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Hemolytic diseases characterized by intravascular hemoly-

sis are associated with a state of endothelial dysfunction 

leading to vasomotor instability and ultimately producing a 

proliferative vasculopathy.1 Enhanced expression of adhesion 

molecules on the endothelial wall, high levels of circulating 

proinflammatory cytokines and activated leukocytes, pro-oxi-

dant stress, and coagulopathy have been reported in patients 

suffering from several hemolytic diseases, including parox-

ysmal nocturnal hemoglobinuria, sickle cell disease (SCD), 

thalassemias, and hereditary spherocytosis.2–4 Oxidative stress 

plays a central role in promoting vascular inflammation, pri-

marily through the induction of adhesion molecules on the 

vascular endothelium and the promotion of monocyte and 

neutrophil activation.5,6
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Heme represents a major source of reactive oxygen species 

(ROS) in hemolytic patients. Because of enhanced rates of 

red blood cell hemolysis, the endothelium of these patients is 

exposed to high levels of ROS catalyzed by plasma hemoglobin, 

heme, and free iron.7,8 High levels of ROS lead to lipid, protein, 

and DNA damage and eventually to cell death, and they favor 

endothelial activation6–9 and leukocyte recruitment, thus 

promoting a chronic inflammatory state.10 In these hemolytic 

anemias, the presence of circulating free hemoglobin that 

avidly buffers nitric oxide (NO) and the generation of ROS 

that oxidatively inactivate NO result in reduced bioavailability 

of the main biovasodilator NO and abnormal vascular 

homeostasis, leading to endothelial dysfunction.1,11

Mammals have evolved a tissue and vasculoprotective pro-

gram of heme metabolism that includes the plasma hemoglobin 

(Hb)/heme scavengers haptoglobin and hemopexin (Hx) and 
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the cellular enzyme heme oxygenase (HO)-1.12–14 Haptoglobin 

and Hx, by binding with high-affinity Hb and heme, respec-

tively, block their pro-oxidant effect. HO-1 degrades the heme 

ring into iron, carbon monoxide, and biliverdin,15 thus exert-

ing primary anti-inflammatory, antioxidant, and antiapoptotic 

effects.12,13,16 In hemolytic diseases, the high rate of hemolysis 

results in the saturation and depletion of the plasma Hb/heme 

scavenging systems17 and leads to a buildup of Hb and heme in 

the circulation that mediates pro-oxidant and proinflammatory 

effects on vessel endothelial cells.18

Although many mechanisms contribute to the com-

plex pathophysiology of hemolytic diseases as SCD and 

β-thalassemia, a unifying theme is represented by the dys-

function of the vascular endothelium and the highly pro-oxi-

dant plasma environment.1,19–22

SCD is characterized by recurring episodes of painful vaso-

occlusion, leading to ischemia/reperfusion injury and organ 

damage.6,23 Endothelial dysfunction, inflammation, and acti-

vated monocytes, neutrophils, platelets, and dense red cells all 

contribute to sickle cell crisis.4,23 β -Thalassemia is frequently 

complicated by thromboembolic events resulting from coagula-

tion abnormalities and damaged red cells exposing phosphati-

dylserine, to which endothelial activation and oxidative stress 

strongly contribute.3,23,24 Moreover, severe forms of SCD and 

β-thalassemia require a blood transfusion regimen that further 

increases the amount of circulating Hb/heme, thus exacerbat-

ing oxidative stress.25,26 Although an iron chelation therapy is 

routinely associated with a transfusion regimen,27,28 no heme 

chelation therapy has been developed to date that specifically 

prevents heme-induced endothelial damage and oxidative stress.

We previously showed that heme-overloaded Hx-null mice 

suffered from endothelial damage and vascular congestion, thus 

highlighting the critical role of Hx in preventing vascular dam-

age.29 Therefore, we hypothesized that Hx could be administered 

as a drug in hemolytic diseases to prevent heme-driven endothe-

lial dysfunction and oxidative injury. To test this hypothesis, we 

chose 2 mouse models of SCD and β-thalassemia,30–32 and we 

evaluated the effect of an Hx-based therapy in these animals.

Our findings support the hypothesis that the replenishment 

of the plasma Hx pool by exogenous Hx administration is ben-

eficial in preventing endothelial dysfunction and ameliorating 

the vasculopathy in hemolytic disorders.

Methods

Mice Treatment
Hx-null mice, knock-in sickle hemoglobin (HbS) SCD mice, and  
Hbbth1/th1 β-thalassemia mice were described previously.30–33 SV129 
wild-type and Hx-null mice were injected in the tail vein with  
30 μmol/kg freshly prepared hemin. Hx treatment in SCD and  
β-thalassemic mice was performed by injecting 700 μg purified 
human Hx (Athens Research) intraperitoneally twice a week for  
1 month beginning at 1 month of age. All experiments were approved 
by the animal studies committee of the University of Torino (Italy).

Cell Treatment
Hemin chloride was dissolved in dimethyl sulfoxide to obtain a 
4-mmol/L stock solution, diluted, and mixed 1:1 with human serum 
albumin (Sigma-Aldrich) or Hx. Human umbilical vein endothelial 
cells (HUVECs) and primary hepatocytes were treated with heme-
albumin or heme-Hx 5 to 10 μmol/L in culture medium.

Heme and Iron Content
Heme content in tissues and bile was quantified fluorometrically by 
the method of Sassa. Tissue non–heme-iron content was determined 
by a colorimetric method using 4,7-diphenyl-1, 10-phenantroline di-
sulfonic acid (Sigma) as chromogen.

Lipid Peroxidation Assay
Lipid peroxidation from tissue extracts was measured with the 
colorimetric assay kit Bioxytech LPO-586 from Oxis International 
(Portland, OR)29 according to the manufacturer’s instructions.

HO Activity Assay
HO activity was measured by spectrophotometric determination of 
bilirubin produced from hemin added as substrate.

ROS Production Assay
Accumulation of ROS in HUVECs and aortic rings was assessed by 
use of the fluorescent oxidant-sensitive dye 29,79-dichlorodihydro-
fluoroscein diacetate (H

2
DCFDA; Molecular Probes, Eugene, OR).

Annexin V/Propidium Iodide Staining
After treatment, HUVECs were double stained with fluorescein iso-
thiocyanate–conjugated annexin V and propidium iodide for 15 min-
utes at room temperature and then analyzed by flow cytometer.

NO Synthase Activity Assay
Activity of NO synthase (NOS) in liver and aorta extracts was deter-
mined by monitoring the conversion of L-[3H]arginine to L-[3H]citrul-
line with the NOS Activity Assay Kit N.781001 (Cayman Chemical 
Company). The reaction was performed following the manufacturer’s 
instructions. Results were expressed as picomoles of citrulline per 
minute per gram of tissue.

Blood Pressure Measurement
Heart rate and systolic, diastolic, and mean blood pressures were 
measured in conscious mice with a noninvasive computerized tail 
cuff system (CODA, Kent Scientific Corp).

Echocardiography
Mice were anesthetized with 1% isoflurane and analyzed with a 
Vevo770 High Resolution Imaging System (Visual Sonics Inc, 
Toronto, ON, Canada). Echocardiographic parameters were mea-
sured in the long-axis M mode. Cardiac function was assessed when 
the heart rate was 500 to 600 bpm.

Statistical Analysis
Results were expressed as mean±SEM. Comparisons between 2 
groups were performed with 2-sided Welch t tests and among >2 
groups with 1- or 2-way ANOVA (with repeated measures when 
the same mice are measured in different conditions) followed by 
the Bonferroni posttest. Specific comparisons were performed 
by reverting to t tests and adjusting the P values with Bonferroni 
correction. The statistical tests and the numbers of comparisons used 
for each panel of each figure are reported in Table I in the online-only 
Data Supplement. A value of P<0.05 was considered significant.

Further details on methods are reported in the online-only Data 
Supplement.

