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Abstract

Because of its impact on multiple biological pathways, heparanase has emerged as a major 

regulator of cancer, inflammation and other disease processes. Heparanase accomplishes this by 

degrading heparan sulfate which regulates the abundance and location of heparin-binding growth 

factors thereby influencing multiple signaling pathways that control gene expression, syndecan 

shedding and cell behavior. In addition, heparanase can act via non-enzymatic mechanisms that 

directly activate signaling at the cell surface. Clinical trials testing heparanase inhibitors as anti-

cancer therapeutics are showing early signs of efficacy in patients further emphasizing the 

biological importance of this enzyme. This review focuses on recent developments in the field of 

heparanase regulation of cancer and inflammation, including the impact of heparanase on 

exosomes and autophagy, and novel mechanisms whereby heparanase regulates tumor metastasis, 

angiogenesis and chemoresistance. In addition, the ongoing development of heparanase inhibitors 

and their potential for treating cancer and inflammation are discussed.
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By degrading heparan sulfate, heparanase impacts multiple signaling pathways that control gene 

expression, syndecan shedding and cell behavior. Heparanase also activates signaling at the cell 

surface via non-enzymatic mechanisms. This review focuses on recent developments that provide 

new insight into mechanisms of heparanase-mediated regulation of cancer and inflammation, 

including its impact on exosomes, autophagy, angiogenesis, chemoresistance, cell migration and 

metastasis.
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Heparanase in cancer

Heparanase is an endoglucuronidase that cleaves heparan sulfate, thereby regulating the 

structure and function of heparan sulfate proteoglycans and remodeling cell surfaces and the 

extracellular matrix. Much of our current knowledge regarding heparanase function is 

related to cancer, and numerous comprehensive reviews are available on that subject [1–3]. 

There is abundant evidence that heparanase plays a role in cancer. Analyses at the RNA or 

protein level demonstrate that heparanase expression is enhanced in almost all cancers 

examined to date including, for example, ovarian, pancreatic, myeloma, colon, bladder, 

brain, prostate, breast, liver and rhabdomyosarcoma [4–14]. Numerous clinical studies have 

consistently demonstrated that upregulated heparanase expression correlates with increased 

tumor size, tumor progression, enhanced metastasis and poor prognosis [1, 14–18]. 

Knockdown of heparanase expression or treatment of tumor bearing mice with compounds 

that inhibit heparanase enzyme activity markedly impair tumor progression further 

underscoring the potential of anti-heparanase therapy for multiple types of cancer [19–25]. 

Importantly, there is only a single, enzymatically active form of heparanase in humans, it is 

expressed in very low levels in normal tissues and heparanase knock-out animals exhibit no 
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obvious deficits [17] implying that inhibition of heparanase will cause minimal side effects 

in cancer patients. Together these findings elevate heparanase as a highly desirable and 

druggable target for anti-cancer therapy, a view widely held by researchers in both academia 

and pharma and the topic of multiple reviews [1, 3, 15, 16, 21, 26–28].

Mechanistically, by cleaving heparan sulfate chains, the heparanase enzyme alters the 

structure and function of heparan sulfate proteoglycans and contributes to tumor-mediated 

remodeling of both cell surfaces and the extracellular matrix. These actions dynamically 

impact multiple regulatory pathways, most notably by augmenting the bioavailability of 

growth factors and cytokines bound to heparan sulfate [26]. In addition, heparanase 

expression by tumor cells initiates upregulation of expression of multiple genes that promote 

aggressive tumor behavior including vascular endothelial growth factor (VEGF), hepatocyte 

growth factor (HGF) and matrix metalloproteinase-9 (MMP-9) [29–33], among others. In 

addition, recent discoveries indicate that a major function of heparanase is to enhance the 

shedding of the cell surface proteoglycan syndecan-1 [18, 26, 34]. Shed syndecan-1 plays 

diverse roles in the tumor microenvironment including shuttling growth factors to both 

tumor and host cell surfaces and nucleating the formation of signaling complexes at the cell 

surface (discussed in detail below). For additional information on syndecans in cell signaling 

see ref. [35] in this minireview series.

