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Purpose: fMRI is the convolution of the hemodynamic response function (HRF) and

unmeasured neural activity. HRF variability (HRFv) across the brain could, in principle,

alter functional connectivity (FC) estimates from resting-state fMRI (rs-fMRI). Given

that HRFv is driven by both neural and non-neural factors, it is problematic when it

confounds FC. However, this aspect has remained largely unexplored even though FC

studies have grown exponentially. We hypothesized that HRFv confounds FC estimates

in the brain’s default-mode-network.

Methods: We tested this hypothesis using both simulations (where the ground truth is

known and modulated) as well as rs-fMRI data obtained in a 7T MRI scanner (N5 47,

healthy). FC was obtained using 2 pipelines: data with hemodynamic deconvolution

(DC) to estimate the HRF and minimize HRFv, and data with no deconvolution (NDC,

HRFv-ignored). DC and NDC FC networks were compared, along with regional HRF

differences, revealing potential false connectivities that resulted from HRFv.

Results: We found evidence supporting our hypothesis using both simulations and

experimental data. With simulations, we found that HRFv could cause a change of up to

50% in FC. With rs-fMRI, several potential false connectivities attributable to HRFv,

with majority connections being between different lobes, were identified. We found a

double exponential relationship between the magnitude of HRFv and its impact on FC,

with a mean/median error of 30.5/11.5% caused in FC by HRF confounds.

Conclusion: HRFv, if ignored, could cause identification of false FC. FC findings

from HRFv-ignored data should be interpreted cautiously. We suggest deconvolution

to minimize HRFv.
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1 | INTRODUCTION

fMRI is a popularly used technique for studying neural corre-

lates of brain functioning. However, one limitation of fMRI is

that it is not a direct measure of neural activity, because it

measures changes in blood oxygenation level, which is

merely modulated by neural activity. Blood oxygenation is

also modulated by the vascular structure, hematocrit, and neu-

rochemicals, which couple neural activity with blood flow,

volume, and oxygenation. The mathematical transfer function

between neural activity and its corresponding blood oxygen-

ation level-dependent (BOLD) fMRI signal is called the

hemodynamic response function (HRF). It is dependent on

cerebrovascular reactivity and neurovascular coupling.1 Most

studies assume a standard whole-brain canonical HRF during

analysis (typically made of 2 gamma functions), although

previous works show HRF variability for different brain

regions and across subjects.2–5 The variability of non-neural

components of HRF across the brain as well as across individ-

uals2,3 is problematic. Since only neural activity is of interest

in most fMRI studies, interpretation of fMRI findings is often

clouded because of the aforementioned non-neural sources of

variability in fMRI. This makes the interpretation of fMRI

results challenging as it would be unclear as to whether the

observed changes are due to neural activity or HRF variability

or a combination of the two.

A recent article debating cellular neuroscience’s view-

points on BOLD fMRI6 presented numerous caveats while

interpreting fMRI results, which demands careful considera-

tion based on the underlying cellular mechanisms. They

comment on neurovascular dynamics or HRF variability,

which is one such issue, as follows: “advances in cellular

neuroscience, demonstrating differences in this neurovascular

relationship in different brain regions, conditions or patholo-

gies are often not accounted for when interpreting BOLD.”

They suggest the community use computational modeling

(e.g., deconvolution) to mitigate the issue. Our work attempts to

advance these findings by studying the impact of HRF variabili-

ty on fMRI functional connectivity (FC) and by illustrating how

computational modeling such as deconvolution could mitigate

the issue.

The human brain’s capacity is largely attributable to its

high interconnectedness; hence, the study of brain connectiv-

ity has gained enormous importance over the last decade.

The most widely studied phenomenon of FC measures co-

activation of pairs of brain regions. Although HRF variability

is known to influence the fMRI signal,2 a systematic study of

its impact on FC has not emerged. In this work, we study the

effect of HRF variability on fMRI FC in the default-mode

network (DMN)7 of the brain. Our study assumes importance

given that the number of fMRI FC studies have been grow-

ing exponentially (1535 publications in 2016, and 1994

publications in 2017), yet most of them ignore this

variability caused by hemodynamics.

One can classify the variability of the HRF into 3 main

classes: (1) intra-subject variability (HRF difference across

different brain regions in the same individual), (2) intra-group

inter-subject variability (HRF difference across different

healthy individuals, for a given location in the brain), and (3)

inter-group variability (HRF difference between a healthy and

a pathological group for a given location in the brain, arising

partly because of vascular and neurochemical disturbances

owing to pathology). Each of these could potentially cause

misleading results during fMRI data analysis. Intra-subject

variability could lead to misclassifying true strong connectiv-

ities as weak, and true weak connectivities as strong. HRF

variability’s effect on activation analysis could be alleviated,

in part, by using time and dispersion derivatives in the general

linear model.8 Although much attention has been received on

the effect of HRF variability on lag-based effective connectiv-

ity models,9,10 its effect on zero-lag FC models has not been

explored. We address this issue by investigating the effect of

intra-subject HRF variability on zero-lag FC analysis. Specifi-

cally, we investigated the effect of intra-subject HRF variabil-

ity on resting-state FC between default mode network (DMN)

regions in healthy young adults.

We hypothesized that the variability in HRF, which

depends on both neural and non-neural factors (such as hemat-

ocrit, variable density, and size of vasculature, lipid/alcohol/

caffeine ingestion, global magnetic susceptibilities, partial

volume imaging of veins, pulse/respiration differences, and

slice timing differences),2,3,11,12 causes alterations of non-

neural origin in DMN FC in healthy adults. We tested this

hypothesis using both simulations (where the ground truth is

known and can be modulated) as well as experimental data.

The latter part was achieved by obtaining connectivity

differences between HRF-variability-affected data (i.e., hemo-

dynamic deconvolution not performed) and HRF-variability-

reduced data (i.e., deconvolution performed). When FC is

estimated in HRF-deconvolved data, the inferences are based

on latent neural variables. These variables, much like in

dynamic causal modeling (DCM),13 are likely to reflect only

neural activity and hence will not be confounded by non-

neural factors driving HRF variability. Subsequently, we iden-

tified the subset of those connections whose FC estimates

obtained in the BOLD and latent neural space were signifi-

cantly different. We then associated HRF differences between

the corresponding pairs of regions with the FC alterations in

the paths connecting them. Such connections represent the

negative effect of HRF variability on FC analysis.

HRF is chiefly characterized by 3 parameters2,3 (Figure

1): (1) response height (RH), (2) full-width at half-max

(FWHM), and (3) time-to-peak (TTP). Recent works show

that altered RH, FWHM, and TTP indicate differing metabo-

lism and microvasculature among others.14 Let us consider
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the impact of HRF variability on FC analysis. We illustrate 2

possibilities using an example (Figure 2): (1) there could be

true high correlation between latent neural signals, but

BOLD fMRI time series could show low correlation owing

to different TTP delays of the two HRFs, and (2) there could

be low correlation between latent neural signals, but BOLD

fMRI time series could show high correlation caused by dif-

ferent TTP delays of the two HRFs. The former leads to

false-negatives whereas the latter leads to false-positives in

traditional fMRI FC analyses that ignores HRF variability.

Similar to the example, we sought to find false-negative and

false-positive connectivities arising from traditional FC anal-

ysis, which ignores HRF variability. Our hypothesis could

then be stated that, owing to HRF variability, data without

deconvolution would potentially show misleading connectiv-

ity differences (both false-positives and false-negatives) as

compared to data with deconvolution.

It should be noted that we do not have access to

ground-truth HRFs across the brain in experimental data.