Results

β-Thalassemic and SCD Mice Show Vascular 
Dysfunction Associated With Hx Depletion and 
Serum Heme Overload

Both β-thalassemia and SCD patients experience a condition 

of vascular dysfunction.1 We confirmed that this also occurred 
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in mouse models of these diseases. Both β-thalassemic and 

SCD mice showed evident signs of increased endothelial acti-

vation, enhanced oxidative stress, reduced NO bioavailabil-

ity, and inflammation (Figure 1A–1D), hallmarks of vascular 

dysfunction. The phenotype of thalassemic and SCD mice 

resembles that of heme-overloaded Hx-null mice, showing 

increased endothelial activation and oxidative stress, altered 

vascular permeability, inflammation,29 and vascular antioxi-

dant response hyperactivation (not shown). The comparison 

suggests that in β-thalassemia and SCD, heme overload con-

sequent to hemolysis and plasma Hb and heme scavengers 

consumption may contribute to the observed vasculopathy 

and indicates that, although these pathologies have spe-

cific clinical outcomes, they share hemoglobinemia-related 

sequelae.2 Consistently, in the serum of both thalassemic 

and SCD mice, haptoglobin and Hx were almost completely 

depleted (Figure 1E), as occurs in human patients.17 This was 

associated with a significant increase in serum heme levels 

(thalassemic, 75 versus 20 μmol/L; SCD, 110 versus 55 

μmol/L; Figure 1F).

The Lack of Hx Favors Heme Loading in the 
Vascular Endothelium
To understand how heme overload consequent to Hx con-

sumption may concur to vascular dysfunction, we took 

advantage of the model of heme-overloaded Hx-null mice 

that, as reported in the previous section, mimics the Hx deple-

tion and serum heme overload occurring in β-thalassemia 

and SCD.

Quantification of the heme content in the aortas from wild-

type and Hx-null mice injected intravenously with 35 μmol/

kg hemin revealed that in the absence of Hx, a greater amount 

of heme accumulated in vessels (Figure 2A). Consistently, 

the heme-degrading enzyme HO-1, as well as L-ferritin 

and ferroportin, involved in heme-derived iron storage and 

export, respectively, was induced to a higher extent in the 

aorta of heme-treated Hx-null mice than in that of the wild-

type counterpart (Figure 2B–2D). Heme overload in vessels 

of Hx-null mice was associated with an enhanced induction 

of vascular cell adhesion molecule-1 and a strong increase in 

intracellular ROS (Figure 2E–2G).

NOS activity was significantly reduced in aortas from 

heme-treated Hx-null mice but not in the wild-type coun-

terpart, suggesting reduced NO production in Hx-null endo-

thelium (Figure 2H). Moreover, nitrotyrosine formation was 

significantly higher in both the aorta and serum of Hx-null 

mice compared with wild-type mice after heme injection, 

suggesting an oxidative consumption of NO and indicating 

an increased production of reactive nitrogen species in the 

absence of Hx (Figure 2I and 2L).

Figure 1. β-Thalassemic (β-Thal) and sickle cell disease (SCD) mice show vasculopathy associated with hemopexin (Hx) depletion and 
serum heme overload. Data on wild-type (Wt) and β-Thal mice and normal hemoglobin (HbA) and sickle hemoglobin (HbS) mice are 
shown on the left and right, respectively. A, Endothelial activation in β-Thal and HbS mice. Western blot showing vascular cell adhesion 
molecule-1 (VCAM-1) and E-selectin protein expression in aorta and quantitative reverse transcription–polymerase chain reaction analysis 
showing intercellular adhesion molecule-1 (ICAM-1)/P-selectin and E-selectin mRNA levels in liver. AU indicates arbitrary units; and RQ, 
relative quantity. B, Oxidative stress in vessels of β-Thal and HbS mice as evinced by superoxide dismutase 1 (SOD1) protein expression 
and reactive oxygen species (ROS) production. C, Reduced availability of active nitric oxide (NO) in vessels of β-Thal and HbS mice as 
demonstrated by an increased amount of nitrated proteins and reduced NO synthase (NOS) activity. D, Increased inflammation in β-Thal 
and HbS mice demonstrated by increased leukocyte number. E and F, Representative Western blots showing haptoglobin (Hp), Hx, and 
heme content in the serum of β-Thal and HbS mice. Wild type (Wt), HbA, n=4; β-Thal, HbS, n=8. Values represent mean±SEM. *P<0.05; 
**P<0.01; ***P<0.001.
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Hx Limits Heme Uptake by Endothelial Cells
Data in the previous section strongly support the conclusion 

that Hx limits heme uptake by the vascular endothelium. To 

demonstrate this, we measured heme uptake in HUVECs 

incubated with 7.5 μmol/L heme bound to albumin or Hx in 

a 1:1 ratio. After 30 minutes of incubation, heme levels were 

significantly higher in HUVECs treated with albumin-heme 

than in those treated with Hx-heme (Figure 3A), proving 

that Hx strongly limits heme uptake by endothelial cells. 

Consistent with in vivo findings, incubation of HUVECs 

with Hx-heme blunted the upregulation of HO-1, L-ferritin, 

and ferroportin (Figure 3B–3D), as well as the induction of 

adhesion molecules such as intercellular adhesion molecule-1 

and E-selectin, compared with incubation with albumin-heme 

(Figure 3E and 3F). Furthermore, treating HUVECs with 

the Hx-heme complex slightly modulated inducible NOS 

mRNA levels and endothelial NOS phosphorylation, whereas 

they were strongly increased after treatment with albumin-

heme (Figure 3G and 3H). The upregulation of inducible 

NOS and the increased endothelial NOS phosphorylation 

Figure 2. The lack of hemopexin (Hx) favors heme loading in the vascular endothelium. A, Heme content in aorta of wild-type and Hx-null 
mice 5 hours after heme injection (not-treated [NT], n=4; heme, n=5). B through E, Quantitative reverse transcription–polymerase chain 
reaction analysis of heme oxygenase-1 (HO-1), L-ferritin, ferroportin (FPN), and vascular cell adhesion molecule-1 (VCAM-1) mRNA levels 
in the aorta of wild-type (Wt) and Hx-null mice 5 hours after heme injection (NT, n=4; heme, n=5). F, Representative Western blot showing 
VCAM-1 expression, (G) reactive oxygen species (ROS) production assay (NT, n=6; heme, n=9), and (H) nitric oxide synthase (NOS) activ-
ity (NT, n=3; heme, n=5) in aorta from Wt and Hx-null mice 5 hours after heme injection. I and L, Representative Western blots showing 
nitrotyrosine formation in aorta and serum from Wt and Hx-null mice 5 hours after heme injection (NT, n=3; heme, n=5). Results shown 
are representative of 3 independent experiments. Values represent mean±SEM. *P<0.05; **P<0.01.
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in albumin-heme treated cells plausibly occur as an attempt 

to compensate for the reduced NOS activity and increased 

NO oxidative consumption, as described above in aorta 

from heme-loaded Hx-null mice. In contrast to albumin, 

Hx strongly suppressed heme-induced ROS generation and 

oxidative stress in HUVECs (Figure 3I–3M). As a result, Hx 

limited heme-induced endothelial cell death (Figure 3N).

Taken together, these data confirmed the in vivo results and 

further proved that Hx prevents endothelial heme overload. 

Similarly, Hx limited heme uptake by vascular smooth muscle 

cells in vitro (not shown).

