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A b s t r a c t

Hemophagocytic lymphohistiocytosis (HLH) is 

a frequently fatal and likely underdiagnosed disease 

involving a final common pathway of hypercytokinemia, 

which can result in end-organ damage and death. 

Although an early diagnosis is crucial to decrease 

mortality, the definitive diagnosis is often challenging 

because of the lack of specificity of currently accepted 

diagnostic criteria and the absence of confirmatory 

gold standards. Because of the wide range of 

laboratory assays involved in the diagnosis of HLH, 

practicing pathologists from a broad spectrum of 

clinical specialties need to be aware of the disease so 

that they may appropriately flag results and convey 

them to their clinical counterparts. Our article 

summarizes these new advances in the diagnosis of 

HLH and includes a review of clinical findings, updated 

understanding of the pathogenesis, and promising new 

testing methods.

The first reported case of hemophagocytic lymphohistiocy-

tosis (HLH) was described in 1952 by Farquhar and Claireaux,1 

who called the disease familial hemophagocytic reticulosis and 

described it as a rare familial disorder characterized by a prolif-

eration of histiocytes in solid organs and phagocytosis of blood 

cells. HLH, also known as hemophagocytic syndrome, is an 

uncommon systemic inflammatory clinical syndrome associ-

ated with numerous conditions, such as neoplastic, infectious, 

autoimmune, or hereditary diseases. The disease is seen in all 

ages and has no predilection for race or sex.2 HLH is caused 

by a defect in inflammatory signals that results in uncontrolled 

hypercytokinemia, usually in a setting of congenital or acquired 

defective natural killer (NK)/T-cell function in the cytotoxic 

pathway. Untreated, approximately 95% of children will die of 

the disease.3 Even with currently recommended therapy, HLH 

is a frequently fatal condition, although spontaneous partial 

regression has been reported.4 The early institution of therapy 

is critical to control the hypercytokinemia that otherwise will 

lead to end-organ failure and death.

HLH has been traditionally divided into a primary form, 

which typically manifests in children with documented genetic 

abnormalities of the cytotoxic function of NK cells and T cells, 

and a secondary form that tends to occur at older ages in the 

setting of an associated condition, such as infection and malig-

nancy, without an identifiable genetic abnormality. Upon the 

realization that genetic defects of HLH can occur at any age,5,6 

that these defects are uncommonly present even in children,7 

and that infections also can be a triggering mechanism in 

such patients,6 the designations primary and secondary have 

become less relevant. Instead, genetic and acquired HLH are 

currently more appropriate designations.2 The types of HLH 

and associated diseases are listed in ❚Table 1❚ and ❚Table 2❚.
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Genetic HLH currently encompasses the cases associ-

ated with a discrete genetic abnormality, as listed in Table 1. 

These patients will show a predisposition to the recurrence of 

HLH that manifests within the first year of life in 70% to 80% 

of cases, with only 10% of cases presenting in the neonatal 

period.8,9 Late-onset cases have also been described in ado-

lescents and adults as old as 62 years.2,5,6 Nevertheless, 50% 

to 60% of childhood HLH cannot be attributed to any known 

gene defect.7,8 The genetic form of HLH can be divided into 

2 subgroups: familial HLH (FHL) and those associated with 

another primary immunodeficiency syndrome.

FHL is an autosomal recessive disease caused by sev-

eral mutations in the NK/T-cell cytotoxic pathway. Perforin 

defects account for approximately 50% of all FHL cases in 

North American families.10 Other genetic causes involve 

mutations in genes regulating the packaging, transport, or 

release of cytotoxic granules. A family history of genetic HLH 

is often absent due to the recessive nature of this disease.11

FHL is uncommon. A recent retrospective study esti-

mates the prevalence of HLH in Texas to be at least 1 in 

100,000 persons younger than 18 years.12 In addition, the inci-

dence of FHL varies according to the geographic region. The 

reported incidence is 1.2 cases per million persons younger 

than 15 years per year or 1 in 50,000 births in Sweden13 and 

0.342 in 100,000 in Japan,14 with an annual incidence of 1 in 

800,000.15 In Turkey, the incidence is even higher, at 7.5 in 

10,000, due to increased consanguinity and higher frequency 

of perforin gene defects.16 A seasonal pattern of disease mani-

festation has been suggested, with more frequent occurrence 

in the summer.17

HLH is often the first manifestation of another primary 

immunodeficiency syndrome.2 Immunodeficiency syndromes 

known to be associated with HLH include Chédiak-Higashi 

syndrome, Griscelli syndrome type 2, Hermansky-Pudlak 

syndrome type 2, and X-linked proliferative syndrome (XLP) 

(see Table 2).

❚Table 1❚
HLH Subtypes and Their Genetic Defects2,10

 Genetic HLH

HLH Subtype Gene/Protein Function Location % of Famil ial Cases70

FHL1 Unknown Unknown 9q21.3-locus 6 ~1010

FHL2 PFR1/perforin 1 Cell lysis, membrane pore formation 10q21-22  20-50
FHL3 UNC13D/Munc 13-4 Cytolytic granule exocytosis 17q25  ~23
FHL4 STX11/syntaxin 11  Intracellular vesicle trafficking 6q24  ~1
FHL5 STXB2/syntaxin binding Intracellular vesicle trafficking 19p13  Unknown 
  protein 2 or UNC18B
Griscelli syndrome type 2 RAB27A/Rab27a Vesicle docking on microtubules 15q21 
Chédiak-Higashi syndrome LYST  Vesicle maturation and sorting 1q42.1-q42.2 
Hermansky-Pudlak AP3B1  Encoding b subunit of AP3, vesicle 5q14.1 
 syndrome type 2   maturation and transport 
XLP type 1  SHD2D1A/SAP protein  Polarization of cytolytic granules for Xp25 
   transport to the immunological synapse 
XLP type 2 BIRC4/XIAP protein Unclear Xp25

XLP, X-linked proliferative syndrome.

