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Abstract 
Cell adhesion and extracellular matrix (ECM) molecules play a significant role in neuronal plasticity both 
during development and in the adult. Plastic changes in which ECM components are implicated may underlie 
important nervous system functions, such as memory formation and learning. Heparin-binding growth-
associated molecule (HB-GAM, also known as pleiotrophin), is an ECM protein involved in neurite outgrowth, 
axonal guidance and synaptogenesis during perinatal period. In the adult brain HB-GAM expression is 
restricted to the regions which display pronounced synaptic plasticity (e.g., hippocampal CA3-CA1 areas, 
cerebral cortex laminae II-IV, olfactory bulb). Expression of HB-GAM is regulated in an activity-dependent 
manner and is also induced in response to neuronal injury.  
 
In this work mutant mice were used to study the in vivo function of HB-GAM and its receptor syndecan-3 in 
hippocampal synaptic plasticity and in hippocampus-dependent behavioral tasks. Phenotypic analysis of HB-
GAM null mutants and mice overexpressing HB-GAM revealed that opposite genetic manipulations result in 
reverse changes in synaptic plasticity as well as behavior in the mutants. Electrophysiological recordings 
showed that mice lacking HB-GAM have an increased level of long-term potentiation (LTP) in the area CA1 
of hippocampus and impaired spatial learning, whereas animals with enhanced level of HB-GAM expression 
have attenuated LTP, but outperformed their wild-type controls in spatial learning. It was also found that 
GABAA receptor-mediated synaptic transmission is altered in the transgenic mice overexpressing HB-GAM. 
The results suggest that these animals have accentuated hippocampal GABAergic inhibition, which may 
contribute to the altered glutamatergic synaptic plasticity. 
 
Structural studies of HB-GAM demonstrated that this protein belongs to the thrombospondin type I repeat 
(TSR) superfamily and contains two β-sheet domains connected by a flexible linker. It was found that di-
domain structure is necessary for biological activity of HB-GAM and electrophysiological phenotype 
displayed by the HB-GAM mutants. The individual domains displayed weaker binding to heparan sulfate and 
failed to promote neurite outgrowth as well as affect hippocampal LTP.  
 
Effects of HB-GAM on hippocampal synaptic plasticity are believed to be mediated by one of its (co-)receptor 
molecules, namely syndecan-3. In support of that, HB-GAM did not attenuate LTP in mice deficient in 
syndecan-3 as it did in wild-type controls. In addition, syndecan-3 knockout mice displayed 
electrophysiological and behavioral phenotype similar to that of HB-GAM knockouts (i.e. enhanced LTP and 
impaired learning in Morris water-maze). Thus HB-GAM and syndecan-3 are important modulators of 
synaptic plasticity in hippocampus and play a role in regulation of learning-related behavior.  
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Introduction 
The ability of neurons to modify the efficacy of 
synaptic transmission is important for various 
aspects of neural function. Dramatic changes in 
the synaptic connectivity occur during the perinatal 
period when new contacts are being elaborated. 
Refinement of synaptic connectivity in the course 
of development critically depend on electrical 
activity of the neurons and involves cooperative 
and competitive interactions between converging 
inputs, leading to stabilization or elimination of the 
immature connections (Zhang and Poo, 2001). 
However, neural plasticity is not only confined to 
the developing brain but is also an essential 
property of the mature nervous system where it is 
a prerequisite for adaptation to the ever changing 
world. It is also considered to be the biological 
substrate for memory formation. In the adult brain 
processes similar to those used during 
development are thought to be employed for 
lasting activity-dependent changes in synaptic 
efficacy, namely long-term potentiation (LTP) and 
long-term depression (LTD).  
 
Evidently, the conversion of transient electrical 
signals into persistent modifications in synaptic 
structure requires intimate coupling between 
electrical and molecular signalling within the 
neuron and its microenvironment. Here an 
important question is: What are the molecular 
mechanisms that detect the neuronal activity 
patterns, and link them to functional and structural 
changes at the synapses? Recent studies have 
pointed out the importance of cell surface adhesion 
molecules, soluble growth factors, and in 
particular, extracellular matrix (ECM)-associated 
factors, in the formation of functional neuronal 
connections during development, as well as in 
neuronal plasticity in the adult (e.g. Luthi et al., 
1994; Lauri et al., 1998; see also Dityatev and 
Schachner, 2003). These molecules mediate 
transsynaptic signals in response to neuronal 
activity in order to coordinate simultaneous pre- 
and postsynaptic modifications (e.g. Contractor et 
al., 2002). One of such ECM-associated 
components implicated both in the nervous system 
development and adult plasticity is heparin-binding 
growth associated molecule (HB-GAM). This study 
is concentrated on the role of HB-GAM and its 
receptor syndecan-3 in the hippocampal activity-
dependent synaptic plasticity and learning and 
memory. 

Review of the literature 

Special role of hippocampus in 
learning and memory 
Based on studies on amnesic patients such as 
HM, long-term memory has been divided into 
declarative and procedural type (for review see 
Squire, 2004). Declarative memory contains 
memory for facts and events and can be 
consciously brought in mind, whereas procedural 
memory expresses itself as perceptual biases and 
improved performance upon repetition. Most types 
of declarative memory depend on intact functions 
of the hippocampus and patients with hippocampal 
damage suffer anterograde amnesia and display 
inability to remember e.g., particular facts, names 
and places (Scoville and Milner, 1957). In contrast, 
procedural memory includes several memory 
systems that are all independent of the 
hippocampus.  
 
Initial experimental studies in rodents emphasized 
the special contribution of the hippocampus for 
spatial learning and claimed that non-spatial tasks 
do not require the hippocampus. The discovery of 
hippocampal “place cells” made a significant 
advancement in understanding the role of 
hippocampus in memory (O'Keefe and Dostrovsky, 
1971). It was demonstrated that hippocampal 
pyramidal cells are involved in encoding the 
information about the particular spatial location of 
the animal (Keefe, 1979). 
 
More recent experimental studies have shown the 
importance of the hippocampus in nonspatial tasks 
that require flexible use of learned association and 
thus compare to human declarative memory. 
These include odor-based transitive inference and 
social transmission of food preferences. The lesion 
experiments suggested that animals with 
hippocampal damages had impaired ability to 
explore other options and adopt new behavior 
(reviewed by Eichenbaum and Cohen, 2001). 
 

Behavioral analysis of learning 
and memory 
 
The intricate nature of the relationship between 
different forms of memory in complex behavior 
complicates the interpretation of behavioral results 
in animal studies. Nevertheless, there are several 
tests which measure the analogue of human 
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declarative memory (memories of places, objects, 
odors) in rodents (Sweatt, 2003).  
 