Hx Prevents Endothelial Heme Loading and 
Toxicity by Promoting Hepatic Heme Detoxification
Data reported in the previous paragraph suggest that Hx 

may very efficiently counteract heme loading and toxicity 

on the vascular endothelium. To address the specific mecha-

nism through which heme is inactivated after Hx binding, 

Figure 3. Hemopexin (Hx) limits heme uptake by human umbilical vein endothelial cells (HUVECs). A, Heme uptake in HUVECs incubated 
with 7.5 μmol/L Hx-heme or human serum albumin (HSA)–heme for 15, 30, or 60 minutes (n=5). B, D, E through G, and I, Quantitative 
reverse transcription–polymerase chain reaction analysis of heme oxygenase-1 (HO-1), ferroportin (FPN), intercellular adhesion molecule-1 
(ICAM-1), E-selectin, inducible nitric oxide synthase (iNOS), and xanthine oxidase mRNA levels in HUVECs incubated with 7.5 μmol/L Hx-
heme or HSA-heme for 4 hours (n=6). C, H, and L, Representative Western blots of HO-1 and L-ferritin expression, phosphorylated endo-
thelial nitric oxide synthase (P-eNOS) and eNOS expression, and superoxide dismutase 1 (SOD1) expression in HUVECs incubated with 7.5 
μmol/L Hx-heme or HSA-heme for 4 hours (n=3). M and N, Representative fluorescence-activated cell sorted analysis of H

2
DCFDA fluores-

cence and annexin V/propidium iodide (PI) staining in HUVECs treated with 10 μmol/L Hx-heme or HSA-heme for 20 hours (n=5). Values rep-
resent mean±SEM. Results shown are representative of 3 independent experiments. NT indicates not treated. *P<0.05; **P<0.01; ***P<0.001.
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we analyzed heme-overloaded Hx-null mice and found that 

these animals had a defect in hepatic heme accumulation 

and catabolism. As shown in Figure 4A and 4B, heme load-

ing in the liver and in isolated hepatocytes was strongly 

reduced in heme-overloaded Hx-null mice compared with 

wild-type controls. Measurement of heme uptake on pri-

mary hepatocytes confirmed that heme entered very effi-

ciently into these cells if bound to Hx but not if bound to 

albumin (Figure 4C).

Consistently, HO-1 protein was induced to a significantly 

lower extent in the liver of heme-overloaded Hx-null mice than 

in the liver of wild-type animals, and this correlated with a 

lower HO activity and a reduced induction of H- and L-ferritin 

(Figure 4D–4F) indicating that after heme overload, Hx-null 

liver produced less carbon monoxide and biliverdin and 

accumulated less iron. This was further demonstrated by the 

reduced bilirubin excretion into the bile of heme-overloaded 

Hx-null mice compared with wild-type animals (Figure IIa in 

the online-only Data Supplement). Consistent with data on 

bilirubin excretion, heme-overloaded Hx-null mice excreted 

a lower amount of intact heme into the bile compared with 

wild-type animals (Figure IIb and IIc in the online-only Data 

Supplement; additional data on hepatic heme metabolism in 

both the Results section and Figures I–III in the online-only 

Data Supplement).

Together, these data indicate that the lack of Hx in serum 

significantly affects the liver heme detoxifying potential and 

explain why in these conditions heme excess remains in the 

bloodstream, thus causing endothelial cell damage.

Hx Therapy Suppresses Heme-Driven Endothelial 
Activation in β-Thalassemic and SCD Mice
Data shown in the previous sections clearly linked vascular 

dysfunction to heme overload not buffered by plasma Hx. 

Because we observed that thalassemic and SCD mice expe-

rienced a condition of vascular damage associated with heme 

overload and Hx consumption (Figure 1), we hypothesized 

that an Hx-based therapy might be beneficial in hemolytic 

pathologies to limit endothelial dysfunction by increasing 

hepatic heme detoxifying potential.

To test this hypothesis, we treated 1-month-old thalassemic 

and SCD mice with 700 μg purified human Hx twice a week 

for 1 month, and at the end of the treatment, we analyzed 

the aortic endothelium. In Hx-treated thalassemic and SCD 

mice, we observed that iron accumulation was strongly 

reduced in the aortic endothelium and in the heart (Figure 5A 

and 5B), thus demonstrating that the exogenous Hx reduced 

endothelial heme loading in these mouse models of hemolysis. 

Accordingly, HO-1 was not induced in aortas of Hx-treated 

anemic mice, which correlated with an attenuated oxidative 

stress and with the reduced induction of adhesion molecules 

both in large vessels and in tissue vasculature (Figure 5C–5E).

Endothelial NOS mRNA level and NOS activity were increased 

whereas nitrotyrosine formation was strongly suppressed in aorta 

Figure 4. Hemopexin (Hx) promotes heme uptake and detoxification by the liver. A, Heme content in liver of wild-type (Wt) and Hx-null 
mice at different time points after heme injection (not treated [NT], n=4; 1 hour, n=3; 3 hours, n=6; 5 hours, n=5; liver: Hx−/−NT vs +heme, 
*P<0.05). B, Heme content in hepatocytes isolated from heme-overloaded Wt and Hx-null mice 1 and 3 hours after heme injection (NT, 
n=3; 1 hour, n=6; 3 hours, n=7). C, Heme content in primary hepatocytes treated with 5 μmol/L Hx-heme or human serum albumin (HSA)–
heme in a 1:1 ratio for 30 minutes (n=11). D, Representative Western blot showing heme oxygenase-1 (HO-1) expression in total liver 
extracts from Wt and Hx-null mice 6 hours after heme injection (NT, n=3; heme, n=6). E, HO activity in hepatocytes isolated from Wt and 
Hx-null mice 1 and 3 hours after heme injection (n=4). F, Representative Western blots showing H- and L-ferritin expression in isolated 
hepatocyte extracts from Wt and Hx-null mice 6 hours after heme injection (NT, n=3; heme, n=6).Values represent mean±SEM. *P<0.05; 
**P<0.01; ***P<0.001.
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of Hx-treated animals compared with untreated ones (Figure 5F 

and 5G), thus suggesting an increased availability of bioactive 

NO after Hx treatment. Similar to what occurs in large vessels, 

NOS activity was strongly suppressed in the liver of untreated 

animals and restored to normal levels after Hx administration, 

indicating that the whole vasculature was positively affected 

by Hx therapy (Results and Figure IV in the online-only Data 

Supplement). The same parameters were analyzed in Hx-treated 

wild-type and HbA mice, and no significant effect of exogenous 

Hx was detected in these animals (not shown).

Thus, Hx administration successfully alleviates heme-

induced endothelial alterations in thalassemic and SCD mice.

Hx-Mediated Endothelial Protection in  
β-Thalassemic and SCD Mice Is Due to an 
Enhanced Hepatic Heme Detoxification
We asked whether the Hx protective effect on the endothe-

lium of thalassemic and SCD mice was due specifically to 

the enhancement of their hepatic heme detoxifying potential 

mediated by exogenous Hx.

Figure 5. Hemopexin (Hx) therapy suppresses heme-driven endothelial activation in β-thalassemic (β-Thal) and sickle cell disease (SCD) 
mice. Data on wild-type (Wt), β-Thal, and Hx-treated β-Thal mice and normal hemoglobin (HbA), sickle hemoglobin (HbS), and Hx-treated 
HbS mice are shown on the left and right, respectively. A, Representative Western blot analysis of L-ferritin expression in aorta. B, Heart 
iron content. C, Representative Western blot showing heme oxygenase-1 (HO-1) expression in aorta. D, Representative Western blot show-
ing superoxide dismutase 1 (SOD1) expression (left) and reactive oxygen species (ROS) production (right) in aorta. E, Representative West-
ern blot showing vascular cell adhesion molecule-1 (VCAM-1) expression in aorta and quantitative reverse transcription–polymerase chain 
reaction (qRT-PCR) analysis of E-selectin and intercellular adhesion molecule-1 (ICAM-1)/P-selectin mRNA levels in liver. F, qRT-PCR analy-
sis of endothelial nitric oxide synthase (eNOS) mRNA level (left) or calcium-dependent NOS activity (right) in extracts of aorta (n=4). Calcium-
dependent NOS activity assay measures the activity of both inducible NOS (iNOS; calcium independent) and eNOS (calcium dependent), 
with eNOS being the most abundant NOS expressed in aorta. G, Representative Western blot showing nitrotyrosine formation in extracts of 
aorta. n=4. Values represent mean±SEM. Results shown are representative of 3 independent experiments. *P<0.05; **P<0.01; ***P<0.001.
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 Analysis of heme-overloaded Hx-null mice demonstrated 

that exogenous human Hx was able to fully rescue their hepatic 

heme recovery capacity (Results and Figure V in the online-

only Data Supplement). In Hx-treated thalassemic and SCD 

mice, we observed that iron accumulated in a significantly 

higher amount in the liver compared with untreated animals 

(Figure 6A). In these animals, Hx administration consistently 

reduced the amount of circulating heme (not shown) and total 

bilirubin (Figure VIa in the online-only Data Supplement) 

while enhancing HO-1 mRNA levels in the liver (Figure 6B), 

as well as bilirubin and heme excretion in the bile (Figure VIb 

and VIc in the online-only Data Supplement).

