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Abstract 

Hemispheric asymmetries in the perception of local and 
global features have been consistently reported: there is an 
advantage for responses to global features in the left visual 
field/right hemisphere and an advantage for responses to local 
features in the right visual field/left hemisphere. It has been 
proposed that this asymmetry originates from differential 
frequency bias in the two hemispheres (e.g., Ivry & Robertson, 
1998). Nevertheless, there is little evidence supporting 
hemispheric specialization for particular frequency ranges 
(e.g., Fendrich & Gazzaniga, 1990) or differential frequency 
tuning in the neurons in the two hemispheres. Here we test the 
hypothesis that this hemispheric asymmetry in visual 
perception takes place at the encoding stage beyond the 
sensory level. We use two autoencoder networks with 
differential connectivity configurations as the way to develop 
differential encoding in the two hemispheres, to reflect the 
anatomical evidence that there is more interconnectivity 
among the neighboring cortical columns in the right 
hemisphere than the left hemisphere (e.g. Hutsler & Galuske, 
2003). We show that this differential encoding mechanism 
has a better fit with human data than the model based on 
differential frequency bias, and thus is a more anatomically 
realistic and cognitively plausible model in accounting for the 
hemispheric asymmetry in visual perception. 

Keywords: Hemispheric asymmetry, visual perception, 
Double Filtering by Frequency (DFF), autoencoder networks. 

Introduction 

The way we analyze and process the global and local forms 

of visual stimuli has been extensively examined. Navon 

(1977) proposed the "global precedence hypothesis", 

suggesting that the global form of a visual stimulus is 

unavoidably recognized before the local forms. This effect 

was later shown to depend on both the characteristics of the 

local and global forms and the hemispheric asymmetry in 

the perception of local and global features (Hoffman, 1980). 

Follow-up studies further confirm that there is a right visual 

field (RVF)/left hemisphere (LH) advantage for responses to 

local features and a left visual field (LVF)/right hemisphere 

(RH) advantage for responses to global features (Sergent, 

1982; Ivry & Robertson, 1998). Nevertheless, studies 

examining grating detection did not support the existence of 

hemispheric specialization for particular frequency ranges 

(e.g. Di Lollo, 1981; Rijsdijk, Kroon, &Van der Wildt, 1980; 

Peterzell, Harvey, & Hardyck, 1989; Fendrich & Gazzaniga, 

1990). It thus remains controversial about why this 

perceptual asymmetry exists (Peterzell, 1991; Martin, 1979). 

Hierarchical letter Pattern Perception 

Sergent (1982) used hierarchical letter patterns (Navon, 

1977) to examine hemispheric differences in responses to 

global and local patterns. A hierarchical letter pattern 

contains two patterns: a global pattern and a local pattern. 

The global pattern (the large letter in Figure 1(a)) is 

composed of a number of local patterns (the small letters in 

Figure 1(a)). She referred to the two levels of the stimulus 

as having differential spatial frequency contents: low 

frequency for the global pattern and high frequency for the 

local pattern. In her experiment, she used four letters to 

compose the hierarchical letter patterns: "H" and "L" were 

designated as targets, and "T" and "F" as distracters. Given 

that each letter may appear as the local or the global pattern, 

there are in total 16 patterns, which can be put into six 

conditions according whether there is a target in the local or 

global patterns, as shown in Figure 1(a). Stimuli were 

presented to either the RVF/LH or the LVF/RH for 150 ms, 

and the participants’ task was to judge whether they saw a 

target letter or not, regardless of its being in the global 

pattern or the local pattern. 

 

 
Figure 1: (a) Stimuli in Sergent’s experiment (1982). “H/L” 

are targets, “T/F” are distracters. “L+” means the large letter 

is a target, and “S+” means the small letters are targets. "Id." 

means the local and the global patterns are identical. (b) The 

RT data for the L+S- and L-S+ stimuli in the LVF and RVF 

presentation conditions (Sergent, 1982). 

