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Abstract: The traditional method of obtaining fresh water for drinking is by burning fossil fuels,
emitting greenhouse gases into the atmosphere. However, renewable energy is gaining more traction
since it is available free of cost for producing fresh water. In this study, Al2O3 nanoparticles were
distributed in a phase change material (paraffin wax) that had been fixed at a hemispherical distiller
water basin. Three scenarios with three hemispherical distillers were examined. A conventional
hemispherical distiller (CHD), a conventional hemispherical distiller with paraffin wax as a phase
change material (CHD-PCM), and a conventional hemispherical distiller with PCM partially filled
with Al2O3 nanoparticles (CHD-N-PCM) were tested under the same climatic conditions. The
experimental results showed that CHD gave a daily yield of 4.85 L/m2/day, while CHD-PCM
increased the yield to up to 6.2 L/m2/day with a 27.84% daily yield enhancement. The addition
of Al2O3 nanoparticles to paraffin wax CHD-N-PCM improved hemispherical distillate yield up to
8.3 L/m2/day with a 71.13% increase over CHD yield.

Keywords: desalination; hemispherical solar distiller; PCM; Al2O3 nanoparticles; thermal conductivity;
efficiency; fresh water

1. Introduction

Many challenges and problems have recently afflicted the Earth, making it difficult
to live on it. One of these issues is global warming, which is caused by increased carbon
dioxide diffusion rates in the atmosphere as a result of fossil fuels [1–5]. Increased public
awareness of the environmental risks posed by global warming, as well as fluctuating oil
prices and dwindling global fossil fuel reserves, have prompted governments to turn to
alternative energy sources to meet their energy needs in a clean, efficient, renewable, and
long-term manner [6]. Providing water suitable for human, industrial, and agricultural
consumption is one of the global challenges that must be addressed in order to achieve
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the long-term aspirations that are threatened by the problem of water scarcity [7–10].
The effect of the phase change material in the solar distillation unit for heat recovery to
improve thermal performance was experimentally studied by Al-harahsheh et al. [11].
According to the results, the PCM improved the CSS performance by 40%. With high
density and thermal conductivity, copper oxide nanoparticles were doped in paraffin
wax and used as energy storage for augmented fresh water yield by Abdullah et al. [12].
The authors found that using paraffin wax via CuO nanoparticles achieved a 108% yield
improvement compared to the reference still. The effect of mixing the PCM with CuO
nanoparticles on the corrugated tray in the absorber of solar still was experimentally
studied by Abdullah et al. [13]. The authors concluded that the corrugated solar still
with CuO nanoparticles produced a 122% yield gain over the conventional still. Using
coconut oil-based PCM and CuO nanoparticles, Al-Jethelah et al. [14] experimentally
studied the melting point of PCM in an opened-cell metal foam. The authors observed
that there was a significant improvement of about 1.2% in the melting process when the
phase change material was doped with nanoparticles. The combined effect of bio-based
coconut oil and CuO nanoparticles in solar thermal applications using experimental and
theoretical approaches was studied by Al-Jethelah et al. [15]. They concluded that adding
nanoparticles to PCM improved the melting process significantly. Regarding the heating
and cooling processes of PCMs, experimental studies on the influence of Al2O3 with multi-
walled-carbon nanotubes (MWCNTs) were undertaken by Aqib et al. [5]. The results
revealed that the paraffin wax composite having 6 wt % of MWCNTs was better than a
sample with PCM only. Arici et al. [16] numerically investigated the impact of adding
internal fins and nanoparticles on the PCM melting rate. According to the study, fins and
nanoparticles increased the melting rate by around 50%. The influence of CuO nanoparticles
in paraffin wax beneath the V-corrugated solar still was experimentally analyzed by Behura
and Gupta [17]. They came to the conclusion that the daily yield of a 0.3% nanoparticle
was 2.04 L/m2.

