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Heme oxygenase-1 mitigates ferroptosis in renal proximal tubule cells
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Adedoyin O, Boddu R, Traylor A, Lever JM, Bolisetty S,
George JF, Agarwal A. Heme oxygenase-1 mitigates ferroptosis in
renal proximal tubule cells. Am J Physiol Renal Physiol 314: F702–
F714, 2018. First published May 17, 2017; doi:10.1152/ajprenal.
00044.2017.—Ferroptosis is an iron-dependent form of regulated
nonapoptotic cell death, which contributes to damage in models of
acute kidney injury (AKI). Heme oxygenase-1 (HO-1) is a cytopro-
tective enzyme induced in response to cellular stress, and is protective
against AKI because of its antiapoptotic and anti-inflammatory prop-
erties. However, the role of HO-1 in regulating ferroptosis is unclear.
The purpose of this study was to elucidate the role of HO-1 in
regulating ferroptotic cell death in renal proximal tubule cells (PTCs).
Immortalized PTCs obtained from HO-1�/� and HO-1�/� mice were
treated with erastin or RSL3, ferroptosis inducers, in the presence or
absence of antioxidants, an iron source, or an iron chelator. Cells were
assessed for changes in morphology and metabolic activity as an
indicator of cell viability. Treatment of HO-1�/� PTCs with erastin
resulted in a time- and dose-dependent increase in HO-1 gene expres-
sion and protein levels compared with vehicle-treated controls. HO-
1�/� cells showed increased dose-dependent erastin- or RSL3-in-
duced cell death in comparison to HO-1�/� PTCs. Iron supplemen-
tation with ferric ammonium citrate in erastin-treated cells decreased
cell viability further in HO-1�/� PTCs compared with HO-1�/� cells.
Cotreatment with ferrostatin-1 (ferroptosis inhibitor), deferoxamine
(iron chelator), or N-acetyl-L-cysteine (glutathione replenisher) sig-
nificantly increased cell viability and attenuated erastin-induced fer-
roptosis in both HO-1�/� and HO-1�/� PTCs. These results demon-
strate an important antiferroptotic role of HO-1 in renal epithelial
cells.
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ACUTE KIDNEY INJURY (AKI) is a major complication in critically
ill patients with incidence ranging from 3 to 22% (37, 46).
Unresolved kidney injury can progress to chronic kidney dis-
ease and/or end-stage renal disease. The proximal tubule of the
nephron, particularly the S3 segment, is highly sensitive to
injury and consequent cell death following both ischemic and
nephrotoxic insults (45). Therefore, there is considerable in-
terest in the mechanisms underlying cell death in proximal
tubule cells (PTCs) to identify specific molecular targets for
amelioration or prevention of AKI.

Ferroptosis is one of many recently identified mechanisms of
regulated cell death. It is nonapoptotic and associated with
accumulation of lipid reactive oxygen species (ROS) due to

increased lipid peroxidation (42). Ferroptosis was discovered
in cancer cell models in which treatment with erastin in vitro
results in increased cell death characterized by shrunken mi-
tochondria and increased membrane density (8). The features
of ferroptosis are morphologically, biochemically, and geneti-
cally distinct from known mechanisms of cell death such as
apoptosis and necrosis, as well as newly identified mechanisms
such as pyroptosis and necroptosis (5, 8, 52).

Ferroptosis is resistant to inhibition by small molecules that
target conventional cell death pathways (8, 49, 53). It is
triggered under conditions of glutathione depletion or inactiv-
ity of the glutathione peroxidase 4 (GPX4) enzyme (42, 43),
indicating an important relationship with cellular redox status.
In contrast, treatment with either an iron chelator or inhibitor of
lipid peroxidation attenuates ferroptosis (8, 10). These findings
indicate that ferroptosis is a process dependent on both iron and
ROS. After oxidative stress, cells respond through inherent
adaptive defense mechanisms to restore healthy cellular redox
homeostasis. One such mechanism involves the heme oxygen-
ase (HO) enzyme system, particularly its inducible isoform,
HO-1, a cytoprotective, anti-inflammatory, and antioxidant
enzyme that is robustly induced in renal proximal tubules after
AKI. The enzymatic reaction of HO-1 is the rate-limiting step
in the breakdown of heme into equimolar quantities of iron,
biliverdin, and carbon monoxide (24). Therefore, it is a poten-
tial source of intracellular iron on which ferroptosis is depen-
dent. Although expression of HO-1 is upregulated during
ferroptosis in cancer cells (22), it is not clear whether HO-1 in
this context potentiates ferroptosis or is induced as a protective
response. Furthermore, the role of HO-1 in ferroptosis in the
kidney has not yet been addressed.