 

The stimuli of greatest interest in Sergent's experiment 

(1982) were the conflict conditions when the target 

appeared in either the local pattern or the global pattern (i.e., 

the L+S- and L-S+ cases in Figure 1(a)), since they are the 

conditions in which interference may arise due to that the 
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target and the non-target letters are at different levels. The 

results showed that there was a significant interaction 

between the presented visual field (RVF or LVF) and the 

target level (global or local) in the response time data: the 

participants were faster at detecting the target at the global 

level when it was presented in the LVF/RH, and faster at 

detecting the target at the local level when it was presented 

in the RVF/LH (Figure 1(b)). She thus concluded that global 

precedence in form analysis (Navon, 1977) is a property of 

the RH but not the LH, and argued that this may result from 

a "greater capacity of the LH to deal with higher frequency". 

She also argued that "hemispheric differences as a function 

of spatial frequencies must result from processing taking 

place beyond the sensory level", since studies examining 

grating detection did not report a hemispheric difference in 

contrast sensibility or visible persistence (De Lollo, 1981; 

Rijsdijk et al., 1980. See also Peterzell et al., 1989; Fendrich 

& Gazzaniga, 1990); in other words, the two hemispheres 

may receive the same type of information beyond the 

sensory level (Sergent, 1982). 

 

 
Figure 2: Ivry and Robertson's computational model of the 

DFF theory (taken from Ivry & Robertson, 1998). Module 6 

has the lowest frequency. The four decision nodes 

correspond to four target patterns: whether target 1 or target 

2 is present, and whether it is at the global or local level. 

Modeling of the Double Filtering by Frequency 

(DFF) Theory  

Ivry and Robertson (1998) proposed a Double Filtering by 

Frequency (DFF) theory to account for the hemispheric 

asymmetry in visual perception. The theory argues that 

information coming into the brain goes through two 

frequency filtering stages. The first stage involves 

attentional selection of task-relevant frequency information, 

and at the second stage the two hemispheres have 

asymmetric filtering processing: the LH amplifies high 

frequency information (i.e., a high-pass filter), whereas the 

RH amplifies low frequency information (i.e., a low-pass 

filter). They developed a computational model to account 

for this perceptual asymmetry effect (Figure 2). The model 

contains six different frequency modules; each module 

extracts information of a specific spatial frequency from the 

input and maps the extracted information to the output. The 

outputs from the modules then go through an "attention 

weight" layer as a filter. The filter first selects a frequency 

range that is expected to provide the most useful 

information for the task (although it is unclear how the 

range is decided). At the second stage, in the RH network, 

the filter amplifies the information from the low spatial 

frequency (LSF) modules within the frequency range, 

whereas in the LH network it amplifies the information 

from the high spatial frequency (HSF) modules, through 

giving different weights to different modules. 

 

 
Figure 3: (a) In the input representation, there are two target 

patterns (10101 and 01110) and two distracter patterns 

(10110 and 11010). (b) Shown at the top is an actual input 

pattern formed by taking the second distracter pattern and 

replacing each black portion with the first target pattern. 

Thus this represents the first target pattern at the local level 

and the second distracter pattern at the global level (an L-S+ 

pattern). A 0 unit appears between each local pattern as a 

separator (cf. Ivry & Robertson, 1998). 

  

The local input patterns in the simulation are created by 

turning on three bits in a five-bit vector. These are replicated 

three times, separated by all 0 bit patterns, to create the 

global pattern. The process is illustrated in Figure 3, where 

the global pattern is 11010. Each “1” in the global pattern is 

represented by the local pattern, 10101. Each “0” in the 

global pattern is represented by 00000.  

 The results showed that, consistent with the human data, 

the model exhibited the hemisphere-by-level interaction 

after 20 training epochs; nevertheless, this effect was not 

consistently obtained with more training epochs; the LH 

network was generally better for both local and global 

targets. In another simulation, they enlarged the stimuli by 

five so that each local pattern contained 25 units, with a 

group of five units corresponding to a unit in the original 

representation, and each global pattern thus became 125 
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units long. They showed that the hemisphere-by-level 

interaction was more pronounced in this simulation, and the 

interaction persisted across 100 training epochs (Figure 4). 