Rufuss et al. [18] used graphene oxide, titanium oxide, and copper oxide nanoparticles
in paraffin wax to enhance the thermal performance of solar still. Adding GO, TiO2, and
CuO nanoparticles to the paraffin wax enhanced the thermal conductivity by 101% and
29%, respectively. Furthermore, it was observed that using metal oxide-based nanoparticles
in the paraffin wax improved the thermal performance of solar still by 35% and 26%
using CuO and TiO2 nanoparticles, respectively, compared to the conventional solar still.
However, there is a decrease of about 7.6% using graphene oxide-based nanoparticles in
paraffin wax compared to the conventional solar still.

Carbon-based nanoparticles are attracting greater interest for energy storage appli-
cations. He et al. [19] enhanced the thermophysical properties of PCM doped using
carbon-based nanoparticles and evaluated the thermal performance. It was concluded
that the carbon-based nanoparticles in the phase change material improved the chemical
and thermal stability, significantly reducing the phase change transition time. It was also
reported that the prepared sample could be well suited for energy storage, especially in
solar thermal systems. The effect of using nano-based PCM with 15 wt % instead of a
conventional PCM was investigated experimentally by Kandeal et al. [20]. As a result
of nano-based phase change material in the basin of the solar still, the daily yield was
enhanced by about 113% compared to the traditional solar still. Liu et al. [21] used Al/C
hybrid nanoparticles with a Na2SO4·10 H2O PCMs system to boost the thermal conductiv-
ity. The thermal characteristics results showed a significant improvement in the thermal
conductivity of about 26.41% compared to the PCM without a nanoadditive. In a theoretical
study, Mahdi et al. [22] employed a 5% volume fraction of nanoparticles in PCM to boost
heat transfer in a shell and tube energy storage system. For this purpose, the solidification
time was reduced to 94% compared to the single PCM module. To improve the productivity
of solar stills, Kumar et al. [23] used PCM and nano PCM. In comparison to traditional
productivity, they found that previous modifications increased productivity by 51.22% and
67.07%, respectively. Parsa et al. [24,25] used gold (Au), silver (Ag), and titanium oxide
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(TiO2) as metal oxide nanoadditives in the fluid and experimentally evaluated the thermal
performance of a double-slope solar still. They found that using a Ag-based solar still
increased efficiency by 38.2% compared to the conventional system. Shanmugan et al. [26]
used nano-doped PCM in the bottom of the basin to enhance the rate of fresh water pro-
duced from the conventional solar still. It was reported that the use of nanoparticles in the
PCM enhanced the rate of fresh water up to 7.46 L/m2 compared to the yield of fresh water
obtained from the CSS. The influence of copper oxide and aluminum oxide nanoparticles in
phase change material for enhancing the fresh water from CSS was experimentally analyzed
by Shoeibi et al. [27]. It was reported that an optimized volume concentration of 0.3% by
weight of CuO and Al2O3 nanoparticles in the phase change material enhanced the rate of
fresh water produced by 55.8% and 49.5%, respectively, with a CuO nano-coated absorber.

In an experimental study, Vigneswaran et al. [28] investigated the effect of using
two phase change materials in the basin of a solar still. They concluded a 19.56% daily
yield enhancement compared to the reference still. The thermophysical characteristics of
graphene nanoparticles dispersed erythritol PCM for thermal energy storage applications
were investigated by Vivekananthan and Amirtham [29]. The addition of 1 wt % graphene
increased thermal conductivity by 53.1% while lowering latent heat enthalpy by only 6.1%,
according to the findings. Rufuss et al. [30] used nanoparticle-enhanced phase change
material (NPCM) as heat storage to improve the productivity of a solar still. Compared
to a traditional solar still, the experimental results showed a 35% increase in productivity.
Yang et al. [31] concluded that all studies increased the phase change rate due to the addi-
tion of nanoparticles. The dispersion of nanoparticles inside the PCM improved the system
performance studied by Zhou et al. [32]. They concluded that heat flux increased by about
2.9% as the amplitude of the wavy wall increased.