With current technologies, it is difficult to obtain true

HRFs at every voxel in the brain. Region-specific HRFs

used in this work are an estimate, obtained in a data-driven

way based on biological constraints and mathematical

concepts. Hence, we do not take the leap of naming

the identified connectivity differences between raw and

deconvolved fMRI data as false-positives or false-

negatives; rather we call them pseudo-positives and

pseudo-negatives, respectively. Nonetheless, we expect our

simulation results, based on known ground truths, to give

us more confidence about the type I and type II errors

introduced in experimental FC by HRF variability.

The next section presents the methods used to test our

hypothesis including the underlying theory, simulations, data

pre-processing, connectivity analysis, and HRF analysis.

2 | METHODS

2.1 | Theory

To illustrate the analytical relationship between HRF vari-

ability and FC, we first present the theoretical foundations.

Pearson’s correlation is widely used to quantify FC. The con-

cept underlying our hypothesis is that correlations that exist

in latent neuronal data might cease to exist in BOLD fMRI

because of different HRFs (and vice versa). This concept can

be clearly explained through analytical forms as follows.

First, BOLD fMRI is a convolution of latent neuronal time

series and the HRF:

FIGURE 1 Typical hemodynamic response function with its three

parameters. FWHM, full-width at half max

FIGURE 2 Illustrating the effect of HRF variability on connectivity analysis. Using a pair of example time series, we demonstrate that: (A) the

underlying neural signals are highly correlated while the BOLD fMRI time series are not (giving false low correlation when the true neural correlation is

high), leading to pseudo-negatives, which is caused because of different times-to-peak of the HRFs, and (B) the BOLD fMRI time series are highly

correlated whereas the underlying neural signals are not (giving false high correlation when the true neural correlation is low), leading to pseudo-positives.

This is caused because the HRF corresponding to the leading neuronal time series lags the HRF corresponding to the lagging neuronal time series by the

same amount, causing the delays to cancel out and give a high fMRI correlation

RANGAPRAKASH ET AL.
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½BOLD fMRI�5½latent neuronal times series� � ½HRF�

1½measurement noise�

or F5L �H1N;

where * is the mathematical convolution operator. Expanding

the convolution gives:

FðkÞ5
X

1

m521

Lðk2mÞ HðmÞ1NðkÞ5
X

1

m521

LðmÞ Hðk2mÞ1NðkÞ;

(1)

where F(k) is the fMRI time series value at time point k, L

is the latent neural variable, H is the HRF, N is measure-

ment noise, and the summation is over all time points m.

From this equation, it is clear that a delay d in fMRI time

series F would be caused by an equal delay d in HRF H as

follows:

Fðk1dÞ5
X

1

m521

LðmÞ Hðk1d2mÞ1Nðk1dÞ: (2)

Similarly, a delay in latent neuronal time series L would

propagate exactly onto the fMRI time series F. This property

owes to the fact that convolution is a linear time-invariant

operation. Therefore, 2 different HRFs result in 2 fMRI time

series with differing delays in relation to the latent neuronal

time series.

Pearson’s correlation is often used to evaluate FC. Given

2 time series x5 [x1, x2,. . ., xT] and y5 [y1, y2,. . ., yT]

(where T is the number of time points), FC is defined as:

FC5

XT

i51
½ðxi2�xÞðyi2�yÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XT

i51
ðxi2�xÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XT

i51
ðyi2�yÞ2

q : (3)

Here, �x and �y are sample means of time series x and y.

Given that Pearson’s correlation is a zero-lag measure, differ-

ent delays in the 2 time series under consideration caused by

different HRFs would mathematically result in different cor-

relation values. Analytically, the resulting correlation

between the 2 fMRI time series x and y would be:

FC5

XT

i51
½ðxi1d12�xÞðyi1d22�yÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XT

i51
ðxi1d12�xÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XN

i51
ðyi1d22�yÞ2

q ; (4)

where fMRI time series x is delayed by d1 because of its

HRF time-to-peak of d1, and time series y is delayed by

d2 because of its HRF time-to-peak of d2. Clearly, the

correlation value obtained with different delays would be

different from the correlation value obtained with same

delays (if d15 d2). Therefore, it is clear from these analyt-

ical expressions that delays in HRFs cause equal amount

of delays in fMRI time series, and different delays in 2

HRFs result in altered correlation value between the

corresponding 2 time series. We explore the implication of

these observations on FC in simulated as well as experi-

mental fMRI data.

2.2 | Simulations

We performed simulations to illustrate the empirical relation-

ship between HRF parameters and FC. Briefly, we simulated

pairs of neural time series with known neural-FC between

them, then simulated pairs of HRFs with known difference

in HRF parameters between them, then convolved them to

obtained pairs of fMRI time series and the fMRI-FC between

them.

This simulation technique was adopted from Desh-

pande et al.15 We first simulated pairs of neural time series

with a known neural-FC. Two time series, x(n) and y(n)

from interacting neuronal populations X and Y, respec-

tively, were generated using a first order vector autoregres-

sive (VAR) model with an absence of lagged relationships

between x(n) and y(n) and a covariance matrix C. The off-

diagonal elements of C, indicating the cross-correlation

between x(n) and y(n), were varied to simulate different

functional connectivity strengths between x(n) and y(n).

As in previous studies,15 we assumed that x(n) and y(n)

correspond to local field potentials (LFP) sampled at 1 ms.

Next, we simulated pairs of HRFs with known difference

in HRF parameters between them, using a commonly used

HRF defined from 2 gamma functions as in statistical para-

metric mapping (SPM) toolbox.16 The HRF pairs were

generated in such a way that they either differed in the

response height (DRH), or the time-to-peak (DTTP) or the

full-width at half-max (DFWHM), to independently assess

the impact of variability in each of them on FC. Next, we

convolved the neural time series with the HRFs and down-

sampled TR*1000 times to obtain the corresponding fMRI

time series pairs, x0(n) and y0(n). This procedure follows

from the currently accepted relationship between LFPs and

fMRI.17,18 The correlation between them was computed to

obtain their fMRI-FC (FCfMRI). The percentage difference

(denoted as DFC) between neural-FC (FCneural) and fMRI-

FC (DFC is the error because of HRF variability) was com-

puted as follows.

DFC5
jFCneural

2FCfMRI j

jFCneuralj
31005

jFCDC
2FCNDCj

jFCDCj
3100:

(5)

In the experimental data described later, we denote

neural-FC as FCDC and fMRI-FC as FCNDC, with DC and

NDC referring to deconvolved and non-deconvolved data

respectively, consistent with the notion that deconvolution of

fMRI time series provides latent neural time series.

DFC was compared with the difference in HRF parame-

ters (DRH, DTTP, and DFWHM), separately, to obtain
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graphs depicting the relationship between HRF variability

and error in FC. The difference in HRF parameters were

obtained as follows.

DRH5
jRH12RH2j

ðRH11RH2Þ=2
3100%; (6)

DTTP5jTTP12TTP2j s; and (7)

DFWHM5jFWHM12FWHM2j s; (8)

where the subscripts 1 and 2 correspond to the 2 regions

under consideration for which the FC was computed. It must

be noted that all the entities in Eqns. (5-9) are absolute val-

ues. We varied the value of the off-diagonal elements of C

(neural-FC) from 21 to 1 in steps of 0.25, to obtain the

impact of HRF variability at different FC strengths. We var-

ied DRH from 0% to 100% (i.e., percentage change in RH)

in steps of 0.25%, varied DTTP from 0–4 s and DFWHM

from 0–1 s, both in steps of 0.25 s. The absolute value of

TTP ranged from 2.5–6.5 s, and that of FWHM ranged from

1–2 s. These values were directly taken from biologically

meaningful lower and upper bounds of these parameters in

healthy individuals as presented in Handwerker et al.2 Addi-

tionally, we varied the TR from 0.5–2 in steps of 0.5. The

simulation was iterated over 10,000 realizations of x(n), y(n),

x0(n), and y0(n). Additional simulations were performed to

demonstrate the construct validity of the deconvolution

technique. Corresponding details can be obtained from the

Supporting Information (section S1).