❚Table 2❚
HLH Subtypes and Common Disease Associations

Infection Reported Associations

Viral Herpesviruses (EBV, CMV, HHV-8, HSV), HIV, HTLV, adenovirus, HAV, HBV, HCV, measles, mumps, rubella, 
  dengue, hantavirus, parvovirus B19, enterovirus, influenza 
Bacterial Staphylococcus aureus, Campylobacter spp, Fusobacterium spp, Mycoplasma spp, Chlamydia spp, Legionella spp, 
  Salmonella typhi, Rickettsia spp, Brucella spp, Ehrlichia spp, Borrelia burgdorferi, Mycobacterium tuberculosis
Fungal Candida spp, Cryptococcus spp, Pneumocystis spp, Histoplasma spp, Aspergillus spp, Fusarium spp
Parasitic Plasmodium falciparum, Plasmodium vivax, Toxoplasma spp, Babesia spp, Strongyloides spp, Leishmania spp
Malignancy 
   Hematologic Peripheral T-cell/NK-cell lymphomas, ALCL, ALL, Hodgkin lymphoma, multiple myeloma, acute erythroid leukemia 
   Nonhematologic Prostate and lung cancer, hepatocellular carcinoma
MAS Systemic-onset juvenile idiopathic arthritis, Kawasaki disease, systemic lupus erythematosus, seronegative 
  spondyloarthropathies

ALCL, anaplastic large-cell lymphoma; ALL, acute lymphocytic leukemia; CMV, cytomegalovirus; EBV, Epstein-Barr virus; HAV, hepatitis A virus;  HBV, hepatitis B virus; 

HCV, hepatitis C virus; HHV-8, human herpesvirus 8; HIV, human immunodeficiency virus; HLH, hemophagocytic lymphohistiocytosis; HSV, herpes simplex virus; HTLV, 

human T-lymphotropic virus; MAS, macrophage activation syndrome; NK, natural killer.
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Acquired HLH is often subcategorized into infection-

associated HLH, with particular emphasis on Epstein-Barr 

virus (EBV)–associated disease, malignancy-associated HLH, 

and HLH in association with autoimmune disease. The term 

macrophage activation syndrome (MAS) is often applied 

to HLH in this latter setting in the context of rheumato-

logic diseases, commonly systemic-onset juvenile idiopathic 

arthritis (soJIA), adult-onset Still disease, and systemic lupus 

erythematosus.18,19

Acquired HLH has also been reported in patients receiv-

ing immunosuppressive therapy after transplant2 or intravesi-

cal Bacille Calmette-Guérin therapy.20 However, opportunis-

tic infections for which these patients are at risk may represent 

a confounding factor.11

Establishing a timely diagnosis of HLH is the critical 

challenge that physicians face. The symptoms of HLH are 

nonspecific; thus, the disease is easily underrecognized.21 

The confirmation of a suspected HLH case is also difficult 

because of a lack of a gold standard confirmatory test. The 

current diagnostic criteria proposed by the Histiocyte Society 

in 200422 have been criticized for their lack of specificity 

when applied to critically ill patients.23 The recently included 

tests for soluble CD25 (sCD25) and 51-Cr release assay are 

not available in most medical centers, thus preventing patients 

from the benefit of an early diagnosis and therapy. The identi-

fication of a genetic abnormality is helpful but rarely present.8

Despite these difficulties, there have been changes in the 

understanding, diagnosis, and pathogenesis of HLH, which 

will be summarized in this review.

Clinical Findings

HLH should be suspected in cases of an unexplained 

sudden onset of a systemic inflammatory response syndrome 

(SIRS), including fever, malaise, hepatosplenomegaly, jaun-

dice, generalized lymphadenopathy, and cytopenias.22 As 

many as 65% of pediatric patients also have a nonspecific rash 

that often takes the form of purpuric morbilliform eruptions, 

although cases of erythroderma also have been described.24

Central nervous syndrome (CNS) symptoms are seen in 

up to 75% of pediatric cases.13 These symptoms include sei-

zures, meningitis, encephalopathy, ataxia, hemiplegia, cranial 

nerve palsies, mental status changes, or simply irritability. 

There have been reports of isolated CNS symptoms without 

accompanying systemic findings, termed cerebral HLH.25,26 

The recognition of HLH in this setting is often challeng-

ing.27,28 On imaging studies, enhancing nodular parenchymal 

lesions may be seen, as well as leptomeningeal enhancement, 

demyelinization, and atrophy.27 There are also isolated report-

ed cases of acute neurological degeneration with subdural 

hemorrhage detected on computed tomography scans.29

The clinical presentation of HLH is different in neonates. 

Fever in this age group is commonly absent and should not 

dissuade the clinician from pursuing the diagnosis of HLH.30 

Similarly, hypertriglyceridemia, although frequently seen in 

adults, has been reported in only 14% of neonates. This dif-

ference has been attributed to age-related differences in lipid 

metabolism.30 By contrast, coagulopathy, hepatomegaly, and 

cytopenias should raise suspicion for HLH in this popula-

tion.11 Neonatal HLH presenting as isolated fulminant liver 

failure has been reported.2

HLH constitutes a medical emergency at any age. 