According to the literature review, adding nanoparticles to paraffin wax in hemi-
spherical solar distillates has not been studied. The aim of this study was to evaluate the
yield improvements in a hemispherical solar distillation device containing PCM via Al2O3
nanoparticles. There is a delay in heat acquisition and storage when using PCM due to
its low thermal conductivity (0.25 W/m K), so the use of PCM in improving distillation
systems has remained largely underutilized. Commercial paraffin wax with a thermal con-
ductivity of 0.25 W/m K is used as an energy storage medium. On the other hand, Al2O3
nanoparticles are characterized as having high thermal conductivity (38.5 W/m. K) and
are low-cost. Therefore, nanoparticles have been incorporated with phase change materials
in heat storage applications to enhance the thermal conductivity of distillation systems.

2. Preparation of PCM with Nanoparticle

Initially, the weight of the paraffin wax (750 g) was measured using an electronic scale,
followed by measuring the weight of the nanoparticles. Then, the paraffin wax was melted
into liquid form in a hot plate gauge, and the measured Al2O3 nanoparticles (3 g) were
dispersed. In the first stage, Al2O3 nanoparticles were mixed using a magnetic stirrer for
30 min, followed by a homogeneous mixture using an ultrasonicator by a probe sonicator
for 45 min. The process of the preparation of nano-enhanced paraffin wax is shown in
Figure 1. Table 1 gives the thermo-physical properties of the used PCM, and Table 2 shows
the specifications of the Al2O3 nanoparticles. SEM analysis was used to measure the particle
size and geometry of the nanoparticles procured from the supplier.

Table 1. PCM properties (thermophysical).

Property
Melting

Temperature
(◦C)

Latent
Heat

(kJ/kg)

Thermal
Conductivity

(W/m K)

Density
(kg/m3)

Specific
Heat

Capacity
(kJ/kg K)

Value
Solid

56 226
0.228 886 2.17

Liquid 0.251 753 3.06
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Table 2. Specifications of Al2O3 nanoparticles.

Property
Thermal

Conductivity
(W/m K)

Density
(g/cm3)

Specific Heat
Capacity
(J/kg K)

Color
(Appearance)

Average
Particle Size

(nm)
Morphology

Present study 38.5 3.89 880 White 13.6 nm Spherical

Chandrasekar et al. [33] - 3.88 729 White 43 nm Spherical

Ali et al. [34] 29–38 4.43 - White 30–60 nm Spherical
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Figure 1. Preparation of paraffin wax with Al2O3 nanoadditive.

Characterization of Nanoparticles

Figure 2 shows the various characterizations of the procured Al2O3 nanoparticles.
SEM images of the Al2O3 nanoparticles revealed that the particles are spherical in shape
and they are clustered. The average diameter of the Al2O3 nanoparticle is 13.6 nm. Similarly,
the XRD patterns revealed that there are 7 large peaks with the existence of 3 small peaks.
These clearly showed the crystalline structure of the obtained Al2O3 nanoparticles. On the
other hand, EDS spectrum analysis of the purchased nanoparticles revealed the presence of
α-Al with small traces of Na and Cl, which are negligible. Additionally, it was found that
there is a greater presence of O along with α-Al.

Stability issues of the nanoparticle in phase change material is another critical pa-
rameter in assessing the properties. In particular, zeta potential and thermal conductivity
enhancement ratio are the critical parameters to be analyzed. The stability of the nano-
dispersed paraffin wax at different compositions was analyzed using a zeta potential
analyzer (Malvern Zetasizer, Malvern Panalytical, Malvern, U.K.). The zeta potential
results of the as-prepared samples are tabulated in Table 3. Based on the results, it was
found that the paraffin wax with 0.4% Al2O3 nanoparticles is more stable compared to the
other samples. The paraffin wax with 0.4% Al2O3 nanoparticles showed excellent stabil-
ity, whereas the particles with 0.3% and 0.5% Al2O3 nanoparticles showed good stability.
Similarly, the nanoparticle concentrations of 0.1% and 0.2% showed incipient instability.
A physical examination of the prepared samples revealed a small agglomeration of the
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nanoparticles at the bottom using 0.3% and 0.5% Al2O3 nanoparticles along with paraffin
wax. The thermal conductivity levels of pure paraffin wax and paraffin wax with differ-
ent compositions of Al2O3 nanoparticles compared with that of pure paraffin wax were
measured using the TEMPOS thermal analyzer. The results of the thermal conductivity of
paraffin wax and paraffin wax with 0.1%, 0.3%, 0.4%, and 0.5% Al2O3 nanoparticles are
plotted in Figure 3, along with the thermal conductivity enhancement ratio. It can be seen
that there is a significant enhancement in the thermal conductivity of paraffin wax with
0.4% Al2O3 nanoparticles. However, the thermal conductivity of the paraffin wax using
0.5% Al2O3 nanoparticles decreased.
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Table 3. Zeta potential analysis of paraffin wax with different compositions of Al2O3 nanoparticles.