2.3 | Resting-state fMRI data

Forty-seven healthy young adults were recruited for the

study. Participants were scanned in a 7T MAGNETOM

scanner (Siemens Healthcare, Erlangen, Germany) using

T�
2-weighted multiband EPI sequence19 in resting-state (par-

ticipants were asked to keep their eyes open and not think of

anything specific), with TR5 1000 ms, TE5 20 ms, flip

angle5 708, multiband factor5 2, voxel size5 23 23

2.4mm3, acquisition matrix5 963 96, number of slices5

45 and 660 volumes (11min), with whole-brain coverage.

A 32-channel head coil (Nova Medical) was used. The par-

ticipants provided informed consent and all procedures were

approved by the Auburn University Institutional Review

Board (IRB).

2.4 | fMRI data pre-processing

Standard pre-processing of resting-state fMRI data was per-

formed (slice timing correction with consideration given to the

fact that the data was acquired using a multiband sequence,

realignment and unwrap, co-registering to anatomical image,

de-spiking, normalization to MNI space, spatial smoothing

using an 8mm Gaussian kernel, regressing out nuisance

covariates (6 head motion parameters, Legendre polynomials

of orders up to 2nd, top 5 principle components from subject

specific white matter [WM] signal and cerebrospinal fluid

[CSF] signal), and band-pass filtering [0.008–0.1Hz]). Pre-

processing was performed on the MATLAB R2013a platform

(The MathWorks, Natick, MA) using Statistical Parametric

Mapping (SPM12).16

To extract the default mode network (DMN) regions of

interest (ROIs), we used a popular template provided by

Power et al.,20 which consisted of 58 DMN ROIs (see Sup-

porting Information Table S2 for details). Mean fMRI time

series were then obtained from each ROI. The time series

data were then subjected to 2 separate pipelines, one with no

further pre-processing (contaminated by HRF variability),

and another with blind hemodynamic deconvolution (HRF

variability largely minimized).

With deconvolution, we obtained latent neuronal varia-

bles using a recently reported method.21 The method also

provided the 3 HRF parameters (RH, TTP, and FWHM).

This deconvolution is considered blind because only 1 vari-

able is known (fMRI time series), and from it one estimates

both the latent neural time series and the HRF. We used the

method proposed by Wu et al.,21 which has gained increas-

ing popularity and acceptance owing to its interpretability,

robustness, simplicity, validity, and an increasing awareness

on the importance of deconvolution. Many recent works

have used this method.5,22–29 Briefly, the method relies on

modeling resting-state fMRI data using point processes as

event-related time series with randomly occurring events.30,31

A temporal mask with frame-wise displacement (FD) <0.3

was added to avoid pseudo point process events induced by

motion artifacts.30 The HRF was then estimated using Wie-

ner deconvolution. Simulations demonstrating the construct

validity of the adopted deconvolution technique are pre-

sented in the Supporting Information (section S1). The

deconvolution code (on MATLAB platform) was created by

Wu et al.21 and is available for download.32 The HRF param-

eters obtained have been made freely and publicly avail-

able.33 All data analysis after pre-processing was performed

on the MATLAB R2014a platform.

2.5 | Connectivity analysis

Time series from 58 DMN regions were obtained in the pre-

vious step with data from 2 pipelines: (1) non-deconvolved

(NDC) data (HRF-variability-ignored), and (2) deconvolved

(DC) data (HRF-variability-reduced). With NDC, FC was

evaluated between all pairs of regions to obtain 583 58

connectivity matrix (FCNDC) for every participant. Like in

most studies, z-scored Pearson’s correlation coefficient was

used to evaluate FC.

Similar procedure was followed with DC data to obtain a

583 58 FC
DC matrix per participant. The FCNDC and FC

DC

RANGAPRAKASH ET AL.
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connectivity data have been made publicly available.33

Because the difference between FCNDC and FCDC is the

deconvolution step and hence the corresponding effect of

HRF variability, we sought to identify significant group

differences between them. We used a 2-tailed paired t-test

to find significant group differences between NDC and

DC connectivity matrices (P< 0.05, Bonferroni corrected).

Paired test was chosen because we were looking at within-

subject variability (i.e., connectivities altered in the same

participant because of HRF variability), because NDC and

DC data are essentially from the same participants. The

identified significant differences were then used in further

processing.

2.6 | HRF analysis

Deconvolution provided the estimated HRF for each ROI in

each participant. The HRF for each ROI was characterized

by 3 parameters: response height (RH), full-width at half-

wax (FWHM) and time-to-peak (TTP), as illustrated earlier.

That is, we obtained a 583 1 matrix per participant for RH

(HRFRH), as also for FWHM (HRFFWHM) and TTP

(HRFTTP). Then, significant differences in HRF parameters

were obtained between all 58 pairs of regions. HRFRH for all

participants was taken (583 47 matrix) and a P-value of sep-

aration was obtained between every pair of ROIs. This would

provide the statistical separation in HRFRH between every

pair of ROIs (similar with HRFFWHM and HRFTTP). We per-

formed 2-sided paired t-test between HRF parameters of all

pairs of brain regions (P< 0.05, Bonferroni corrected). Like

with connectivity, paired test was chosen.

Tests for statistical significance were performed sepa-

rately on each of the 3 parameters to obtain group-level

ROI-specific differences in HRF parameters. To be con-

servative, an intersection of the differences in the 3 param-

eters was taken to finally obtain a 583 58 binary matrix of

significant HRF differences. This was then combined with

significant connectivity differences obtained in the previ-

ous step (i.e., found a common matrix of significance by

overlapping the 2) to obtain the following final differences

of interest: (1) pseudo-negatives (true effects potentially

corrupted and diminished by HRF variability): DC>NDC

overlapped with (intersection) HRF differences, and (2)

pseudo-positives (potentially untrue effects arising because

of HRF variability): NDC>DC overlapped with HRF

differences. These 2 observations enabled us to test our

hypothesis.

For the significant connections identified with the above

procedure, as well as for the entire data, we probe the magni-

tude of change observed in FC and the corresponding change

in HRF parameters. We present and discuss the summary sta-

tistics and range of values taken by the percentage FC differ-

ence between NDC and DC (DFC as in Eq. (5)) as well as

the difference in HRF parameters (DRH, DTTP, and

DFWHM as in Eqs. (6–8)).

2.7 | Follow-up HRF analysis

As a follow-up analysis, we probed deeper into the magni-

tude of difference in connectivity between deconvolved and

non-deconvolved data. The goal was to derive quantitative

relationships between the amount of HRF variability and the

amount of its impact on connectivity modeling, which could

be useful for guiding future fMRI FC studies.

Specifically, we derived the relationship between experi-

mental DFC and the percentage of connections (PC) with at

least the corresponding DFC. To perform this computation,

we considered all ROIs and all connections without any

exclusions. Given that we had 58 ROIs and 47 subjects, our

583 583 47 DFC matrix contained Q5 155,382 connec-

tions/paths excluding the diagonal elements. PC(n) was com-

puted as the percentage of these Q connections/paths that

had a DFC� n.

PCðnÞ5
100

Q

X

Q

i51

X

DFC�n

1; (9)

where i corresponds to the ith among Q connections/paths. In

summary, DFC was an estimated measure of the impact of

HRF variability on FC (as in Eq. (5)), whereas PC was a

measure of the percentage of all connections affected by that

magnitude of HRF variability (or more). Examples from

findings in the Results section would illustrate these concepts

lucidly.

