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Abstract. Knowledge of the optical properties of tooth
enamel and an understanding of the origin of these
properties are necessary for the development of new
optical methods for caries diagnosis and the measurement
of tooth color. We measured the scattering intensity
functions for HeNe-laser light of 80- to 100-pm-thick
human dental enamel slabs. The asymmetry factors were
calculated to be g = 0.68 at 633 nm. By measuring the
collimated beam attenuation, we determined the scattering
coefficient to be s = 6.6 mm-'. From Fraunhofer diffraction
patterns, obtained from transmission of the laser beam, we
calculated the periodicity of the prismatic structure as 5.4
pm. We present a model containing scattering by crystals
and by prisms. It shows that the prisms are the most
important scatterers but that the crystals are responsible for
the back-scattering.

Key words: lasers, optical properties, light-scattering,
human enamel.

Received April 4, 1995; Accepted September 19, 1995

Introduction

Studying the optical properties of dental materials is
necessary to extend the knowledge of the processes and
structures that cause the color of teeth. The outer surface of a
tooth crown consists of enamel. Sound enamel is nearly
transparent. Its light-scattering coefficient for fluxes, S,
decreases from 9 to 1.5 mmn1 at increasing wavelengths from
400 to 700 nm. The absorption coefficient for fluxes, K,
equals 0.1 mm-' over this wavelength region (Spitzer and ten
Bosch, 1975). Recently, the asymmetry factor for single
scattering, g = 0.68 + 0.09, was obtained from experiments
with a thick enamel sample, assuming a Henyey-Greenstein
angular intensity function (Vaarkamp et al., 1995).

By fitting linear combinations of isotropic and Henyey-
Greenstein angular intensity functions, we can calculate much
lower values of the asymmetry factors g (Fried et al., 1995). The
angular intensity function used in this method is given by:

(1g2HG)
E(o)= fd+ (1-fd)[ i

+ g HG 2 gHGCOS0)312

with fd, a fit parameter, expressing the isotropic contribution
with respect to the Henyey-Greenstein part, and gHG' the
asymmetry factor of the Henyey-Greenstein intensity
function.

The reported values are gHG = 0.96 (at all three
wavelengths used), fd = 0.35 (at wavelengths of 1053 and 632

nm), and fd = 0.60 (at 543 nm). This results in total
asymmetry factors g = 0.462 (at 1053 and 632 nm) and g =
0.240 (at 543 nm).

Fraunhofer diffraction of light can be observed from thin
enamel samples (O'Brien, 1988). Two-dimensional Fraunhofer
patterns can be used to determine the distribution of the
values of the periodicity of the structure of prisms and the
interfaces between them (Zijp and ten Bosch, 1995). The
fluorescence properties of tooth enamel have been well-

1891



1892 Zijp et al.

reviewed (Hefferren et al., 1971; Scharf, 1971).
Better understanding of the optical properties of dental

enamel requires knowledge of its single-scattering
properties, i.e., the scattering coefficients for collimated light,
s, and single-scattering intensity functions, E(O). These
should be measured from thin samples. We present such
data in this paper and compare them with theoretical
predictions. Preliminary results have been published
(Groenhuis, 1981).

Materials and methods

Theoretical calculations
To understand the light-scattering properties of biological
tissues, we must consider the structures within these
materials. The main structures in human dental enamel are
the mineral crystals and the keyhole-shaped prisms in which
they are organized. We shall consider these structures and
their effects on the scattering properties separately.

Scattering by crystals. Human dental enamel consists 87 vol% of
natural hydroxyapatite (HAP) crystals (Arends and ten Cate,
1981), with the balance water and organic material, mainly
proteins. The HAP crystals are hexagonal cylinders with the
following dimensions: thickness = 25 nm, width = 40 nm, and
length = 160 nm (Scott and Symons, 1971). Other investigators
have found that the lengths can vary over wide ranges (from 100
to 1000 nm, Jongebloed and Molenaar, 1975; from 21 to 10,000
nm, Ronnholm, 1962). Using the dimensions found by Scott and
Symons, the average crystal volume is 1.3 x 10-1 m3, and we find
the number of crystals to be NC_ 6.7 x 1021 m-3 in enamel. The
refractive index for visible light of HAP crystals is 1.651
(McConnell, 1973), and that of whole enamel is 1.62 (Spitzer and
ten Bosch, 1975). From the mineral content of whole enamel, we
can calculate its refractive index (cf. Appendix 1).