Spatial learning is hippocampus-dependent in both 
humans and rodents. A variety of paradigms exist 
to investigate spatial learning, for instance, Barnes 
maze (Barnes, 1979), but the hallmark in 
hippocampus-dependent behavioral studies is 
Morris water maze. In this test animals use spatial 
cues in the testing room to find a hidden 
underwater platform in a circular swimming pool 
(Morris, 1984). The test is based on the motivation 
of the animal to escape water and climb the 
platform as quickly as possible. Many other types 
of mazes (radial maze, T-maze, Y-maze) are used 
to study learning and memory (e.g. Olton and 
Papas, 1979). In the working memory tests in the 
radial maze animals are trained to remember 
unique episodes in the maze for goal-directed 
behavior as they visit radial arms of the maze 
learning the places of the food rewards. Other 
brain areas are also involved in the radial maze 
memory tasks besides hippocampus (e.g. 
prefrontal cortex, which has strong connections to 
hippocampus). Though, it is usually difficult to 
discriminate between the effects on learning, 
memory and recall in animal experimental models 
the variations in experimental design allow to 
address diverse aspects of learning behavior 
(Eichenbaum and Cohen, 2001).   
 
The characteristic feature of declarative memory is 
its associativity, meaning that learning occurs in 
some context, and the memory episode associates 
with this context. Thus, it was hypothesized that 
associative molecular mechanisms (e.g. similar to 
those used in LTP induction) are important for 
learning and memory.  Fear conditioning and taste 
aversion are widely used associative learning 
paradigms. Fear conditioning test evaluates the 
ability of the animal to associate environmental 
cues and stimuli to aversive stimulus (foot shock) 
and is based on the tendency of mice to freeze in 
response to fearful stimuli. There are two forms of 
fear conditioning: context-dependent (foot shock is 
associated with particular environment) and cued 
fear conditioning (foot shock is associated with a 
certain stimulus, e.g. auditory tone). Fear 
conditioning tasks are generally dependent on the 
amygdala. The contextual and cued fear is 
assessed by measuring the duration of freezing in 
the test conditions and in the altered context. Cued 
conditioning task is usually used to assess general 
hippocampus-independent associative learning 
that is amygdala-dependent. Contextual fear 
conditioning task in addition involves 
hippocampus-dependent mechanisms (Phillips and 
LeDoux, 1992; Holland and Bouton, 1999). Other 
tests of hippocampus-dependent forms of fear 
conditioning exist, for example, contextual 

discrimination and trace fear conditioning 
(Frankland et al., 1998; Huerta et al., 2000). 
 
It is not unusual that revealing the aberrant 
behavior especially in the case of ’mild’ phenotype 
can be problematic. In addition, changes in some 
forms of behavior may alter performance in other 
tests and thus result in erroneous interpretations of 
the results. For instance, increased anxiety could 
be the reason for low performance in Barnes maze 
though having no affect on learning behavior in 
Morris water maze (Gerlai and Clayton, 1999). 
Thus, it is often required that several tests from the 
same behavioral domain are done to evaluate the 
involvement of the gene under the study in 
particular behavior. The increasing body of data 
generated by the mutant mice studies requires that 
the results should be comparable between 
different laboratories. This resulted in the creation 
of standard procedures and test batteries for 
behavioral studies (Brown et al., 2000; Nolan et al., 
2000; Crawley and Paylor, 1997). However, each 
new mutant can display novel behavioral 
responses which are not detected by the standard 
test arrays. Further, a number of tasks in 
behavioral screening lack ethological relevance 
and may be insensitive to the differences between 
mutant animals and their wild-type controls (Gerlai 
and Clayton, 1999).  

Synaptic plasticity in 
hippocampus 

Long-term potentiation 
LTP is defined as lasting use-dependent increase 
in the efficacy of synaptic transmission. Originally 
discovered by Bliss and Lomo (Bliss and Lomo, 
1973) in dentate gyrus in response to high-
frequency stimulation (HFS) of the perforant path 
of anesthetized rabbits, LTP was subsequently 
found in all excitatory pathways of hippocampus as 
well as some other brain regions (Racine et al., 
1995; Rogan et al., 1997). Thus, the ability of 
synapses to display long-term changes in the 
efficacy of neurotransmission is generally viewed 
as a fundamental property of the majority of 
synapses. The mechanisms underlying LTP 
induction may vary. Some forms of lasting 
potentiation require N-methyl-D-aspartate (NMDA)-
receptor activation while others do not. If not 
indicated otherwise, here we will discuss the 
NMDA-dependent form of LTP induced by HFS in 
the pyramidal cells of the CA1 area of 
hippocampus (fig. 1). Time course of LTP is 
generally divided into several phases: the post-
tetanic potentiation (first several minutes following 
tetanic stimulation), early LTP (up to ~60 minutes 
after induction) and late LTP (potentiation lasting 
longer that 1 hour).  
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Figure 1. Schematic representation of the synaptic 
connectivity in the transverse hippocampal slice. 
Granule cells of the dentate gyrus (DG) send their axons 
(mossy fibers) to the proximal dendrites of the pyramidal 
cells in the CA3 region. The CA3 primary neurons form 
excitatory synaptic input to the CA1 pyramidal cells by 
en passant synapses of Schaffer collaterals on the 
apical dendrites. 
 
Triggering mechanisms of LTP induction in the 
area CA1 are well described (for recent review see 
Lynch, 2004). During low-frequency basal synaptic 
transmission glutamate released from the 
presynaptic terminal activates postsynaptic α-
amino-3-hydroxy-5-methyl-4-isoxazolepropionate 
(AMPA) receptor channels which generate 
synaptic response when the neurons are near their 
resting potentials. The NMDA receptors, another 
type of glutamate receptors, are voltage sensitive. 
Their ion channels are blocked by the extracellular 
Mg2+ when the membrane potential is close to the 
resting values (fig. 2 a). Thus, unlike AMPA 
receptors, NMDA channels contribute little to the 
basal synaptic transmission. In order to remove 
Mg2+ block from the channels the membrane 
should be depolarized. This is achieved during 
high frequency stimulation of the presynaptic 
fibers. NMDA channels are permeable to Ca2+ and 
their activation let Ca2+ to enter the cell (fig. 2 b). 
The rise of intracellular Ca2+ is crucial for LTP 
induction as it triggers the activation of several 
signalling pathways required for the increase in the 
synaptic strength.  
 