Together, these data demonstrated that Hx therapy enhanced 

liver detoxifying potential and restored iron homeostasis 

in thalassemic and SCD mice. This was associated with an 

attenuated oxidative stress, improved control of the inflam-

matory response, and amelioration of the liver status (Figure 

6C–6F). On the other hand, we did not observe changes in red 

cell indexes in Hx-treated mice from both mouse strains com-

pared with baseline values (Table II in the online-only Data 

Supplement).

Hx Therapy Normalizes Blood Pressure and 
Improves Cardiac Function in SCD Mice
Our results in anemic mice showing enhanced endothelial 

activation and reduced NO bioavailability support the idea 

that these animals could have altered cardiovascular func-

tion. It has consistently been reported recently that 10- to 

14-month-old thalassemic mice show left ventricular hyper-

trophy and decreased fractional shortening and ejection frac-

tion.34 Because our data on endothelium (Figure 5) indicated 

that the damage was worse in SCD mice, we supposed that 

cardiac function might become altered earlier in these ani-

mals. Indeed, measurement of blood pressure and echocar-

diography analysis on 2-month-old SCD mice demonstrated 

that HbS mice were hypertensive compared with HbA con-

trols, showing a 1.6-fold increase in mean arterial blood pres-

sure (Figure VIIa in the online-only Data Supplement). An 

enhancement of both systolic and diastolic pressures contrib-

uted to an increase in mean arterial blood pressure, as shown 

in Figure VIIb in the online-only Data Supplement. Moreover, 

SCD mice showed increased cardiac output and aortic valve 

peak pressure that were 2.8- and 4.5-fold higher, respectively, 

Figure 6. Hemopexin (Hx) therapy promotes hepatic heme detoxification in β-thalassemic (β-Thal) and sickle cell disease (SCD) mice. Data 
on wild-type (Wt), β-Thal, and Hx-treated β-Thal mice and normal hemoglobin (HbA), sickle hemoglobin (HbS), and Hx-treated HbS mice are 
shown on the left and right, respectively. A, Iron content and (B) quantitative reverse transcription–polymerase chain reaction (qRT-PCR) 
analysis of heme oxygenase-1 (HO-1) mRNA level in liver. C, Liver malondialdehyde content. D, qRT-PCR analysis of NAD(P)H dehydroge-
nase, quinone 1 and γ-Glutamylcysteine synthetase mRNA levels and (E) of tumor necrosis factor-α (TNFα) and interleukin-6 (IL-6) mRNA lev-
els in liver. n=4. Values represent mean±SEM. Results shown are representative of 3 independent experiments. *P<0.05; **P<0.01; ***P<0.001. 
F, Representative liver sections stained with hematoxylin and eosin. Arrows indicate sites of cell necrosis (left), evident in β-Thal mice but not 
in Hx-treated animals, and leukocyte aggregates (right), the number of which was strongly reduced by Hx administration in SCD mice.
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compared with HbA mice (Figure VIIc and VIId and Table III 

in the online-only Data Supplement). Increased blood pres-

sure and cardiac output35 were found to be associated with an 

increased hypertrophic response and a significant reduction in 

myocardial performance36 (Table III in the online-only Data 

Supplement).

Because we demonstrated that Hx therapy decreased ROS 

production and NO oxidative consumption in the vascular 

endothelium of SCD mice, we hypothesized that Hx admin-

istration might positively affect cardiovascular function in 

these animals. To test this hypothesis, we monitored blood 

pressure in Hx-treated HbS mice during the therapy. Blood 

pressure was significantly reduced by Hx treatment starting 

from the first administration and almost completely normal-

ized by the fourth injection (Figure 7A). A reduction in both 

systolic and diastolic pressures accounted for blood pressure 

normalization (Figure 7B). This potent antihypertensive effect 

of Hx was further confirmed on 5-month-old HbS mice, which 

showed a full rescue in mean arterial blood pressure after a 

single 3-mg Hx injection (Figure 7C). Accordingly, cardiac 

output and aortic valve peak pressure were restored to nor-

mal values by Hx treatment (Figure 7D–7F and Figure VIII 

and Table III in the online-only Data Supplement). As a result, 

the performance index of the left ventricle was improved in 

Hx-treated HbS mice (Figure 7G).

These data highlight the critical importance of Hx in pre-

venting heme-mediated vascular oxidative stress and in rescu-

ing cardiovascular function in a mouse model of SCD.

Discussion
Here, we showed that Hx infusion alleviates heme-induced 

endothelial activation and maintains vascular homeostasis in 

2 mouse models of β-thalassemia and SCD, thus suggesting 

important implications for the therapeutic use of Hx to treat 

vasculopathy in hemolytic disorders. Moreover, we reported 

that in SCD mice vascular damage was associated with altered 

cardiac function, which was restored by Hx therapy. These 

data demonstrate that heme has a strong impact on cardiovas-

cular function and highlight the efficacy of a therapy specifi-

cally aimed at chelating free heme.

Figure 7. Hemopexin (Hx) administration normalizes blood pressure and improves cardiac function in sickle cell disease (SCD) mice. A, 
Mean arterial pressure in 1-month-old normal hemoglobin (HbA), sickle hemoglobin (HbS), and Hx-treated HbS mice measured before 
and during treatment (0.7 mg Hx in each injection; n=5). HbA vs HbS: ***P<0.001 at each point. B, Systolic and diastolic pressures mea-
sured after the fourth Hx injection (n=5). C, Mean arterial pressure in 5-month-old HbA, HbS, and Hx-treated HbS mice (a single 3-mg 
Hx dose; n=4). D, Representative images of color Doppler on the left ventricular outflow tract (LVOT) in HbA, HbS, and Hx-treated HbS 
mice. E through G, Cardiac output, aortic valve peak pressure, and left ventricular myocardial performance index measured in HbA, HbS, 
and Hx-treated HbS mice by echocardiography (n=6). Values represent mean±SEM. Results shown are representative of 3 independent 
experiments. *P<0.05; **P<0.01; ***P<0.001.
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Hx exerts its protective effect mainly by promoting heme 

recovery and detoxification through HO activity in the liver 

and by limiting heme-iron loading and HO-1 induction37 in 

the vascular endothelium. Patients and mice suffering from 

SCD showed an adaptive upregulation of HO-1 in response to 

hemolysis, which often was insufficient to completely handle 

the excessive heme burden, particularly during acute bouts 

of hemolysis.9 Hx therapy demonstrates that a major benefit 

is obtained by HO activity induction in hepatocytes, likely 

because the liver is well equipped to manage high amounts 

of heme. The enhanced heme-iron accumulation in the liver 

of Hx-treated anemic mice resulted in a strong increase in 

hepatic heme detoxifying potential and in the protection of 

nonhepatic tissues from heme accumulation and its toxic 

effects.38 Indeed, an important outcome of Hx therapy is 

the prevention of heme-iron loading in the vascular endo-

thelium and in the heart. This is clinically relevant because 

hemolysis-driven iron overload, further exacerbated by 

transfusion regimen, strongly contributes to heart failure in 

β-thalassemia patients, representing the most common cause 

of death in these subjects.39

The critical role of heme-driven endothelial activation in 

the pathophysiology of β-thalassemia and SCD has been 

recently recognized, and its contribution to vascular instability 

and vaso-occlusive events has been described.5,9,40,41 Because 

of chronic hemolysis, vessels of thalassemic and SCD 

patients are exposed to great amounts of ROS catalyzed by 

heme-derived redox-active iron1,5,6,8 that lead to endothelial 

activation and adhesion molecule expression on the vessel 

wall, which in turn favors the adhesion of red blood cells 

and leukocytes, resulting in vascular instability and vaso-

occlusion.9,40–42 Serum heme overload properly correlates with 

the increased tissue oxidation and antioxidant response and 

with endothelial activation, inflammation, and plasma Hb/

heme scavenger depletion.

