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ABSTRACT

We design and demonstrate a hemispherical microphone array for
spatial sound acquisition and beamforming. Our design makes use
of the acoustic image principle. It is especially appropriate for
a half 3D acoustic environment where all sound sources are con-
strained on one side of a rigid plane. It avoids the difficulties of
building a full spherical microphone array yet keeps the advan-
tage of achieving a direction-invariant beampattern. A special mi-
crophone layout is designed for simple implementation. We also
propose an approach to effectively calibrate data-independent co-
efficients of the system. Simulation and experimental results are
presented.

1. INTRODUCTION

Spherical microphone arrays are attracting increasing interest since
they can capture a 3D soundfield and provide direction-invariant
beampatterns in all directions [1][2]. In practice, using only a fi-
nite number of microphones, various layouts have been designed
to optimally cancel the error caused by discreteness. The micro-
phone positions can be either carefully selected to achieve optimal
performances [3] or quite flexible with minimal performance com-
promise [4].

However, to physically build a full spherical microphone array
on a rigid sphere is a challenging or impossible task. More impor-
tantly, in numerous real-world scenarios where sound sources are
located in a constrained acoustic environment instead of a full 3D
space, a full spherical array is either uneconomic or redundant. For
example, in a conference room environment, all sound sources are
usually above the table surface which forms a half 3D space. In
this case, a hemispherical array may be a better choice because:

1. The table surface is usually rigid and inevitably creates acoustic
images of the real sound sources, which validates the design
of a hemispherical array.

2. Given a specified number of microphones and a sphere of
given radius, a hemispherical array will have a denser mi-
crophone arrangement, thereby allowing for analysis of a
wider frequency range. Even in an acoustic environment
without image sources, using a hemispherical array mounted
on a rigid plane to create images may be appropriate since
it provides higher order beampatterns.

This work was partially supported by NSF Award 0205271. We thank
Elena Grassi for design of the data acquisition set-up, Shyam Mehrotra
for help with construction of the array, and Ryan Farrell for some help in
experiments.
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Figure 1: A hemispherical microphone array built on the surface
of a half bowling ball. Its radius is 10.925cm.

3. A hemispherical array is easier to build and maintain, it can
be mounted on a rigid surface such as table surface or wall,
and wires can be conveniently placed to the microphones.

Fig. 1 shows our prototype of a hemispherical array with 64
microphones installed on the surface of a half bowling ball. This
paper is organized into three parts. We first briefly review the theo-
ries of spherical beamformer and propose a methodology to design
a hemispherical microphone array using the principle of images.
Next, an effective calibration algorithm is proposed. Finally, our
algorithms are demonstrated by simulation and experimental re-
sults using our prototype.

2. SPHERICAL BEAMFORMER

The basic principle of the spherical beamformer is to make use
of the orthonormality of spherical harmonics to decompose the
soundfield arriving at a spherical array. Then the orthogonal com-
ponents of the soundfield are linearly combined to approximate a
desired beampattern [1]. For a unit magnitude plane wave k in-
cident from direction ( ), the complex pressure field on the
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Figure 2: ( ) for orders from 0 to 30.

surface ( = ) of the rigid sphere is [5]:

= 4
X
=0

( )
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( ) ( )

(1)

( ) = ( )

0
( )

0 ( )
( ) (2)

where is the spherical Bessel function of order , the spher-
ical harmonics of order and degree , * denotes the complex
conjugation, and is the spherical Hankel function of the first
kind. Some ( ) are plotted in Fig. 2.

If we assume that the pressure recorded at each point ( )
on the surface of the sphere , is weighted by

0
0 ( ) =

0
0 ( )

4 0 0( )
(3)

then making use of the orthonormality of spherical harmonics:Z
( )

0
0 ( ) = 0 0 (4)

the total output from a pressure-sensitive spherical surface is:

=

Z
0
0 ( ) =

0
0 ( ) (5)

This shows the gain of the plane wave coming from ( ) for a
continuous pressure-sensitive spherical microphone, is

0
0 ( ).

Since an arbitrary real function ( ) can be expanded in terms
of complex spherical harmonics, we can implement arbitrary beam-
patterns. For example, an ideal beampattern looking at the direc-
tion ( 0 0) can be modeled as a delta function:

( ) = ( 0 0) (6)

which can be expanded into an infinite series of spherical harmon-
ics [6]:

( ) = 2
X
=0

X
=

( 0 0) ( ) (7)

image hemisphereimage source

real source
real hemisphere

rigid plane

image hemisphereimage source

real source
real hemisphere

=

image hemisphereimage source

real source
real hemisphere

rigid plane

image hemisphereimage source

real source
real hemisphere

=

Figure 3: The hemispherical array with a rigid plane is equivalent
to a spherical array in free space with real and image sources.