The purpose of this study was to determine the potential role
of HO-1 in the regulation of ferroptotic cell death in renal
PTCs by using immortalized mouse PTCs derived from wild-
type and HO-1-deficient mice. We show that the absence of
HO-1 enhances ferroptosis, suggesting that the free iron gen-
erated by HO-1 does not facilitate ferroptosis per se and that
HO-1 has an anti-ferroptotic effect in renal epithelial cells.

METHODS

Cell culture. Primary proximal tubular cells were isolated from
HO-1�/� or HO-1�/� mice (8 wk old) characterized as described
previously (4, 20, 58), and subsequently immortalized by transfection
with an SV40 plasmid. The immortalized mouse PTCs were cultured
in renal epithelial cell growth basal medium 2 (PromoCell, Heidel-
berg, Germany) supplemented with recombinant human epidermal
growth factor (10 ng/ml), recombinant human insulin (5 �g/ml),
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epinephrine (0.5 �g/ml), hydrocortisone (36 ng/ml), human holo-
transferrin (5 �g/ml), triiodo-L-thyronine (4 pg/ml), and 0.5% fetal
calf serum. In addition, 1% antibiotic-antimycotic (GIBCO Life
Technologies, Grand Island, NY) was added to prevent bacterial and
fungal contamination.

For time course and dose response studies, HO-1�/� cells were
cultured for 1 day and then treated with either 0.1 or 1 �M erastin
(Sigma-Aldrich, St. Louis, MO), or with different doses of RSL3
(Selleckchem, Houston, TX), both potent ferroptosis inducers.
Treated cells were harvested at different time points over a 24-h time
frame. Subsequent studies in both HO-1�/� and HO-1�/� PTCs
entailed cell treatment for 16 h with erastin in the presence or absence
of N-acetyl-L-cysteine (NAC, glutathione source; Sigma-Aldrich),
ferric ammonium citrate (FAC, iron source; Sigma-Aldrich), defer-
roxamine mesylate (DFO, iron chelator; Sigma-Aldrich), or ferrosta-
tin-1 (Fer-1, ferroptosis inhibitor; Sigma-Aldrich).

Phase contrast microscopy. Images of PTCs were captured using
a Leica DM I600B microscope with the Leica Application Suite
V4.2 (Leica Microsystems, Buffalo Grove, IL) and analyzed using
ImagePro Plus 5.1 software (Media Cybernetics, Rockville, MD).

Real-time PCR analysis. RNA was isolated from cells by using
TRIzol Reagent (Ambion, Life Technologies) according to the man-
ufacturer’s protocol. One microgram of RNA was converted to cDNA
by using the Quantitect cDNA Synthesis kit (Qiagen, Germantown, MD)
according to the manufacturer’s protocol. Quantitative real-time PCR was
performed with PowerUp SYBR Green Master Mix (ThermoFisher
Scientific, Grand Island, NY) and primers for mouse HO-1 and GAPDH.
Reactions were performed in triplicate, and specificity was monitored
using melting curve analysis after cycling. Primers (Invitrogen, Grand
Island, NY) used were as follows (5=-3=): mouse HO-1 forward
5=-GGTGATGGCTTCCTTGTACC-3= and reverse 5=-AGTGAGGC-
CCATACCAGAAG-3=; and GAPDH forward 5=-ATCATCCCTG-
CATCCACT-3= and reverse 5=-ATCCACGACGGACACATT-3=.
Relative mRNA expression was quantified using the �� Ct method (1,
28), and GAPDH was used as an internal control. Results were
expressed as fold change over vehicle-treated cells.