To calculate the light-scattering intensity function, we
estimated the role of the crystals by assuming a circular cross-
section and a random orientation overall (see Appendix 2).

Scattering by prisms. In enamel, the crystals are organized in
keyhole-shaped prisms. These prisms are 4 to 6 pm wide and
extend from the dentin-enamel junction to the outer surface
of the tooth. Schematic drawings of the prisms (e.g.,
Griebstein, 1965) and photographs have been published
(Zelander, 1973); similar figures can be found in many
textbooks dealing with dental tissues. When the keyhole is
divided into a head and a tail, the crystals within the head
are oriented nearly parallel to the axis of the prism, and those
within the tail are oriented nearly perpendicular to the prism
axis (Griebstein, 1965). From a photograph (Zelander, 1973),
we determined the geometric cross-sections (i.e.,
perpendicular to their principal axes) of the prisms to be
about 4.0 x 10-11M2.

Between the prisms, there is an interprismatic area with an
average thickness of about 0.1 pm (Arends and ten Cate, 1981).
One can estimate the average geometric cross-section of
interprismatic substance by measuring its average area per prism
on the photograph (Zelander, 1973); this is about 1.5 x 1012 m2.
Assuming that the volume fractions are equal to the cross-section

fractions, the prism volume fraction can be estimated as fp = 0.96.
The number of prisms per unit volume was estimated as Np - 2.4
x 1013 m-3, based on a length of 1 mm.

In the interprismatic area, the crystal orientation is
random, leading to a lower mineral content and a higher
content of water and organic material. To estimate the
mineral volume fraction in the interprismatic material, we
filled a glass box with pencils which were also randomly
distributed. The dimensions of the pencils were of the same
proportion as those of the crystals. The dimensions of the box
were much larger than the dimensions of the pencils. The
volume fraction of the pencils appeared to be almost 0.70. We
took this value as an estimation of the mineral volume
fraction in the interprismatic area. Since the mineral volume
fraction in whole enamel is about 0.87 (Arends and ten Cate,
1981), we estimated it as 0.88 in the prisms.

Calculation of the indices of refraction of the prisms and
the interprismatic substance appears in Appendix 1.

In our measurement set-up, we observed the prisms at
angles aL = 20°-90° and 0 = 60°-90° (with a. and o as defined
by van de Hulst, 1981). Because the measured angular
intensity functions did not show systematic differences on
the site in the tooth where the slab was cut, we estimated a
mean angular intensity function E(0) of an ensemble of
cylinders by averaging these intervals of a and 0. More
details about the calculation of the angular intensity function
are given in Appendix 3.

Diffraction by prisms. In enamel, the structure of prisms and
interprismatic substance can be considered as a grating. The
width of the prisms shows some variation, and the prisms
are somewhat curved and not exactly aligned. We consider
this as a grating with an irregular periodicity and curved
slits. The irregular periodicity will cause an interference
pattern with a sharp principal maximum, a wide first-order
maximum, and vanishing higher-order maxima. The
curvature will cause spreading of the first-order maxima
around the principal axis. Calculations on the diffraction
pattern are explained in Appendix 4.

Experiments
Samples. We used 6 extracted human third molars. From each
molar, 5 slabs with a thickness of from 80 to 100 pm were cut,
parallel to the buccal surface. They were stored on wet tissues
in a refrigerator until measurements were performed.

Measurements. The angular intensity functions were measured with
equipment as described previously (Zijp and ten Bosch, 1991). In
the present measurements, however, the scattering cells contained
a solution which matched the refractive index of enamel. This
solution was made of a saturated solution of potassium-iodine (KI)
in water, to which mercury-iodine (HgI2) was added until the
refractive index of the solution was 1.62, and so matched the
refractive index of enamel. We used a tunable HeNe laser (LSTPC-
1010, PMS Electro Optics, Boulder, CO) at wavelengths (and
powers) of 632.8 nm (4 mW), 594.1 nm (0.6 mW), and 543.5 nm (0.3
mW). We measured the angular intensity functions in the planes
parallel and perpendicular to the tooth axis. From the measured
angular intensity functions parallel to the tooth axes, the
asymmetry factors for scattering, g, were calculated by:
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180°

f E(0) cosO sinO dO
0.