Unfortunately, this result is fragile: with further training, the 

LH network became better than the RH network at 

identifying both local and global targets, which is 

inconsistent with the human data. The model also exhibited 

a general advantage for a global target, which is consistent 

with the global precedence observation (Navon, 1977). 

  

 
Figure 4: Results of Ivry and Robertson's computational 

model of the DFF theory (1998) with large stimuli after 100 

epochs. Note that it is unclear whether the RH advantage in 

L+S- was significant. In addition, inconsistent with the 

human data, the LH network became better at identifying 

both local and global targets with further training. 

Anatomical Differences between the Hemispheres  

Although the DFF theory has been shown to be able to 

account for the observed perceptual asymmetry, there is 

little evidence suggesting differential frequency tuning in 

the neurons in the two hemispheres. Nor is there anatomical 

evidence supporting the existence of the different frequency 

modules in the brain as those proposed in Ivry & 

Robertson's computational model. In addition, given that it 

is unclear how the frequency range that is expected to 

provide the most useful information for the task is decided, 

Ivry and Robertson's model does not fully explain why there 

is little evidence suggesting the existence of hemispheric 

specialization for particular frequency ranges (e.g., Fendrich 

& Gazzaniga, 1990). Ivry & Robertson (1998) argued that it 

is because absolute instead of relative frequencies were used 

in these studies. As pointed out by Sergent (1982), given the 

lack of evidence of hemispheric specialization for particular 

frequency ranges, this hemispheric asymmetry must result 

from processing taking place beyond the sensory level. 

Contrary to the DFF theory, the two hemispheres may not 

differ in the way they extract visual information. 

What is the process taking place beyond the sensory level 

that results in this perceptual asymmetry? Here we test the 

hypothesis that this process takes place at an encoding stage 

beyond the sensory level. We incorporate the anatomical 

evidence about hemispheric differences in cerebral cortical 

networks in a computational model that implements 

differential encoding in the two hemispheres. Galuske et al. 

(2000) examined the microcircuitry organization in human 

temporal cortex and showed hemispheric asymmetry in the 

posterior part of Brodmann area 22, which has been shown 

to be the area for language-relevant processing of auditory 

signals. They showed that, through neuronal track tracing, 

this area contains a modular network that links regularly 

spaced clusters of neurons; although the cluster size was 

similar in the two hemispheres, the spacing between the 

clusters was about 20 percent larger in the LH. This wider 

spacing implies that more functionally distinct columnar 

systems can be included per surface unit in the LH than in 

the RH. In addition, in the LH, each cortical column has 

fewer connections with neighboring columns compared with 

the RH (Seldon, 1981a; 1981b; 1982; Buxhoeveden et al., 

2001). Taken together, these data suggest that there is more 

interconnectivity between the neighboring cortical columns 

of the RH than the LH, which may result in a more 

functionally overlapped representation in the RH compared 

with that in the LH (Hutsler & Galuske, 2003).  

Although these anatomical data are from the auditory 

cortex because of the researchers’ interests in language 

processing area, the phenomenon of differential frequency 

bias in the two hemispheres has been observed in both 

visual and auditory processing (Ivry & Robertson, 1998; 

Hutsler & Galuske, 2003). Thus, in the current study, we 

generalize the findings of hemispheric asymmetry in 

microcircuitry organization in the auditory processing area 

to visual processing, aiming to test the hypothesis that a 

difference in the connectivity configuration at the encoding 

stage of visual processing is sufficient to account for the 

observed hemispheric asymmetry in the perception of global 

and local features (the encoding scheme we propose here 

can be applied to auditory processing as well). 