Because of the nonspecific nature of the clinical presentation, 

this disease is often overlooked, although the patients may be 

in extremis.31 Clinicians must be sure to always maintain a 

high level of suspicion in any patient with unexplained cyto-

penias and fever, so that appropriate testing can be conducted 

rapidly (see Diagnostic Criteria section). However, even a 

suspected case of HLH is difficult to confirm because of the 

current lack of gold standard confirmatory tests. Laboratory 

testing can be falsely negative, lack specificity, or involve a 

turnaround time that is not helpful in a clinical emergency.

Laboratory Findings

Common laboratory findings associated with HLH 

include cytopenias affecting at least 2 lineages in the periph-

eral blood, hypofibrinogenemia, strikingly elevated ferritin 

levels, and hypertriglyceridemia. Hyperbilirubinemia with 

elevated transaminases and lactate dehydrogenase levels are 

also commonly seen and reflect liver dysfunction.2 In addi-

tion, about half of children with HLH have a moderately 

increased cell count and/or protein content in the cerebrospi-

nal fluid (CSF).2

The striking levels of ferritin require an additional com-

ment. A review of ferritin levels in pediatric patients found a 

cutoff of 10,000 µg/L to be 90% sensitive and 96% specific 

for HLH.32 This high cutoff of ferritin significantly maximiz-

es the specificity since elevated ferritin due to other inflamma-

tory conditions occurs typically at lower levels. Measurement 

of ferritin levels is also particularly convenient since it is a 

rapid chemistry test performed at almost all hospitals.

Other more esoteric laboratory tests include the 51-Cr 

release assay and the measurement of sCD25. NK-cell activ-

ity is measured by the 51-Cr release assay, in which patient 

NK cells that have taken up the radionuclide are stimulated 

to degranulate. Release of the radionuclide is expected to be 

reduced or absent in HLH.33 The reported sensitivity of these 

tests approaches 100%.31 CD25, the a subunit of the interleu-

kin 2 receptor (IL-2R), is a marker of activated lymphocytes 

that also release sCD25. This sCD25 can be measured by an 

enzyme-linked immunosorbent assay and also has been proven 
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useful in the diagnosis of MAS in soJIA.34 Because of the 

technical challenges of employing a radionuclide in the former 

assay and the infrequent utilization of both, these assays are 

currently available in only a few medical centers in the United 

States, limiting their utility in time-critical clinical scenarios.

Histopathologic Findings

Histopathologic findings of HLH typically include a 

prominent and diffuse accumulation of lymphocytes and 

mature macrophages, which occasionally exhibit hemophago-

cytosis ❚Image 1❚. Although classically seen in the bone mar-

row, these infiltrates also have been described in the spleen, 

lymph nodes, liver, skin, lungs, meninges, CSF, and, rarely, 

the subcutaneous tissue.35-38

In the bone marrow, hemophagocytosis of mature and 

immature hematopoietic cells is characteristic, in addition 

to myeloid and erythroid hypoplasia, as well as variable 

megakaryocytic hyperplasia. Hemophagocytosis, especially 

on aspirate smears, must be distinguished from physiologic 

erythroblastic islands, which can resemble erythrophagocy-

tosis. Concurrent findings related to the overlying triggering 

process also may be seen. For instance, in cases of acute infec-

tion, the bone marrow may display plasmacytosis, increased 

immunoblasts, or granulomas.36 Malignant neoplasms, com-

monly B-, T-, and NK-cell lymphoma as well as Hodgkin 

lymphoma, are often masked by the abundant histiocytosis.36

In the liver, there is Kupffer cell hyperplasia,39 as well as 

a portal and sinusoidal cytotoxic T-cell infiltrate expressing 

CD3, CD8, and granzyme B with variable hemophagocytic 

histiocytes.40 The pattern is commonly described as similar to 

chronic persistent hepatitis,37 although other patterns that are 

leukemia-like, giant cell hepatitis–like, or storage disease–like 

have also been described, depending on the predominant cell 

type.40 Variable degrees of endothelialitis of portal and central 

veins and lymphocytic bile duct injury appear to correlate 

with the clinical severity.40

The microscopic visualization of hemophagocytosis is 

simply one of the possible diagnostic criteria ❚Table 3❚. It does 

not necessarily need to be present to establish a diagnosis of 

HLH. In fact, hemophagocytosis is often cyclical, and thus 

a given biopsy specimen may yield negative results at first 

examination.37 In such cases, repeat biopsies may be helpful. 

In addition, morphologic evidence of hemophagocytosis is not 

a specific finding for HLH. In 1 report, HLH was demonstrable 

in up to 60% of patients with severe sepsis who did not fulfill 

criteria for HLH, whereas another report found microscopic 

evidence of HLH in one-third of the patients who died in the 

intensive care unit with sepsis and multiorgan failure.41,42 The 

explanation for this occurrence lies in the suppression of the 

function of NK cells that occurs in severe sepsis, particularly 

in sepsis associated with viral infections.43,44 Elevated sCD25/

sIL-2R was also detected in those patients. Thus, these studies 

suggest a significant overlap in severe sepsis and HLH, with 

a final common pathway leading to hemophagocytosis. These 

findings raise the question of whether even some cases of 

infection-associated HLH are in fact simply the extreme end 

of the inflammatory spectrum of sepsis.23,45

Diagnostic Criteria

Based on these common clinical and laboratory find-

ings, diagnostic criteria for HLH were proposed in 19913 and 

updated in 200422 to include NK-cell activity measured by 

the 51-Cr release assay, sCD25, and elevated ferritin (Table 

3). These criteria, generated based on studies of FHL,3 are the 

only guidelines available for the diagnosis of acquired HLH.