Heparanase regulation of tumor progression via exosomes and 

autophagosomes

Heparanase regulates biogenesis, composition, and function of tumor cell-derived 
exosomes

Exosomes are powerful mediators of intercellular communication that drive tumor 

progression by regulating the behavior of tumor and host cells both locally within the tumor 

microenvironment and distally throughout the body [36]. Exosomes accomplish this 

regulatory function by docking with recipient cells and delivering their cargo of protein, 

DNA, mRNA and miRNA [36]. In cancer, secretion of exosomes often increases as tumors 

transit toward a more aggressive phenotype. The tumor-host crosstalk mediated by exosomes 

has multiple effects that can influence processes such as formation of the pre-metastatic 

niche, angiogenesis and host immune function [37–39]. Syndecan proteoglycans influence 

the biogenesis of exosomes through their interaction with the syntenin-ALG-2 interacting 

protein X (ALIX) complex [38, 40, 41]. Syntenin interacts with the syndecan core protein 

via two PDZ domains and to ALIX via three LYPXnL motifs [40]. ALIX then binds to 

ESCRT-III (endosomal-sorting complex required for transport), the machinery responsible 

for intraluminal vesicle formation at multivesicular endosomes. Importantly, heparanase 

activates the syndecan-syntenin-ALIX exosome pathway [40, 42]. Briefly, heparanase 

activity in endosomes trims long heparan sulfate chains into shorter ones, allowing 

clustering of syndecans through lateral interactions between their heparan sulfate chains [42, 

43]. Heparanase-induced clustering is thought to stimulate the binding of syndecan 

cytoplasmic domains to the tandem PDZ domains of syntenin, driving ALIX-ESCRT-

mediated sorting into exosomes [42–44]. Notably, heparanase activity also facilitates the 

recruitment of CD63 into exosomes, in a syntenin-dependent manner [42, 43]. Together, a 
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complex picture is emerging in which syndecans, CD63 and possibly other membrane 

proteins that associate with endosomal syndecan and/or tetraspanin-enriched microdomains, 

are sorted into exosomes by a shared heparanase-syndecan-syntenin-ALIX pathway 

machinery [43, 44]. Heparanase-mediated effects on exosome biogenesis are best explained 

by heparanase acting on syndecan, promoting the assembly of syndecan in complexes that, 

by recruiting syntenin and ALIX–ESCRT, promote endosomal membranes to bud [44]. 

From that perspective, heparanase inhibitors as well as specific syntenin-PDZ inhibitors 

might be of particular interest for cancer, where both exosome release and heparanase are 

often elevated in the more aggressive forms of disease [26, 45]. In support of the above 

considerations, we have reported that in human cancer cells, when expression of heparanase 

is enhanced, or when tumor cells are exposed to exogenous heparanase, exosome secretion is 

dramatically increased [45]. This appears to rely on its enzymatic cleavage of heparan 

sulfate, because enzymatically inactive forms of the enzyme do not suffice [45]. Thus, 

heparanase released by tumor or host cells (e.g., macrophages) could diffuse within the 

microenvironment, impact neighboring tumor cells and enhance, among other effects, their 

secretion of exosomes. Heparanase also impacts exosome protein cargo as reflected by 

higher levels of syndecan-1, VEGF and HGF in exosomes secreted by heparanase-high 

expressing cells as compared to heparanase-low expressing cells [45]. In functional assays, 

exosomes from heparanase-high cells stimulated spreading of tumor cells on fibronectin and 

invasion of endothelial cells through extracellular matrix better than did exosomes secreted 

by heparanase-low cells, suggesting a role in promoting tumor cell spreading and 

angiogenesis [45].

