis, immune thrombocytopenia
and vitiligo (as signs of chronic GVHD) at 3–8 years post-
transplant. Both patients are alive at 10 and 5 years after HSCT,
respectively. A third patient received HSCT using PBSC from the
haploidentical mother at 6 years of age. Conditioning was with
fludarabine (160 mg/m2), melphalan (140 mg/m2), thiotepa (10
mg/kg), and ATG (9 mg/kg). The patient developed adenovirus
viremia from day +13 and died of adenovirus pneumonia
at day+91.

Two forms of X-linked lymphoproliferative (XLP) disease
are known. The first disease, also known as XLP1, is due to
mutations of the SH2D1A gene, which encodes the SLAM-
associated protein (SAP), an adaptor molecule that regulates
signaling through SLAM molecules (186). In the absence of
SAP, T and NK cell cytotoxic responses are abolished. In
addition, the function of TFH cells is also compromised.
The clinical phenotype of XLP1 is characterized by increased
susceptibility to life-threatening EBV infection, with fulminant
infectious mononucleosis, hemophagocytic lymphohistiocytosis
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(HLH), and EBV-related lymphoma. Aplastic anemia, severe
vasculitis, and dysgammaglobulinemia (with low levels of IgG
and elevated levels of IgM) are also possible. Following the case
series of XLP1 patients treated with HSCT reported by Gross
et al. (187) and Lankester et al. (188), Booth et al. reported
on a multicenter study of 91 patients with XLP1 (189), 43
of whom received a total of 46 HSCT with a median age at
transplant of 6.2 years. Fourteen patients received transplant
from a matched family donor, 28 from an unrelated donor,
and 4 from a haploidentical donor. Bone marrow was used
as source of stem cells in 24 cases, PBSC in 15, and cord
blood in 2. Conditioning regimens were myeloablative (busulfan
12–20 mg/kg; cyclophosphamide 50–200 mg/kg; and TBI 5–
12Gy) in 23 transplants and non-myeloablative (fludarabine 30
mg/kg; melphalan 70–140 mg/kg; busulfan 4–12 mg/kg; or TBI
3–5Gy) in 23. Serotherapy was added in 14 cases. Type of
conditioning had no impact on survival or chimerism. Thirty-
five patients attained full donor chimerism, while 3 showed
mixed chimerism. Thirty-five patients were alive at a follow-
up ranging from 6 weeks to 148 months. Prior HLH was the
major risk factor for poor outcome, with decreased survival
to 50%. Marsh et al. have reported on the use of RIC in
HSCT for XLP1 (190). They studied 16 patients who underwent
HSCT between 2006 and 2013 with a regimen consisting of
alemtuzumab, fludarabine, and melphalan. Fourteen patients
received HSCT from a MRD or MUD, and 2 patients were
transplanted from a mismatched unrelated donor. No cases of
VOD or pulmonary hemorrhage were observed. Five patients
(31%) developedmixed chimerism, and only one of them showed
declining chimerism, but returned to full donor chimerism
after infusion of stem cell boost and donor lymphocytes. One-
year survival was 80%, with long term survival estimated at
71%. Survival was similar for patients with or without a prior
history of HLH.

XLP type 2 (XLP2) is due to mutations of the X-
linked inhibitor of apoptosis (XIAP) gene, which regulates
survival and inflammatory responses. Patients with XLP2 are
at high risk for HLH, but not for EBV-related lymphoma. In
addition, inflammatory manifestations, and especially Crohn-
like bowel disease, are frequently observed. Other variable
clinical manifestations include severe infectious mononucleosis,
fistulating skin abscesses, celiac-like disease, splenomegaly, and
antibody deficiency contributing to recurrent infections (191). In
2013, Marsh et al. reviewed the experience in 19 patients with
XLP2 who had received HSCT between 2001 and 2011 at various
centers (192). Seven patients received a myeloablative regimen,
which in five cases consisted of busulfan, cyclophosphamide,
and ATG, with or without etoposide; two patients received
busulfan and either fludarabine or melphalan, and ATG. Eleven
patients received a RIC regimen, which in 10 cases consisted
of fludarabine, melphalan, and alemtuzumab; one patient
received fludarabine, treosulfan, thiotepa, and alemtuzumab.
The remaining patient received an intermediate protocol
consisting of TBI (6Gy), fludarabine, cyclophosphamide, and
melphalan. In eleven patients, transplants were performed with
MRD (n = 2) or MUD (n = 9); eight patients received
a single antigen-mismatched graft. The stem cell source was