(2)

° 180°

f E(o) sinO dO

We consider the Fraunhofer diffracted light as unscattered
light, and so the undiffracted angular intensity functions,
i.e., those measured parallel to the prisms, should be used
for calculating g.

In practice, it is impossible to calibrate the measurement of
E(O) with respect to the incident beam power Eo. Therefore, the
scattering coefficient s was determined from the attenuation (by
scattering) of the incident beam. Thus, we measured the
transmission T at 0 = 0° at the laser wavelength of 632.8 nm. The
mean thickness t of each slab was calculated from 5
measurements with a micrometer. The measured scattering
coefficient was calculated by: sm = -ln(T)/t. The absorption
coefficient was assumed to be much smaller than the scattering
coefficient (Spitzer and ten Bosch, 1975).

The Fraunhofer diffraction patterns were measured with 6
other slabs from 6 teeth prepared and stored as described. The
measuring set-up is shown schematically in Fig. 2. We used a
HeNe laser at 632.8 nm. The diffracted radiation was mirrored
by a glass plate on a spectralon block (Labsphere, North Sutton,
NH). This pattern was imaged by means of a M 1430-P CCD
camera (EG&G-Par, Princeton, NJ), coupled to a computer by a
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Figure 1. Calculated angular intensity functions. Dashed line for
randomly oriented cylinders as a model for the mineral crystals.
Solid line for oriented cylinders as a model for the prisms. The
ordinate value expresses the irradiance at the detector per unit
irradiance of the incident beam per volume irradiated enamel (in
m3), where the detector is positioned in a direction u with respect to
the incident direction.

14-bit analog-to-digital converter. The images measured 300 x
300 pixels, and were taken without and with neutral density
filters of 10%, 1%, 0.1%, and 0.01% transmission in the incident
beam. These pictures showed different degrees of saturation of
CCD-camera pixels, and were combined to yield an intensity
profile with a dynamic range of 6 orders of magnitude, without
saturation. The form of such an intensity profile is shown
schematically in Fig. 3, in which the density of the dark spots
represents the light intensity.

From these images, we calculated the light power P,
transmitted in the sectors 1 and 2 (cf. Fig. 3), as a function of the
angular deviation from the central spot, 0 = 00. This resulted in
P1(0) and P2(0). By performing the calculations as set out in
Appendix 4, we could predict P2(0) curves for appropriate
values of the mean periodicity of the prism structure, dmean, and
its standard deviation, (d. The curve P3(0) that best fit the
experimental result, P2(0), was used to determine dmean and CTd.

The measured diffraction patterns were further used to
determine the angular distribution of the prisms. We calculated the
total amount of transmitted light, Pw(o), in the windows covering
the first-order maxima (Fig. 3) as a function of the angle 0.

Results

Calculations
Fig. 1 shows the light-scattering intensity function for a single
crystal, multiplied by Nc (dashed line). Calculation of the
scattering cross-section of each crystal (at a wavelength of 633
nm, Appendix 2) gives Csca 1.4 x 10-19 m2. The number of
crystals and their scattering cross-section determine the linear
scattering coefficient, sC = N x Csca z 0.94 mm-1. This

COD camera

spectralon block

Figure 2. Set-up for measurement of the Fraunhofer diffraction pattern.
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Figure 3. Schematic example of a measured Fraunhofer diffraction
pattern. The black dot density represents the light intensity. The
incident beam is a thin pencil beam in the center of the picture. The
sectors numbered 1 and 2 are used to calculate the functions P1(O) and
P2(O), respectively. The windows at angle 0 are used to calculate Pw(o).

coefficient is proportional to the estimated lengths of the
model crystals (so far assumed as 160 nm), because Nc is
proportional to the inverse of their lengths, and Csca is
proportional to the square of their lengths.

The angular intensity function for a single prism, multiplied
by Np is shown in Fig. 1 as the solid line. The scattering cross-
section for each prism is estimated as Csca z 2.4 x 10-10 m2 (at a
wavelength of 633 nm, Appendix 3). Calculations with
different prism lengths showed that Cs is almost proportional
with the length of the model prism.