Our finding that heparanase is present in exosomes raises the possibility that this is a means 

for its delivery to distal locations. Because of the known role of heparanase in promoting 

metastasis and angiogenesis, this may play a role in establishing niches to which tumor cells 

eventually home and grow. Our results indicate that heparanase promotes secretion of 

exosomes that interact with both tumor and host cells and drive them toward an aggressive 

tumor phenotype. Emerging data indicate that exosomes can act as barriers to anti-cancer 

therapy by interacting with tumor cells and enhancing their chemoresistance [46]. In fact, 

our ongoing studies reveal that heparanase enhances both exosome docking and exosome-

mediated transfer of chemoresistance to tumor cells [47]. Collectively, it appears that 

heparanase helps drive exosome secretion, alters exosome composition and facilitates 

production and docking of exosomes that impact both tumor and host cell behavior thereby 

promoting tumor progression and chemoresistance [45].

Heparanase enhances tumor growth and chemoresistance by augmenting autophagy

In spite of its localization in a highly active protein degradation environment such as the 

lysosome, heparanase appears stable [48, 49] and exhibits a half-life of about 30 hours [50], 

relatively long compared with a t1/2 of 2–6 hours for transmembrane HSPGs and 25 minutes 

for GPI-anchored HSPGs [51]. Residence and accumulation of heparanase in lysosomes 

indicate that the enzyme may function in the normal physiology of this organelle. In a search 

for such function we revealed a role of lysosomal heparanase in modulating autophagy [52]. 

Autophagy is an evolutionarily conserved catabolic pathway through which cytoplasmic 

components, including macromolecules such as proteins and lipids as well as whole 
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organelles, are sequestered into double-membrane vesicles called autophagosomes. 

Autophagosomes are subsequently fused with lysosomes, where the intracellular material is 

degraded and recycled. This process occurs at a basal level in every cell and is required to 

remove unfolded proteins and damaged organelles, thus maintaining cellular homeostasis. 

Autophagy is further induced by starvation and stress, promoting cancer cells survival by 

providing their metabolic needs [53, 54]. Our results indicate that heparanase promotes 

autophagy and that enhanced tumor growth and chemoresistance exerted by heparanase is 

mediated in part by augmenting autophagy [52]. This was concluded because reduced LC3-

II (a protein that specifically associates with autophagosomes) levels are found in cells and 

tissues obtained from heparanase knockout mice as opposed to elevated LC3-II levels found 

in transgenic mice that over express heparanase [52]. Even higher induction of autophagy 

was evident in head and neck carcinoma and glioma cells over-expressing heparanase, in 

accordance with a strong pre-clinical and clinical correlation between heparanase expression 

and the progression of these malignancies [33, 55–60]. Notably, electron microscopy 

analyses of cells over-expressing heparanase revealed not only a higher number of 

autophagic vacuoles, but also abundant release of vesicles, likely exosomes, from the cell 

surface, further supporting the notion that heparanase enhances exosome secretion that 

contributes to tumor growth [45, 61] (Fig. 1).

The mechanism underlying autophagy induction by heparanase is not entirely clear, but 

likely involves mTOR1 that plays a pivotal role in nutrient-sensing and autophagy regulation 

[62]. mTOR1 activity inhibits autophagy but under starvation its activity is repressed, 

leading to autophagy induction. We found that heparanase over-expression correlates with 

reduced mTOR1 activity, evident by decreased levels of p70 S6-kinase phosphorylation, an 

mTOR1 substrate. In contrast, heparanase-knockout cells exhibited increased mTOR1 

activity and p70 S6-kinase phosphorylation [52]. Notably, mTOR1 appeared more diffusely 

scattered in control cells, whereas in cells with high content of heparanase, mTOR1 is found 

mostly in perinuclear regions, co-localizing with heparanase and LysoTracker, a dye that 

labels acidic lysosomal vesicles (Fig. 1). Our results imply that autophagy induction 

contributes to the pro-tumorigenic function of heparanase. This emerges from in vitro and in 
vivo experiments utilizing inhibitors of autophagy (chloroquine) and heparanase (PG545) 

alone or in combination [52]. Thus, combining chloroquine and PG545 in a tumor xenograft 

model resulted in significantly smaller and more differentiated tumors, suggesting that 

heparanase activity drives cancer cell de-differentiation as part of its pro-tumorigenic 

properties. Equally important is the ability of heparanase over-expression to confer 

resistance to stress, chemotherapy and targeted drugs [63], mediated, at least in part, by 

enhancing autophagy [52]. Indeed, diverse classes of anticancer drugs induce autophagy 

[64], thus attenuating tumor cell elimination, while autophagy inhibitors overcome 

chemoresistance [65, 66]. Based on this concept, chloroquine is currently being evaluated in 

clinical trials in combination with different classes of chemotherapeutic agents [65].