3 | RESULTS

3.1 | Simulation results

We performed simulations to empirically assess the percent-

age change in FC (DFC) caused by the difference in HRF

parameters between the corresponding 2 regions (i.e., DRH,

DTTP, and DFWHM) across a range of biologically plausi-

ble values of these measures. Here, we present the graphs for

DFC versus DRH (Figure 3A), DFC versus DTTP (Figure

3B), DFC versus DFWHM (Figure 3C), and DFC versus

absolute neural-FC (Figure 3D). Because we used experi-

mental data with TR5 1, plots in Figure 3 have been com-

puted with TR5 1 (see Supporting Information Figure S1

for similar plots across all TRs). DFC and DRH correspond

to the percentage change in them, whereas DTTP and

DFWHM are in seconds. With the case of identical HRFs

(DRH5DTTP5 DFWHM5 0), DFC was insignificant

(P5 0.9999, mean6SD5 10215
6 0.006), which validates

our deconvolution approach in this regard. Within the accept-

able physiological range of variation in the HRF parameters

6 | Magnetic Resonance in Medicine
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presented here,2 simulations showed a nearly linear positive

relationship between changes in FC and HRF parameters,

with RH and TTP causing up to 50% change in FC. FWHM

had a smaller impact of up to 5%. Additionally, the largest

impact on FC was for weaker connection strengths (up to

170% change), and the impact reduced to as low as 24% for

the strongest connections (that is still a considerable error).

We found that DFC was not significantly different across

TRs for specific alterations of HRF parameters, except with

FWHM at 1 s (Supporting Information Figure S1C). How-

ever, when DFC across all possible alterations of HRF

parameters were considered, there was significant increase in

DFC with TR (P5 10236, F5 56.61), with DFC5 36.16

8.9 for TR5 0.5 and DFC5 40.26 9.8 for TR5 2, implying

that poorer temporal resolution worsens the impact of HRF var-

iability on FC estimates (see the Supporting Information [sec-

tion S2] for the effect of TR on FC-HRF relationship). In

summary, simulations revealed the landscape and limits of the

magnitude of the impact of HRF variability on our ability to

estimate FC accurately at the neural level.

The deconvolution technique’s original paper21 has pre-

sented several simulations illustrating the validity of the tech-

nique. Here, we provide 2 sanity checks for providing further

validation of the deconvolution procedure. First, a fundamen-

tal claim of deconvolution is if a pair of time series have iden-

tical HRFs, then their correlation would be the same with or

without deconvolution, and the deconvolution approach

should be able to re-identify the correlation between the

underlying neural event time series. Second, if 2 time series

have different HRFs, then the deconvolution approach should

be able to accurately access the true neural correlation, but

analysis without deconvolution would not. Using simple sim-

ulations, we demonstrate the construct validity of the decon-

volution technique based on the above principles. Further

details can be obtained from Supporting Information S1.

3.2 | HRF results

Figure 4 shows the 58 DMN ROIs used in this work (please

refer to Supporting Information Table S1 for the MNI

FIGURE 3 Simulation results for empirical assessment of percentage change in functional connectivity (DFC) between neural and BOLD time series

caused by difference in HRF parameters (DRH,DTTP,DFWHM) between the corresponding 2 time series, across all possible physiologically plausible

values of these HRFmeasures. (A)DFC versusDRH (RH resolution5 0.25%). (B)DFC versusDTTP (TTP resolution5 0.25 s). (C)DFC versus

DFWHM (FWHM resolution5 0.25 s). (D)DFC versus absolute value of neural FC (FC resolution5 0.25). Error bars show 1 SD above and below the

mean. The physiologically plausible lower and upper bounds of HRF parameters were obtained fromHandwerker et al.2We observed robust and nearly

linear-positive relationship betweenDFC and change in HRF parameters. Up to 50% change in FCwas observable because of either RH or TTP variability.

Smaller FC values were more vulnerable to HRF variability. RH, response height; TTP, time-to-peak; FWHM, full-width at half-max; FC, functional

connectivity
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coordinates and names of these ROIs). Figures 5A and 5B

show the pseudo-negative connections potentially arising from

HRF variability. They were obtained as those connections that

had lower connectivity with the HRF-variability-ignored tradi-

tional fMRI data compared to the HRF-variability-reduced

deconvolved data, along with differences in HRF between the

associated ROIs (detailed statistics available in Supporting

Information Table S2). Figures 5C and 5D show the pseudo-

positive connections, which exhibited higher connectivity in

HRF-variability-ignored data, along with HRF differences

between associated ROIs (detailed statistics available in Sup-

porting Information Table S3). Medial prefrontal, anterior cin-

gulate, and temporal pole showed qualitatively drastic

reduction in connectivity after deconvolution. We repeated the

analysis using spatially non-smoothed fMRI data, and did not

find any significant differences in the HRF maps between the

smoothed and non-smoothed data (for details of the analysis

and discussion of corresponding results with non-smoothed

data, please refer to the Supporting Information [section S4]).

Further, we investigated whether deconvolution could intro-

duce higher frequencies into the deconvolved signal and

whether such spectral differences could drive diverging results

from DC and NDC data. However, we found no significant

difference between the spectral characteristics of the raw

BOLD data and deconvolved data (for details of the analysis

and discussion of corresponding results, please refer to the

Supporting Information [section S5]).

It must be noted that we performed a paired t-test to test

for statistical significance, because we were comparing con-

nectivities of the same individuals with different pre-

processing pipelines. We identified a large number of

pseudo-connectivities even with a conservative family-wise-

error-corrected (Bonferroni) threshold. Instead, using a 2-

sample t-test here (although inappropriate to use in our con-

text), resulted in far less number of significant connections

(just 4 connections at P< 0.05, uncorrected). This observa-

tion deserves further attention.

As an example, Figure 6 shows the connectivity values

for all 47 participants with both pipelines (deconvolved and

non-deconvolved), for 1 of the identified pseudo-positive

connectivity paths (between precuneus and superior frontal

gyrus, corresponding to regions 13 and 46 in Supporting

Information Table S1), whose regions had significantly dif-

ferent RH (P5 23 10220), TTP (P5 10288), and FWHM

(P5 10280). What we observed explains the reason for the

large disparity in the results between the use of a paired t-test

and a 2-sample t-test. At the individual subject level, we

observed that there was a consistent shift in connectivity

value in the same direction, and this trend was highly repro-

ducible for all participants, with NDC values consistently

being higher than DC values (DFC5 15.346 4.85%). For

this reason, the paired t-test returned high statistical signifi-

cance for this path. However, the variability across partici-

pants was notably larger (SDNDC5 0.16, SDDC5 0.15) than

the variability within participants caused by HRF differences

(pairwise difference in FC5 0.066 0.02), which means that

the group mean values might not be significantly different

even if considerable differences were observed at the

individual-subject level. This explains why the 2-sample t-

test returned far less number of significant connectivities. For

this reason, we also did not observe any notable differences

in, say, the default-mode’s functional network structure

between deconvolved and non-deconvolved data when using

a 2 sample t-test, because individual-level differences

because of HRF variability are often buried under larger

inter-subject variability.

Next, we probed deeper into the magnitude of change

observed in FC after deconvolution (DFC), as well as the

summary statistics of the HRF parameters obtained from

deconvolution. These numbers were obtained for 3 cases: (1)

Entire data: all the ROIs and connections, without exclu-

sions; (2) Same as previous case but with outliers removed.