The number of prisms and their scattering cross-section
determine the corresponding scattering coefficient, which can
be estimated as sp = Np x Ccsa z 5.8 mm-'. This scattering
coefficient is independent of the lengths of the model crystals.

Experiments
When the thin enamel slabs are observed in daylight,
they appear to be pale blue in reflection and pale yellow
in transmission.

Typical examples of measured angular intensity functions

Table. Asymmetry factors, g, of enamel

Wavelength (nm) na Mean ± S.D.b

633 9 0.68 ± 0.10
594 4 0.68 ± 0.20
543 4 0.74 ± 0.23

a Some samples were broken after measurement at 633 nm.
b Standard deviation includes variation among the samples.
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Figure 4. Typical examples of angular intensity functions of enamel
at 633 nm. Full and dotted lines: measured with the scattering plane
perpendicular and parallel to the tooth axis, respectively. Dashed
line: calculated perpendicular to the tooth axis.

are shown in Fig. 4. The calculated asymmetry factors, g,
from these functions are shown in the Table.

From 55 measurements (of 11 samples) of the
transmission at 0 = 0°, we found sm = 6.6 ± 2.7 mm-1.

Typical examples of the diffraction patterns as a function
of the diffraction angle 0 are given as P1(0) and P2(0) in Fig. 5.
Predicted curves P3(0) were fitted to the P2(0) curves. By
doing so, from 6 measurements on 6 samples, we found
overall mean values of dmean = 5.4 pm and o-d = 1.0 pm. The
fit corresponding to P2(0) is also shown in Fig. 5.

Fig. 6 shows PW(o) for one of the samples. It illustrates the
distribution of the curvature or misalignment of the prisms.
We found the full width at half-maximum (FWHM) of all 6
measured distributions to be Ao = 740 ± 110.

Discussion
The observation that the slabs look blueish in reflection and
yellowish in transmission leads to the conclusion that
structures smaller than the wavelength of light play a
considerable role in the light-scattering process. This is
supported by the measured asymmetry factors, g (Table),
because structures as small as the mineral crystals would
cause low asymmetry factors, g z 0, and those as large as the
prisms would cause high asymmetry factors, g 1 (Fig. 1).
The measured g values are between these values. The g
value we measured at 633 nm is equal to that found
previously by a different method (Vaarkamp et al., 1995).
Our measured g values deviate significantly from those
found by the fitting procedure (Fried et al., 1995). This
procedure has the disadvantage that the addition of a small
isotropic fraction to the resulting intensity function will

.1
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Figure 5. Typical example of the measured reflected power P1(0)
(solid line) in sector 1, P2(0) (dotted line) in sector 2, and PNO)
(squares) fitted curve, as a function of the angle 0.

result in a large reduction in the calculated g value. This is a

consequence of the fact that the Henyey-Greenstein intensity
functions are peaked very sharply forward. We observed an
increase in the standard deviation of the measured g values
with decreasing wavelength, which is due to decreasing
laser power. Therefore, we were unable to determine the
increase of g with decreasing wavelength that is
theoretically expected.

The measured angular intensity function (Fig. 4) shows a
minimum around 900, caused by the shade cast by the sample-
holder. We expected the true angular intensity function to have,
at the m:inimumn, a smooth formn, but not one so deep (between
80 and 120'). By adding and smoothing both theoretical
functions of Fig. 1, we will get an intensity function peaked
sharply forward. We expect that the resonances wil vanish in
practice, because the prisms are not uniform, since the crystals
within them are somewhat oriented. Also, the prisms do not
have a circular cross-section, as do the cylinders in the model.

The calculated linear scattering coefficient, s, can be
found by adding those found from the calculations for
scattering by mineral crystals and prisms. We found s = 6.7
mm-'. It should be noted that this result is not dependent
upon the length of the modeled prisms. This value matches
the measured value, sm = 6.6 ± 2.4 mm-'.