While traditional thinking envisions heparanase as an enzyme that functions extracellularly 

to cleave heparan sulfate and facilitate remodeling and ‘priming’ of the extracellular matrix 

(ECM), our results indicate that heparanase may also function inside cells [67]. From a 

translational point of view, targeting heparanase in the lysosome may be as important as its 

inhibition extracellularly, but the ability of currently available heparanase inhibitors to cross 
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the plasma membrane and enter the cell is unclear. Alternatively, the pro-autophagy function 

of heparanase can be inhibited by inhibiting its cellular uptake and hence decreasing its 

lysosomal content [67]. This opens the way for the development of a new class of highly 

specific inhibitors (i.e., monoclonal antibodies) that prevent heparanase uptake by targeting 

its heparin-binding domain. Involvement of heparanase in exosome formation, autophagy 

and activation of innate immune cells (discussed below) indicate that it fulfills normal 

functions associated, for example, with vesicular traffic, lysosomal secretion, stress 

response, heparan sulfate turnover and immune surveillances. Unraveling these aspects of 

heparanase biology is ongoing and critical to our understanding of its multiple roles in 

health and disease. Interestingly, in addition to heparanase, proteoglycans have also been 

implicated in regulation of autophagy and inflammation and are the subject of a minireview 

within this series [68].

A novel heparanase-driven mechanism promoting both metastasis and 

angiogenesis

Metastasis is a multi-step process regulated by enzymes, growth factors and signaling from 

adhesion receptors [69, 70]. Historically, heparanase is thought to stimulate metastasis and 

angiogenesis by degrading extracellular matrix, thereby liberating heparan sulfate-bound 

growth factors and chemokines from the extracellular matrix or cell surfaces. These growth 

factors are then free to interact with high affinity signaling receptors on the surface of tumor 

or host cells. Using human myeloma cells as a model, we recently discovered a mechanism 

that shines new light on how heparanase promotes both metastasis and angiogenesis. Key to 

this mechanism is the ability of heparanase to promote shedding of syndecan-1. The heparan 

sulfate degrading activity of heparanase shortens the length of heparan sulfate chains on 

syndecan-1 leaving the core protein vulnerable to attack by proteases [71]. Heparanase also 

mediates upregulation of MMP-9 expression by tumor cells. MMP-9 cleaves the 

juxtamembrane region of syndecan-1 thereby releasing an intact ectodomain from the cell 

surface [29] [23]. (Fig. 2).

Shedding exposes a cryptic domain on the syndecan-1 core protein that contains binding 

sites for very late antigen 4 (VLA-4) and vascular endothelial growth factor receptor 2 

(VEGFR2). Coupling of these receptors by shed syndecan-1 activates VEGFR2 and 

localizes the receptor complex to the leading edge of the tumor cell where it stimulates 

invasion [72] (Fig. 2). Remarkably, this same heparanase-dependent mechanism is in play on 

endothelial cells where it potentiates endothelial tube formation. This mechanism adds to a 

growing list of receptor tyrosine kinases (IGF-1R, HER2, and EGFR) that rely on syndecan-

mediated docking to an integrin in order to carry out critical roles in tumorigenesis and 

angiogenesis. As is the case here, the interactions are extracellular and accessible to 

synthesized peptides that mimic the capture site in the syndecan. These peptides are called 

“synstatins” or “SSTNs” and act to competitively disrupt the signaling mechanism [73–77]. 