The maintenance of LTP is less well understood. 
However, several cellular and molecular 

mechanisms have been implicated in this process 
both at the pre- and post-synaptic sites of the 
contact (fig. 2 c). Activation of CaMKII as well as 
several other postsynaptic protein kinases (e.g. 
PKC, PKA, MAPK, fyn, src) seem to be critical for 
stabilizing LTP at least at the early stages.  Initial 
activation of kinases by Ca2+ leads to their 
autophosphorylation and thus the process 
becomes independent of transient Ca2+ influx 
(Soderling and Derkach, 2000). Lasting changes of 
synaptic strength apparently involve regulation of 
AMPA receptor function and trafficking. Evidence 
that LTP is accompanied by an increase in single 
channel conductance of AMPA receptors was 
provided by Benke and co-authors (Benke et al., 
1998). Single-channel conductance of functional 
AMPA receptors increases as the result of their 
CaMKII-mediated phosphorylation (Derkach et al., 
1999). Additional AMPA receptor subunits are 
driven into the synapses after LTP-inducing 
stimulation in vitro as well as during experience-
dependent plasticity in vivo. Conversely, LTD is 
associated with AMPA receptor withdrawal from 
the postsynaptic site (Hayashi et al., 2000). 
Insertion of new AMPA receptors into the plasma 
membrane of hippocampal neurons requires 
transient synaptic activation of the NMDA 
receptors similar to that occurring during LTP 
induction (Pickard et al., 2001).  
 
Regulation of glutamate uptake has been recently 
suggested to be important to maintain LTP 
(Levenson et al., 2002). Increased uptake may be 
necessary to protect receptors in the potentiated 
synapses from desensitization. Moreover, 
glutamate uptake limits transmitter spillover from 
the synaptic cleft and thus is crucial for maintaining 
the specificity of LTP (Tsvetkov et al., 2004).  
 
Another possible mechanism underlying changes 
in synaptic strength during LTP may be alteration 
in release kinetics. Due to the particular kinetics of 
glutamate binding to the AMPA receptors rapid 
elevations of glutamate concentration during 
transmitter release more effectively activate AMPA 
receptors that slower changes in the transmitter 
concentrations (Renger et al., 2001). Alternatively, 
fusion pore size may be changed affecting the 
amount of glutamate released by the single vesicle 
(reviewed by Krupa and Liu, 2004). A number of 
studies indicate that postsynaptic cell can 
communicate with the presynaptic compartment 
and affect release parameters (e.g. release 
probability and quantal size) via secreted diffusible 
factors, retrograde messengers. Most popular 
candidates for retrograde messengers include 
membrane-permeable nitric oxide (NO), 
superoxide anion (O2-), carbon monoxide (CO), 
arachidonic acid (AA), and neurotrophic factors 
(e.g. brain-derived neurotrophic factor [BDNF]) 
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Figure 2. Summary diagram illustrating mechanisms underlying LTP in the area CA1 of hippocampus. A-B) LTP 
induction requires depolarization of the postsynaptic membrane and relieve of Mg2+ block of the NMDA receptor 
channels. Activation of NMDA receptors allows Ca2+ influx into the cell, which is critical to trigger LTP. C) LTP expression 
may rely on both pre- and postsynaptic changes. Several mechanisms have been reported to account for the changes in 
the efficacy of synaptic transmission following LTP induction including increase in single-channel conductance of AMPA 
receptors by their phosphorylation, recruitment of additional AMPA receptors, upregulation of transmitter release. 
Alterations in the glutamate release may be mediated by retrograde signalling via diffusible factors and molecules 
involved in physical coupling of the presynaptic terminal and postsynaptic site. Further, structural changes have been 
demonstrated to accompany LTP suggesting the role of cytoskeleton and molecules involved in cell-cell and cell-
extracellular matrix interactions. 
 
(Medina and Izquierdo, 1995). Though no direct 
evidence exists so far, protein complexes that 
physically link the pre- and postsynaptic areas can 
participate in retrograde signalling by means of 
conformational changes. Such complexes may be 
formed by adhesion molecules (e.g. integrins or 
cadherins) known to be important modulators of 
LTP (Chan et al., 2003; Tang et al., 1998). In 
addition, cell-adhesion molecules through their 
links to the cytoskeleton affect structural 
remodelling of synapses during LTP (Wheal et al., 
1998). 
 
It is generally agreed that LTP produces lasting 
changes in synaptic morphology (see reviews by 
Yuste and Bonhoeffer, 2001). However, despite 
recent advances in imaging techniques it is still the 
matter of controversy whether structural changes 
of the synaptic connections during LTP involve 
only alterations in the shape of synaptic contacts, 
or the increase in synapse number. The last can 
also occur as the result of splitting the existing 
synapses and/or formation of new contacts (Fiala 
et al., 2002; Hering and Sheng, 2001; Ostroff et al., 
2002). In addition, maintenance of the late-LTP is 
dependent on gene expression and protein 
synthesis (Kandel, 2001). 
 

Intriguingly, certain forms of synaptic plasticity in 
adults and activity-dependent mechanisms of 
synaptogenesis display striking similarities. 
Though activity blockade does not prevent 
formation of functional synaptic contacts, selective 
stabilization of some inputs and elimination of 
others depend on correlated activity both in central 
and peripheral synapses (Bouwman et al., 2004; 
Lauri et al., 2003; Zhang and Poo, 2001; Verhage 
et al., 2000). One of the most important common 
features for the activity-dependent input refinement 
and LTP is their NMDA-dependency. NMDA 
receptors serve as molecular detector of temporal 
correlation of pre- and postsynaptic activation, and 
both processes require activation of NMDA 
receptors to be initiated (Cline, 2001; Hahm et al., 
1991; Shi et al., 2001). Both processes also 
crucially depend on CaMKII activation (Wu et al., 
1996). Further, postsynaptic receptor trafficking 
involved in LTP expression is mechanistically 
similar to the functional synapse maturation when 
physiologically “silent synapses” acquire AMPA 
receptors. Thus it was hypothesized that LTP-like 
phenomena could be instrumental for the 
maturation of excitatory synapses (Durand et al., 
1996; Liao et al., 1995). Remarkably, spontaneous 
neural activity is sufficient to selectively deliver 
GluR4-containing AMPA receptors into developing 
synapses (Zhu et al., 2000). Apparently, activity-
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dependent processes utilize common molecular 
mechanisms early in development and in the adult 
(Constantine and Cline, 1998), thus many 
signalling molecules involved in development of 
synaptic contacts are also important modulators of 
synaptic plasticity in the adults. 

Role of inhibition in synaptic 
plasticity 
GABA (γ-aminobutyric acid)-mediated synaptic 
inhibition plays a critical role in the control of 
excitation in the hippocampus. The GABAergic 
network controls excitability and coordinates 
spatiotemporal integration properties of 
hippocampal principal neurons. Though 
GABAergic interneurons comprise a relatively 
small subpopulation of hippocampal neurons their 
extensive arborisation allows a single interneuron 
to synapse many pyramidal cells forming up to 12 
contacts with each postsynaptic neuron (Buhl et 
al., 1994a; Buhl et al., 1994b). Some interneurons 
terminate mainly on the perisomatic region of 
principal hippocampal cells while others terminate 
on the dendritic area of pyramidal neurons (Miles 
et al., 1996). In addition, interneurons may target 
other interneurons creating highly interconnected 
inhibitory network (Acsady et al., 1996; Gulyas et 
al., 1996). GABAergic neurons in hippocampus 
provide two basic types of inhibition of CA1 
pyramidal cells in response to Schaffer collateral 
stimulation: feed-forward and feed-back (recurrent) 
inhibition (fig. 3). In the case of feed-forward 
inhibition, GABAergic neurons are directly 
activated by the axons projected from the CA3 
principal neurons and thus inhibit CA1 pyramidal 
cells. Otherwise, excitatory input of CA3 
projections activates CA1 pyramidal cells. The 
latter send their axon collaterals to the 
interneurons which in turn recurrently inhibits CA1 
pyramidal cells. Feed-back inhibition is mediated 
primarily by the perisomatic inhibition of pyramidal 
neurons (Parra et al., 1998). GABAergic 
transmission is mediated by ligand-gated 
ionotropic GABAA receptor channels permeable for 
Cl- (HCO3