Here, we demonstrated that Hx administration, by scaveng-

ing free heme, alleviates heme-induced tissue oxidative injury 

and limits the induction of adhesion molecules, the formation 

of ROS in the vascular endothelium, and the production of 

proinflammatory cytokines in both β-thalassemia and SCD 

mouse models. This indicates that Hx may confer protection 

against heme-driven endothelial activation, oxidative stress, 

and inflammation.43

The vascular dysfunction common to both β-thalassemia 

and SCD is further amplified by the reduced bioavailability of 

NO as major vasodilator, resulting in imbalance of vascular 

tone toward vasoconstriction.4,11,22,44,45 In β-thalassemia 

and SCD, consumption/inactivation of NO is accelerated 

by the synergistic effects of chronic oxidative stress 

and persistent hemolysis.1,4 In these patients, increased 

ROS production is implicated in the NO consumption 

and formation of peroxynitrite (ONOO−) that resulted in 

nitrotyrosine formation.46,47 NOS itself can be uncoupled 

by oxidation of the essential cofactor BH4, and uncoupled 

NOS produces superoxide in place of NO.1 Excessive 

peroxynitrite formation further contributes to NOS activity 

reduction and NOS dimer disruption. Consistently, elevated 

nitrotyrosine levels correlate with impaired NOS activity 

and loss of NOS dimerization in SCD mice.35 Furthermore, 

NO is rapidly destroyed by its reaction to the iron contained 

in free heme/Hb present in the plasma.1 Hemolysis also 

releases red cell arginase-1 into plasma, thus reducing the 

levels of NOS substrate and L-arginine and further limiting 

NO bioavailability.1,4,11 As a result, in these pathological 

conditions, vascular endothelium is likely to be in a 

perpetually activated state because of chronic oxidative stress 

and reduced NO consequent to hemolysis. Agents directed 

at restoring NO homeostasis could be promising to alleviate 

vascular instability in patients suffering from β-thalassemia 

and SCD. Here, we observed enhanced NOS activity in the 

vascular endothelium of Hx-treated thalassemic and SCD 

mice, suggesting that Hx could promote NO production 

by reducing the oxidative consumption of NOS cofactors 

and NOS uncoupling. Moreover, Hx treatment reduced 

nitrotyrosine formation, a footprint of NO-ROS interaction 

and peroxynitrite production, in both mouse models of 

β-thalassemia and SCD. Together, these results demonstrate 

that, after Hx administration, more NO is produced and less 

NO is oxidatively inactivated in the endothelium, resulting 

in an increased availability of bioactive NO, which could 

be beneficial for counteracting the endothelial dysfunction 

associated with these hemolytic pathologies.

We found that in SCD mice, oxidative stress and reduced 

NO availability are associated with systemic hypertension, 

and Hx therapy, by restoring normal NO levels and reduc-

ing ROS production, normalizes blood pressure. This strong 

antihypertensive effect of Hx suggests the possibility of using 

Hx-based drugs to counteract the systemic vasoconstriction 

promoted by free heme.

Although traditionally associated with systemic vasocon-

striction, endothelial dysfunction was recently proposed to 

play a central role even in heart failure pathogenesis. The fail-

ing heart is characterized by an altered redox state with ROS 

overproduction, and increasing evidence suggests that the 

abnormal cardiac and vascular phenotypes characterizing the 

failing heart are caused in large part by imbalances between 

NO bioavailability and oxidative stress.48 Our results are con-

sistent with these findings in that we showed that low NO and 

high ROS in SCD mice were associated with impaired cardiac 

performance. Our data strengthen the central role of heme in 

triggering these processes. Taking into account that heme is 

released not only during hemolysis associated with hemo-

globinopathies but also after ischemia/reperfusion injury and 

cardiac remodeling, these observations could be of a broader 

importance.

The administration of antioxidants,49,50 endothelial 

activation inhibitors,51 or NO donors52,53 has been shown to 

positively affect vascular function in hemolytic diseases. In 

this scenario, Hx therapy could contribute to restoration of 

cardiovascular homeostasis, targeting multiple steps involved 

in the pathogenesis of vasculopathy and consequent cardiac 

decay. Indeed, we showed that in SCD mice Hx treatment not 

only beneficially affected the imbalance between vasodilator/

vasoconstrictor factors but also significantly improved cardiac 

performance.
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Consistent with our results on SCD mice, others have 

recently reported that even thalassemic mice developed car-

diovascular dysfunction with aging,34,45 thus suggesting that 

the deterioration of cardiovascular function may occur more 

slowly in these animals. This is consistent with our data show-

ing milder endothelial damage in thalassemic compared with 

SCD mice and further strengthens the relationship between 

endothelial dysfunction and heart damage. From the observa-

tion that heme overload had similar toxic effects on the endo-

thelium of both mouse models, it is likely that a long-term Hx 

therapy also might beneficially affect cardiovascular function 

in β-thalassemia.

Conclusions
We propose a pivotal role for Hx as a potent free heme scav-

enger to treat vasculopathy related to hemolytic disorders. In 

fact, Hx avoids heme intercalation in cell membranes, thus 

limiting lipid peroxidation, cell oxidative stress, and hemoly-

sis amplification. Moreover, Hx prevents free heme-mediated 

generation of ROS that directly act on the endothelial wall 

and inactivate NO, thus impairing vascular function (Figure 

8). The final outcome of the Hx therapy is the preservation of 

cardiovascular function.

Thus, purified or recombinant Hx might be used pharma-

cologically for the treatment of patients with hemolytic dis-

eases. Because Hx acts as a heme chelator, it could be used 

with iron chelators,28 the administration of which is usually 

associated with blood transfusion25,26 in anemic patients, as a 

specific therapy to counteract heme toxicity, thus enhancing 

the effectiveness of the chelation therapy and preserving car-

diovascular function.
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CLINICAL PERSPECTIVE
Two worldwide-distributed hemolytic anemias are sickle cell disease and β-thalassemia. Both disorders are characterized by 

inflammatory vasculopathy resulting from a complex scenario involving abnormal red cells, neutrophils, proinflammatory 

cytokines, and a highly pro-oxidant plasma environment. The destruction of abnormal red cells induced both intravascular 

and extravascular hemolysis. Intravascular hemolysis is characterized by the presence of an aliquot of plasma free hemoglo-

bin that rapidly losses its heme group, binding the endogenous hemopexin (Hx). Thus, hemolytic anemias are characterized 

by relative Hx deficiency with the presence of circulating toxic free heme. This promotes membrane lipid peroxidation and 

severe cell oxidative stress with the production of reactive oxygen species that act directly on the endothelial wall and inacti-

vate nitric oxide, impairing vascular function. Here, we show that treatment with exogenous Hx promotes heme recovery and 

prevents heme-iron loading in endothelial and heart cells, limiting the induction of heme oxygenase-1, adhesion molecules, 

reactive oxygen species production, and nitric oxide synthase/nitric oxide oxidative inactivation. In sickle cell disease mice, 

Hx reduced blood pressure and restored cardiac output, suggesting a key role for Hx in the protection against heme-induced 

cardiovascular dysfunction. We propose Hx as potent free-heme scavenger to be used as an additional therapeutic tool in the 

treatment of vasculopathy related to hemolytic disorders.
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SUPPLEMENTAL MATERIAL  

 

Supplemental Material and Methods  

 

Mice and treatments 

A mouse strain that underexpresses �-globin chains, the Hbb
th1/th1

 mouse, was used as a model of �-

thalassemia intermedia
1
. This mouse model has arisen as a spontaneous DNA deletion of the β 

major gene
2, 3

. Wild-type animals of the same genetic background were used as controls. As a 

model of SCD, a humanized knock-in mouse in which the murine �-globin  and �-globin genes 

were replaced with human �-globin and with human A� and �
S
 (sickle) globin genes respectively, 

was employed
2
. SCD mice (HbS) were compared to their counterpart carrying the human A� and β 

alleles in homozigosity (HbA).  