The diagnostic criteria include fever; splenomegaly; 

cytopenias affecting at least 2 of 3 lineages in the peripheral 

blood; hyperferritinemia greater than 10,000 µg/L; hypertri-

glyceridemia and/or hypofibrinogenemia; hemophagocytosis 

in the bone marrow, spleen, or lymph nodes (see Image 

1); low or absent NK-cell activity determined by the 51-Cr 

release assay; and high levels of sCD25. Five of these 8 

criteria are required for diagnosis, although in patients with 

an established genetic abnormality (eg, FHL mutations), the 

diagnosis can be established without meeting the 5 criteria.46 

The diagnostic criteria are listed in Table 3.

The 2004 diagnostic criteria for HLH do not apply to 

MAS because of the overlap of clinical and laboratory find-

ings between HLH and autoimmune diseases.47 Modified 

diagnostic criteria for MAS have been suggested by Ravelli 

et al,47 who proposed a change in baseline laboratory findings 

as an indication of MAS in conjunction with the appropri-

ate clinical symptoms. In the absence of arthritis, a very 

high C-reactive protein, only moderate cytopenias, reduced 

erythropoiesis, increased granulopoiesis with a left shift, and 

a high level of interleukin 1b might suggest MAS.48 Ongoing 

projects are being conducted to validate these criteria.47

Mutation Analysis

The perforin gene mutation was the first genetic defect 

to be described in association with HLH in 1999.49 The 

perforin protein is one of the major cytolytic proteins in 

cytotoxic cells,50 and mutations involving perforin gene 1 

(PRF1) account for 20% to 50% of familial cases of HLH 

(FHL2) (see Table 1).51 Mutations in other genes involved in 

the perforin pathway account for the other types of FHL—

namely, UNC13D (FHL3),52 STX11 (FHL4),53 and STXBP2 

or UNC18B (FHL5).54 A potential gene locus on chromosome 

9q21 is associated with FHL1.55 The types of FHL are sum-

marized in Table 1.
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A B

C D

E F

❚Image 1❚ A, Bone marrow biopsy specimen demonstrating nucleated forms within macrophages and background cellular debris 

(H&E, ×1,000). B, CD68 stain on a bone marrow biopsy specimen highlighting the nuclei of numerous engulfed cells within 

macrophages (CD68, ×400). C-F, Various images of hemophagocytosis on a bone marrow aspirate (Wright-Giemsa, ×1,000).
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Mutation analysis should be requested for all cases of 

confirmed or suspected HLH, even when an associated infec-

tious disease has already been identified.2 The demonstration 

of a characteristic genetic defect alone can be used to make 

the diagnosis of HLH in the appropriate clinical setting, with-

out the need to fulfill 5 of the 8 diagnostic criteria.46 It should 

include the analysis of the known FHL mutations (PRF1, 

UNC13D, STX11, and UNC18B) at a minimum.56,57 When 

XLP is suspected (eg, upon documentation of EBV infection), 

mutation analysis for SH2D1A/SAP and BIRC4 also must be 

included.57 Specific testing for the other types of immuno-

deficiency syndromes, such as Chédiak-Higashi syndrome, 

Griscelli syndrome type 2, or Hermansky-Pudlak syndrome 

type 2, may be warranted in the appropriate clinical setting.

Heterozygous patients for the perforin gene mutation 

may manifest the disease despite having normal perforin 

expression levels.58 Children with a strong family history of 

HLH also may be offered the test prophylactically.57 Prenatal 

and preimplantation diagnosis is possible by genetic analy-

sis once the gene defect within a family is known. Prenatal 

diagnosis was first performed in 2 unrelated Turkish families 

harboring a perforin mutation.59

Importantly, HLH cannot be ruled out solely on a nega-

tive mutation study, since at least half of childhood and most 

adult cases cannot be attributed to any known mutation.7,8

Flow Cytometry

Flow cytometry recently has been added to the arsenal of 

screening tools for HLH, although it is not currently cited in 

any formal diagnostic algorithms. It is based on the detection 

of perforin expression in all cytotoxic cell types by intracellu-

lar staining. Thus, the absence of perforin staining reflects the 

presence of homozygous perforin gene mutations, and even 

heterozygous carriers also demonstrate abnormal perforin 

staining patterns.60 This method has enabled a 2-hour screen 

for FHL2 in the medical centers that use this technique.60

However, the fact that some mutations do not result in 

significant reduction of the protein levels and that disease 

can sometimes occur in heterozygous patients limits flow 

cytometry’s sensitivity to perforin defects. In addition, alter-

native defects in gene regulation unrelated to HLH may affect 

protein expression, which affects the specificity of the study.57 

Despite these limitations, the fast turnaround time of flow 

cytometry makes it advantageous over mutation analysis.