-) and K+-permeable metabotropic 
GABAB receptors. GABAA receptors mediate fast 
GABAergic neurotransmission. Activation of 
GABAB receptors mediates slow K+ currents and 
causes prolonged neuronal hyperpolarization. In 
addition to postsynaptic localization, GABAB 
receptors are expressed in the presynaptic 
terminals, where they function as autoreceptors 
suppressing transmitter release (Davies and 
Collingridge, 1996). 
 

 
 
Figure 3. Feedforward and feedback inhibitory circuits in 
the CA1 area of hippocampus. “+” – excitatory synapse, 
“-“ – inhibitory synapse. 
 
GABAergic transmission is involved in induction 
and expression mechanisms of long-term plasticity 
in the hippocampus as well as in the other brain 
areas (e.g. visual cortex) (Feldman, 2000; Steele 
and Mauk, 1999). Modulation of synaptic plasticity 
by GABA receptor-mediated transmission is 
dependent on temporal pattern and intensity of 
stimulation (Chapman et al., 1998; Staubli et al., 
1999). Blockade of GABAA receptor-mediated 
responses in hippocampus generally produces 
enhanced LTP (Chapman et al., 1998; Wigstrom 
and Gustafsson, 1985). Conversely, upregulation 
of GABAergic neurotransmission suppresses LTP 
(Levkovitz et al., 1999). Repetitive stimulation with 
high-frequencies result in the fatigue of synaptic 
inhibition (McCarren and Alger, 1985), thus leading 
to  increased depolarization during tetanic 
stimulation. The mechanism of facilitated 
depolarization involves GABAB receptor-mediated 
autoinhibition of GABA release (Davies et al., 
1991; Mott and Lewis, 1991). However, 
presynaptic GABAB receptor activation has been 
demonstrated to be important only for theta-burst 
stimulation-induced LTP but not for HFS-induced 
potentiation (Staubli et al., 1999). Alternatively, as 
demonstrated in several studies, GABAA 
responses may produce depolarization in CA1 
hippocampal neurons during high-frequency 
stimulation (Kaila et al., 1997; Taira et al., 1997). 
These data suggest that GABA-mediated 
transmission can provide excitatory drive in the 
adult hippocampus and play a facilitatory role in 
LTP induction (c.f. Autere et al., 1999). This 
depolarizing action of GABA also seems to be 
regulated by GABAB receptor activation (Brown et 
al., 2003; Cobb et al., 1999). However, the role of 
excitatory GABA in plasticity of glutamatergic 
synapses still remains unclear.  
 
GABAA receptor-mediated responses switch 
gradually from depolarizing to hyperpolarizing 
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towards the end of the second postnatal week 
(Lamsa et al., 2000; Rivera et al., 1999). In the 
developing brain the depolarization provided by 
activation of GABA receptors is sufficient to 
remove the voltage-dependent Mg2+ block from 
NMDA channels, which makes the GABAergic 
system also an attractive candidate for the 
regulation of synaptic plasticity early in postnatal 
life (Ben-Ari, 2002; Leinekugel et al., 1995). 
Indeed, GABAergic transmission contributes 
differently to the induction of LTD in the area CA1 
of hippocampus during the course of maturation. 
At the early stages of development depolarization 
provided by GABAA receptor-mediated currents 
promote activation of NMDARs, thus shifting the 
threshold for the LTD induction and making the 
synapses more prone for activity-dependent 
plasticity (Pavlov et al., 2004). Different effects of 
GABAA receptor blockade on LTD has been also 
demonstrated for the juvenile and adult rats 
(Wagner and Alger, 1995). Recent studies also 
revealed the role of GABAA receptor-mediated 
inhibition in the developmental shift of LTP 
induction efficiency (Meredith et al., 2003). 

Mutant mice approach to study 
plasticity, learning and memory  
Transgenic and gene-targeted mutant mice 
provide an important tool to study the role of a 
particular gene in the brain function in vivo. 
Combining results of behavioral studies with data 
obtained by the use of in vitro methods allows to 
get insights into the molecular and cellular 
mechanisms underlying complex forms of 
behavior.  
 
An extensive progress made by molecular 
genetics, particularly in developing methods to 
produce genetically modified organisms, boosted 
the field of neuroscience during the past decade. A 
brief overview of the available approaches in the 
mutant studies is presented in the Table 1. The 
use of genetically modified mice allows to analyse 
the functions of a particular gene in behavior and 
relate the results to the in vitro studies. Cellular 
and molecular mechanisms underlying 
hippocampal synaptic plasticity are widely 
suggested to be implicated in memory formation. 
Thus, many studies have focused on the link 
between hippocampal synaptic plasticity and 
performance in learning and memory tasks 
(reviewed by Chen and Tonegawa, 1997; Lynch, 
2004). The first mutant mice used in the studies of 
molecular mechanisms underlying learning and 
memory in hippocampus were Ca2+/calmodulin-
dependent protein kinase II (CaMKII) (Silva et al., 
1992b; Silva et al., 1992a) and fyn (Grant et al., 
1992) knockouts. Both displayed impaired LTP and 
deficit in spatial learning in the Morris water maze. 

Later the role of many other molecules (including 
all major glutamate receptor subunits) in LTP and 
learning and memory has been evaluated using 
knockout and transgenic studies. Recent results of 
microarray analysis of memory-related genes 
recognized more genes, which previously have not 
been related to synaptic plasticity or learning 
behavior (Cavallaro et al., 2002; Robles et al., 
2003). Among those genes are the ones that 
encode molecules responsible for cell-cell and cell-
matrix interactions, extracellular signalling 
molecules, growth factors and their receptors.  
 
The major drawback of conventional gene 
targeting and transgenic approach is that 
irreversible changes in the genotype often 
complicate the interpretation of phenotypic 
analysis and may even preclude the study of the 
mutant animal. Developmental compensation for 
the loss-of-function or gain-of-function of the 
particular gene could mask its function and result 
in no phenotype in the mutant animal or lead to the 
phenotype caused by altered expression of other 
gene(s). Also, ablation of certain genes may cause 
severe dysfunction in the course of development 
leading to the perinatal lethality. In some instances 
the potential problems may be circumvented by the 
use of inducible and tissue-specific gene 
expression systems which allow to control 
expression temporally and spatially (Picciotto and 
Wickman, 1998; Williams and Wagner, 2000). 
Whatever the case, it is clear that studies of 
mutants should be complemented by other 
approaches and the interpretation of the 
phenotype of the mutant mice should be correlated 
to the results of other experimental paradigms. 
 