Mice used in these studies were 2/3-month-old littermates, maintained on a standard chow diet and 

kept with free access to food and water. All experiments were approved by the animal ethical 

committee of the University of Torino (Italy). 

Hemin and Tin-protoporphyrin IX (Frontier Scientific, Logan, Utah) were freshly prepared as 

previously reported
4
, and injected into the tail vein of wild-type and Hx-null mice at a dose of  

30µmol/kg. Control mice were injected with PBS. Mice were sacrificed at different times after 

hemin injection. Mice were anesthetized, tissue samples collected and kept frozen until analysis. 

Blood was collected by retro-orbital bleeding.  

For rescue experiment, 1500µg of human Hx (Athens Research, GA, USA) were injected iv in Hx-

null mice. After 1 hour, the same mice were subjected to heme injection and sacrificed 60 min later. 

 

Primary Hepatocyte culture preparation  

Hepatocytes were isolated from single hepatic lobules
5
. After liver dissection, the single liver lobe 

was perfused using Hepatocyte Liver Perfusion Medium and then Hepatocyte Liver Digest Medium 

(Gibco). Perfusion with Digest Medium was kept until the liver lobe felt very soft. This is a critical 

step, as this medium contains collagenase, and excessive digestion should be avoid to prevent cell 

death. Subsequently, the perfused liver lobe was disrupted and the cell suspension was forced 

through a 100 �m Cell Strainer (BD). Cells were centrifuged and then cell suspension was applied 
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over a Percoll gradient. After Percoll gradient centrifugation the two upper layers that contain cell 

debris and non-parenchymal cells were carefully pipetted out and discarded. Then, the lowest layer 

that contains the live hepatocytes was collected. Cells were washed, centrifuged and then plated 

onto collagen-coated well plates. 

 

Heme Content Quantification 

Heme content in tissues and in bile samples was quantified fluorometrically by the method of 

Sassa
6
. Briefly, tissues were homogenized in phosphate buffer saline (PBS) and protein content was 

determined by using the Bio-Rad protein assay system (Bio-Rad, Munchen, Germany). 10 µg of 

protein samples were incubated with 0.5 ml of 2 M Oxalic Acid (Sigma-Aldrich) at 95°C for 30 

min. Samples were subsequently  centrifuged at 14000 rpm for 5 min. Fluorescence emission in the 

supernatant was determined spectrofluorimetrically (Glomax, Promega). Excitation and emission 

wavelengths were set at 405 and 662 nm, respectively. The background was evaluated by measuring 

fluorescence in non-boiled samples. A standard curve of hemin was run in parallel. 

 

HO Activity Assay 

Heme-Oxygenase activity was measured by spectrophotometric determination of bilirubin produced 

from hemin added as the substrate
7
. Isolated hepatocyts were lysed with a hypotonic buffer (0.1 M 

potassium phosphate, 2mM MgCl2, Complete Protease Inhibitor Cocktail, Roche Diagnostics Corp., 

Milano, Italy, pH 7.4) for 15’ on ice. After brief sonication. 0.6 M sucrose was added to cell lysates 

in order to obtain an hysotonic solution (final 0.25 M sucrose). Lysates were centrifuged at 1000 x g 

for 10 min at 4°C to pellet nuclei, and supernatants centrifuged at 12000 x g for 15 min at 4 °C to 

pellet mitochondria. Finally, supernatants were ultracentrifuged at 105000 x g for 1 hour at 4°C. 

Microsomal fractions were resuspended in 100 mM potassium phosphate buffer pH 7.4, containing 

2 mM MgCl2 and Complete protease inhibitor. Protein concentration was determined using a small 

aliquot of these suspensions (Bio-Rad, Munchen, Germany). The microsomal supernatant fraction 

(cytosol) from the liver of a normal rat served as source of biliverdin reductase. Liver supernatant 

was prepared fresh from rat liver by homogenization in 0.1 M sodium citrate buffer, pH 5, 

containing 10% glycerol. HO-1 activity assay was carried out by incubating 600 µg microsome 

proteins with a reaction mixture containing 1 mM NADPH, 2 mM glucose-6-phosphate, 1U 

glucose-6-phosphate dehydrogenase (Sigma-Aldrich), 25 µM hemin, 2 mg of rat-liver cytosol and 

100 mM potassium phosphate buffer, pH 7.4 (400 µl final volume). The reaction was conducted in 

the dark for 1h at 37 °C and terminated by placing tubes on ice for 2 min. The amount of bilirubin  

was determined by the difference in absorption between 464 and 530 nm (extinction coefficient, 40 
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mM
-1

 cm
-1

 for bilirubin). HO activity was expressed in picomoles of bilirubin formed per milligram 

microsomal protein per hour.  

 

Biliary excretion study 

In gallbladder cannulation experiments mice were anesthetized by intramuscular injection. Body 

temperature was maintained at 37°C by heating pads. After opening the abdominal cavity, the cystic 

duct was ligated and an i.v. cathether 24GA (BD Insyte, Spain) attached to a PE-10 tubing (Portex 

limited, Hythe, UK) inserted in the common bile duct and fixed with an additional ligation. After 

bile flow equilibration for 10 min, bile was collected into preweighed tubes for 15 min. A bolus of 

heme (30 µmol/kg body weight) was then infused into the tail vein of mice. Bile was collected 

through the cannula after heme infusion for 1,15 hr at 15 min intervals and then up to 4.15 at 1hr 

intervals. Bile flow was determined by weighing the collected bile samples, assuming a density of 

1.0 g/ml for bile. Bile samples were frozen immediately and stored at -20°C 
8
. 

In gallbladder removal experiments, mice were intravenously infused with heme (30 µmol/kg body 

weight) or with SnPP (30 µmol/kg body weight) and 1h later, with heme. After 1, 3 or 5 hours an 

upper midline laparotomy was realized, the cystic duct was ligated and transected and a 

cholecystectomy performed. Gallbladder was removed and its volume was determined by water 

displacement. Bile was collected and stored at -20°C until analysis. 

 

Bilirubin and Heme Concentration in serum and bile 

Direct and Total bilirubin concentrations in serum and bile were determined colorimetrically using 

the QuantiChrom bilirubin assay kit DIBR-180 from BioAssay Systems (Hayward, CA). Heme 

concentrations in serum were determined colorimetrically using the QuantiChrom Heme assay kit 

DIHM-250 from BioAssay Systems.  

 

Measurement of Total Bile Acid Concentrations in bile 

Total Bile Acid (TBA) concentrations in bile was measured using a total bile acids assay kit 

according to the procedure supplied by the manufacturer (Diazyme, San Diego, California). The 

concentration of bile acids is expressed as pmol TBA excreted per min per gram of liver. 

 

Cell culture 

HUVECs were isolated from human humbilical vein and cultured in Medium199 (Invitrogen) added 

with bFGF 10ng/ml, heparin, 20%FBS and 1% penicillin/streptomycin  on 0,1% gelatin (Sigma).  
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Measurement of intracellular ROS accumulation 

Accumulation of ROS in HUVECs and aortic rings was assessed by using the oxidant-sensitive 

fluorescent dye 29,79-dichlorodihydrofluoroscein diacetate (H2DCFDA; Molecular Probes, Inc., 

Eugene, OR). H2DCFDA penetrates easily into the cells. Upon crossing the cellular membrane, 

H2DCFDA undergoes deacetylation by intracellular esterases producing a non-fluorescent 

compound that becomes highly green fluorescent following oxidation by intracellular ROS. Within 

the cell the probe reacts with ROS to form fluorescent 28,78 dichlorofluoroscein (DCF), which is 

detected with spectrofluorometry. HUVECs untreated or treated for 20 hrs with 15 µM Hx-heme, 

HSA-heme or heme alone were incubated with 5µM H2DCFDA in Hanks’ balanced salt solution 

(HBSS) for 30 min at 37 °C under 5% CO2 atmosphere. Then cells were washed twice with HBSS, 

trypsinyzed and analyzed by flow cytometry using a FACS flow cytometer
9
.  