Western blot analysis. Immunoblot analyses were performed as

described previously (3). Briefly, cell cultures were lysed in radioim-

munoprecipitation assay buffer (50 mM Tris/HCl, 1% vol/vol Nonidet

P-40, 0.25% wt/vol deoxycholic acid, 150 mM NaCl, 1 mM EGTA,

1 mM sodium orthovanadate, and 1 mM sodium fluoride) with

protease inhibitors (no. P2714, Sigma-Aldrich) and phosphatase in-

hibitors (no. B15001-A, Biotool.com, Houston, TX). Protein concen-

trations were quantified using the bicinchoninic acid protein assay

(Thermo Fisher Scientific, Rockford, IL). Cell lysates were subjected

to SDS-PAGE on a 4–20% acrylamide gradient. The resulting protein

bands were transferred onto methanol-activated PVDF transfer mem-

branes (Immobilon P). Membranes were blocked for 1 h in 5% wt/vol

dehydrated milk and 0.1% vol/vol Tween-20 in PBS, then incubated

with polyclonal rabbit anti-HO-1 antibody (1:5,000 dilution; SPA-

894, Enzo LifeSciences) or anti-cleaved caspase-3 antibody (1:2,000

dilution; no. 9664L, Cell Signaling), followed by a peroxidase-

conjugated goat anti-rabbit IgG antibody (1:5,000; Jackson Immu-

noResearch Laboratories). Horseradish peroxidase activity was de-

tected using enhanced chemiluminescence. The membrane was

stripped and probed with mouse anti-GAPDH antibody (1:10,000

dilution; MAB374, EMD Millipore, Darmstadt, Germany). Densito-

metric analysis was performed using the Image-J software package

(40) and normalized using GAPDH as a loading control.

HO enzyme activity measurement. HO enzyme activity was mea-

sured by bilirubin generation as described previously (4). HO-1�/�

PTCs were treated with either vehicle or 1 �M erastin for 16 h after

which cell lysates were obtained. Lysates were centrifuged at 18,800

g at 4°C for 10 min. The supernatant was then incubated with rat liver

cytosol (2 mg protein—a source of biliverdin reductase), hemin (20

�M), glucose-6-phosphate (2 mM), glucose-6-phosphate dehydroge-

nase (0.2 �M), and NADPH (0.8 mM) for 1 h at 37°C in the dark.

Bilirubin was extracted with chloroform, and the optical density of the

resulting solution was measured at 464 and 530 nm. Enzyme activity

was expressed as picomoles of bilirubin formed per hour per mg of

protein.
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Fig. 1. Erastin increases heme oxygenase-1
(HO-1) expression in renal proximal tubular
epithelial cells (PTCs). A: HO-1 mRNA ex-
pression in cultured immortalized HO-1�/�

PTCs after 0.1 or 1 �M erastin treatment at
the indicated time points. Representative
Western blot (B) and densitometry showing
protein levels (C) of HO-1 in HO-1�/� PTCs
treated with erastin over time. Representa-
tive Western blot (D) and densitometry
showing protein levels (E) of HO-1 in HO-
1�/� PTCs treated with RSL3 over time.
Data shown represent the means � SE of
three independent experiments performed
each time in triplicate; *P � 0.05 and **P �
0.01 compared with lower concentration at
each time point.
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Cell viability analysis. Cell viability was evaluated with an
AlamarBlue Cell Viability Assay Kit (Thermo Fisher Scientific)
according to the manufacturer’s protocol. In brief, PTCs were
plated onto collagen-coated 96-well plates, and after exposure to
treatment conditions, 10 �l of AlamarBlue reagent was added to
each well and incubated at 37°C in 5% CO2 for 4 h. Absorbance
was measured at 570 and 600 nm using an EL800 universal
microplate reader (Biotek Instruments). Viability was assessed by
calculating the decrease in chemical reduction of the AlamarBlue
reagent between treatment and vehicle control groups. Reduction
of AlamarBlue reflects mitochondrial reductive capacity and there-
fore cellular metabolic health.