Because the histogram of all these measures resembled a

decaying exponential with a long tail (more about this later),

we discarded outliers to provide a more balanced view of

their central tendencies. Outliers were determined as values

that exceeded 3 scaled median absolute deviations away

from the median. (3) Only for those connections and associ-

ated ROIs that exhibited significant difference between NDC

and DC (plus outliers removed); which was performed to

compare values from significant connections against the

entire connectome obtained in case (1).

Table 1 provides the summary statistics of various meas-

ures for all 3 cases. We observed lower FC after deconvolu-

tion compared to before deconvolution (corrected P< 0.05)

with the entire data as well as significant connections that

corroborates with the observation of more pseudo-positives

than pseudo-negatives in the connectivity results. We found

30.5% mean error and 11.5% median error in FC caused by

HRF variability with the entire data. After discarding outliers

(12.9% of the connections), the mean and median DFC were

FIGURE 4 ROIs of the default mode network provided by Power

et al.20 used in this work (see Supporting Information Table S2 for details

of the template)
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14.7% and 9.6% respectively, which was substantial consid-

ering that the effect sizes we often observe in cognitive, neu-

rologic, and psychiatric neurosciences are of similar or

smaller magnitude.34 Although smaller than the former case,

especially the mean, it must be noted that these outliers

(12.9% in our data), show large percentage change in FC,

exist in any data, and impact any FC analysis performed

using it. It should also be noted that outliers may sometimes

be the connections of interest because network-level disrup-

tions because of pathology or cognitive manipulations are

often seen in a small percentage of all possible connections.

Still, to be conservative, in this study, we focused on the

results obtained after eliminating outliers (henceforth we do

not mention about outlier removal, but it is implied).

Studying the distribution of DFC would provide further

insights not available through summary statistics, especially

because it is non-Gaussian. Figure 7 provides the histogram

of DFC obtained from entire data, along with the mean,

median, and 95% interval after outlier removal. The distribu-

tion resembles a decaying exponential, with the mean of

14.7% being a reasonable estimate of the overall error in FC

(DFC) caused by HRF variability. In the specific example

considered in Figure 6, the mean DFC was 15.34%.

Referring to Table 1, when considering only the signifi-

cant connections (as in Figure 5), DFC was significantly

larger than the case of entire data (P5 10222), with the mean

and median DFC being 17.1% and 11.2%, respectively. This

was expected, given that significant connections were, by

definition, different between DC and NDC. However, the

relatively close error of 14.7% with the entire data (that was

14.6% if significant connections were excluded from entire

data) meant that HRF variability had a widespread impact

even among those connections that were not significantly

different between DC and NDC (with our strict statistical

threshold).

Understandably, the difference in FC because of HRF

variability was more than the difference in RH, and FC was

also more variable and had more outliers, given that FC is

impacted by all 3 HRF parameters. Interestingly, DFC was

larger by 17% with significant connections (compared to

entire data), DTTP by 16%, and DFWHM by 17%, whereas

DRH was not different. This curious observation hints that

FIGURE 5 Pseudo-positive and pseudo-negative connections in the DMN arising fromHRF variability. Thicker connections and lighter color corre-

sponds to higher T-value. Please refer to Supporting Information Table S1 for expansion of abbreviations and information on the ROIs. Pseudo-negatives:

(A) axial view; (B) sagittal view. Pseudo-positives: (C) axial view; (D) sagittal view

RANGAPRAKASH ET AL.
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TTP and FWHM, which causes timing errors in the data as

seen in Figure 2, contributed to a greater extent toward sig-

nificant changes in FC than toward non-significant connec-

tions, whereas RH had a uniform impact on significant and

non-significant connections, hinting that variability in TTP/

FWHM might disproportionately affect highly impacted

connections.

Mapping these numbers to the simulation results (as in

Figure 3), the mean6 SD of experimental DRH values (as in

Table 1) corresponded to DFC of 6.396 1.87% (Figure 3A),

DTTP to DFC of 6.376 2.37% (Figure 3B), and DFWHM to

DFC of 2.276 0.48% (Figure 3C). The mean DFC in experi-

mental data (514.7%) was close to the sum of mean values

noted above from the simulated DFCs (515%). We do not

imply that changes RH, TTP, and FWHM share a linear

additive relationship with DFC. We could not test this in the

simulation because it does not permit simultaneous control

over all 3 HRF parameters15 (because RH, TTP, and FWHM

are biophysically related),35 and this is an aspect that may be

investigated in the future.

These findings imply that the combined effect of HRF

parameters on FC in real data is at least as bad as the simula-

tion results, and HRF variability, on average, causes �14.7%

error in the FC data in healthy controls for the scan parame-

ters we have used in a 7T scanner. The HRF parameters as

well as connectivity data have been made publicly avail-

able33 to help researchers replicate these findings.

3.3 | Follow-up HRF results

As a follow-up analysis, we derived quantitative relation-

ships between the amount of HRF variability and the amount

of its impact on FC modeling, which could have practical

use in guiding future fMRI FC studies regarding the impact

of HRF variability. Figure 8A depicts the relationship

between the percentage of connections (PC) affected by

HRF variability and the percent connectivity difference

(DFC) between deconvolved and non-deconvolved data. A

double exponential curve could fit this PC versus DFC graph

with R
2
5 0.9998, which is given by the following equation:

yðxÞ50:75e20:19x
10:39e20:04x; where x5DFC and y5PC:

(10)

It is notable that these findings were obtained from the

entire connectivity data, including outliers, without limiting

to only the identified significant connectivities. This graph

shows that, for example, there was at least 50% difference in

the magnitude of connectivity between NDC and DC in

6.5% of the connections, there was at least 25% difference in

the magnitude of connectivity between NDC and DC in

16.2% of the connections, and at least 10% difference

between NDC and DC in 38.5% of the connections. Also,

50% of all the connections had at least 7% connectivity

difference between NDC and DC, and 10% of all the

connections had as much as 37% difference in connectivity.

These findings provide deeper insights into what percentage

of connections are impacted by HRF variability and by what

magnitude.

Given that deconvolution is an estimation procedure (like

most other imaging-based methods), questions could arise

about the quality of the HRF estimation, although the decon-

volution procedure used by us has been widely accepted and

extensively used.5,22–29 For the sake of argument, however,

even if we were to say that our estimated HRFs post decon-

volution were largely inaccurate, it is still undeniable that,

theoretically, the ground-truth HRF varies considerably

across the brain, across individuals, and across disease

groups.2,3 Our findings, in the worst case, at least illustrate

how HRF variability can result in widespread confounds in

FC estimates. To illustrate this point, we picked 25% of all

the connections that exhibited the least difference in the HRF

parameters between the corresponding regions and

FIGURE 6 Individual connectivity estimates of a connectivity path

(the pseudo-positive connectionwith highest T-value taken as an example

here). Connectivities are shown for all 47 subjects, obtainedwith both

deconvolved (DC, HRF-variability-reduced) and non-deconvolved (NDC,

HRF-variability-ignored) data. Black lines are drawn connecting the DC

and NDC values in every subject, illustrating what the paired t-test cap-

tures. These differences show the magnitude of change caused byHRF

variability in each subject, which is the effect of interest in this work. The

same differences are plotted at the bottom part of the figure. In this exam-

ple, we observe that HRF-variability-ignored NDC data displays a shift

fromDC’s true group-average connectivity value by 0.06. However,

because the connectivity values are themselves scattered across subjects

with large variance, a 2-sample t-test between DC and NDC values does

not result in high statistical significance
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performed similar analysis as before to compare DFC and

PC only for these 25% of the connections. This represents a

best-case scenario for FC, wherein the HRF variability is

low. Even in such a scenario, we found that connectivities

derived from deconvolved and non-deconvolved data dif-

fered considerably (Figure 8B). The PC–DFC relationship

was expectedly better; still, we found that there was at least

50% difference in connectivity magnitude between NDC

and DC in 5.8% of the connections, there was at least 25%

difference between NDC and DC connectivities in 14.6% of

the connections, and at least 10% difference between NDC

and DC connectivities in 35.7% of the connections. Ten per-

cent of all the connections had as much as 34% difference in

connectivity. As we can see, even if one were to contend

that the ground-truth HRFs were less variable or if our

deconvolution estimates were considerably noisy, one

would still observe the prominent effect of HRF variability

on FC. As such, ignoring HRF variability in fMRI FC anal-

ysis would invariably cause considerable error in FC

estimates.