A great concern of all mutant studies is that the 
phenotypic changes crucially depend on genetic 
background. Thus, controlling genetic background 
is essential in the studies of mutants (Crawley et 
al., 1997). It is a common practice to analyse the 
mutations in a hybrid background thus eliminating 
homozygosity of alleles which potentially may be 
responsible for abnormalities. However F1 mice 
are not always ideal and in some cases it may be 
advantageous to perform the study of certain 
phenotype in an inbred strain. Strain-dependent 
differences in hippocampal synaptic plasticity as 
well as behavioral variability have been well 
documented (Bampton et al., 1999; Nguyen et al., 
2000 a, b; Voikar et al., 2001; Wolfer et al., 2002). 
Nevertheless, different ability to perform in 
behavioral tests and different electrophysiological 
characteristics of inbred lines provide an additional 
tool to study certain aspects of gene function. For 
example, it is preferable to backcross the mutation, 
which is supposed to reduce a particular function, 
into an inbred line displaying ‘high-scores’ in the 
relevant behavioral task. 
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Table 1. 
Technique Description Possible pitfalls 

Random mutagenesis Mutations are produced at random 
and their rate enhanced e.g. by X-
rays. Widely used for instance in 
Drosophila studies. 
 

Large populations of animals need 
to be analysed 

Transgenesis One or more exogenous copies of 
the gene of interest are introduced 
into genome in order to produce 
constitutively active (“gain-of-
function mutants”) or dominant 
negative (“loss-of-function mutants”) 
forms of a specific protein. 
 

Insertional effects (function of 
another gene is affected by the 
transgene), ectopic expression, 
undesirable effects caused by 
chronic expression of the gene, 
failure to express the transgene at 
physiologically relevant levels. 

Inducible transgenesis The expression of transgene is 
under the control of promoters 
sensitive to exogenously applied 
substances (e.g. tetracycline). 
 

Side effects of the triggering 
substance, leakage transcription 

Use of “reporter 
genes” 

Easily detected proteins (e.g. GFP) 
are used as the selective markers 
of physiological activity or anatomic 
characteristics.  
 

 

Targeted modifications 
of endogenous genes 

  

Knock-out Targeted gene deletion Chronic absence of a gene may 
cause abnormal development, 
embryonic or early postnatal 
lethality, functional compensation. 
Functional redundancy (many 
proteins are present as multiple 
isoforms derived from different 
genes). 
 

Conditional knock-out 
• region-specific 
• inducible 

Only selected cells lack the gene, or 
the gene is switched “on” and “off” 
by applied substances. 
 

 

Knock-in Targeted mutations of the gene of 
interest or introduction of a new 
gene in the selected locus (e.g. 
substitution of a gene by reporter  
gene) 

 

 
 

Cell-cell and cell-extracellular 
matrix interactions in 
hippocampal plasticity 

Composition and function of the 
ECM in the brain tissue  
ECM accounts for a relatively large volume of the 
nervous tissue. On average it has been estimated 
to occupy about 20% of the brain in adults and 
twice as much in newborn animals (Nicholson and 

Sykova, 1998). More than a century ago Camillo 
Golgi described reticular structure which surrounds 
cell bodies of neurons. This perineuronal net 
represents a complex of ECM molecules which 
together with the meshwork of glial processes form 
an envelope around nerve cells. Molecular 
composition of the perineuronal nets associated 
with different populations of neurons is unique and 
changes in the course of development suggesting 
functional significance of active dynamic regulation 
of perineuronal net elements (Celio et al., 1998; 
Fox and Caterson, 2002). 
 



 14

Table 2 
Major ECM components of the central nervous system 

ECM componets  Examples 
Glycoproteins 
 

 Laminins, fibronectin, tenascin, 
thrombospondins 

Proteoglycans  Syndecan, glypican, agrin, 
aggrecan, versican, phosphacan  

• glycosaminoglycans - chondroitin/dermatan 
sulfate 

- heparan sulfate/heparin 
- keratan sulfate 
- hyaluronan 

 

Secreted signalling molecules  bFGF, HB-GAM 
 
 
The structure of ECM is highly organized and 
consists of several components. Major constituents 
in the ECM of the central nervous system (CNS) 
include glycoproteins: laminins, vitronectin, 
thrombospondins, tenascins; and various 
proteoglycans in which core protein is covalently 
bound to glycosaminoglycans (GAGs) (Table 2). 
ECM molecules provide adhesive substrate 
necessary for neuronal migration and 
morphogenesis during development. They also 
create molecular network to maintain mechanical 
support for the cells in the brain tissue. As an 
adhesive substrate for cell-surface molecules, 
such as integrins, the ECM is critical for the 
regulation of the cell shape and motility (Nikonenko 
et al., 2003; Suter et al., 1998). In the nervous 
system, the ECM is crucial for many 
developmental processes such as neuronal 
migration, neurite outgrowth, growth cone 
guidance and synapse formation and stabilization 
(Ruegg, 2001). In the adult brain, numerous 
studies have demonstrated the role of ECM in 
neuropathological conditions (Bruckner et al., 
1999; Gutowski et al., 1999; Knott et al., 1998; 
Sobel and Ahmed, 2001) as well as in 
physiological processes like synaptic plasticity 
(reviewed by Dityatev and Schachner, 2003). 
Chondroitin sulfate proteoglycans (CSPGs; e.g. 
aggrecan, brevican, neurocan, phosphacan) and 
heparan sulfate proteoglycans (HSPGs; e.g. agrin, 
glypican, cerebroglycan, perlecan, and syndecans) 
form two major categories of proteoglycans 
present in the ECM (Bandtlow and Zimmermann, 
2000; Hartmann and Maurer, 2001). Most of the 
functions of the proteoglycans are mediated by 
their glycosaminoglycan side chains, which bind to 
various signalling factors and cell-surface 
molecules. In addition to the integral components 
of the ECM, several secreted growth/differentiation 
factors, e.g. fibroblastic growth factors (FGF’s) and 
HB-GAM are present in the extracellular space. 
The biological activity of these factors can be 
critically modulated by their interaction with the 
ECM components. For example, heparan sulfate is 

essential for the biological activities of the FGFs 
(Raman et al., 2003).  
 