Statistical analysis. At least three independent experiments were
conducted for each experimental condition. Data are expressed as
means � SE. To compare means of two groups, the unpaired Student’s
t-test was used. Analysis of variance was used for comparison of means
among more than two groups with the appropriate post hoc analyses.

RESULTS

Erastin increases HO-1 gene expression and protein levels
in PTCs. To investigate the effects of erastin-induced ferrop-
tosis on HO-1 gene expression and protein levels, immortal-
ized HO-1�/� PTCs were treated with either 0.1 or 1 �M
erastin for 4, 8, 16, or 24 h. We observed a dose- and
time-dependent increase in HO-1 mRNA levels at both con-
centrations of erastin, with the greatest HO-1 induction at the
16-h treatment time point (Fig. 1A). Increase in HO-1 protein
levels correlated with mRNA expression, as the greatest induc-
tion in HO-1 was observed 16 h posttreatment (1 �M erastin)
(Fig. 1, B and C). Furthermore, we observed a twofold increase
in HO activity when measured 16 h after treatment with erastin
(control vs. 1 �M erastin; 162.3 � 29.5 vs. 339.5 � 80.5 pg
bilirubin/mg protein/h; means � SE, n � 6–7/treatment).

RSL3 treatment increases HO-1 protein levels in a dose-
dependent manner. To assess HO-1 response to ferroptosis
induction via GPX4 inhibition, we also treated immortalized
HO-1�/� PTCs with either 0.1 and 1 �M RSL3 and harvested
cells at 4, 8, 16, and 24 h after treatment. We observed
significant induction of HO-1 protein levels after 8 h of RSL3
treatment, and these levels began to revert to baseline by 24 h
(Fig. 1, D and E).

Erastin treatment reduces cell viability in HO-1�/� PTCs in
the absence of apoptosis. We validated the induction of fer-
roptosis in HO-1-proficient PTCs treated with erastin over time
and observed that cell death was greater with increased dura-
tion of erastin treatment. Treatment of HO-1�/� PTCs with 0.1
�M erastin did not induce detectable cellular toxicity following
8 h of treatment but resulted in a reduction in cell viability at
16 h (Fig. 2, A and B). However, cell viability was reduced at
both 8 and 16 h after treatment with 1 �M erastin. Notably,
induction of HO-1 gene expression was observed as early as
4 h after erastin treatment (Fig. 1A), a time point at which no
discernible cytotoxicity was observed by phase contrast mi-
croscopy. To examine whether the reduction in viability ob-
served with erastin treatment in HO-1�/� PTCs is due to
apoptosis, we assessed cleaved caspase 3 levels after 16 h of
erastin (0.1, 1, or 10 �M) treatment. Cleaved caspase 3
expression in erastin-treated HO-1�/� PTCs was undetectable
by Western blotting (Fig. 2C), indicating that apoptosis was not
a predominant mechanism for the decreased viability observed.
HO-1-deficient PTCs treated with cisplatin (50 �M) for 16 h
were used as a positive control in these experiments. These

results also indicate that erastin-induced HO-1 expression is
unique and not a generalized response to cells dying from an
inducer of apoptosis per se.

Similarly, to ascertain the effect of HO-1 on RSL3-induced
ferroptosis, we treated both HO-1�/� and HO-1�/� PTCs with
either 0.1 or 1 �M RSL3 and assessed cell viability after 16 h.
There was minimal ferroptotic cell death observable after
treatment with 0.1 �M RSL3 (results not shown), but signifi-

Vehicle                   0.1                      1

0

50

100

150

Erastin (µM)

V
ia

b
ili

ty

(%
 o

f 
C

o
n

tr
o

l)

**
**

Erastin (µM)

0        0.1      1.0       10

A

B

C

HO-1

Cleaved 

Caspase 3

GAPDH

16h

8h

Vehicle                   0.1                      1

0

50

100

150

Erastin (µM)