The weight at each point ( ) to achieve this beampattern
is:

=
P
=0

1

2 ( )

P
=

( 0 0) ( ) (8)

The advantage of this system is that it can be steered into any 3D
directions digitally with the same beampattern. This is for an ideal
continuous pressure sensitive surface. For discrete arrays with fi-
nite number of microphones, the practical beampattern is a trun-
cated version of (7) to some limited order :

( ) = 2
X
=0

X
=

( 0 0) ( ) (9)

3. DESIGN OF A HEMISPHERICALMICROPHONE
ARRAY

In this section, we will make use of the acoustic image principle to
design a hemispherical microphone array.

3.1. Acoustic Image Principle

Suppose a sound source is placed on one side of a perfectly rigid
plane, then in any point on the same side of the plane, the sound
pressure is the combined result of unbounded irradiations of this
sound source and the image sound source which lies on the other
side of the plane symmetrically with respect to the plane. This
is the acoustic image principle [7]. If we attach a rigid plane to
the bottom of the hemispherical array (see Fig. 3), the pressure
at each real microphone position ( ) can be easily solved by
removing the rigid plane and adding the image source at (˜ =

) and the image hemispherical array. In addition, the image
microphone at (˜ = ) receives the same pressure as
its counterpart. In other words, the rigid plane acts as an acoustic
mirror. The solution on ( ) is:

= 4
X
=0

( )
X
=

( ) ( )

(10)

( ) = ( ) + (˜ ) (11)

3.2. A Symmetric and Uniform Layout

For a discrete hemispherical microphone array, the rigid plane cre-
ates a symmetric spherical layout of microphones with respect to
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Figure 4: The symmetric and uniform layout of 128 nodes on a
spherical surface. The blue (dark) nodes are for real microphones.
The yellow (light) nodes are images.

the plane. Intuitively, we desire this symmetric layout also be “uni-
form" over the whole spherical surface, especially in the neighbor-
hood of the rigid plane. Although the spherical layout can be made
more flexible at the cost of extra computation [4], we want a layout
with minimal implementation overhead.

To find a "uniform" layout, we use the simulation described in
[8]. It minimizes the potential energy of a distribution of movable
electrons on a perfectly conducting sphere. It is obvious that if the
simulation starts with a symmetric initial layout, the resulting lay-
out in each iteration step is guaranteed symmetric, so is the final
layout. We use this approach to obtain a 128-node layout that is
both symmetric and uniform. Specifically, to make it repeatable,
we start with Fliege’s 64-node layout [8]. We flip it upside down
and add it on the original nodes to create 128 nodes, then per-
form the simulation until all nodes are optimally separated. The
resulting layout is shown in Fig. 4. No nodes are too close to the
= 0 plane, or the rigid plane, which also helps avoid technical

construction difficulties.

3.3. Discrete Hemispherical Beamforming

For a hemispherical array with microphones uniformly mounted
at ( ), = 1 2 , the image microphones are at (˜ =

). To adapt the spherical beamforming principle to the
discrete case, the continuous integrals (4) are approximated by:

2 P
=1

( )
0

0 ( ) + (˜ )
0

0 (˜ )

0 0 (12)

where ( = 0 max; = ; 0 = 0 ; 0 =
0 0) max is the band limit of spatial frequency in terms

of spherical harmonics orders, is the order of beamforming. In
general, more precise approximation can be achieved by using ap-
propriate cubature weights [8]. For simplicity, we just use equal
cubature weights without significantly affecting the results. To ver-
ify this, Fig. 5 shows the absolute errors of (12) using the layout
in Fig. 4.

Therefore, to approximate the regular beampattern of order

Figure 5: Discrete orthonormality errors. Plot shows absolute val-
ues.

as in (9), the weight for the -th microphone is:

=
X
=0

P
= ( 0 0)

h
( ) + (˜ )

i
2 ( )

(13)

4. EFFECTIVE CALIBRATION
In section 2, we derived the ideal beamformer from the ideal solu-
tion in (1). In practice, many factors will affect the complex pres-
sure captured by the real-world hemispherical microphone array,
such as table surface geometry and impedance, array placement,
microphone positions and characteristics, etc. To achieve better
results, the array has to be calibrated to match the theoretical solu-
tion.