Adding the functions shown in Fig. 1 results in an angular
scattering intensity function which shows too little back-
scattering. This back-scattering can be introduced by assuming
stronger scattering from the crystals, which can be obtained by
assuming longer crystals than in the model presented in
Appendix 2. This assumption would be in agreement with
reports on very long crystals (Grams et al., 1974; Daculsi et al.,
1984), which are fractured in the preparation of the samples. If

Figure 6. Typical example of the measured reflected power in the
windows PW(o) as a function of the angle 0.

we thus assume the scattering from the crystals to be stronger
by a factor of 10, the theoretical curve obtained will better
match the measured one (cf. Fig. 4, dashed line). This
procedure, however, leads to a scattering coefficient which
would be too high. This theoretical curve does not show back-
scattering as strong as those measured, probably caused by
reflectance of the forward-scattered radiation at the solution-
glass and glass-air surfaces of the scattering cell.

The values of dmean (5.4 jim) and o-d (1.0 lim) compare
well with other measurements of the diameters of enamel
prisms (Zelander, 1973).

The data presented are all from third molars. Since
it has been shown that the scattering coefficient of
enamel is weakly correlated to tooth color (ten Bosch
and Coops, 1995), it may be expected that the
scattering in enamel of teeth with usually darker
color, e.g., cuspids, is different.

If the enamel samples were cut in other orientations, e.g.,
perpendicular to the surface, this would affect the measured
and calculated optical parameters. In that case, we would
expect lower scattering coefficients, because waveguide effects
will play a considerable role (Altshuler and Girisimov, 1989).
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Appendix 1. Calculation of the refractive indices of the prisms, the
interprismatic area, and whole enamel

The refractive index of a whole substance composed of surrounding
material and particles with a different refractive index can be
calculated by (Emslie and Aronson, 1973):

ii= +1 (3)
2p

p
In NP -1

1-p+ 2 I2 |n2 ln l2 -
pf S- [PS Lii

with:
ni as the refractive index of the substance,
np as the refractive index of the particles, i.e., the mineral

crystals = 1.651 (McConnell, 1973),
ns as the refractive index of the surrounding material, i.e.,

proteins and water = 1.40 (estimated), and
fp as the volume fraction of the particles in the substance.

We can use Eq. 3 to calculate the refractive index of the
prisms. With fp = 0.88, being the volume fraction of mineral
crystals in the prisms, we find iiSm = 1.619.

The refractive index of the interprismatic substance can be
found: With f = 0.70, being the volume fraction of mineral
crystals in the mterprismatic area, we find 1nt.pr = 1.573.

Applying the same method for whole enamel with fp =
0.87, being the volume fraction of mineral crystals in whole
enamel, we find Iienael = 1.616. This value compares with the
measured value of 1.62 (Spitzer and ten Bosch, 1975).

Appendix 2. Calculation of the single-scattering properties of the
mineral crystals.

In this calculation, we assume that, for this treatment, the
mineral crystals can be considered as randomly oriented
circular cylinders. Their scattering properties can be
calculated by the Rayleigh-Gans theory (van de Hulst, 1981,
p. 98), because both its constraints are fulfilled:

nparticle 1 1

-ii
and kain _11 <<1

-i
(4)

with
nparticle as the refractive index of the particles (mineral crystals)

= 1.651,
ni as the refractive index of the environment of the particles

(whole enamel) = 1.616,
a as the "radius" of the mineral crystals = 17 nm, and
k as the wavenumber of the light = 9.93 x 106 m1

(at a wavelength of 633 nm, in vacuum).

The angular intensity function for this approximation,
with the extra constraint that ka << 1, is given by (van de
Hulst, 1981, pp. 87, 98):

a4k4l2I=4(4-1 (1+cos20)
E(0) = 8nr2 R2(0)E0

(5)

1896 Zijp et al.



Light Scattering by Dental Enamel

with R2(0) = 1 (-l) (2z) (sin z
Z n (2n+1) (2n+i)!.

and z = klsin 0
2

with the values a, k, -fi and n as used in Eq. (4) and:

Eo
E(0)

nc
0
r

as the irradiance of the incident radiation (W/m2),
as the irradiance of the scattered radiation at the
detector (W/m2),
as the length of the cylinder (crystal) = 160 nm,
as the refractive index of the crystals = 1.651,
as the scattering angle, and
as the distance from the scatterer to the detector (we used r = 1 m
in this calculation).