V
ia

b
ili

ty

(%
 o

f 
C

o
n

tr
o

l)

**

Fig. 2. Erastin treatment reduces cell viability in a time- and dose-dependent
manner. Cell viability in HO-1�/� PTCs after treatment with either 0.1 or 1
�M erastin for 8 h (A) or 16 h (B). C: representative Western blot showing
absence of cleaved caspase 3 in HO-1�/� PTCs treated with the indicated
doses of erastin for 16 h. HO-1�/� PTCs treated with 50 �M cisplatin (a
known inducer of apoptosis) for 16 h were used as a positive control. All lanes
are from the same blot. “Control” label indicates where the blot was cropped
to include relevant lanes. Data are represented as means � SE from three
independent experiments with seven or eight replicates in each experiment;
**P � 0.01 compared with vehicle-treated controls.
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cant reduction in cell viability was observed with 1 �M RSL3
in HO-1�/� PTCs compared with wild-type cells. At higher
concentrations (using 10 �M RSL3), we observed further
increased cell death in HO-1�/� compared with HO-1�/�

PTCs (Fig. 3C). These findings indicate that HO-1-deficient

PTCs are more sensitive also to RSL3-induced ferroptosis
compared with PTCs proficient in HO-1.

HO-1 deficiency promotes erastin-induced ferroptosis. To
ascertain the role of HO-1 in erastin-induced cell death, we
treated HO-1�/� and HO-1�/� PTCs with either 0.1 or 1 �M
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Fig. 3. Lack of HO-1 increases PTC sensitivity
to erastin-induced ferroptosis. A: phase con-
trast microscopy images of HO-1�/�and HO-
1�/� PTCs treated with either 0.1 or 1 �M
erastin for 16 h. B: cell viability after treatment
of PTCs with 0.1 or 1 �M erastin or 1; *P �
0.05 compared with 0.1 �M erastin-treated
HO-1�/� PTCs; **P � 0.01 compared with
0.1 �M erastin-treated HO-1�/� PTCs; #P �
0.01 compared with erastin-treated HO-1�/�

PTCs. C: cell viability after treatment of PTCs
with 10 �M RSL3 for 16 h; *P � 0.01 com-
pared with 1 �M RSL3 treatment; #P � 0.05
compared with RSL3-treated HO-1�/� PTCs.
Data shown represent means � SE of three
independent experiments with four to six rep-
licates in each experiment.
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erastin for 16 h and examined morphological changes and cell
viability. We observed reduction in cell viability in both
HO-1�/� and HO-1�/� PTCs (Fig. 3, A and B). However, the
viability observed in HO-1�/� PTCs after 0.1 or 1 �M erastin
treatment was significantly reduced compared with HO-1�/�

PTCs. These results suggest the presence of HO-1 may atten-
uate erastin-induced cell death.

Iron chelation attenuates erastin-induced ferroptosis and
reduces HO-1 levels. To determine if erastin-induced cell death
in PTCs is iron dependent, we examined the effect of iron
chelation on cell viability of immortalized HO-1�/� and HO-
1�/� PTCs. To ensure adequate iron chelation, cells were
pretreated for 4 h with deferroxamine mesylate (DFO), fol-
lowed by erastin and DFO cotreatment for 16 h. As observed
previously, erastin treatment resulted in a dose-dependent in-
crease in cell death in both HO-1�/� and HO-1�/� PTCs as
indicated by phase contrast microscopy (Fig. 4, A and B) and
quantitative assessment of cell viability (Fig. 5, A and B).

Interestingly, iron chelation led to a significant reduction in cell
death following erastin treatment. Furthermore, under these
conditions, we examined the expression of HO-1 protein in
response to iron chelation in erastin-treated HO-1�/� PTCs to
assess whether iron chelation in erastin-treated cells mitigates
HO-1 induction. DFO resulted in reduced HO-1 protein ex-
pression in erastin-treated cells (Fig. 5C). These findings indi-
cate that erastin-induced cell death is iron dependent in both
HO-1�/� and HO-1�/� PTCs and that chelating iron while
subjecting PTCs to ferroptosis may decrease cellular stress and
the need for HO-1 induction.