In the case of VEGFR2 coupling to VLA-4, peptides based on either the VEGFR2 docking 

site (SSTNVEGFR2) or the VLA-4 docking site (SSTNVLA-4) in syndecan-1 serve to prevent 

tumor cell invasion or endothelial tube formation [72] (Fig. 2). This signaling mechanism is 

also highly dependent on heparanase as the initiating step, identifying a key and 
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unanticipated modulating role for this enzyme. This role was confirmed by use of the 

heparanase inhibitor Roneparstat, a chemically modified non-anticoagulant heparin that 

diminishes syndecan-1 shedding and subsequent tumor invasion and angiogenesis [72].

Framing this information into the known steps of tumor cell metastasis, we envision the 

following. Syndecan-1 shed by tumor cells nucleates the coupling of VEGFR2 to VLA-4, 

initiating tumor cell migration out of an established lesion and into the circulation. To 

extravasate to a new site, the circulating tumor cells must bind and migrate through the 

endothelial cell layer of bone marrow capillaries, enter the bone marrow stroma, stimulate 

angiogenesis and grow. Binding of tumor cells to the vascular endothelium occurs via 

interaction of VLA-4 with vascular cell adhesion molecule 1 (VCAM-1), an adhesion 

receptor abundant on bone marrow endothelia [78, 79]. Although binding of tumor cells to 

VCAM-1 can occur in the absence of heparanase, the invasion through the endothelial layer 

and throughout the bone marrow stroma is likely to depend on heparanase, as it facilitates 

the invasive phenotype arising from the coupling of VEGFR2 to VLA-4 [72]. In addition, as 

cells invade, degradation of the heparan sulfate-rich subendothelial basement membrane is 

also facilitated by heparanase. The invading cells not only rely on VCAM-1 as they transit 

the endothelium, but also rely on it within the bone marrow as VCAM-1 is highly expressed 

on bone marrow stromal cells, along with fibronectin, another VLA-4 ligand, that is 

enriched in the bone marrow matrix. This same mechanism is likely to potentiate local 

angiogenesis, induced in part by heparanase expression and stimulation of syndecan-1 

shedding in bone marrow endothelial cells, and potentially supplemented in part by 

syndecan-1 shed into the local environment from the tumor cells. In addition, heparanase 

can also potentiate VEGF dependent angiogenesis by enhancing VEGF expression in the 

tumor cells [30]. Finally, tumor cells that acquire this invasive phenotype due to heparanase-

mediated shedding of syndecan-1 within the bone marrow may display a heightened ability 

to rely on it to re-enter the circulation, and engage and invade through the vascular 

endothelium at a distant site in a cyclic process that drives the spread of blood-borne tumor 

cells throughout the body.

Regarding the use of heparanase inhibitors to block tumor progression, at present there are 

three heparan sulfate mimics in early stage clinical trials in cancer patients, Roneparstat, 

Necuparanib and PG545 [22, 23, 25], for reviews see [1, 16, 26] [2]. Recently, using animal 

models, Roneparstat was found to be highly effective when used in combination with front 

line chemotherapeutic agents like bortezomib or melphalan against established and 

aggressive myeloma tumors growing within bone, or when used in combination with 

lapatinib to treat brain metastatic breast cancer [80, 81]. Additional opportunities for 

development of anti-heparanase therapeutics include monoclonal antibodies and use of the 

recently published crystal structure of heparanase for identification of small molecule 

inhibitors [82].

Heparanase in inflammation

The involvement of heparanase in immune reactions was first suggested by studies 

demonstrating heparan sulfate-degrading activity in immunocytes (neutrophils, 

macrophages, activated T-lymphocytes) that contribute to immune cell diapedesis and 
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accumulation in target organs [83–89]. A role for heparanase in inflammatory responses was 

further supported by the finding that inhibitors of heparanase enzyme activity (i.e., heparin, 

synthetic heparin-mimicking compounds) had anti-inflammatory effects both in 

experimental and clinical settings [90–95].