Mutations in other genes related to granule trafficking 

and exocytosis also can be determined by quantifying the 

expression of surface CD107a (LAMP-1) on peripheral 

blood mononuclear cells following stimulation with phyto-

hemagglutinin or anti-CD3.61 CD107a is normally released 

to the surface of cytotoxic T cells and NK cells upon exo-

cytosis; thus, the absence of CD107a expression on the cell 

surface may be indicative of defects throughout the pathway 

involving secretory granule migration, docking, priming, 

or fusion.61 A similar technique is used for the detection of 

SAP/SH2D1A expression.62

Differential Diagnosis and Pitfalls

The main differential diagnosis of HLH is SIRS due to 

other causes. In addition, HLH has been mistaken for neo-

natal hemochromatosis63 or as metabolic disease in infants 

presenting with extreme organomegaly or high triglycerides.2 

HLH has been reported as difficult to diagnose in patients 

with underlying Kawasaki syndrome.64 Langerhans cell his-

tiocytosis is also in the differential diagnosis, but in HLH, the 

expanded population of histiocytes is not clonal.65 Infections 

with Leishmania donovani are known to mimic the syndrome 

clinically, although hemophagocytosis should not be seen in 

the bone marrow. The findings in lymph node biopsy speci-

mens may mimic those of malignant lymphomas.2

Pathophysiology

The pathogenesis of HLH was at first thought to be the 

result of an inability to clear infections in immunodeficient 

patients.19 Subsequent descriptions of HLH in immuno-

competent patients worked to disprove such theory. More 

recently, the identification of cytotoxic pathway mutations 

as the primary cause of genetic HLH has elucidated to some 

extent the mechanism of this disease. It is thought that all 

forms of HLH are due to some form of impairment in the 

function of cytotoxic T lymphocytes (CTLs) and NK cells, 

although the exact mechanism is less clear for nongenetic 

forms of HLH.31

The inability to clear the antigenic stimulus and thus turn 

off the inflammatory response is what ultimately leads to the 

hypercytokinemia characteristic of HLH.66 In a healthy indi-

vidual, antigens will initiate an inflammatory cascade, with 

❚Table 3❚
Diagnostic Criteria of Hemophagocytic Lymphohistiocytosis 
(HLH)

Molecular diagnosis of HLH or the presence of at least 5 of 8 criteria:
   1. Fever
   2. Splenomegaly
   3. Cytopenias (affecting at least 2 lineages in the peripheral blood)
       Hemoglobin levels <90 g/L (in infants <4 weeks old,  
      hemoglobin <100 g/L)
       Platelets <100 × 109/L
       Neutrophils <1.0 × 109/L
   4. Hypertriglyceridemia and/or hypofibrinogenemia:
       Fasting triglycerides ≥3.0 mmol/L (ie, ≥265 mg/dL)
       Fibrinogen ≤1.5 g/L
   5. Documented hemophagocytosis in the bone marrow, spleen,  
          or lymph nodes
   6. Low or absent natural killer cell activity
   7. Ferritin ≥500 mg/L
   8. Soluble CD25 (ie, soluble interleukin-2 receptor) ≥2,400 U/mL
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Loss of this normal cytotoxic function of NK cells and 

CTLs can cause decreased production of the contents of 

the cytotoxic granules or inhibit the proper formation and 

release of these granules in the immunologic synapse. These 

latter steps rely on an intact cytoskeleton and microtubules 

involved in docking and fusion of the granules into the 

cell membrane. All the genetic defects described in FHL 

involve either inadequate levels of perforin itself (FHL2) 

or improper granule exocytosis (FHL3-5 and immunodefi-

ciency syndromes) ❚Figure 1❚.

In acquired HLH, the exact means by which the function 

of NK cells and CTLs is impaired are less clear. Suppressed 

the release of Th1 cell cytokines (interferon g [IFN-g], tumor 

necrosis factor a [TNF-a], granulocyte-monocyte colony 

stimulating factor) that will stimulate macrophages, NK cells, 

and CTLs to proliferate. NK cells release granules that contain 

perforin and granzymes.31 Perforin is a key cytolytic protein 

that acts by inserting itself in the membrane of the target cell 

and creating pores that lead to osmotic lysis of the target 

cell.67 Furthermore, perforin is necessary for the uptake of 

granzymes in the target cell that will then catalyze protein 

degradation. These combined actions induce apoptosis of the 

target cell, remove the antigenic stimulation, and signal the 

termination of the inflammatory response.

❚Figure 1❚ Schematic depicting a cytotoxic lymphocyte (either T or natural killer, left) and a target cell (right). Within the cytotoxic 

lymphocyte are some of the key steps in the packaging of cytotoxic granules (step 1), their transport (step 2), their fusion 

with the membrane (step 3), and the secretion of their contents (step 4). In the target cell, formation of the perforin-lined pore 

is shown (step 5), as well as introduction into the target cell of various cytotoxic granules (step 6). Below the schematic are 

listed the key players in each of these processes and the type of genetic hemophagocytic lymphohistiocytosis (HLH) that is 

associated with mutations of these key players.

1

1

2

3

4

Apoptosis

Immature granule containing perforin and granzyme is formed.

2 AP3 aids in the maturation of the granule. Granule docking

on microtubules is mediated by Rab27a.

3 Granule exocytosis is mediated by Munc13-4, expressed on the

granule along with syntaxin 11 and Munc18-2, expressed on the

cell membrane.

4 The SAP protein mediates appropriate granule polarization and

the cytotoxic proteins are released in the synapse.

5 Perforin inserts itself in the target cell membrane, creating a pore.

6 Granzyme enters the target cell through the pore and induces apoptosis.

FHL2—perforin gene mutation

Mechanism Type of Genetic HLH

Hermansky-Pudlak syndrome type 2

Griscelli syndrome type 2

FHL3, FHL4, FHL5

X-linked lymphoproliferative disorder

FHL2—perforin gene mutation

5

6
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(40%), and North America (approximately 50%).10 The type 