Modeling Method 

To investigate the hypothesis that the observed perceptual 

asymmetry results from the difference in the connectivity 

configuration at the encoding stage, we use two autoencoder 

networks (Rumelhart, Hinton, & Williams, 1986) with 

different connectivity configurations as a way to learn an 

efficient encoding from the input data. An autoencoder 

network is a two-layer neural network trained to map the 

input pattern to an output pattern that is identical to the 

input pattern; after training, its hidden layer activation when 

an input pattern is presented is used as a compressed 

encoding of the input pattern. In our simulation, two 

autoencoder networks are created: the LH network has a 

pattern of connectivity resembling the sparse connections in 

the LH, whereas the RH network has more connections 

among the neighboring nodes to develop a more 

functionally overlapped representation. In the input 

representation, as in Ivry and Robertson's model (1998), we 

use two target patterns and two distracter patterns, each of 

which is five units long, to compose the hierarchical stimuli 

(Figure 3). Each stimulus is 29 units long, constructed by 

combining two patterns so that one pattern forms the local 

features and the other forms the global pattern of the 

stimulus, with a blank (0) unit between each local pattern. 

16 stimuli are constructed from all possible combinations of 

the targets and distracters at either level (cf. Sergent, 1982).  
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Each autoencoder network has 13 hidden units; each 

hidden unit has 7 connections to the input layer. This 

parameter combination is the point where the overall error 

starts to converge and the two networks have a comparable 

performance level. A Gaussian probability density function 

(PDF) is used to determine the probability of having a 

connection between a hidden and the input units. For each 

hidden unit an identical Gaussian PDF is used, with the 

center of the Gaussian PDF located evenly within the input 

layer. A narrow Gaussian PDF is used for the RH 

autoencoder network (σ = 1.8), and a wide Gaussian PDF 

for the LH autoencoder network (σ = 18; see Figure 5)
1
; the 

variances are chosen as the two extreme cases of 

denseness/sparseness of the connections in order to examine 

the qualitative differences between them. The connections 

from the hidden layer to the output layer are completely 

symmetric to those from the input layer to the hidden layer.  

 After obtaining the efficient encoding of the input 

stimulus, we use a perceptron (i.e., a one-layer neural 

network) to classify the encoding according to whether there 

is a target (at either level) or not in the stimulus. Thus, the 

output layer of the perceptron has only one node; the node 

has value ‘1’ when a target is present and ‘0’ otherwise. The 

error was measured as the difference between the output of 

the perceptron and the desired output (0 or 1). 

For both the autoencoder networks and the perceptron, the 

training algorithm is gradient descent with back-propagation 

(Rumelhart et al., 1986). The initial learning rate is 0.05 for 

the autoencoder networks and 0.001 for the perceptron, and 

is flexible during training: if the error decreases in the 

current epoch, the learning rate for the next epoch is the old 

learning rate multiplied by 1.01; if the error increases, the 

new learning rate is the old learning rate divided by two. 

The training stops when the number of training epoch 

reaches 1,000 for the autoencoder networks and 1,500 for 

the perceptron; the numbers of epochs are chosen so that the 

error will have converged before the training stops.  

Results 

Figure 6(a) shows the mean error over 500 trials for each 

network (typically a correspondence is made between 

reaction time and error – more uncertainty leads to longer 

reaction time)
2
. The results showed a significant interaction 

between network (RH vs. LH) and target level (global vs. 

local) (F(1, 973) = 53.140, p << 0.001), which is consistent 

with human reaction time data (Sergent, 1982): an 

advantage of responses to a target at the global level in the 

                                                           
1  Note that this Gaussian PDF is used to create connections 

between layers and thus is different from the Gaussian receptive 

field functions used in some models of hemispheric asymmetry 

(e.g. Ivry & Robertson, 1998; Monaghan & Shillcock, 2004). Also, 

the distribution widths are opposite of ours (e.g., wide right). 
2 Since the connectivity configuration for each trial was randomly 

generated, in some rare cases the network did not learn well and 

ended up with extremely large error. We use the mean plus/minus 

two standard deviations as the upper/lower bound to remove the 

outliers, which is about 2 to 3% of the simulation trials.  

RH network compared with the LH network (F(1, 973) = 

8.170, p < 0.01), and an advantage of responses to a target at 

the local level in the LH network compared with the RH 

network (F(1, 979) = 7.652, p < 0.01). In addition, similar to 

Ivry and Robertson's model (with large stimuli), the results 

also showed an overall advantage for responses to a global-

level target (F(1, 973) = 53.484, p << 0.001), which is 

consistent with the global precedence of visual form 

analysis (Navon, 1977). There was no main effect of 

network architecture (F < 0.1, n.s.), which is also consistent 

with the human data (Sergent, 1982; Figure 6(b)). 