4 | DISCUSSION

In this work, we tested the hypothesis that FC in the DMN is

affected by HRF variability, which is (at least in part) non-

neural in origin and hence undesirable. We provided the the-

oretical background on which this hypothesis is based, fol-

lowed by simulations to provide empirical evidence to back

our hypothesis when the ground truth is known. Further, we

found experimental evidence to support our hypothesis. We

found functional connections that were significantly different

in the same participants between HRF-variability-ignored

(NDC) and HRF-variability-reduced (DC) data. Additionally,

HRF parameters were found to be significantly different

between the regions involved in all such connections, there-

fore attributing the connectivity differences to HRF variabili-

ty. These findings have considerable implications for the

interpretability and reliability of FC findings in fMRI studies.

Results imply that HRF variability could lead to the identifi-

cation of false positive and false negative connections, and

resting-state fMRI FC studies that do not account for this

TABLE 1 Summary statistics of various measures for 3 cases

Measure Mean6 SD

Median6 absolute

deviation 95% interval [min, max] % eliminated

(A) Entire data without exclusions

FCNDC 0.3026 0.112 0.2586 0.149 [0.012, 0.847] [0, 0.97] —

FCDC 0.2946 0.110 0.2496 0.146 [0.012, 0.839] [0, 0.96] —

[FCNDC
2 FCDC] 0.0366 0.016 0.0286 0.018 [0.001, 0.117] [0, 0.29] —

DFC (%) 30.546 14.21 11.516 9.10 [0.13, 207.04] [0, 499.37] —

DRH (%) 17.716 4.75 13.036 7.51 [0.21, 72.29] [0, 166.63] —

DTTP (s) 0.9446 0.28 0.5666 0.43 [0.006, 5.384] [0, 6.42] —

DFWHM (s) 0.9486 0.28 0.5756 0.43 [0.007, 5.381] [0, 6.51] —

(B) Entire data with outliers eliminateda

DFC (%) 14.686 3.59 9.596 7.01 [0.35, 53.99] [0, 62.95] 12.90

DRH (%) 14.156 2.61 12.326 6.69 [0.61, 40.69] [0, 48.55] 6.27

DTTP (s) 0.7936 0.17 0.5536 0.41 [0.019, 2.272] [0, 2.83] 3.46

DFWHM (s) 0.7976 0.17 0.5616 0.41 [0.021, 2.288] [0, 2.87] 3.45

(C) Significant connections/ROIsb

FCNDC 0.3566 0.122 0.3126 0.178 [0.017, 0.880] [0, 0.97] 96.79

FCDC 0.3336 0.118 0.2876 0.163 [0.014, 0.870] [0, 0.96] 96.79

[FCNDC
2 FCDC] 0.0466 0.019 0.0366 0.024 [0.002, 0.142] [0, 0.27] 96.79

DFC (%) 17.116 4.25 11.216 8.62 [0.39, 62.55] [0, 74.90] 11.40

DRH (%) 14.096 2.59 12.476 6.84 [0.52, 41.83] [0, 48.69] 6.64

DTTP (s) 0.9186 0.15 0.8796 0.55 [0.035, 2.072] [0, 3.55] 0.00

DFWHM (s) 0.9296 0.15 0.8896 0.54 [0.031, 2.099] [0, 3.48] 0.00

Abbreviations: ROIs, regions of interest.

The measures were functional connectivity (FC) from non-deconvolved data (FCNDC), FC from deconvolved data (FCDC), percentage change in FC as defined in

Eqn. 5 (DFC), percentage change in response height as defined in Eqn. 6 (DRH), change in time-to-peak as defined in Eqn. 7 (DTTP), and change in full-width at

half-maximum as defined in Eqn. 8 (DFWHM). The column “% eliminated” shows the percentage of outliers eliminated in DFC, DRH, DTTP, and DFWHM, and

includes the percentage of connections found to be not significant in FCNDC and FCDC in (C).
aDefined as values exceeding 3 scaled absolute deviations above the median.
bOnly significant connections and their associated ROIs (outliers plus non-significant connections and associated ROIs eliminated).
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variability would need to interpret their findings with

caution.

Simulations results (Figure 3) showed a nearly linear pos-

itive relationship between DFC and difference in HRF

parameters. RH and TTP could independently cause a

change of up to 50% in FC, whereas FWHM could cause

about 5% change. Simulations provide the limits and formal

relationships between the entities being studied here and help

us better understand the experimental results as well as the

possibilities not evident from our experimental data. It is

clear that HRF variability, if ignored, is a considerable con-

found in FC analysis.

Looking into the pseudo-negative and pseudo-positive

connections identified in this work (Figure 5), we found that

most of the affected connections were between different

lobes of the brain. Pseudo-negatives (Figures 5A and 5B)

were predominantly observed in connections between medial

frontal and middle temporal regions. In fact, none of the

altered connection were within the same lobe. Pseudo-

positives (Figures 5C and 5D) were predominantly observed

in connections between parietal and medial frontal regions,

whereas some connections between those regions and middle

temporal regions were also observed. Taken together, this

trend suggests that connections between functionally distinct

and anatomically distant regions are more susceptible to

corruption by HRF variability. This could be attributed to the

fact that the neurochemistry and vasculature between such

distant and distinct regions differ by a larger extent,2,3 lead-

ing to larger differences in HRF (that depends on cerebrovas-

cular reactivity and neurovascular coupling),1 and therefore

larger impact on connectivity.

To better understand this pattern of inter-lobe connectiv-

ities being maximally impacted by HRF variability, we dis-

cuss the underlying neurochemistry in further detail. It is

known that neuromodulators released by GABAergic and

glutamatergic interneurons directly modulate local cerebral

blood flow,36 and hence the HRF.37 Lower gamma-amino-

butyric-acid (GABA) concentration results in quicker, taller,

and narrower HRF.38 Glutamate acts on N-methyl-D-

aspartate (NMDA) receptors causing dilation of blood ves-

sels,39 hence influencing the HRF. Serotonin, a vasoconstric-

tor that provides blood–brain barrier permeability, modulates

neurovascular coupling, and hence the HRF.40 These neuro-

chemical processes are known to vary across the brain, with

larger differences being more likely between distinct and dis-

tant regions.2,3 Vasculature is also inconsistent across the

brain, hence the HRF would be different between brain

regions neighboring larger blood vessels compared to smaller

ones.3 However, it is to be noted that this is a simplistic

explanation of much complex underlying neurochemical and

neurovascular phenomena. Therefore, for a more accurate

and complete picture, we refer the readers to Hillman.41 It is

also noteworthy that a recent study by Murphy et al.42 dem-

onstrated that resting-state connectivity obtained from fMRI

and that from calcium imaging significantly differ in many

brain regions, and they hypothesize that such differences

could in-part be explained by the regional variability of the

HRF. Our results provide credence to this view.