Composition of
Nanoparticle in Paraffin Wax Zeta Potential (ς/mV) Behavior

0.1 −15 Incipient instability

0.2 −32 Incipient instability

0.3 −45 Good stability

0.4 −62 Excellent stability

0.5 −42 Good stability

3. Experimental Setup and Procedure

The experimental test rig consists of three identically shaped hemispherical solar
distillers. The distillers are made of circular-shaped steel plates with a diameter of 38 cm
and a depth of 4 cm. The still basins are painted black to increase solar absorption, and the
glass cover has a diameter of 40 cm and a thickness of 3 mm. The still basin is secured in
a wooden box 25 cm thick filled with thermal insulation to insulate the inner sides. The
first distiller is a CHD with a 1 cm high level in the distilled basin. The second distiller is
filled with 1 cm thick paraffin wax (PCM) with a total mass of 0.75 kg, and it is also utilized
in the bottom of the distiller and protected by a galvanized steel plate. The third distiller
is filled with the same PCM with Al2O3 nanoparticles with a mass of 3 g. The condensed
water flows down from the sides of the glassy cover and is collected through the collection
channels. The employed distillation apparatus is depicted in Figure 4.
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Figure 4. Graphical representation of the different configurations of hemispherical solar still.

Figure 5 shows the photographic outlook of the experimental test rig. The first distiller
is conventional, the second distiller has PCM at the bottom of the basin, and the third dis-
tiller is modified by mixing nano-Al2O3 with PCM at the basin plate reservoir. Experiments
were carried out in the same weather circumstances, and their yields were compared with
those of the conventional hemispherical distiller.
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The temperature was measured using thermocouples (type K) that were placed
throughout the distiller apparatus parts. Thermocouples are normally used to measure
the temperature of different solar still elements. On the two faces of the acrylic cover, the
thermocouple was placed to measure the cover temperature, and the average was taken.
Similarly, the variations in the water temperature were measured on an hourly basis. In
addition to the thermocouple placed for measuring the cover and water temperatures, the
temperatures of PCM and PCM with the Al2O3 nanoadditive were also measured. Thermo-
couples are also employed to measure the ambient temperature. A solar power meter is
normally used to measure the global solar radiation on the cover surface. The temperatures
of all the elements of the hemispherical solar still with PCM, with nanoparticle-enhanced
phase change material, and without any energy storage were recorded on a 24-h basis with
1 h time intervals. Similarly, the temperatures of PCM and PCM with Al2O3 nanoparticles
estimated the amount of energy stored for the charge and discharge of heat distributed to
the water placed in the basin. The volume of water collected in the distillate chamber was
measured using a cylindrical graduated flask connected to the distillate collector using a
flexible hose. For the outdoor conditions of El-Oued, Algeria, the experiments were con-
ducted for HSS with PCM, PCM with Al2O3 nanoparticle, and HSS without energy storage.
The uncertainties and errors of the instruments used in the experimental measurements
were investigated. Similarly, the ambient parameters were measured using a power meter
and anemometer, and the individual uncertainties are calculated using Equation (1).

U(y) =

√(
∂Y
∂x1

U1

)2
+

(
∂Y
∂x2

U2

)2
+ . . .