Iron supplementation and HO-1 deficiency exacerbate eras-
tin-induced ferroptosis. As ferroptosis is an iron-dependent
form of cell death, we examined whether iron supplementation
augments erastin-induced ferroptosis in HO-1�/� and HO-
1�/� PTCs. Treatment of cells with 10 �g/ml of FAC (iron
source) increased cell death in 1 �M of erastin-treated HO-
1�/� PTCs (Fig. 6A). However, in HO-1�/� PTCs, the addition
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Fig. 4. Iron chelation attenuates erastin-induced
ferroptosis. Representative phase contrast micros-
copy images of HO-1�/� (A) and HO-1�/� (B)
PTCs treated with either 0.1 or 1 �M erastin with
or without 0.1 mM deferroxamine mesylate
(DFO, iron chelator) for 16 h.
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of FAC alone, even in the absence of erastin treatment, was
sufficient to induce cell death (Fig. 6B). In addition, cotreat-
ment of HO-1�/� PTCs with 0.1 or 1 �M erastin and FAC (10
�g/ml) resulted in further reduction in cell viability as ob-
served via phase contrast microscopy (Fig. 6B). We observed
significant reduction in viability in HO-1�/� and HO-1�/�

PTCs cotreated with erastin and FAC (10 �g/ml). Importantly,
this reduction in viability was greater in FAC and erastin
cotreated HO-1�/� PTCs (Fig. 7B), supporting the hypothesis
that in HO-1-deficient PTCs, iron supplementation augments
ferroptosis and does so at lower concentrations of erastin when
compared with HO-1�/� PTCs. This indicates that HO-1

expression may partially preserve PTC viability during ferrop-
tosis and that HO-1 deficiency increases susceptibility to fer-
roptosis in PTCs.

Glutathione attenuates erastin-induced ferroptosis and re-
duces HO-1 levels. Since erastin treatment induces oxidative
stress and subsequent ferroptosis by blocking the system xc

-

antiporter thus resulting in glutathione depletion (9), we exam-
ined whether glutathione replenishment would attenuate eras-
tin-induced ferroptosis in the presence or absence of HO-1. We
treated HO-1�/� and HO-1�/� PTCs with erastin (0.1 or 1
�M) in the presence or absence of either 0.5 or 1 mM NAC
(glutathione source). Cotreatment with NAC (0.5 or 1 mM)
significantly increased cell viability in both the HO-1�/� and
HO-1�/� PTCs (Figs. 8, A and B, and 9, A and B), thus
demonstrating that glutathione depletion and subsequent cell
death induced by erastin can be completely rescued by cotreat-
ment with NAC. In addition, we examined the levels of HO-1
in HO-1�/� PTCs in response to cotreatment with erastin and
NAC, and we observed significant reduction in HO-1 protein
levels in cells cotreated with both erastin and NAC (Fig. 9C).

Ferrostatin-1, a ferroptosis inhibitor, attenuates erastin-
induced ferroptosis and reduces HO-1 levels. Ferrostatin-1 was
the first specific ferroptosis inhibitor to be developed, and it has
been shown to inhibit ferroptosis by reducing lipid peroxida-
tion in a variety of cell types as well as in vivo (29, 35, 41, 56).
We treated HO-1�/� and HO-1�/� PTCs with erastin in the
presence or absence of 0.1 or 1 �M ferrostatin-1. We observed
that ferrostatin-1 cotreatment resulted in mitigation of cell
death in both HO-1�/� and HO-1�/� PTCs. (Fig. 10, A and B);
although, this response was more modest in HO-1�/� PTCs
compared with HO-1�/� (Fig. 11, A and B). Furthermore, from
Western blots of cell lysates there appeared to be a reduction in
HO-1 protein expression in cells cotreated with erastin and
ferrostatin-1 compared with erastin alone (Fig. 11C).