The majority of early studies on the role of heparanase in inflammation focused on its ability 

to promote extravasation of immune cells. However, because heparan sulfate controls 

inflammatory responses at multiple levels, including sequestration of cytokines/chemokines 

in extracellular space, modulation of leukocyte interactions with endothelium and ECM, and 

initiation of innate immune responses through interactions with toll-like receptors (TLR) 

[96–104], enzymatic remodeling of heparan sulfate by heparanase appears to affect several 

aspects of inflammatory reactions. These include leukocyte recruitment, migration toward 

sites of inflammation, release of cytokines and chemokines anchored within the ECM or cell 

surfaces, as well as activation of innate immune cells.

Expanding a previous notion that immunocytes represent the principal source of the enzyme, 

more recent reports reveal a variety of cellular sources of heparanase in inflammation. 

Induction of heparanase was found to occur largely in epithelial and/or endothelial 

compartments in numerous inflammatory settings, including in vivo models of delayed type 

hypersensitivity [94], vascular injury [105], inflammatory bowel disease [106, 107], sepsis-

associated lung injury [108] and autoimmune diabetes [109]. In addition, heparanase 

induction was found in auto-immune and auto-inflammatory human disorders, including 

rheumatoid arthritis [110], chronic obstructive pulmonary disease [111], Dengue disease 

[112], pleural empyema [113], inflammatory lung disease [108], ulcerative colitis and 

Crohn’s disease [107, 114]. Heparanase expression is induced in the presence of 

inflammatory cytokines [94, 107, 108, 115] or bacterial/viral infection [112, 113, 116].

In parallel with elucidation of cellular sources of the enzyme, accumulating experimental 

data reveal a complex picture of mechanisms employed by heparanase to modulate 

inflammatory responses. While many of these mechanisms (discussed below) are mediated 

by its well-characterized enzymatic function performed at the cell surface and within the 

extracellular compartment, other actions involve transcriptional regulation of the 

inflammatory phenotype in endothelial and immune cells by intracellular heparanase 

localized to the nucleus [117, 118]. Additionally, by virtue of heparanase ability to influence 

cell signaling independently of its enzymatic function, it was suggested that heparanase 

affects inflammatory cell responses via an unidentified cell surface receptor [119].

Mounting evidence suggests that heparanase profoundly influences the molecular 

physiology of innate immunocytes, including phagocytes (i.e., neutrophils, macrophages, 

dendritic cells), mast cells, and eosinophils [107, 108, 111, 120–125]. Inflammatory 

conditions in lungs seem to be one of the most extensively investigated anatomic sites in this 

respect [108, 111, 113, 126]. A recent report focused on heparanase-mediated degradation of 

the endothelial glycocalyx [108]. The glycocalyx, a thin gel-like layer that covers the 

luminal surface of endothelial cells lining blood vessels, is composed of heparan sulfate 

proteoglycans and glycoproteins [127, 128]. It acts as a barrier to circulating cells by 

limiting the availability of endothelial surface adhesion molecules to leukocytes [127, 128]. 
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In a mouse model of sepsis-associated inflammatory lung disease, rapid induction of 

heparanase activity (via a tumor necrosis factor alpha-dependent mechanism) was 

demonstrated in pulmonary microvascular endothelial cells and correlated with neutrophil 

recruitment [108]. Heparanase induction was also found in biopsies of human inflammatory 

lung disease [108]. According to this report, sepsis associated loss of the pulmonary 

glycocalyx and endothelial hyperpermeability were attenuated in heparanase-null mice and 

in mice treated with inhibitors of heparanase enzymatic activity [108]. Another study, 

utilizing a dorsal air pouch inflammation model demonstrated that heparastatin (an 

iminosugar-based inhibitor of heparanase) potentially suppresses extravasation of 

neutrophils and monocytes by impairing the degradation of basement membrane heparan 

sulfate [129]. On the other hand, several recent reports combining heparanase knock out 

approach and/or inhibitors with in vivo models of airway inflammation found no significant 

effect of the enzyme in neutrophil recruitment/entrapment in the lung vasculature [111, 126]. 