(
∂Y
∂xn

Un

)2
(1)

Ume,w =

√(
∂m
∂n1

Ume,w

)2
(2)

Using Equation (2), the uncertainty in measuring potable water produced is calculated;
using Equation (3), the total uncertainty that occurred in the daily thermal efficiency is estimated.

Uη =

√(
∂η

∂m
Ume,w

)2
+

(
∂η

∂I(t)
UI(t)

)2
(3)
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From Equations (2) and (3), the uncertainty that occurred in measuring and calculating
potable water and daily thermal efficiency are ±3.6% and ±2.4%, respectively. The values
of the uncertainty that were obtained from the measuring devices are tabulated in Table 4.

Table 4. Uncertainty, range, and accuracy of the measuring instruments.

Instrument Range Accuracy Uncertainty

Solar power meter 0–3500 W/m2 ±10 W/m2 3.1%
Thermocouple −150–600 ◦C ±0.1 ◦C 1.2%

Graduated cylinder 0–500 mL ±1 mL 3.6%

4. Results and Discussion

In this experiment, three hemispherical distillers were developed and operated, which
took place on 8 September 2021 in southeastern Algeria (6◦47′ E and 33◦30′ N). The data
were collected for twenty-four hours, from 7:00 a.m. to 6:00 a.m. the next day. The perfor-
mance of solar distillers is greatly influenced by sun intensity and ambient temperature.
Thus, it was necessary to measure and record the required data every hour throughout
the experimental day. Figure 6 depicts the hourly variation in the solar intensity, ambient
temperatures, PCM, and PCM-N temperatures during the trial hours. The solar intensity
increased until it reached its peak of 1004 W/m2 at 12:00 p.m. Then, as time passed, after
reaching the maximum solar intensity, it gradually decreased until it approached zero
after sunset. At the same time, the ambient air temperature varied between 28 ◦C and the
highest recorded ambient temperature of 49 ◦C at 3:00 p.m. We also found that the PCM
temperature ranged between 32 and 69 ◦C, and the PCM-N temperature ranged between
32 and 72 ◦C, which might be due to the enhancement in the thermal conductivity by the
addition of nanoparticles, which leads to heat diffusion through the PCM.
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Figure 7 shows the variations in the temperature of water recorded from the SS using
different configurations from 7:00 a.m. to 6:00 a.m. on 8 September 2021. From the exper-
imental results, the HSS using PCM with Al2O3 nanoparticles was higher than the HSS
with PCM as energy storage and the HSS without PCM during the peak solar radiation



Molecules 2023, 27, 8988 9 of 15

condition. This may be due to the enhanced thermal conductivity of paraffin wax with
metal oxide nanoparticles. Additionally, it was observed that the water temperature of the
HSS without paraffin wax in the basin was higher during the sunshine hours, as the paraffin
wax absorbs the heat from the water, which simultaneously reduces the temperature. The
melting temperature of wax improves the storage of energy, which is used during the
night hours for enhanced water temperature for a higher rate of evaporation. The peak
water temperature recorded at 14:00 h (2:00 p.m.) from the HSS using PCM with the Al2O3
nanoadditive was 71 ◦C, whereas the peak water temperatures of the HSS with paraffin
wax as energy storage and without energy storage were 67 and 66 ◦C, respectively.
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Figure 8 shows the variations in the temperature of the acrylic cover on the external
surface and recorded from the SS using different configurations from 7:00 a.m. to 6:00 a.m.
on 8 September 2021. The external cover temperature variations show that the temperatures
of the covers from HSS using nano-enhanced paraffin wax, HSS with paraffin wax, and HSS
without energy storage were almost identical. It is observed that the temperature of the
hemispherical cover surface reached a maximum of 54 ◦C for HSS with paraffin wax in the
basin and conventional HSS, whereas the cover temperature of HSS with nano-enhanced
paraffin wax was 53 ◦C. According to the obtained results for the temperatures of both
the glass cover and the PCM with and without nanoparticles, the maximum temperature
difference was found with CHD-N-PCM, which is the main driving force for evaporation
and condensation (double-diffusive). Consequently, the addition of nanoparticles enhances
productivity. Figure 9 shows the variations in the accumulated yield from the SS with
a hemispherical cover and using various configurations from 7:00 a.m. to 6:00 a.m. on
8 September 2021. It is observed that the cumulative yield of potable water produced from
the hemispherical solar still using nano-enhanced paraffin wax is higher than the HSS with
paraffin wax and the HSS without any energy storage medium. The daily accumulated
yields for CHD, CHD-PCM, and CHD-N-PCM are 4.85, 6.2, and 8.2 L/m2, respectively.
Table 5 shows that the daily yield productions from CHD, CHD-PCM, and CHD-N-PCM
are 4.85, 6.20, and 8.30 L/m2/day, respectively, achieving improvement percentages of
27.84% and 71.13% compared to the conventional hemispherical distiller.
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Table 5. Cumulative distillation output of CHD, CHD-PCM, and CHD-N-PCM during trial hours.