In the brain, the functional role of the ECM extends 
beyond the regulation of cellular morphology. The 
extracellular space serves as a low-resistance 
conducting media for the transmembrane currents 
created by neuronal activity. By its virtue, the ECM 
regulates the diffusion of ions, neurotransmitters 
and other neuroactive substances in the 
extracellular space (Nicholson and Sykova, 1998). 
For example, the main neurotransmitters GABA 
and glutamate bind not only to the postsynaptic 
receptors that mediate fast neurotransmission, but 
also to presynaptic auto- and heteroreceptors that 
regulate neurotransmitter release probability and 
thereby short-term dynamics of synaptic 
transmission. Activation of presynaptic and 
extrasynaptic receptors is dependent on 
neurotransmitter ‘spillover’, which is regulated by 
active uptake mechanisms but also by tortuousity 
of the extracellular space. Consequently, changes 
in the ECM composition can critically influence 
synaptic efficacy, neuronal excitability, synapse 
specificity and volume transduction in the brain 
(Kullmann et al., 1999; Min et al., 1998).  
 

Dynamic remodeling of ECM in the 
nervous system  
The ECM is no longer seen as a static embedding 
in which cells reside. The ECM composition is 
being constantly modified throughout the life both 
in the peripheral nervous system (Connor, 1997; 
Sanes et al., 1986) as well as in the CNS (e.g. 
Koppe et al., 1997; Yamaguchi, 1996). Given the 
number of neuronal functions influenced by the 
ECM, its remodelling during development, in 
response to physiological stimuli and under 
pathological conditions provides a powerful 
mechanism for structural and functional regulation 
of nervous tissue. 
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The physical parameters of the extracellular space 
in brain are altered in several pathological 
conditions and following neuronal trauma 
(reviewed by Sykova et al., 2000). For example, 
peripheral nerve axotomy causes an upregulation 
of F (floor plate)-spondin mRNA and protein level 
(Burstyn et al., 1998). HB-GAM, agrin, glypican, 
and syndecans accumulate in amyloid plaques in 
Alzheimer’s disease (vanHorssen et al., 2002; 
Verbeek et al., 1999; Wisniewski et al., 1996). 
HSPGs were suggested to play an important role 
in the formation and persistence of senile plaques. 
A number of different CSPGs are increased in the 
nervous system at the region where the glial scar 
forms following the lesion. Up-regulation of these 
molecules is believed to restrict axonal 
regeneration at the site of injury (Morgenstern et 
al., 2002; Properzi et al., 2003; Zuo et al., 1998).  
 
Further, regulation of ECM components in 
response to neuronal activity might provide a way 
for physiological regulation of neuronal excitability, 
plasticity and synchrony. In fact, expression of 
several ECM components is regulated in response 
to neural activity patterns. For example, Narp 
(synaptic pentraxin enriched at glutamatergic 
synapses on most aspiny but not spiny 
hippocampal and spinal cord neurons) was 
originally cloned as an immediate-early gene 
rapidly induced in neurons by HFS or repeated 
electroconvulsive seizures (Reti and Baraban, 
2000; Tsui et al., 1996). Agrin expression in the 
CNS, particularly in hippocampal neurons in vivo, 
has been demonstrated to be regulated in an 
activity-dependent manner (Cohen et al., 1997; 
Lesuisse et al., 2000). Effects of activity blockade 
on agrin expression depend on the degree of 
synapse maturation. Action potential-dependent 
neurotransmission blockade at early and late 
phases of synapse maturation had contrasting 
effects on the level of agrin mRNA (Lesuisse et al., 
2000). In addition, agrin has been demonstrated to 
activate the immediate early gene c-fos in cortical 
neurons through a Ca2+-dependent mechanism 
(Hilgenberg et al., 2002). Among other ECM and 
cell adhesion molecules expressed in activity-
dependent manner are HB-GAM (Lauri et al., 
1996), tenascin C (Nakic et al., 1998), N-cadherin, 
neural cell adhesion molecule (NCAM) and L1 
(Itoh et al., 1997).  
 
In addition, fast activity-induced changes in the 
composition of ECM might be obtained by the 
activity of extracellular proteases. Matrix 
metalloproteinases (MMPs) are the group of ECM 
degrading enzymes that play a crucial role in 
neural migration, development, growth and repair 
by matrix remodelling (Shapiro, 1998). There is 
accumulating evidence that the balance of MMPs 
and their tissue inhibitors (TIMPs) play an 

important role in the brain function as they have 
been implicated in a number of neural diseases 
(reviewed by Skiles et al., 2001). Activity-
dependent mechanisms of regulation have been 
demonstrated for both the activity of MMP 
(Jourquin et al., 2003) and tissue-type 
plasminogen activator (tPA) (Gualandris et al., 
1996). Thus, under normal conditions changes in 
the activity of MMPs may contribute to the 
expression of synaptic plasticity and learning and 
memory (Wright et al., 2002). However, the 
physiological significance of these mechanisms is 
only beginning to be understood.  

ECM and activity dependent 
synaptic plasticity  
It is becoming increasingly evident that activity-
induced synaptic plasticity in the brain involves 
changes in the neuronal morphology (Harris et al., 
2003; Yuste and Bonhoeffer, 2001). Initially, 
structural alterations were proposed to be 
necessary for long-term maintenance of functional 
changes in the synaptic efficacy (Buchs and 
Muller, 1996; Ostroff et al., 2002; Toni et al., 1999), 
based on the findings that late but not early phases 
of LTP are dependent on protein synthesis and 
gene transcription. The first ECM receptors 
reported to be involved in the regulation of 
hippocampal LTP were the integrin type of cell 
adhesion molecules. Blockade of extracellular 
interactions of integrins inhibits expression of LTP 
40 minutes after its induction (Bahr et al., 1997; 
Xiao et al., 1991). Inhibition of other cell-matrix 
receptors, including PSA-NCAM (Luthi et al., 1994; 
Muller et al., 1996), cadherins (Tang et al., 1998) 
and syndecans (Lauri et al., 1999) affects 
expression of LTP even faster, consistent with 
rapid remodelling of synaptic structures in 
response to neuronal activity (Bonhoeffer and 
Yuste, 2002; Dunaevsky and Mason, 2003).  
 
Manipulations of ECM interactions do not seem to 
influence baseline synaptic transmission. This is 
consistent with a ‘passive’ role of ECM receptors 
as an inhibitory constraint for synaptic remodelling 
and/or growth in response to signals inducing 
synaptic plasticity (reviewed by Abel et al., 1998; 
Fields and Itoh, 1996). According to this view, 
downregulation of cell-adhesion is necessary for 
the HFS induced plastic changes in synaptic 
function and morphology. Proposed mechanisms 
for reduction of cell adhesion in synaptic plasticity 
include internalization or proteolytic cleavage of 
the cell-surface ECM receptors (Bukalo et al., 
2001; Mayford et al., 1992; Nakagami et al., 2000), 
and calcium dependent downregulation of cadherin 
mediated adhesion (Tamura et al., 1998; Tang et 
al., 1998). Cleavage or shedding of HSPGs in 



 16

response to neuronal activity might represent a 
similar regulation mechanism (Asundi et al., 2003).  
 