of perforin mutations is unique in some populations, sug-

gesting that these abnormalities occurred in temporally and 

geographically distinct ancestors.10 African American patients 

tend to carry the same 50delTA perforin mutation. In Japan, 

the most common perforin mutation is 1090-1091delCT 

(62.5% of perforin mutations); the second most common 

mutation is 207delC (37.5% of perforin mutations).76 Turk-

ish families express the Trp374X perforin mutation at a high 

frequency, which is associated with early disease onset, and 

Italian families express the A91V sequence variant.10

In FHL3, mutation in the UNC13D gene leads to an 

abnormal expression of Munc 13-4, a protein involved in 

proper fusion of the cytotoxic granules with the cell mem-

brane.2 In Japan, the frequency of UNC13D mutations is quite 

high, including 6 of 16 patients with FHL in 1 study.77

FHL4 is due to mutation in the STX11 gene, leading to the 

abnormal expression of syntaxin 11, a protein also involved in 

granule exocytosis. It is involved in vesicle transport through 

interactions with t-SNARE, the attachment protein receptor 

present in the cell membrane, and leads to defective granule 

exocytosis with normal polarization.78 Although mutations 

in STX11 are thought to be responsible for much of FHL in 

the Middle East, 1 survey found such mutation in only 1% of 

North American patients.70

The more recently described FHL5 is associated with 

mutations in the syntaxin binding protein 2 (STXBP2 or 

UNC18B), which regulates intracellular vesicle trafficking.54 

The remainder of FHL cases are caused by mutations in as yet 

unidentified genes.7

Similar to FHL3, FHL4, and FHL5, impaired granule 

exocytosis can also be seen in some primary immunodeficien-

cy syndromes, with an associated defect in NK/T-cell function 

and a predisposition to the development of HLH (Table 3).79 

In Griscelli syndrome type 2, mutation in the RAB27A gene 

results in decreased GTPase and impaired vesicle docking on 

microtubules.80 Interestingly, this mutation also has been seen 

in patients without evidence of Griscelli syndrome type 2 and 

may represent a somatically acquired mutation.81 In Chédiak-

Higashi syndrome, the putative mutation is in the LYST gene, 

which encodes for a protein involved in vesicle maturation 

and sorting.82 In Hermansky-Pudlak syndrome type 2, muta-

tions in the AP3B1 gene, encoding the b subunit of the adapter 

protein complex AP3, are implicated in defective vesicle mat-

uration and protein transport.83 In XLP, the defective genes 

are SHD2D1A (XLP type 1) or BIRC4 (XLP type 2), which 

encode for the proteins SAP and XIAP, respectively. Abnor-

mal expression of SAP, the signaling lymphocytic activation 

molecular (SLAM)–associated protein, has been recently 

linked to an impaired polarization of cytolytic granules.84 The 

role of XIAP, the X-linked inhibitor of apoptosis protein, in 

the pathogenesis of HLH is unclear. Other immunodeficiency 

T-cell function by viral infections,31 similar to that seen in 

EBV infection,68 is a plausible mechanism.

If antigen removal is inefficient, as in individuals with 

HLH-causing mutations in the cytotoxic pathway, the inflam-

matory stimulus will not be terminated, resulting in a final 

common pathway in HLH of uncontrolled hypercytokin-

emia with sustained macrophage activation and tissue infil-

tration.66,69,70 Hypercytokinemia and lymphohistiocytosis 

explain most of the symptoms and laboratory findings of 

this disease, driven by an accentuation of the Th1 response. 

Elevated levels of Th1-type cytokines have been seen in 

patients with HLH, including TNF-a, IFN-g, and interleu-

kin 18.71 Under the influence of these Th1-type cytokines, 

macrophages become activated.71 The chronic stimulation 

by TNF-a and IFN-g results in not only chronic activation of 

the macrophages but also nonphysiologic behavior of those 

macrophages.72 The macrophages in HLH have been shown 

to ingest without involvement of the typical receptor profile 

of interactions. In addition, the macrophages ingest nonphysi-

ologic quantities and do not induce apoptosis of the ingested 

cells. However, pancytopenia is likely the consequence of 

high levels of TNF-a and IFN-g produced by Th1-type T 

cells rather than solely due to hemophagocytosis.71 TNF-a 

and IFN-g act on hematopoietic precursors to suppress both 

early and late stages of hematopoiesis and induce apoptosis in 

hematopoietic cells.73

TNF-a and IFN-g also inhibit lipoprotein lipase, lead-

ing to elevated triglycerides.2 Activated macrophages secrete 

plasminogen activator that results in high plasmin levels, 

hyperfibrinolysis, and a decrease in fibrinogen.11 Ferritin 

production is also upregulated in the macrophages secondary 

to increased levels of heme-oxygenase, a heat shock protein 

expressed in response to inflammatory cytokines and endo-

toxin.74 Hepatosplenomegaly, with increased transaminases 

and bilirubin, and neurologic symptoms are the consequence 

of organ infiltration by activated lymphocytes and histio-

cytes.75 Fever is induced by interleukin 1 and interleukin 6 

produced by activated macrophages, and sCD25 is increased 

in HLH in response to the activation of Th1 cells.

Genetic HLH

The various forms of genetic HLH all center on critical 

defects in the function of the NK or cytotoxic T cells. Five 

types of FHL are described (Table 1). FHL1 is due to chromo-

some arm 9q mutations and accounts for approximately 10% 

of the familial cases.10,57 The responsible gene at that locus 

and its function have not yet been identified.