Solar Still
Day Time

Production
(L/m2)

Overnight
Fresh Water
Yield (L/m2)

Cumulative
Yield (L/m2)

Enhancement
(%)

CHD 4.85 0 4.85 -
CHD-PCM 5.30 0.90 6.20 27.84

CHD-N-PCM 7.35 0.95 8.30 71.13
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The thermal performance of any solar still completely depends on the cumulative
yield obtained. The daily thermal efficiency of the hemispherical cover solar still is the
product of cumulative yield and latent heat to the input solar radiation with the associated
basin area. Mathematically, it is given as,

ηdaily thermal e f f iciency =
∑ me × h f g

I(t)× Aw × 3600
(4)

where m is the amount of fresh water collected (kg/h), hfg is the latent heat of vaporization
(kJ/kg), I(t) is the incident global radiation falling on the cover surface (W/m2), and A is
the area of solar still (m2).

The latent heat of vaporization with respect to different water temperatures is esti-
mated using Equation (5), and it is mathematically expressed as,

h f g = 2.4935× 106
[
1− 9.4779× 10−4Tw + 1.3132× 10−7T2

w − 4.794× 10−9T3
w

]
(5)

It is seen that the daily efficiency of CHD-N-PCM is much better than CHD-PCM and
CHD. The average amount daily efficiencies of CHD, CHD-PCM, and CHD-N-PCM are
40.66%, 51.79%, and 69.18%, respectively.

5. Comparative Analysis of Fresh Water Produced from Different Solar Stills in
Previous Literature and the Present Study

A comparison of the current research with previously published publications that
are comparable is given in Table 6. The results show that the accumulated yield of a
hemispherical solar distiller with paraffin wax (CHD-PCM) increased by 27.84% compared
to CHD, and the cumulative yield increased by 71.13% when using Al2O3 nanoparticles
dispersed in paraffin wax (CHD-N-PCM). The enhancement of fresh water production
from the HSS unit with NPCM beneath the basin is largely due to the higher thermal
energy storage ability of the metal oxide nanoparticles in the paraffin wax for better
thermophysical properties. Moreover, Table 4 shows that using cascade SS with Al2O3 [35]
achieves a minimum yield enhancement equal to 22%. However, SS with Al2O3 via a
running fan attains the maximum yield enhancement of 125% (Kabeel et al. [36]).

Table 6. Comparison between the daily yield enhancement of the current work and previously
published work.

Literature Country Solar Still Type Medium of Enhancement Improvement in
Fresh Water Yield (%)

Parsa et al. [24] Iran Single slope - Ag 26.3

Rashidi et al. [35] Iran Cascade - Al2O3 22

Kabeel et al. [36] Egypt Single slope - Al2O3 with outside heat exchanger 116

Kabeel et al. [37] Egypt Tubular - PCM 115.0

Chaichan and Kazem [38] Iraq Single slope
- PCM

- Combination of PCM with a
nano-Al2O3

10.38
60.53

Kabeel et al. [39] Egypt Single slope - Al2O3
- Al2O3 with running fan

89
125

Kabeel et al. [40] Egypt Pyramid shaped - Graphite as absorber plate with
cover cooling 107.7