 
Figure 5: (a) Probability density function of the connections 

in the LH network (σ = 18) and an example LH network. (b) 

Probability density function of the connections in the RH 

network (σ = 1.8) and an example RH network. 

 

 
Figure 6: (a) Modeling results. The error bars show standard 

errors. L+S- means the target is at the global level, whereas 

L-S+ means the target is at the local level (Figure 1). (b) 

Sergent's experiment results (1982), duplicated here for 

comparison reasons. 

 

The combination of 13 hidden nodes and 7 connections 

from each hidden node was chosen in our simulation 

because it is the point where the error of the perceptron 

started to converge. We also explored how the network 

performance changes with different parameters. We found 

that, while keeping the number of connections from each 

hidden node constant, with 14 hidden nodes the two 

networks had comparable performance level (F(1, 961) = 

0.005, n.s.), and the interaction between target level and 

network was significant (F(1, 961) = 22.100, p << 0.001) – 

a result very similar to the networks with 13 hidden nodes. 

With more than 14 hidden nodes (i.e., 15) or fewer than 13 

(i.e., 11 and 12), the interaction between target level and 

network remained significant, but the RH networks 

outperformed the LH networks when there were more than 

860



14 hidden nodes, whereas the LH networks outperformed 

the RH when there were fewer than 13 hidden nodes. In 

contrast, while keeping the number of hidden nodes 

constant, the interaction between target level and network 

also remained significant, but the RH networks 

outperformed the LH networks with more than 7 

connections (i.e., 8 and 9), whereas the LH networks 

outperformed the RH networks when there are fewer than 7 

connections (i.e., 5 and 6). This result shows that the 

interaction between target level and network architecture is 

robust against parameter changes; changes in the number of 

hidden nodes and the number of connections from each 

hidden node only alter the difference in performance level 

between the two networks. The model fits the human data 

the best when the two networks have a similar performance 

level; this is also consistent with the human data that there is 

no main effect of hemisphere in performance.  

We also explored how the performance changed with the 

variance on the connection distribution; this allowed us to 

determine the proper parameters for the LH and RH models. 

Figure 7 shows how the network behavior changes with the 

density of the connections in the model with 13 hidden 

nodes and 7 connections from each hidden node. The far left 

(1.8) is the RH network and the far right (18) is the LH 

network. It is clear that the interaction would survive less 

extreme parameter variation. 
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Figure 7: The network’s performance with different 

connection density: the larger the variance of the Gaussian 

distribution, the sparser the connection configuration is.  

 

Compared with Ivry and Robertson's model, the current 

model has a better fit with the human data (Sergent, 1982). 

In their results, a better match with the human data was 

obtained when they used large stimuli. However, even with 

the large stimuli, it is unclear whether the hemispheric 

difference was significant in each level condition as the 

human data (they only reported a significant interaction 

between network and level but not for each level condition 

separately; see Figure 4); also, the LH network eventually 

became better at identifying targets at both levels, which is 

inconsistent with the human data.  In contrast, our results 

better match the human data (Figure 6): a significant 

hemispheric difference in both level conditions, and a 

comparable performance between the two hemispheres. 