Nevertheless, heparanase was critical for neutrophil accumulation in smoke-exposed lungs 

[126]. Even more perplexing, constitutive overexpression of heparanase in heparanase 

transgenic (Hpa-tg) mice was shown to attenuate intraluminal crawling of neutrophils in 

microvessels toward an extravascular chemokine source, reportedly due to reduction in 

endothelial surface heparan sulfate chain length and altered ability of truncated heparan 

sulfate to serve as a ligand for chemokines [120]. Additionally, studies exploring acute 

inflammatory phenotypes [130, 131] in Hpa-tg mice demonstrated that neutrophil 

recruitment and activation were attenuated in the presence of constitutively increased levels 

of heparanase. In light of the reported anti-inflammatory effects of heparin [90], increased 

levels of highly sulphated, "heparin-resembling" heparan sulfate fragments, which are 

constantly present in Hpa-tg as compared to wild type mice [132], may offer an explanation 

for the inhibitory effects of continuous heparanase overexpression on neutrophils in these 

settings [130, 131].

Unlike heparanase influence on neutrophils, its ability to modulate pro-inflammatory 

macrophage action remains less disputable and was highlighted in the setting of 

inflammatory bowel disease [107, 114], diabetic complications [133], pancreatic carcinoma 

associated inflammation [134], neointimal lesions following vascular injury [105] and 

atherosclerotic plaque progression toward vulnerability [121]. Modulation of toll-like 

receptor (TLR) signaling provides an attractive explanation for heparanase-mediated change 

in macrophage phenotype. Intact extracellular heparan sulfate inhibits TLR4 responses and 

macrophage activation, while its removal relieves this inhibition [102]. Indeed, incubation 

with active heparanase enzyme reduces the amount of intact heparan sulfate on the 

macrophage cell surface by 50% and significantly increases binding of fluorescent-labeled 

LPS (TLR4 ligand) by macrophages in vitro [107, 134], suggesting that degradation of cell-

surface heparan sulfate by heparanase increases accessibility of the TLR. On the other hand, 

soluble heparan sulfate fragments released by heparanase degradation [135, 136], were 

found to stimulate TLR (in particular TLR4) signaling in vitro [102, 103, 137, 138] and in 
vivo [104].

The complexity of heparanase action in inflammatory processes is best exemplified by 

multiple levels of the enzyme involvement in type 1 diabetes and diabetic complications. In 

autoimmune diabetes, multiple roles were identified for heparanase produced by islet 
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autoreactive T cells and inflammatory leukocytes. These roles include promotion of 

leukocyte migration from pancreatic blood vessels (i.e., across the sub-endothelial basement 

membrane and through the pancreatic ECM), aiding the passage of leukocytes across the 

islet basement membrane and depleting islet beta cells of the intracellular heparan sulfate 

needed for their survival [109, 139, 140]. In addition, heparanase was implicated in several 

inflammation-related complications of diabetes, notably – diabetic retinopathy [141] and 

diabetic nephropathy [133]. The latter condition is characterized by activation of immune 

cells and there is clear evidence for a significant role of chronic inflammation in its 

pathogenesis, highlighting the role of kidney-infiltrating macrophages [142–145]. In the 

diabetic kidney, macrophages activated by various elements of the diabetic milieu (e.g., high 

glucose [146], AGE [147, 148], albumin [149], free fatty acids [150]), release reactive 

oxygen species and proinflammatory cytokines such as tumor necrosis factor alpha or IL- 6 

causing injury to podocytes and tubular cells [143, 144, 151]. Under these conditions 

heparanase that is overexpressed and post-translationally activated by Cathepsin L sustains 

continuous activation of kidney-damaging inflammatory macrophages eventually fostering 

chronic inflammation and renal injury [133].