Instead of merely acting as a structural limit, an 
active role for ECM components and cell surface 
ECM receptors in regulation of synaptic 
transmission has been proposed. This more recent 
view is supported by several findings.  
 
Narp selectively interacts with the AMPA receptor 
subunits GluR1-3 and directly affects receptor 
clustering (Brien et al., 2002; Xu et al., 2003), a 
mechanism proposed to be critical for expression 
of LTP (Malinow and Malenka, 2002). Also heparin 
has been reported to bind AMPA receptors and 
alter kinetic properties of single channel activity 
(Hall et al., 1996; Sinnarajah et al., 1999). Thus it 
is possible that extracellular matrix components 
can directly affect functional properties of AMPA 
receptors. On the other hand, tenascin-R and 
tenascin-C bind voltage-gated sodium channels 
and have been suggested to play an important role 
in modulation of their activity and localization in 
neurons (Srinivasan et al., 1998; Xiao et al., 1999). 
In addition, tenascin-C has been implicated in L-
type voltage-dependent Ca2+ channel-mediated 
signalling (Evers et al., 2002). ECM molecules 
were also demonstrated to affect GABAergic 
transmission. Tenascin-R and its associated 
carbohydrate HNK-1 modulate perisomatic 
inhibition in hippocampus via regulation of GABA 
release in perisomatic synapses suppressing 
postsynaptic GABAB receptor activity (Saghatelyan 
et al., 2001; Saghatelyan et al., 2003).  
 
In addition, transmembrane proteins, which bind 
ECM components, might act as independent 
signalling receptors to mediate activity-induced 
changes. HFS-induced changes in the interaction 
of the cytosolic domain of syndecan-3, a functional 
receptor of HB-GAM, with intracellular signalling 
molecules has been reported (Lauri et al., 1999). 
Already 10 minutes after induction of LTP in area 
CA1 in the hippocampus, association of syndecan-
3 with tyrosine kinase fyn and an actin-binding 
protein cortactin was significantly increased, 
suggesting a role for this signalling complex in the 
mechanism of LTP expression. Also, specific 
signalling, which involves protein kinases Fnk and 
Snk, has been proposed for laminin-binding 
integrins during LTP induction (Kauselmann et al., 
1999).  

HB-GAM and TSR domain 
proteins in neuronal development 
and plasticity 
Thrombospondin type 1 repeats (TSRs) are 
characteristic protein domains of thrombospondin-
1 (TSP-1) and thrombospondin-2 (TSP-2), and 

they are important for cellular effects of 
thrombospondins. TSRs are ancient domains 
present in a variety of species from C. elegans to 
human and are characteristic for a number of 
extracellular and cell-surface proteins. TSR 
domains often bind to heparin and heparan sulfate 
(HS) and are defined by a conserved 
cysteine/tryptophan motif. The presence of these 
repeats probably determines biological functions 
and properties of the particular protein (reviewed 
by Naitza et al., 1998).  
 
TSR superfamily proteins contain from one to 
seven TSR domains and specialize in cell surface 
and matrix binding. They are abundantly 
expressed in the developing nervous system and 
are involved in the cell attachment and motility. For 
example, F (floor plate)-spondin was initially 
identified as an axon growth and guidance factor 
(Klar et al., 1992). Among other neurite-promoting 
TSR domain proteins are HB-GAM, midkine (MK), 
UNC-5, semaphorins Sema5A and B, and TRAP 
(Adams and Tucker, 2000; Kilpelainen et al., 
2000). It has been suggested that TSR domain 
provides a basic cell surface-binding protein 
module that is involved in neurite growth and 
guidance (Rauvala et al., 2000).  

Structure of HB-GAM 
One of the ECM proteins implicated both in the 
developmental formation of neuron-target contacts 
and in neuronal plasticity in the adult hippocampus 
is heparin-binding growth-associated molecule 
(HB-GAM). HB-GAM, also known as pleiotrophin 
(Ptn; Li et al., 1990), is a secreted 18 kDa protein 
which is associated with the HS-containing 
proteoglycans of the cell-surface and ECM 
(Rauvala, 1989). HB-GAM consists of 136 amino 
acids with a high proportion of cationic residues 
(24%) stabilized by 5 intrachain disulfide bridges. 
The HB-GAM sequence is highly conserved across 
vertebrate species. It folds into a structure 
containing two β-sheet domains connected by a 
flexible linker (fig. 4) (Kilpelainen et al., 2000; 
Iwasaki et al., 1997). Thus, HB-GAM domains are 
relatively independent and in solution move in 
respect to each other. Both domains consist of 
three antiparallel β-strands, and show significant 
homology to the TSR motif (Kilpelainen et al., 
2000). The lysine-rich N- and C- terminal regions 
of HB-GAM form random coils in solution. HB-GAM 
binds with high affinity to heparin. Nuclear 
magnetic resonance studies showed that heparin 
binds to the β-sheet domains and induces 
structural changes in the HB-GAM molecule. In 
contrast the N- and C- tails apparently do not 
contribute to the heparin binding of HB-GAM. 
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Figure 4. Two-domain structure of HB-GAM. TSR 
domains formed by three antiparallel β-sheet strands are 
connected via flexible linker region. 
 

TSR containing proteins in the 
developing nervous system  
HB-GAM is expressed in the nervous system in a 
distinctive spatiotemporal manner. It is abundant in 
the developing nervous system, where its 
expression peaks around 1-2 weeks postnatally 
coinciding with the differentiation of neurons and 
glia. In some cells in the distinct brain regions the 
expression of HB-GAM continues to adulthood 
(Rauvala et al., 1994). The overall pattern of 
expression as well as the in vitro functional results 
support a role for HB-GAM as a component of the 
extracellular matrix that regulates neuronal cell 
motility and differentiation (for reviews, see 
Rauvala and Peng, 1997; Bohlen and Kovesdi, 
1991). Recombinant, matrix-bound HB-GAM 
promotes neurite outgrowth and can act as an 
axonal guidance factor in cell culture (Rauvala et 
al., 1994). Further, HB-GAM localizes to the 
developing fiber pathways as well as to embryonic 
basement membranes, suggesting a role for HB-
GAM in the formation of neuron-target contacts. 
Indeed, HB-GAM can promote both pre- and 
postsynaptic differentiation in the neuromuscular 
junction (Dai and Peng, 1996; Peng et al., 1995). 
The effect of neuronal agrin isoform on AChR 
clustering in the neuromuscular junction was 
demonstrated to be strongly potentiated by HB--
GAM. Thus, it has been proposed that HB-GAM 
acts as an integral component of agrin signalling 
mechanism (Daggett et al., 1996).  
 