Kabeel et al. [41] Egypt Single slope - Absorber plate coated with CuO
nanoparticles 25.3

Present work Algeria Hemispherical - PCM
- Mixed nano-Al2O3 with PCM

27.84
71.13



Molecules 2023, 27, 8988 12 of 15

6. Economic Evaluation

Estimating the payback period is important in the economic study of solar distillers.
The daily accumulated yields of CHD-N-PCM, CHD-PCM, and CHD were recorded on
8 September 2021 for 24 h. Table 7 shows the results of a detailed economic analysis to
establish the time required to recoup the total cost of CHD, CHD-PCM, and CHD-N-PCM.
The payback periods for CHD, CHD-PCM, and CHD-N-PCM are 31, 25, and 19 days to
recover the whole cost.

Table 7. Fabrication cost of CHD, CHD-PCM, and CHD-N-PCM.

CHD CHD-PCM CHD-N-PCM

Manufacturing cost (USD) 68 68 68
Al2O3 nanoparticle price (USD) - - 0.5

PCM price (USD) - 1.5 1.5
Maintenance cost (USD) 0.5 0.5 0.5

Total cost (USD) 68 69 70
Potable water produced (L/m2/day) 4.85 6.2 8.3

CPL of potable water produced (USD) 0.5 0.5 0.5
The cost of daily water production (USD) 2.2 2.8 3.75

Payback period (days) 31 25 19

7. Conclusions

The present study deals with the experimental investigation of hemispherical solar
stills loaded with paraffin wax and Al2O3 nanoparticle-doped paraffin wax (composite
PCM) for improving fresh water production. In this method, paraffin wax is loaded at the
bottom of the basin with a thickness of 10 mm of hemispherical solar still. Furthermore,
the Al2O3 nanoparticles are doped in paraffin wax to improve the fresh water yield. This
approach is not only efficient but also easy to implement. It also has no effect on the sur-
rounding environment. This recently proposed approach offers considerable advancements
as compared to prior research and their respective solutions. The following is a list of the
conclusions reached:

• The daily distillate production from CHD is equal to 4.85 L/m2. However, it is equal to
6.2 L/m2 from the distiller CHD-PCM and 8.3 L/m2 from the distiller CHD-N-PCM.

• The average daily efficiencies of CHD, CHD-PCM, and CHD-N-PCM are 40.66%,
51.79%, and 69.18%, respectively.

• The addition of paraffin wax increases the daily yield and efficiency of a hemispherical
distiller to 27.84% and 27.38%, respectively, compared to the CHD.

• Adding nanoparticles of Al2O3 to paraffin wax enhances the daily yield and efficiency
of a hemispherical solar distiller with 71.13% and 70.16%, respectively, compared to
the CHD.

• Compared to the distiller CHD-PCM, improved yield and efficiency in the distiller
CHD-N-PCM are achieved, with higher rates of 33.87% and 33.58%, respectively.

• The payback period required to recover a conventional hemispherical solar distiller
is 31 days. This period is equal to 25 days for a hemispherical distiller using paraffin
wax (CHD-PCM). However, a hemispherical distiller using paraffin wax via Al2O3
nanoparticles (CHD-N-PCM) is even less, 19 days.

• Increasing the fresh water production and efficiency of the hemispherical solar dis-
tiller may be accomplished by the use of paraffin wax that has been modified with
Al2O3 nanoparticles. Therefore, using paraffin wax with Al2O3 nanoparticles is rec-
ommended to be considered in such applications. However, the use of metallic oxide
nanoparticles with paraffin wax is limited to less than 0.5%, as the increase in volume
concentration leads to particle agglomeration and sedimentation. It is also seen that
the increase in the volume concentration of nanoparticles with paraffin wax leads to a
reduction in the thermophysical property (thermal conductivity).
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Future Recommendations

From the analysis, the use of low-cost nanoparticles, especially adding carbon-based
materials, can be used as an additive to paraffin wax for improved thermal conductivity
and thermophysical properties.
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