DISCUSSION

The results of this study demonstrate that renal PTCs un-
dergo cell death in response to treatment with the ferroptosis
inducers erastin or RSL3. Ferroptosis is an iron-dependent
process, and erastin treatment appears to induce ferroptosis
through oxidative stress and inhibition of the system xc

- (cys-
tine/glutamate) antiporter, whereas RSL3 induces ferroptosis
via inhibition of GPX4 activity (9, 14, 54). Our results high-
light several key findings: 1) both erastin and RSL3 induce
HO-1 expression in PTCs; 2) HO-1-deficient PTCs are highly
sensitive to erastin- and RSL3-induced ferroptosis; 3) erastin-
induced cell death in PTCs is iron dependent—iron supple-
mentation results in enhanced cell death, whereas iron chela-
tion reduces cell death and HO-1 expression; 4) replenishment
of glutathione in the presence of erastin inhibits cell death and
reduces erastin-induced HO-1 expression; and 5) ferrostatin-1,
a ferroptosis inhibitor, attenuates cellular stress and death in
PTCs undergoing erastin-induced ferroptosis.

Our initial hypothesis was that HO-1, because of its enzy-
matic activity, generates iron and therefore has the potential to
enhance ferroptosis in PTCs. However, we found that PTCs
proficient in HO-1 exhibit protection from ferroptosis. It is
possible that elevated intracellular heme levels in HO-1-defi-
cient cells render them increasingly susceptible to ferroptosis.
HO-1 is a cytoprotective enzyme that is important for main-
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taining redox homeostasis and also provides a potent antioxi-
dant defense mechanism in response to cell stress (24, 36) by
breaking down toxic heme into carbon monoxide, biliverdin
(further reduced by biliverdin reductase to bilirubin), and iron
(24, 31, 32, 44). Numerous reports in animal models of AKI
indicate that expression of HO-1 is key in protection against
kidney injury. For example, in the rhabdomyolysis model of
AKI, induction of HO before injury resulted in a significant
attenuation of structural damage, prevented kidney failure, and
reduced mortality (33). This protective role of HO-1 has also
been demonstrated in several animal models of AKI (reviewed
in Ref. 31). In addition, recent studies have linked genetic
polymorphisms in the human HO-1 gene to the development of
AKI in cardiac surgery patients (6, 23). Similarly, differential
expression of genes, which modulate cellular iron content and
iron homeostasis, has been demonstrated to regulate ferropto-
sis.

Induction of HO-1 in response to cellular stress is coupled
with coexpression of the iron sequestering protein ferritin. Iron
bound in the ferritin shell is in a mineralized, nontoxic state

which cannot be used by the cell (2). Such a coupled response
when HO-1 is induced may underlie the protective effects of
HO-1 against ferroptosis, the latter presumably associated with
an increase in the free labile cellular iron pool due to cellular
oxidant stress. Sun et al. (42) demonstrated increased resis-
tance to ferroptotic cell death in hepatocellular carcinoma cells
through Nrf2 expression and activation as well as upregulation
of Nrf2 target genes (quinone oxidoreductase 1, heme oxygen-
ase-1, and ferritin heavy chain 1) involved in iron and ROS
metabolism. More recently, increased mitochondrial ferritin
expression in neuroblastoma cells and in drosophila was shown
to significantly inhibit erastin-induced ferroptosis (48). Other
proteins which modulate iron metabolism have been reported
to regulate ferroptosis. The iron response element binding
protein (IREB2) has been demonstrated to contribute to the
accumulation of lipid peroxides during erastin-induced ferrop-
totic death in both HT-1080 and Calu-1 cells (8). Heat shock
protein (HSP1) on the other hand decreases intracellular iron
concentrations by inhibition of transferrin receptor (Trf1) re-
cycling. Thus carcinoma cells depleted of HSPB1 were shown
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to be more sensitive to erastin-induced ferroptosis, whereas
overexpression of HSPB1 resulted in inhibition of ferroptosis
(2). Therefore, further studies are necessary to fully assess the
role of iron regulatory proteins in modulating ferroptosis in the
context of HO-1 depletion.