Similarly, aortic rings from HbA, HbS and Hx-treated HbS mice were incubated with 20µM 

H2DCFDA in Krebs-Henseleit buffer for 60 min at 37 °C under 5% CO2 atmosphere. Fluorescence 

was recorded at excitation and emission wavelengths of 485 and 530 respectively by a fluorimeter 

plate reader (Promega). The background fluorescence caused by buffer and DCF was subtracted 

from the total fluorescence in each well generated by aortic rings in presence of DCF. Fluorescence 

intensity units were normalized by mg of weight tissue for each aortic rings and expressed as 

arbitrary fluorescence units/mg tissue
10

. 

 

Tissue Iron Measurement 

Tissue non-heme iron content determined with a colorimetric method using 4,7-diphenyl-1, 10-

phenantroline disulphonic acid (BPS) as chromogen
11

. Briefly, 0.1 g of dry tissue was incubated 

overnight in a mixture of trichloroacetic (10%) and hydrochloric (4N) acids, and 100 µl of 

supernatant reduced with thioglycolic acid (Sigma-Aldrich) and acetic acid-acetate buffer (pH4.5). 

Ferrous iron content was determined spectrophotometrically at 535 nm following addition of BPS 

and incubation for 1 hr at 37ºC. Results were expressed as µg iron/g dry tissue weight. 

 

LDH Activity Assay   

LDH activity in serum was determined colorimetrically using the QuantiChrom Lactate 

Dehydrogenase kit DLDH-100 from BioAssay Systems. Serum LDH activity was expressed as Unit 

of LDH(1U/L) catalyzing the conversion of 1 µmole of lactate to pyruvate per minute at pH 8.2. 

 

Echocardiography 
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Transthoracic echocardiography was performed with a small animal high-resolution imaging system 

(VeVo2100, VisualSonics, Inc, Toronto, Canad) equipped with a 22-55 MHz trasducer (MicroScan 

Transducers, MS500D)
12

. The mice, anesthetized by isoflurane (2%) inhalation and maintained by 

mask ventilation (isoflurane 1%), were placed in a shallow left lateral decubitus position, with strict 

thermoregulation (37+-1°C) to optimize physiological conditions and reduce hemodynamic 

variability. Fur was removed from the chest by application of a cosmetic cream to gain a clear 

image. Echocardiographic parameters were mesured at the level of the papillary muscles in the 

parasternal short-axis view (M mode). LV fractional shortening was calculated as follows: FS = 

((LVEDD - LVESD)/ LVEDD) X 100, where LVFS indicates LV fractional shortening;LVEDD, 

LV end-diastolic diameter; and LVESD, LV end-systolic diameter. LV ejection fraction was 

calculated automatically by the echocardiography system.  Cardiac output was calculated as the 

product of stroke volume and heart rate. All measurements were averaged on 5 consecutive cardiac 

cycles per experiment and cardiac function was assessed when heart rate was 450-500 bpm. 

 

Quantitative Real-Time Polymerase Chain Reaction Analysis 

Total RNA was extracted using Pure Link RNA Mini Kit (Ambion, Invitrogen, US). 1µg of total 

RNA was reverse transcribed by using M-MLV reverse transcriptase (Invitrogen) and random 

primers (New England Biolabs, Ipswich, MA). qRT-PCR was performed on a 7300 Real Time PCR 

System (Applied Biosystems, California). Primers and probes were designed using the ProbeFinder 

software (www.roche-applied-science.com). 

 

Protein Extraction and Western Blotting  

Tissue and cell proteins were extracted as previously reported
4
 and concentration was determined 

using the Bio-Rad protein assay system (Bio-Rad, Germany). One µl of plasma or 50µg of total 

protein extracts were separated on 8/12% SDS-PAGE and analyzed by Western blotting using 

antibodies against Hx
4
, Hp (Sigma H5015), HO-1 (Stressgen, Victoria, Canada), VCAM-1 (R&D, 

Minneapolis, US), Nitrotyrosine (Millipore,#06-284), L- and H-Ferritin, FPN, eNOS (BD 

Transduction Lab.), P-eNOS (Cell Signaling), SOD-1 and actin (Santa Cruz). 

 

Histology  

Animals were anesthetized and transcardially perfused with PBS. Tissues were collected, fixed in 

10% formalin overnight at room temperature and embedded in paraffin. Microtome sections, 5 µm 

thick, were stained with hematoxylin and eosin.  

 by guest on March 26, 2013http://circ.ahajournals.org/Downloaded from 

http://circ.ahajournals.org/


Supplemental Results  

 

Additional data on Hepatic Heme Metabolism 

 

Regulation of HO-1 expression 

We observed that heme accumulated to a significantly lower extent in the liver of heme-overloaded 

Hx-null mice than in that of wild-type animals. In agreement with liver heme uptake results, ALAS-

1 mRNA, which is transcriptionally down-regulated by intracellular heme
34

, was decreased in the 

liver of heme-treated wild-type mice but not in that of Hx-null mice (Figure S1a). 

It is likely that heme accumulation in the liver also contributed to HO-1 induction as previous works 

demonstrated that HO-1 expression is mainly regulated by heme-mediated removal of the repressor 

Bach1 and binding of the transcriptional factor Nrf2 to HO-1 promoter
32, 33

. Accordingly, we 

observed an higher amount of Nrf2 in the nuclei of hepatocytes isolated from heme-treated wild-

type mice than in those from heme-treated Hx-null animals (Figure S1b) that could account for the 

enhanced HO protein level found in these mice.  

 

Bilirubin and Heme excretion in the bile 

We demonstrated that biliary bilirubin was strongly increased after heme injection in both wild-type 

and Hx-null mice, with a peak 30-45 minutes after heme injection and this increase was 

significantly higher in wild-type mice compared to Hx-null animals (Figure S2a). This resulted in a 

significantly higher amount of bilirubin excreted in the bile of wild-type mice (150 nomoles) 

compared to Hx-null mice (80 nmoles) in the first four hours after heme injection. A similar 

difference was observed in heme excreted into the bile. We observed that heme excretion in the bile 

was significantly higher in heme-overloaded wild-type mice than in Hx-null counterpart (Figure 

S2b,c) and this resulted in higher amount of heme excreted in the bile in the first four hours after 

heme injection (40 nmoles in wild-type vs. 15 nmoles in Hx-null).  

Bile flow and total bile acid (TBA) excretion were monitored before and after heme infusion. Under 

basal condition bile flow (Figure S2d) and TBA excretion (not shown) appeared comparable in 

wild-type and Hx-null mice, thus indicating that biliary excretion was not altered in Hx-deficient 

animals. In both wild-type mice and Hx-null mice bile flow was not significantly affected by heme 

treatment. Only Hx-null mice showed a trend toward a slower flow (Figure S2d). Total bile acid 

excretion was slightly but not significantly decreased in both wild-type mice and Hx-null animals 

after heme injection (not shown).  The slight reduction in bile flow and TBA excretion after heme 

infusion may occur as a consequence of increased oxidative stress that has been demonstrated to 
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impair bile excretion. Due to more pronounced alteration in the oxidative status, this effect is more 

evident in heme-treated Hx-null mice. The observed decrease in TBA excretion could be 

alternatively due to an increase in the bile acid-independent component of the bile flow versus the 

bile acid-dependent one. 

Thus, our results indicate that the liver heme detoxifying potential is mainly accounted for by HO 

activity and, to a lesser extent, by biliary heme excretion and both these mechanism are strongly 

induced following Hx-mediated heme uptake. Putting together the data on catabolism and excretion, 

we conclude that the presence of Hx in serum increases by two-fold the amount of heme detoxified 

in the liver. 

 

Contribution of heme catabolism and heme excretion to Hx-mediated heme detoxification 

Other than through catabolism, Hx-mediated heme delivery to the liver promotes heme 

detoxification through direct excretion of the molecule as an intact porphyrin in the bile. 