FHL2 is caused by mutations in PRF1. This mutation 

accounts for approximately 20% of familial cases worldwide, 

with a somewhat higher prevalence in Turkey (30%), Japan 
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hantavirus,96 parvovirus B19,97 and enterovirus.98 Influenza-

associated HLH has also been reported.35

HLH may also be the first manifestation of a human 

immunodeficiency virus (HIV) infection.99 Around 10% 

to 20% of bone marrow biopsy specimens in patients with 

HIV before initiation of highly active antiretroviral therapy 

showed hemophagocytosis; however, it is not known whether 

these patients fulfilled other criteria for HLH.100 The fact that 

viral infections may interfere with the function of cytotoxic T 

cells represents a possible mechanism of infection-associated 

HLH.75

The incidence of bacterial-associated HLH varies 

between studies.101,102 Bacterial organisms include Staphylo-

coccus aureus, as well as various Gram-negative and atypical 

bacteria such as Campylobacter spp, Fusobacterium spp, 

Mycoplasma spp, Chlamydia spp, Legionella spp, Salmonella 

typhi, Rickettsia spp, Brucella spp, Ehrlichia spp, and Bor-

relia burgdorferi.96 As many as 36 cases of HLH have been 

published in association with tuberculosis.96,103

Among parasitic infections that trigger HLH, malar-

ia (Plasmodium falciparum and Plasmodium vivax), toxo-

plasmosis, babesiosis, and strongyloidiasis have also been 

described in HLH.96 Fungal infections include Candida, 

Cryptococcus,104 Pneumocystis, Histoplasma,105 Aspergillus, 

and Fusarium species.96 These are more frequent in patients 

with immunosuppression due to HIV infection, lymphoma, 

and chronic steroid use, as well as in transplant recipients.106 

Leishmania is a frequent nonviral agent reported in chil-

dren.107 The mechanism by which these various infectious 

organisms cause HLH is poorly understood, with the excep-

tion of EBV-associated HLH.

EBV-Associated HLH

EBV has been identified as the triggering virus in 74% of 

children in whom infectious agents were identified.102 EBV-

associated HLH is most often seen in East Asian countries. 

In Japan, the estimated incidence is at least 25 cases per year 

in the pediatric population, with a peak incidence occurring 

between 1 and 2 years and with a slightly higher frequency in 

girls.94 This higher geographic prevalence points to possible 

genetic factors involved in the pathogenesis of EBV-associ-

ated HLH. It may also be related to the higher prevalence of 

EBV and EBV-infected T cells in Asians or to better detection 

and diagnosis of HLH in Asian hospitals.108

Most patients with EBV-associated HLH present with 

a prolonged atypical infectious mononucleosis–like course, 

although some will develop an abrupt, rapidly fatal disease.78 

Although EBV-associated HLH appears to be more com-

mon in the setting of reactivation,94 its occurrence in some 

immunocompetent children or young adults with classic 

mononucleosis suggests also an association with primary 

EBV infections.109

syndromes associated with an increased risk of HLH are 

Wiskott-Aldrich syndrome,85 DiGeorge syndrome,86 and 

severe combined immunodeficiency syndrome,87 but the 

exact mechanism in these cases has yet to be determined.

Acquired HLH

Acquired HLH is not associated with any known genetic 

abnormality or immunodeficiency syndrome. It was first 

described years after the genetic form, in 1979 by Risdall and 

colleagues,88 in adults with a viral infection following organ 

transplantation. However, later it became clear that HLH also 

occurs in immunocompetent patients. Although thought to 

arise in adults, it is now accepted that acquired HLH may 

occur at any age, including children.2 In fact, some authors 

advocate that this form is more common in children than the 

genetic form.2

The true incidence of acquired HLH is unknown, and a 

study suggests that HLH may be significantly underrecog-

nized in many adult critical care units.21 The pathogenesis is 

not as well understood as in genetic HLH. It is possible that, 

in adults with a previously unexpressed HLH genotype, the 

disease becomes apparent in response to a major immuno-

logic challenge.31 There are certainly reported cases of genetic 

HLH with mutation of the PRF1 gene that previously had 

been deemed acquired based on age.89,90

A large variety of underlying conditions have been 

reported in association with HLH, commonly infection and 

malignancy, although metabolic diseases and medical therapy 

also have been implicated (see Table 2).75

Infection-Associated HLH

HLH associated with infection was originally described 

in patients under iatrogenic immunosuppression.91,92 Infec-

tions are commonly implicated triggers of genetic HLH; 

therefore, the identification of an infection does not discrimi-

nate between genetic and acquired forms.22,93

A number of infectious organisms have been associated 

with HLH (see Table 2). Viral infections of the herpesvirus 

family are frequently reported,2 particularly cytomegalovirus 

and EBV infections, with EBV regarded as the pathogen 

that most commonly triggers infection-associated HLH (see 

further discussion below).94 Herpes simplex virus infections 

are associated with up to 30% of neonatal HLH in Japan.30 

Human herpesvirus 8–associated HLH has been described in 

13 patients, mostly occurring in the setting of Kaposi sarcoma 

or multicentric Castleman disease.95

Other viruses reported in association with HLH include 

hepatitis viruses, adenovirus, measles, mumps, rubella, dengue, 
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are known associations.102 Among the hematologic neoplasms, 

peripheral NK/T-cell lymphomas, anaplastic large-cell lym-

phoma, and acute lymphocytic leukemias are often impli-

cated.31,102 Hodgkin lymphoma, multiple myeloma, and acute 

erythroid leukemia have also been reported.102,128,129 HLH is 

rarely seen in patients with non-Hodgkin B-cell lymphomas.2

Given the current understanding of the pathogenesis of 

other types of HLH, a possible mechanism of malignancy-

associated HLH may be the impairment of the cytotoxic 

pathway by the neoplasm through neoplastic changes in 

the cytotoxic cell itself or through malignancy-associated 

immune dysregulation. The strong association with NK/T-

cell lymphomas and other EBV-related malignant neoplasms 

points to a possible common mechanism shared by cases of 

nonmalignant EBV-associated HLH.