Even though the expression of HO-1 has been shown to be
upregulated during ferroptosis, the role it plays in this form of
regulated cell death has not been clearly elucidated. Kwon et
al. (22) previously demonstrated that the presence of HO-1 in
freshly isolated lung fibroblasts from HO-1�/� mice acceler-
ates erastin-induced ferroptosis and that lack of HO-1 attenu-
ates this decrease in cell viability. On the other hand, Sun et al.
(42) demonstrated that the induction of HO-1 in erastin-treated
hepatocellular carcinoma cells is protective against ferroptosis.
Our results demonstrate that HO-1-deficient PTCs are more
susceptible to erastin-induced ferroptosis, thus indicating that
HO-1 plays a protective role in mitigating cell death in this
model. These differing results regarding HO-1 expression
observed during ferroptotic cell death may indicate that the role

of HO-1 in ferroptosis is context dependent and cell-type
dependent.

Previous studies have shown that glutathione depletion is a
potent stimulus for HO-1 induction (15, 17, 30, 59), providing
a potential mechanism for erastin-induced HO-1 expression.
We observed complete attenuation of erastin-induced cell
death in both HO-1�/� and HO-1�/� cells with glutathione
supplementation by using NAC. In addition, in cells that were
cotreated with NAC, we also observed significant reduction in
HO-1 levels. Our findings indicate that regardless of the
presence or absence of HO-1, depletion of glutathione by
erastin is necessary for its ability to induce ferroptosis. Other
investigators have also shown that cellular glutathione plays a
key protective role in the suppression of ferroptosis (55). For
example, several studies have demonstrated that GPX4 is a key
regulator of ferroptotic cell death. GPX4 is a phospholipid
hydroperoxidase enzyme, which protects against lipid peroxi-
dation in lipid bilayers of cell membranes (7, 39, 50). Genetic
inactivation or pharmacological inhibition of GPX4 promotes
ferroptotic cell death in a variety of in vitro models (11, 14, 38,
51). Moreover, genetic deletion of GPX4 in animal models has
been demonstrated to cause increased accumulation of oxi-
dized phospholipid products in kidneys, induction of AKI and
death in mice (14). Whether HO-1 and GPX4 expression
synergistically protect from ferroptosis is an interesting ques-
tion for further investigation.

We propose that a few explanations are plausible for the role
of HO-1 in ferroptosis. First, HO-1 induction is a protective
antioxidant response combating ferroptosis. Second, HO-1
promotes ferroptosis via release of its enzymatic product, iron.
Third, HO-1 induction is simply associated with the cellular
stress caused by lipid ROS and glutathione depletion. More
recent studies, however, have demonstrated that ferroptosis is not
a nonspecific ROS-induced cell death process, but rather involves
a well-defined arachidonate lipoxygenase-mediated lipid peroxi-
dation signature that predominantly oxidizes phosphatidylethano-
lamine (PE) and phosphatidylinositol 4,5-bisphosphate (PIP2) in
the plasma membrane (18, 19, 57). In addition, lipid peroxidation
may stimulate the immune system and potentiate a process termed
necroinflammation (26). Given the established role of HO-1 in
inflammation, it would be interesting to evaluate the involvement
of HO-1 in necroinflammation.

In addition to the well-known classical pathways of cell
death such as apoptosis and necrosis, more recent studies have
identified novel and distinct cell death pathways such as
necroptosis, mitochondrial permeability transition-dependent
regulated necrosis, parthanatos, and ferroptosis in AKI (13, 14,
21, 25, 27, 29, 41, 47). Our studies demonstrate ferroptosis can
drive cell death in renal PTCs, reinforcing the supposition that
it is an important mechanism by which PTC death may occur
in AKI. Furthermore, HO-1 expression demonstrates an anti-
ferroptotic effect, which may partially explain the aggravated
damage proximal tubules experience secondary to AKI in the
setting of HO-1 deficiency (16, 34).
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