Interestingly, we found an inverse correlation between biliary excretion of bilirubin and heme: wild-

type mice that excreted less bilirubin showed an increased excretion of intact heme and viceversa 

(Figure S3a). To evaluate whether heme excretion may be affected by the rate of catabolism, we 

analyzed biliary excretion of heme in wild-type mice treated with the HO inhibitor Tin-

protoporphyrin IX before heme injection. As expected Tin-protoporphyrin IX treatment completely 

blocked biliary excretion of bilirubin in heme-overloaded wild-type mice (Figure 3b). Moreover, 

treatment with Tin-protoporphyrin IX resulted in a higher accumulation of heme in the liver of 

these animals and enhanced excretion of intact heme in the bile (Figure S3c,d), indicating that these 

two mechanisms of detoxification work together to efficiently remove heme excess. 

 

NOS expression and activity in the liver of SCD mice 

 

Previous works demonstrated that hemin, thanks to its ability to induce HO-1, is able to attenuate 

iNOS expression and activity
13, 14

. HO-1 activation can negatively modulate iNOS by releasing CO, 

which is able to interact with iNOS heme moiety, thus causing its inactivation, and iron, which 

downregulates iNOS transcription
13, 14

. We demonstrated that Hx treatment of SCD mice resulted in 

a significantly higher iron accumulation in the liver as well as in an enhanced induction of HO-1 

(Figure 6a,b Main Text; Figure S4a). Moreover, we observed that iNOS expression was reduced in 

the liver of SCD mice after Hx treatment (Figure S4b). Both the enhanced Hx-mediated heme-iron 

uptake by the liver and the increased HO-1-mediated CO production could account for iNOS 

downregulation. Even though iNOS expression is increased in the liver of sickle mice and 
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downregulated after Hx administration, its activity has an opposite modulation, being strongly 

suppressed in non treated animals and restored after Hx treatment (FureS4c). This observation 

suggests that iNOS upregulation occurs as an attempt to compensate for the reduced activity of the 

enzyme, most likely related to oxidative stress and cofactor/substrate consumption. NOS oxidative 

inactivation is completely prevented by administering the anti-oxidant Hx. The restoration of NOS 

activity in Hx-treated animals could further contribute to HO-1 upregulation, that in turn may 

downregulates iNOS expression. 

 

Rescue of the phenotype of Hx-null mice through the administration of purified human Hx  

 

To demonstrate that injected human Hx is able to restore hepatic heme detoxifying potential, we 

evaluated the ability of human Hx to rescue heme recovery capacity in heme-overloaded Hx-null 

mice.  Hx-null mice were injected with human Hx at physiological concentration 1 h before heme 

injection and liver heme content and biliary bilirubin and heme were analyzed. As shown in Figure 

S5, Hx-treated Hx-null mice fully recovered the capacity to take up heme by the liver and to 

detoxify it (Figure S5a,c,d). Heme uptake by the liver in Hx-treated Hx-null mice was further 

proved by the modulation of ALAS1 mRNA (Figure S5b). 
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Supplemental Figures 

 

 

 

 

 

Figure S1. Heme does not accumulate in the liver when Hx is lacking. (a) qRT-PCR analysis of 

ALAS1 mRNA in the liver of wild-type and Hx-null mice at different time points after heme 

injection (n=6). (b) Representative Western blots showing  nuclear Nrf2 expression in isolated 

hepatocyte extracts from wild-type and Hx-null mice 6h after heme injection (NT:n=3; heme:n=6). 

AU: Arbitrary Units. Values represent mean±SEM. *P<0.05.  
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Figure S2. Hx promotes heme detoxification by the liver. (a,b) Excretion rate and cumulative 

excretion of bilirubin and heme in the bile of heme-overloaded wild-type and Hx-null mice 

(NT:n=4; heme:n=12). (c) Heme content in the bile fraction 75’-135’ of heme-overloaded mice 

(n=7). Representative fractions of 2 Hx-null and 2 wild-type mice are shown. (d) Bile flow in wild-

type and Hx-null mice before (time 0) and at different time points after heme injection (n=12). 

Values represent mean±SEM. *P<0.05;**P<0.01;***P<0.001.  
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Figure S3. Heme degradation and heme excretion are inversely correlated. (a) Biliary excretion 

rate of heme plotted on biliary excretion rate of bilirubin. Mice were arbitrarily divided into two 

groups according to bilirubin excretion (more or less than 900 pmol/min/g liver) (n=4). (b-d) Biliary 

bilirubin (b) and liver (c) and biliary (d) heme content  in Tin-protoporphyrin IX (SnPP)-treated 

heme-overloaded wild-type mice at different time points after heme injection. Gallbladder was 

ligated and removed at the indicated time points and bile collected. (Wt -Tin-protoporphyrin IX: 

n=9; Wt +Tin-protoporphyrin: n=6). Values represent mean ± SEM. *P<0.05; **P<0.01.  
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Figure S4. Hx modulates hepatic iNOS expression and activity in SCD mice. (a,b) qRT-PCR 

analysis of HO-1 and iNOS mRNA level in the liver of HbA, HbS and Hx-treated HbS mice (n=4). 

(c) Calcium-independent NOS activity in extracts of liver from HbA, HbS and Hx-treated HbS 

mice. (n=4). Calcium-independent NOS activity assay measures the activity of iNOS, that is the 

most abundant NOS expressed in the liver. Results shown are representative of three independent 

experiments. Values represent mean±SEM. *P<0.05;**P<0.01.  
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Figure S5. Hx injection in Hx-null mice rescues the hepatic capacity of detoxifying heme. (a) 

Heme content in the liver of heme-overloaded wild-type mice, Hx-null mice and Hx-treated Hx-null 

mice at 1 and 3 hours after heme injection. (n=8). (b) qRT-PCR analysis of ALAS1 mRNA in the 

liver of heme-overloaded wild-type mice, Hx-null mice and Hx-treated Hx-null mice at 1 hour after 

heme injection (NT: n=4; heme: n=7). (c-d) Bilirubin (c) and heme (d) content in the bile of heme-

overloaded wild-type mice, Hx-null mice and Hx-treated Hx-null mice at 1 and 3 hours after heme 

injection (n=8). Bile was collected after cholecystectomy. Values represent mean ± SEM. *P<0.05; 

**P<0.01; ***P<0.001.  Results shown are representative of three independent experiments. 
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Figure S6.  Hx administration increases biliary bilirubin and heme excretion in thalassemic 

and SCD mice. Data on wild-type, �-Thal and Hx-treated �-Thal mice and HbA, HbS and Hx-

treated HbS mice are shown on the left and right respectively. (a) Serum bilirubin and bile bilirubin 

(c) and heme content (d) (n=4). Bile was collected after gallbladder ligation. Values represent 

mean±SEM. *P<0.05; **P<0.01; ***P<0.001. Results shown are representative of three 

independent experiments.  
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Figure S7. Altered blood pressure and cardiac output in SCD mice. (a) Mean arterial pressure 

in Hba and Hbs mice. (b) Systolic and diastolic pressure in Hba and Hbs mice. (c,d) Cardiac output  

and aortic valve peak pressure measured in HbA and HbS mice by echocardiography. HbA n=6; 

HbS n=10. Results shown are representative of three independent experiments. Values represent 

mean±SEM. *P<0.05;**P<0.01;***P<0.001.  
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Figure S8. Pulsed wave Doppler on the left ventricular outflow (LVOT) in HbA, HbS and Hx-

treated HbS mice. The velocitiy time interval (VTI) was measured for inclusion in the CO 

calculation. VTI was higher in HbS mice compared to HbA mice and restored after Hx treatment. 
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Supplemental Tables 

 

Table S1. Statistic Analysis. Table showing the statistic tests used for each panel of each figure. 

On the right it is reported the total number of comparisons that was applied for each Bonferroni 

adjustment 

 

 

. 
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Table S2. Hx treatment does not recover anemia. Analysis of blood samples from wild-type, �-

Thal and Hx-treated �-Thal mice and from HbA, HbS and Hx-treated HbS mice (n=6). Values 

represent mean ± SEM. WBC: white blood cells; RBC: red blood cells; HGB: hemoglobin; HCT: 

hematocrit; MCV: mean corpuscular volume; Retic: reticolocytes. *P<0.05. 
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Older HbS mice (8-12 month-old) showed right ventricule dilation and developed pulmonary 

hypertension, accordingly to what occur in the human sickle cell disease
15, 16

. 
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