In Fig. 1 (dashed line), the function E(0) - NC/Eo (in m-3) is
shown.

The scattering cross-section of such a model crystal is
given by the Rayleigh cross-section (van de Hulst, 1981, p. 68):

(6)C =a4O12f n)2-1r

Using the data previously given, we find Csca ~ 1.4 x 10-19 M2.
Note that Csca is proportional to the square of the length of
the model crystal.

Appendix 3. Calculation of the single-scattering properties of
the prisms.

In the case of scattering by prisms, the conditions like those in Eq.
(4) are not quite fulfilled here, but as an estimation of the forward-
scattered radiation, we applied the Rayleigh-Gans theory. We must
be aware that the prisms are not randomly oriented. As a model for
the prisms, we used a circular cylinder, with radiation obliquely
incident on it. The scattering intensity functions of such cylinders
are given by (van de Hulst, 1981, pp. 87, 94):

a4k4l2iy4(-1) (1 + cos20)
E(uoL,0) = nI|R(ot,0,_) |12 Eo

8r2

with R(co,o,0) = 2 Jl(u) (sinv),

u = 2kasin H sin,8, v = klsin 0 cosA, (7)

sing = (sin2oL sin2o - (sin ox cos 0 sin 0+ COS at COS 2 )2)12

and cos,B = sin a cos 0 cos0 - cos ot sin
2 2

with:
a as the radius of the prism model = 2.5 pm,
I as the length of the prism model = 1 mm,

np as the refractive index of the prism = 1.619,
n as the refractive index of whole enamel = 1.616,
oa as the angle between the cylinder axis and the incident direction,
o as the scattering angle, and
0 as the angle between a plane through the cylinder axis and the

incident direction (i.e., the incident plane) and the scattering plane.

In Fig. 1 (solid line), the function E(0) Np/Eo (in m-3) is
shown, in which E(0) is the average value for an ensemble
of prisms oriented at angles ot = 20°-90° and 0 = 60°-90°.

To estimate the scattering cross-section, Csca, of a single
prism, we have to integrate the scattered radiation over all
directions (van de Hulst, 1981, p 95):

Csca

900 180° 180°

2 f dct | do I dO sinO E(O,c, )
20° 0o 0o

900

E0 f dot
200

(8)

This results in Csca = 2.4 x 10-10 M2.

Appendix 4. Calculation of the Fraunhofer diffraction of prisms

Radiation perpendicularly incident on a regular grating of
slits is Fravnhofer-diffracted. This radiation can be observed
by placing a screen behind the grating. The normalized
intensity function of the diffracted radiation is given by
(Born and Wolf, 1980):

(9)
I(O) =N2 ( sin( I2fd sinA 2

N sin (kd sin ))
2

with:
d as the distance between the slits,
N as the number of slits, and
0 as the angle with the incident direction.

If the periodicity of the grating is a value with some
variation, a wide first-order maximum and vanishing
higher-order maxima will occur. The normalized intensity
function of such an irregular grating can be calculated by
the addition of diffraction patterns as given by Eq. (9), while
using values of d that vary according to a normal
distribution, with mean value dmean and standard deviation
Cd. Adding such a sum of diffraction patterns to the angular
intensity function arising from scattering without diffraction

5000 sin(C sinO) )2
P3(0) = Pl(o) + C0 Nsin(nsin0)

(10)

with the previously used data and:
P3(0) as the total amount of transmitted light as a function of

the scattering angle 0 calculated in sector 2 (Fig. 3),
P1(0) as the total amount of transmitted light as a function of
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the scattering angle 0 measured in sector 1 (Fig. 3),
C as an arbitrary constant,
dn as the periodicity of the grating, drawn, for every value of n,

pseudo-randomly from a normal distribution, with a mean
value dmean and a standard deviation o-d, and

N as the number of slits. (We took N = 200, being the ratio of the
diameter of the laser beam - 1 mm and the expected
periodicity - 5 pm.)

P3(0) was fit to P2(0), which was measured, the fit
parameters being dmean and ad.

If the slits are somewhat curved, the diffraction
pattern will spread around the major direction of
diffraction, as shown in Fig. 3. So, by measuring PW(0) in
a window covering the first-order maximum, we can
estimate the curvature of the prisms.
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