According to our system settings and the beamforming algo-
rithm, a complete calibration is unnecessary for our prototype. In-
stead, by examining (13), we propose a simple yet effective cali-
bration. We notice that ( ) describes the theoretical strength
of the order expansion in (1). The actual ( ) captured by
the real-world microphone array has to match the theoretical value
in (13) so that they can cancel each other to synthesize the de-
sired 3D beampatterns, such as (9). This is especially important
for high order beamforming since high order components of cap-
tured soundfield are increasingly weak because of the convergence
of (1). This can be clearly observed in Fig. 2. Another advantage
to calibrate ( ) lies in its independence of the incident waves
in calibration, if they are known in advance. In this case, the cali-
bration can be made in one measurement.

We describe the actual soundfield captured by our hemispher-
ical array as:

¯ = 4
maxX
=0

¯ ( )
X
=

( ) ( )+ (14)

where ¯ ( ) denotes the captured ( ). ( ) is the sound-
field coefficient, which is known during calibration. For a single
plane wave of unit amplitude incident from ( ), in our hemi-
spherical array setting, ( ) = ( ) as in (11). is the
residual error not included in ¯ ( ). To calibrate ¯ ( ) at order
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0, we assign one component from the hemispherical beamform-
ing weight in (13) for the -th microphone:

0
=

0X
0= 0

0
0 ( 0 0)

h 0
0 ( ) +

0
0 (˜ )

i
(15)

and the total output is:

¯
0
=
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=1

0
¯ (16)

4
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0
0 ( )

0
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We then have:

¯ 0( ) =
¯ 0

4 0P 0
0= 0

0
0 ( )

0
0 ( 0 0)

+ (17)

where contains and the orthonormality errors from (12). If
is zero-mean Gaussian with respect to the beamforming direction
( 0 0), then we can estimate ¯ 0( ) by averaging over every
( 0 0)with only one measurement if the calibration environment
defined by

0
0 ( ) can be precisely modeled.

5. SIMULATION AND EXPERIMENTAL RESULTS
We first show the simulation result. Suppose in free space, there
are two plane waves of 4 kHz incident from ( 4 2) and
(3 4 2), respectively. Using the 128-node spherical micro-
phone array, we scan every 3D direction using the beamformer of
order eight. For each direction, we plot the amplitude of the out-
put from this beamformer as a 3D point with the amplitude value
as the distance to the origin. The 3D scanning result is shown
in Fig. 6(a). Please do not confuse this with the beampattern
of the 128-node array. In fact, this scanning result is the sum of
the two 3D beampatterns of order eight, steered respectively to
( 4 2) and its image (3 4 2). If the beamformer is
steered to ( 4 2), the sound from (3 4 2)will be sig-
nificantly suppressed. The plot is shown in linear scale for clearer
separation of two sources.

In calibration, we play the same sound from a real sound source
from ( 4 2). The hemispherical array is set up on the table
surface as shown in Fig. 1. We then use the approach in section
4 to calibrate. The 3D scanning result using the calibrated beam-
former is shown in Fig. 6(b). Ideally, it should be the same as Fig.
6(a), but it also detected some reflections from other surfaces of
the room, especially from the back direction ( 2 2)

To demonstrate this calibration is independent of the sound
source locations, we move the real sound source to about ( 3 2).
Fig. 6(c) shows the simulation result. In our experiment, we use
the same calibrated beamformer to scan. The scanning result is
shown in Fig. 6(d). As expected, the back reflection is stronger in
this case.

6. CONCLUSIONS
We designed a hemispherical microphone array using the acoustic
image principle. It can be seen as a symmetric spherical micro-
phone array across the edge of real and image space, which is easy
to build and install. It is especially appropriate in numerous sce-
narios where sound sources are constrained in a half 3D space. We

(a) (b)

(c) (d)

(a) (b)

(c) (d)

Figure 6: Simulation and Experimental results: (a) simulation of
3D scanning result with two sound sources, the beamformer is of
order 8; (b) experimental result using the calibrated beamfomer of
order 8; (c) simulation result after sound sources are moved; (d)
experimental result using the same calibrated beamformer.

built an array using 64 microphones positioned on a hemispher-
ical surface. The layout of real and image microphones is both
symmetric and uniform, which leads to a simple implementation
of hemispherical beamformer. An effective calibration method is
proposed to extract the data-independent coefficients of the system
from the captured soundfield. The simulation and experimental re-
sults demonstrate the effectiveness of our design. More compre-
hensive evaluation will be performed in the future work.
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