Macrophage Activation Syndrome

MAS is the name of HLH that arises as a complication of 

autoimmune diseases. The estimated prevalence ranges from 

7% to 13% of children with soJIA or Still disease.19 Other 

autoimmune diseases have also been reported in association 

with HLH, including Kawasaki disease, systemic lupus ery-

thematosus, and seronegative spondyloarthropathies in adults.2

MAS was first described in association with a pediat-

ric rheumatic disease in 1985, although first descriptions 

may have been as early as the mid-1970s.19 Although these 

patients may exhibit many of the clinical features of HLH, 

severe coagulopathy and cardiac impairment have been 

reported as common manifestations.2

As mentioned previously, because of the overlap of clini-

cal and laboratory findings between HLH and the rheumato-

logic process, modified diagnostic criteria for HLH must be 

applied in the case of MAS, based on a change from baseline 

laboratory values.47 For example, soJIA is often associated 

with anemia, hyperferritinemia,130 and leukocytosis,131 even 

in the absence of MAS, requiring a high index of suspicion to 

make a diagnosis of MAS.19 Patients with soJIA-associated 

MAS typically have lower levels of ferritin than in bona fide 

HLH, albeit still elevated above normal.132 However, patients 

may be afebrile and cytopenias may be less severe, at least 

initially.2

The mechanism of MAS is presumably the impaired 

function of NK/T cells, similar to the other types of HLH.19,133 

Patients with MAS have been shown to exhibit decreased 

expression of perforin or the SAP gene, mimicking the defects 

associated with familial HLH and XLP, respectively.2

Treatment and Prognosis

The therapy of HLH aims to suppress the exaggerated 

immune response through the use of immunosuppressive 

agents. The 2004 treatment protocol formulated at the second 

In primary EBV infection, EBV infects and replicates 

primarily in CD21+ B cells.110 Occasionally, T cells are also 

infected.111 However, unlike in chronic persistent EBV infec-

tion, in which infected NK cells and CD4+ T cells are more 

frequent, in EBV-associated HLH, infected CD8+ T cells 

predominate.112,113 The infection of the cytotoxic CD8+ T 

cells by EBV is believed to impair the proper function of these 

T cells, thus setting up the basic mechanism of a cytotoxic 

pathway defect characteristic of HLH.108,112,114

Clonality studies have shown that a significant number of 

patients with EBV-associated HLH have a clonal proliferation 

of T cells, particularly patients with recurrent disease.115,116 

The clonal expansion is also indicated by the presence of 

homogeneous viral terminal repetitive sequences in both 

EBV-associated HLH108,117 and EBV-positive T-cell lym-

phoma.118 These findings shared by both T-cell lymphomas 

and EBV-associated HLH are intriguing given the strong 

association between the 2 diseases.

EBV infection is also the commonly implicated trigger 

in genetic HLH. In particular, the pathogenesis of EBV-

associated HLH is similar to that of XLP, and EBV infection 

can easily tip a compensated XLP immune system into HLH 

by further compromising an impaired pathway. In XLP, 

mutations in the SAP/SH2D1A gene lead to abnormal levels 

of SAP protein.94,119-121 Normally, the SAP protein acts as 

a negative regulator of the SLAM/ERK signal pathway for 

T-cell activation to secrete cytokines such as IFN-g and TNF-

a.120,122,123 EBV affects infected T cells by inhibiting SAP/

SH2D1A gene expression through the action of EBV latent 

membrane protein 1 (LMP1), thus resulting in an enhanced 

cytokine secretion.118,124 When coupled with an underlying 

mutation of SAP, EBV infection of XLP T cells would further 

abrogate negative regulation of cytokine production. In addi-

tion to the role of LMP1, EBV also causes immortalization 

of infected T cells by blocking apoptotic signaling through 

TNF-a/TNF receptor 1 in the infected B and T cells via the 

activation of the nuclear factor–kB signal pathway. Thus, the 

persistent effect of EBV predisposes these patients to have 

recurrent episodes of HLH.68

Malignancy-Associated HLH

Malignant neoplasms are commonly seen in association 

with HLH in both children and adults. It may be the present-

ing clinical picture of an underlying malignancy, or it may 

develop during the treatment for a malignancy.102 An inci-

dence of 20% has been reported in the pediatric population. A 

concomitant triggering infection is common and contributes 

to mask the underlying malignancy.102

Hematologic malignant neoplasms account for the major-

ity of cases, although solid tumors such as prostate, lung, and 

hepatocellular carcinoma have also been described.125-127 

Mediastinal neoplasms such as germ cell tumor and thymomas 

Rosado_2013010024.indd   722 5/6/13   10:40 AM

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/a
jc

p
/a

rtic
le

/1
3
9
/6

/7
1
3
/1

7
6
5
9
5
6
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



Am J Clin Pathol  2013;139:713-727     723
723     DOI: 10.1309/AJCP4ZDKJ4ICOUAT     723

© American Society for Clinical Pathology

Hematopathology / Review Article

of an enigma. Most studies of prevalence and response to 

treatment in HLH were conducted in the pediatric population, 

which is known to most commonly carry the genetic form of 

HLH. Therefore, it is unknown whether the HLH that presents 

in the adult population with no known genetic defect or immu-

nodeficiency behaves in a similar manner. A recent study in 

adults ultimately determined that extremely ill patients may 

present with findings that are indistinguishable from HLH.139 

Additional studies are required to address whether acquired 

HLH truly exists as its own disease or is simply the final com-

mon pathway of an exhausted immune system that is about to 

collapse. These studies should help direct research aimed at 

improving diagnostic methods and treatment.
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