Conclusions and perspectives

As investigation of heparanase continues, new and important roles for the enzyme are 

emerging. Recent studies demonstrating a role for heparanase in exosome formation, 

autophagy and activation of innate immune cells have further widened the scope of its 

influence. In addition, even though heparanase has long been associated with enhanced 

tumor metastasis and angiogenesis, the surprising discovery of a novel mechanism whereby 

heparanase induces shedding of syndecan-1 that then couples VEGFR2 and VLA-4 at the 

cell surface to promote metastasis and angiogenesis reminds us that there is still much to 

learn about mechanisms of heparanase action. Also, central to many of the downstream 

impacts of heparanase is its ability to regulate expression of genes for effectors such as HGF, 

MMP-9 and VEGF, yet our understanding of how heparanase regulates gene expression is 

not complete. Lastly, a remaining challenge in the field rests in the development of clinically 

effective inhibitors of heparanase that can be used to treat cancer and inflammatory diseases. 

The inhibitors currently in clinical trials are all modified heparins or heparin mimics and 

although they may prove effective, other more highly specific inhibitors such as monoclonal 

antibodies and small molecule chemical inhibitors are yet to be exploited. Further unraveling 

the mechanisms of action of heparanase and developing effective inhibitors of this enzyme 

are critical to our understanding of its multiple roles in health and disease.
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Abbreviations

ALIX ALG-2 interacting protein X

ECM extracellular matrix

ESCRT endosomal-sorting complex required for transport

HGF hepatocyte growth factor

HSPG heparan sulfate proteoglycan

MMP-9 matrix metalloproteinase 9

SSTNs synstatins

TLR toll-like receptor

VCAM-1 vascular cell adhesion molecule 1

VEGF vascular endothelial growth factor

VEGFR2 vascular endothelial growth factor receptor 2

VLA-4 very late antigen 4
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Figure 1. 
A schematic model of heparanase trafficking and function in autophagy. Once secreted (1), 

heparanase rapidly interacts with cell membrane HSPGs such as syndecans (SDC) (2), 

followed by a rapid endocytosis of the heparanase-HSPG complex (3). Conversion of 

endosomes to lysosomes (4) results in heparanase processing and activation (5). Typically, 

heparanase appears at perinuclear lysosomal vesicles (5). Lysosomal heparanase regulates 

the basal level of autophagy and resides within autophagosomes (HPSE-low). Cancer cells 

that exhibit high content of heparanase (HPSE-high) are endowed with increased autophagy 

(6) that promotes tumor growth and chemo resistance. Enhanced autophagy by heparanase is 

associated with reduced p70 S6-kinase phosphorylation levels and accumulation of mTOR1 

at peri-nuclear areas (7) vs. more diffused distribution in control (HPSE-low) cells. Function 

of heparanase within the cell encourages the development of new class of inhibitors that will 

prevent heparanase uptake and lysosomal accumulation (8).
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Figure 2. 
Heparanase activates a signaling mechanism that drives both tumor cell invasion and 

angiogenesis. (Left Panel) Myeloma cells express syndecan-1 on their cell surface 

composed of a core protein (green) and heparan sulfate chains (brown). Upregulation of 

heparanase (HPSE) expression by myeloma cells leads to trimming of syndecan-1 heparan 

sulfate chains, shortening their length and allowing increased access of proteases to the 

exposed syndecan-1 core protein. One such protease is MMP-9, a syndecan-1 sheddase 

whose expression is upregulated when heparanase is expressed by myeloma cells. MMP-9 

cleaves the syndecan-1 core protein and the proteoglycan is shed from the cell surface. 

(Center Panel) Shedding of syndecan-1 exposes a cryptic domain within the 

juxtamembrane region of the core protein (green). Within this cryptic domain are amino acid 

sequences that bind to clustered VLA-4 (blue) and VEGFR2 (red) on the surface of 

myeloma cells or endothelial cells. (Right Panel) The coupling of VLA-4 and VEGFR2 

receptors by shed syndecans activates VEGFR2 signaling that stimulates both cell invasion 

and endothelial tube formation. This signaling mechanism is inhibited by Roneparstat, a 

heparanase inhibitor that diminishes syndecan-1 shedding, or by synstatin peptides, peptide 

mimics of the syndecan-1 core protein that competitively inhibit binding of either VLA-4 or 

VEGFR-2 to shed syndecan-1.
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