Another interesting observation was that the number of

pseudo-positives were more than the number of pseudo-

negatives by a substantial margin. Although we reported

only the results obtained with a conservative statistical

threshold (P< 0.05, Bonferroni corrected), we observed that

this trend holds true even with other more liberal statistical

thresholds (tested up to P< 0.05 uncorrected). In brain imag-

ing, pseudo-positives are more undesirable than pseudo-

negatives, because, in most cases, reporting a connection that

does not exist is more detrimental to the conclusions than a

true connection that was not identified. Hence, more caution

must be exercised, as HRF variability predominantly seems

to cause more pseudo-positives.

We observed that the impact of HRF variability on FC

often gets buried in the larger inter-subject variability of con-

nectivity (Figure 6). However, this must not be misunder-

stood to mean that HRF variability is not a concern,

especially after observing the results for percentage error in

connectivity (DFC). HRF variability could have detrimental

effects when comparing participants from different groups,

FIGURE 7 The histogram of percentage connectivity error (DFC),

obtained from the entire connectivity data (after excluding outliers).

Specifically, it shows the plot of the number of connections corresponding

to the various range of values of percentage connectivity difference

between deconvolved (DC) and non-deconvolved (NDC) data (DFC), as

defined in Eq. 5. Because our data had 58 ROIs, there were a total of

1653 connections. Outliers, defined as values exceeding 3 scaledmedian

absolute deviations above the median, were excluded, which brought the

range ofDFC to [0, 63%]. Note that the distribution ofDFCwould have

had a much longer tail if outliers were included. The histogramwas

divided into 100 bins, hence the value at each bin (no. of connections) cor-

responded to a range of 0.63%. The red bar shows the median connectivity

error of 9.6% caused byHRF variability, whereas the magenta bar shows

the mean of 14.7%. Yellow bars show the 95% interval [0.4, 54] percent
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given that group-level connectivity differences are often of

similar magnitude or even smaller than the error DFC

reported here.34 Across the entire data, the average percent-

age error caused in FC by HRF variability was 30.5%, with

error being 14.7% after outlier elimination. Such large impact

was also observable in the example in Figure 6 (mean DFC

was 15.3%). The distribution of DFC (Figure 7) showed that

the mean error of 14.7% was a reasonable estimate of the

overall error in FC (DFC) caused by HRF variability. For

weaker connection strengths, this number can reach up to

170% (Figure 3D). We observed HRF variability to have a

widespread impact even among those connections not con-

sidered significantly different. Still, these numbers did not

correspond to the worst case because they were obtained

from data with outliers removed. The outliers (12.9% in our

data), corresponding to large percentage changes in FC, exist

in any data and likely impact any FC analysis performed

using it. If outliers were included, we observed average con-

nectivity error of 30.5%; however, to be conservative, we

chose to focus on results after outlier elimination in this

study even though it is conceivable that outliers may be con-

nections of interest in certain scenarios. These findings imply

that the combined effect of HRF parameters on FC in experi-

mental data is at least as worse as the simulation results, and

HRF variability, on average, causes �14.7% error in the FC

data in healthy controls for the scan parameters we have

used in a 7T scanner. It is not possible to unbundle the

effects of each HRF parameter on DFC, because, in experi-

mental data, DFC has contributions from a variable mix of

all 3 HRF parameters. It is important to acknowledge that an

error of the order of 15% in connectivity estimates is suffi-

cient to cause a large impact on statistical inferences, net-

work structure, graph analysis, machine learning models, and

any other derived measure such as behavioral associations.

Even in psychiatric and neurologic disorders, aberrant

changes in connectivity values are often of this order or

smaller.34

To supplement these observations, we fit a double expo-

nential curve (Figure 8) that quantifies the relationship

between HRF variability and its resultant impact on FC using

experimental data. Among several examples provided in the

previous section, 2 examples that stood out were that one-

third of all the connectivities changed by over 10% after

deconvolution, and every tenth connection changed by as

much as one-third after deconvolution. Even if one were to

question the validity of our deconvolution approach and

argue that the ground-truth HRF would be less variable than

our estimated HRFs, our findings from the “bottom 25%”

analysis suggests that comparably strong effects persist even

if one were to hypothesize less variable and “better quality”

unknown ground-truth HRFs. In view of this, we argue that

the conclusions we have drawn in this study are robustly

applicable to the study of FC using resting-state BOLD

fMRI. Given that the effect sizes we often observe with

fMRI are relatively small, these numbers, which are by no

means ignorable, illustrate the considerable impact that

deconvolution has on BOLD fMRI data.

While interpreting these numbers, it must be acknowl-

edged that our analysis was limited to the DMN, was in a

homogenous healthy adult cohort, and data was obtained in a

7T scanner. HRF variability would be higher across the

entire brain compared to the DMN only, would be higher in

a disease group or in different age/race/gender groups, and

would be higher at poorer sampling rates or smaller field

strengths.43 It is noteworthy that pathological populations are

likely to have a wider physiologically plausible range of

FIGURE 8 Quantitative relationship between the amount of HRF variability and the amount of its impact on functional connectivity modeling. (A)

Relationship between the percentage of connections (PC) affected byHRF variability and the percent connectivity difference (DFC) between deconvolved

and non-deconvolved data; shows original data as well as double exponential curve fit (R2
5 0.9998). The graph shows, for example, that there was at least

10% connectivity difference in one-third of all connections, and 10% of all connections had asmuch as one-third difference in connectivity value. (B) The

same curve fit as in the previous case (in red), along with the curve fit obtained by only 25% of the connections that exhibited least difference in HRF (in

purple). This represents a conservative scenario in which the HRF variability is less, yet considerably large number of connections were impacted. Notably

this was obtained from entire dataset, not just from significant differences
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HRF parameters because of neurochemical and vascular alter-

ations, and hence, likely larger confounds in FC because of

HRF variability. We posit that the mean connectivity error or

DFC would be much higher in such cases. In view of this, we

feel that the readers should consider the worst-case impact of

HRF variability to be likely worse than our results. We invite

researchers to perform similar studies under different condi-

tions to help develop a broader understanding of the problem.

An error in connectivity values by as much as 15% in a

best-case scenario demands serious attention. Such large

errors and such shifts in average connectivity values can bias

statistical results when comparing 2 different groups of par-

ticipants. If the shift in connectivity is away from the group

mean of the other group, it could falsely increase statistical

separation between the groups, resulting in increased T-val-

ues, F-values, or any other statistic, leading to the possible

identification of false positives. On the other hand, a shift of

connectivity toward the group mean of the other group could

inadvertently reduce statistical separation between the

groups, resulting in decreased T-values or F-values, leading

to possible false negatives. During group-comparisons, such

phenomena, in the best-case scenario, would alter the T-val-

ues, F-values, P-values, or other statistical metrics, resulting

in biased results. In the worst-case scenario, it would cause

the identification of false connections or result in missed con-

nections. It could have enormous impact while performing

group comparisons in population studies because the effect

sizes often encountered in brain imaging are small. Further,

the effect size of the impact of HRF variability on FC might

be larger in patient populations, given that many of them are

likely to have vascular and/or neurochemical alterations,

more than that observed in a healthy population.

Given these findings, future fMRI studies must exercise

caution while interpreting results obtained from resting-state

FC analysis of non-deconvolved BOLD fMRI data, espe-

cially if they assume a fixed canonical HRF. Although only

a handful to regions showed HRF differences in this work, it

does not imply that HRF variability does not exist elsewhere,

because we used a conservative statistical threshold that

might have ignored smaller effects. Additionally, it has been

recognized that fMRI signals at ultrahigh fields have more

contributions from small vessels,43 because the variability of

HRF is likely less for small vessels at higher field strengths.