represented by bone marrow in 11 patients, cord blood in 5,
and PBSC in 3. All patients engrafted, except one who died
on day +13. A high incidence of treatment-related toxicities
was observed among recipients of myeloablative conditioning,
including 3 cases of fatal VOD. Two of these patients had
also developed pulmonary hemorrhages. Six patients developed
mixed chimerism; all of these had received a RIC regimen.
One of these patients eventually lost the graft, and 3 of the
others received a stem cell boost and/or donor lymphocyte
infusions, leading to improved (>90%) donor chimerism. Only
one of the 7 patients who received a myeloablative regimen
was reported to be alive at the time of last follow-up; of
the 11 patients who had received a RIC regimen, 6 were
reported to be alive. The 1-year probability of survival was
15 and 57% for patients treated with myeloablative and RIC
regimens, respectively. Worth et al. reported on a 12-year-
old child with XLP2 and refractory HLH who was successfully
transplanted with PBSC from a matched unrelated donor upon
conditioning with anti-CD45 monoclonal antibody, fludarabine,
cyclophosphamide, and alemtuzumab (193). The post-transplant
course was complicated by capillary leak syndrome and
pulmonary edema requiring ventilation. Because of mixed
chimerism and of possible relapsing HLH, he received etoposide,
and eventually attained full donor chimerism and disease
correction. Tsuma et al. reported on a child with intractable
colitis associated with XIAP deficiency who was successfully
treated with HSCT from a matched unrelated donor upon
conditioning with fludarabine (120 mg/m2), melphalan (140
mg/m2), total lymphoid irradiation (3Gy), and ATG (2.5 mg/kg)
(194). Occurrence of HLH on day +21 required treatment with
etoposide and dexamethasone. At 11 months post-transplant, the
patient was reported to be alive with full donor chimerism, but
presence of hepatic chronic GVHD. Finally, Chellapendian et al.
have reported on an infant with HLH due to XIAP deficiency
who received HSCT from MUD while on remission (195).
Conditioning was with fludarabine (150 mg/m2), melphalan
(140 mg/m2), and alemtuzumab (1 mg/kg). Post-transplant
complications included EBV and HHV6 reactivation, and
hypertension. Chimerism dropped from 90 to 50% by day
+48. The patient received donor lymphocyte infusions, but
declining mixed chimerism (down to 10%) continued to be
seen, until a T-cell-depleted stem cell boost was performed
on day +441, which resulted in increased donor chimerism
to 21.5%. The patient was reported to be alive and well at
last follow-up.

CONCLUSIONS

HSCT has the potential of providing definitive correction for
most PID. The broad spectrum of clinical and immunological
phenotypes associated with these diseases makes it difficult
to define a universal transplant regimen. Moreover, patients
with PID are complex and specific knowledge is required for
the correct management both pre- and post-HSCT. As shown
reporting on the different approaches to HSCT for individual
PID, the decisions regarding the indication and time to transplant
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must carefully consider the risks of HSCT against the risks of
further disease evolution and must be individualized not only
on the basis of the specific PID but also on the characteristics
of the single patient. The recent advances in HSCT, including
reduced toxicity conditioning agents and graft manipulation,
have drastically improved the outcome of HSCT in PID. Early
identification of infant affected by SCID, prior to infectious
complication, through newborn screening programs and prompt
genetic diagnosis with Next Generation Sequencing techniques,
will also ameliorate HSCT outcome. However, more evidence is
required, especially regarding the newly described PID, including
disorders associated with immune dysregulation. Integration of
knowledge between immunologists and transplant specialists is
necessary for the development of innovative transplant protocols
and to monitor their results during follow-up.
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