Conclusion & Discussion 

Here we test the hypothesis that the hemispheric asymmetry 

in the perception of global and local features originates from 

differential encoding beyond the sensory level, instead of 

differential frequency bias as proposed by the DFF theory 

(Ivry & Robertson, 1998). We first argue that the lack of 

evidence supporting hemispheric specialization for 

particular frequency ranges (e.g., Di Lollo, 1981; Peterzell 

et al., 1989; Fendrich & Gazzaniga, 1990) suggests that this 

asymmetry takes place beyond the sensory level (Sergent, 

1982), and the two hemispheres do not differ in information 

extraction. We then argue that the difference takes place at 

the encoding stage. We incorporate evidence about the 

differences in the anatomical and functional microstructure 

of the two hemispheres in a computational model that uses 

autoencoder networks to develop efficient encoding of the 

stimulus (Rumelhart et al., 1986): the columnar structure in 

the RH has more interconnectivity among neighboring 

columns compared with that in the LH, and thus may be 

more functionally overlapped than that in the LH (Hutsler & 

Galuske, 2003). We thus use two autoencoder networks 

with different connectivity configurations to simulate this 

differential encoding: the RH network has a narrower 

connectivity distribution to allow more connectivity among 

neighboring nodes compared with the LH network. We then 

use a perceptron network to examine how good the two 

encoding systems are in terms of detecting local and global 

level targets. The results match the human data very well; it 

shows a significant hemisphere-by-level interaction: a RH 

advantage for responses to a global level target, and a LH 

advantage for responses to a local level target (Sergent, 

1982); and an overall advantage in responses to a global 

level target (Navon, 1977).  

In the comparison with Ivry and Robertson's model (1998) 

based on the DFF theory, we show that our model has a 

better fit with the human data (Sergent, 1982). Their model 

enforces a discrete separation of frequency information into 

modules and the hemispheric differences take place through 

a manipulation of the combination of the different frequency 

modules; it is thus unclear how these frequency ranges are 

selected and why they are combined in a certain way, and 

how the model is able to account for the lack of evidence 

supporting hemispheric specialization for particular 

frequency ranges (e.g., Fendrich & Gazzaniga, 1990). In 

contrast, through hypothesizing that hemispheric differences 

take place at the encoding stage, and using the Gaussian 

distribution to simulate differential connectivity 

configuration at the encoding stage, our model develops 

naturally the hemispheric difference in the frequency 

content in the encoding, without assuming two stages of 

frequency filtering (Ivry & Robertson, 1998). In addition, 

there is little anatomical evidence suggesting differential 

frequency tuning in the neurons in the two hemispheres, or 

different frequency modules in the brain similar to those 

proposed in their model. In short, compared with their 

model, our model is more anatomically realistic, more 

cognitively plausible, and has a better fit to the human data. 
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In the current simulation we use the same stimuli as those 

used in Ivry and Robertson's model (1998) for comparison 

reasons. Although the stimuli are simpler than those used in 

the human experiments (Sergent, 1982), the current 

simulation presents an important clue in the debate of this 

perceptual asymmetry that has puzzled researchers for at 

least 25 years: this difference may be due to differential 

encoding in the two hemispheres beyond the sensory level; 

computational modeling makes it possible to demonstrate 

this differential encoding effect. It also predicts that a 

hemispheric difference in cortical column structure similar 

to that in the auditory cortex may also exist in the high-level 

visual areas such as inferior temporal cortex.  

We are currently pursuing the incorporation of more 

anatomical data into the model, such as using 2D Gabor 

filters to simulate responses of complex cells in the early 

visual system (Daugman, 1985), and also using the 

proposed autoencoder networks as the way to develop 

efficient encoding in the two hemispheres in modeling more 

complicated (e.g. the hierarchical letter patterns) and real 

world visual stimuli (such as faces; cf., the Principal 

Component Analysis step in many visual perception 

models), in order to examine the cognitive plausibility of 

this differential encoding mechanism in accounting for 

various hemispheric asymmetry phenomena in perception, 

such as the left side bias effect in face perception (e.g., 

Gilbert & Bakan, 1973) and the RVF advantage in visual 

word recognition (e.g., Bryden & Rainey, 1963). This 

differential encoding account may also be applied to 

hemispheric asymmetry in other cognitive domains. For 

example, Monaghan and Shillcock (2004) use different 

receptive field sizes in the two hemispheres, similar to the 

different frequency modules in the DFF model, in a 

computational model of visual attention aiming to account 

for the unilateral visual neglect phenomenon. Their model 

also suffers from the lack of evidence for differential 

frequency biases in the hemispheres at the sensory level; 

whether the differential encoding mechanism can also 

account for this asymmetry in visual attention is currently 

under examination.    
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