Hence, the HRF confound in our data may be less severe

than in data acquired at lower fields, such as 3T. Nonethe-

less, even with our data from a 7T MRI scanner, we show

that the HRF variability is a major cause of error in estimated

functional connectivities. Such errors are expected to be

larger for data obtained at 3T.

Prior works have studied the impact of HRF variability

on modeling the mean of the fMRI time series,2,3,44 whereas

our novelty rests on studying the impact of HRF variability

on modeling FC. We found erroneous connectivities

emerging because of intra-subject HRF variability, which cor-

roborates with the fact that these prior studies found HRF var-

iability across different brain regions within an individual.

Our work is significant given that the impact of HRF variabil-

ity on FC has not been formally established in literature yet,

with the consequence that a large number of FC studies con-

tinue to ignore the confound of HRF variability in their find-

ings. We hope that our study encourages researchers to

overcome this perplexing lack of attention to HRF variability

while estimating resting-state fMRI FC. Literature on fMRI

FC has been increasing exponentially (1435 publications in

2016 alone and 1241 in 2017 up to September), yet an aware-

ness of the confound of HRF variability has not emerged, and

almost all studies ignore HRF variability in their analysis.

The focus of this work was primarily to identify the

impact of HRF variability on FC at the individual-subject

level (or intra-subject variability) in a healthy population.

Intra-group inter-subject variability and inter-group variabili-

ty could be topics of future investigation. Such studies have

begun to emerge with recent papers reporting confounds in

inter-group resting-state FC differences in a cohort of soldiers

with and without PTSD (post-traumatic stress disorder) and

mTBI (mild traumatic brain injury).5,28 Future studies could

also study the effect of HRF variability on FC at the whole-

brain level in the healthy brain, as well as characterize the

impact of HRF variability in specific psychiatric disorders.

Although the HRF is not grounded purely on neural activ-

ity, it is worthwhile to note that it is not useless noise, but an

information-carrying biological measurement.5 HRF estimates

(using fMRI) are not direct biophysical measurements, much

like other derived fMRI measures (e.g., connectivity, activa-

tions), hence some degree of uncertainty (as estimates) is asso-

ciated with them. With this limitation in the background, we

encourage researchers to use hemodynamic deconvolution

during data pre-processing to minimize (even if it may not be

possible to completely eliminate) the impact of HRF variabili-

ty on fMRI connectivity modeling. Our findings are not lim-

ited to the deconvolution technique used in this work, and

researchers could use other established deconvolution

techniques45–48 to likely arrive at similar conclusions. Finally,

it is notable that unlike RH, fMRI temporal resolution signifi-

cantly matters for accurate TTP and FWHM estimation, with

their resolution limited by acquisition repetition time (TR).

With the recent advent of fast fMRI techniques, data can be

acquired with TRs of up to 400 ms compared to a TR of 1 s

used in our study. We recommend future studies focusing on

HRF analysis to acquire data at finer temporal resolution.

5 | CONCLUSIONS

Functional MRI being an indirect measure of neural activity,

non-neural factors must be carefully accounted for while
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interpreting fMRI findings. These non-neural factors express

through variability in HRF across brain regions and subjects,

rendering fMRI findings to be less reliable. Using both simu-

lations (where the ground truth is known) as well as whole-

brain resting-state fMRI from a 7T MRI scanner, we tested

the hypothesis that such HRF variability causes false func-

tional connections to be inferred. We found evidence in sup-

port of our hypothesis. With simulations, we found that RH

and TTP could independently cause a change of up to 50%

in FC, whereas FWHM could cause about 5% change. With

experimental data, we found significantly different FC

between deconvolved and non-deconvolved data, with HRF

parameters also being significantly different between the cor-

responding regions, therefore attributing the altered connec-

tivities to undesirable HRF variability. On average, HRF

variability resulted in an error of 14.7% in FC using a best-

case scenario where outliers are eliminated. Several pseudo-

positive and pseudo-negative connections were found within

the DMN, with more pseudo-positives identified. Pseudo-

positives are more detrimental to fMRI analysis than pseudo-

negatives. In addition, most of the connections were between

different lobes, owing to the fact that the underlying neuro-

chemistry and vascular structure are more heterogeneous

across distant and distinct regions. We showed that even a

less noisy and less variable HRF could lead to considerable

confounds in FC estimates. We conclude that HRF variabili-

ty could cause potentially false functional connections to be

identified in the brain. To the best of our knowledge, this is

the first systematic study on the impact of HRF variability

on resting-state FC in healthy individuals. These findings

have enormous implications in the analysis and interpretation

of fMRI data. FC findings from non-deconvolved data must

be interpreted with caution. Researchers are encouraged to

perform hemodynamic deconvolution during pre-processing

to minimize HRF variability. The deconvolution code and all

data associated with this article are made publicly avail-

able.34 In the future, we plan to publish a user-interface-

based toolbox to perform deconvolution.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the

online version of this article.

FIGURE S1 Simulation results for empirical assessment of

percentage change in functional connectivity (DFC)

between neural and BOLD time series caused by difference

in HRF parameters (DRH, DTTP, DFWHM) between the

corresponding 2 time series, across all possible physiologi-

cally plausible values of these HRF measures. The results

are presented for 4 different sampling rate (TR) values:

0.5, 1, 1.5, and 2 s. A similar figure in the main document

(Figure 3) presented results only for TR5 1 s. (A) DFC

versus DRH (RH resolution5 0.25%). (B) DFC versus

DTTP (TTP resolution5 0.25s). (C) DFC versus DFWHM
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(FWHM resolution5 0.25 s). (D) DFC versus absolute

value of neural FC (FC resolution5 0.25). Error bars show

1 SD above and below the mean. Figure-S1a does not

show error bars because the error bars would mask the

mean curve if used; nonetheless, the SDs are nearly identi-

cal to the ones visible in Figure 3A. The physiologically

plausible lower and upper bounds of HRF parameters were

obtained from Handwerker et al.2 There was no significant

impact of TR, except with FWHM at 1 s (corrected

P< 0.05). We observed robust and nearly linear positive

relationship between DFC and change in HRF parameters.

Up to 50% change in FC was observable because of either

RH or TTP variability. Also smaller FC values were more

vulnerable to HRF variability. RH, response height; TTP,

time-to-peak; FWHM, full-width at half-max; FC, func-

tional connectivity; TR, repetition time

FIGURE S2 Comparing the frequency spectra (power spec-

tral density) of deconvolved and non-deconvolved data,

obtained from the entire data set. (A) Mean spectra: we

noticed them to be nearly overlapping. (B) Spectra with SDs,

along with the zoomed inlet showing the location of 220 dB

upper cut-off power (100 times attenuation with respect to

the peak). We can observe that the SDs were large compared

to mean difference at that point, which is why they were not

significant (P> 0.05). The two spectra were found to not

differ

TABLE S1 The 58 ROIs of the default mode network

used in this work, which was adopted from Power et al.21

The MNI coordinates of each ROI are provided, along

with ROI name obtained from Talairach Daemon (http://

www.talairach.org/daemon.html). Each ROI was defined as

a sphere of radius 5mm around the centroid of each ROI.

Averaged time series obtained from all voxels in each ROI

were used for further analysis

TABLE S2 Significant connections (P< 0.05, Bonferroni

corrected) with functional connectivity being higher with

deconvolved data compared to non-deconvolved data

(pseudo negatives). The MNI coordinates and names of the

corresponding ROIs can be obtained from Table S1

TABLE S3 Significant connections (P< 0.05, Bonferroni

corrected) with functional connectivity being higher with

non-deconvolved data compared to deconvolved data

(pseudo-positives). The MNI coordinates and names of the

corresponding ROIs can be obtained from Table S1
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