Other TSR domain containing proteins also play an 
important role in the development of nervous 
system. F-spondin and mindin are secreted 
adhesion proteins that share structural and 
biochemical similarities (Klar et al., 1992; Umemiya 
et al., 1997). Expression patterns of these 

molecules overlap in developing and adult rat 
cerebral cortex, particularly in pyramidal and 
granule cells of hippocampus (Feinstein et al., 
1999). Both proteins promote adhesion and neurite 
outgrowth in embryonic hippocampal and sensory 
neurons. TSR domains of F-spondin have been 
demonstrated to be sufficient to promote neurite 
outgrowth (Feinstein et al., 1999). Similarly, TSR 
domains of TSP-1 are critical for the neurite 
outgrowth and cell attachment effects in 
hippocampal neurons (Osterhout et al., 1992).  
 
However, none of individual TSR domains are 
indispensable for the development of the nervous 
system as indicated by mutant mice studies. Mice 
lacking HB-GAM are viable, breed normally and 
show no major histological defects in the nervous 
system (Amet et al., 2001). Similarly, no apparent 
morphological abnormalities were detected in the 
CNS of MK knockout mice (Nakamura et al., 
1998), TSP-1 (Lawler et al., 1998) and TSP-2 
deficient mice (Kyriakides et al., 1998). TSP-
1/TSP-2 double knockout mice were generated 
recently and demonstrated delayed wound healing 
(Agah et al., 2002). Unfortunately, the study did not 
address regeneration in the nervous tissue. Very 
recently, however, TSP-1/TSP-2 deficient mice 
were reported to have decreased number of 
synapses in cortex (Washbourne et al., 2004). 
Modular organization of the ECM components may 
provide the structural basis to maintain a high level 
of functional redundancy of these proteins. 
Compensation between TSR proteins thus may 
account for the lack of a pronounced 
developmental phenotype in mutants without 
particular TSR-containing molecule.  
 

Expression of HB-GAM and other 
TSR domain proteins in the adult 
brain  
In adults, the expression of HB-GAM is limited to 
certain neuronal subpopulations, including the 
pyramidal neurons of the hippocampus (Wanaka et 
al., 1993). In addition to this basal level of 
expression, HB-GAM is induced by stimuli causing 
neuronal injury or seizures (Takeda et al., 1995; 
Wanaka et al., 1993). HB-GAM expression is 
increased in rat brain following ischemic injury. 
Sustained upregulation of HB-GAM expression 
was observed e.g. in astrocytes from 7 to 14 days 
after the injury (Yeh et al., 1998). Similarly, 
following kainic acid treatment, the expression of 
HB-GAM is downregulated in neurons (within 48 
h), but induced in astrocytes 4 days after the injury. 
On the other hand, a rapid (30 min) neuronal 
induction of HB-GAM mRNA expression has been 
reported in the hippocampal area CA1 in response 
to pentylene-tetrazole induced seizures (Wanaka 
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et al., 1993) and in the forebrain in response to 
tetrahydrocannabinol, the major psychoactive 
component of cannabis (Mailleux et al., 1994). 
Interestingly, two active promoters have been 
described for HB-GAM in mice (Sato et al., 1997), 
suggesting that two distinct pathways may control 
HB-GAM expression.  
 
Neuronal expression of HB-GAM mRNA is induced 
by high-frequency neuronal activation inducing 
LTP (Lauri et al., 1996). HFS-induced expression 
of HB-GAM was not completely blocked unless 
antagonists of both NMDA-receptors and voltage-
gated calcium channels were used. Therefore, 
calcium influx via both of these routes contributes 
to the regulation of HB-GAM expression (Lauri et 
al., 1996). The activity-dependent enhancement in 
HB-GAM expression was the first finding 
suggesting involvement of endogenous HB-GAM 
in the regulation of synaptic plasticity in the 
hippocampus. Further studies indicated that 
application of recombinant HB-GAM into 
hippocampal slices inhibits HFS-induced LTP in 
area CA1, while single-pulse evoked synaptic 
responses are not affected (Lauri et al., 1998). 
 
Though significant levels of expression of F-
spondin and mindin in rat hippocampus persist 
during adulthood, the functional role of these 
proteins in adult brain remains unclear. Both 
proteins were suggested to be involved in activity-
dependent neural plasticity and remodelling 
(reviewed by Scherer and Salzer, 1996). 
Modulation of F-spondin binding to the ECM by 
plasmin supports the possible involvement of this 
protein in activity-dependent processes (Tzarfaty 
et al., 2001). In addition, it has been suggested 
that during the activity-dependent synaptic 
plasticity in hippocampus F-spondin acts as a 
target for the serine protease tPA (Tzarfaty et al., 
2001). Further studies are warranted to explore the 
involvement of other TSR domain proteins in the 
regulation of hippocampal LTP. 

Receptor molecules for HB-GAM 
Currently there are three transmembrane proteins 
identified as the receptor molecules for the HB-
GAM: syndecan-3, receptor-like protein tyrosine 
phosphatase ζ/β (RPTPβ/ζ ) and the orphan 
receptor tyrosine kinase anaplastic lymphoma 
kinase (ALK). Core proteins of syndecan-3 and 
RPTPβ/ζ carry GAG side chains which are 
necessary for the HB-GAM binding.  

Syndecan family of HSPGs and their 
role in the nervous system. 
Syndecan-3 
Expression patterns of syndecans in the 
nervous system 
 
Syndecans and glycosylphosphoinositide (GPI)-
linked proteins glypicans represent two families of 
cell-surface HSPGs. These two membrane-
associated protein classes are the major carriers of 
heparin sulfates at the cell surface.  
 
Syndecans are type I membrane-spanning 
proteins present on the cell surface of most cell 
types. They regulate a variety of biological 
processes including cell-extracellular matrix 
interactions, cell adhesion and motility (reviewed 
by Bandtlow and Zimmermann, 2000; Woods, 
2001). There are 4 mammalian syndecans that are 
the products of different genes: syndecan-1, 
syndecan-2 (fibroglycan), syndecan-3 (N-
syndecan) and syndecan-4 (ryodocan or 
amphiglycan) (fig. 5). Intracellular and 
transmembrane domains are highly conserved in 
all four syndecans. However, ectodomains of 
syndecans are structurally distinct. The 
extracellular side of the core proteins of different 
syndecans carry various numbers of GAG chains. 
Most of them are HS GAGs, but some are 
chondroitin/dermatan sulfate chains.  
 
The expression of syndecans is tightly regulated. 
They are induced during development, after injury 
and following various physiological stimuli 
(Bernfield et al., 1999; Hsueh and Sheng, 1999; 
Lauri et al., 1999). In addition, different syndecans 
are expressed in a cell-specific manner. Each 
syndecan has a different distribution in the brain. 
The expression of syndecan-1 in the adult brain is 
restricted mainly to the cerebellum, while 
syndecan-2 and syndecan-3 are expressed in 
many brain regions including cerebellum, 
hippocampus, dentate gyrus, cerebral cortex, and 
thalamus. In contrast to syndecan-2 and -3, which 
are expressed predominantly by neurons, 
syndecan-4 is produced specifically in the glial 
cells and displays a diffuse distribution throughout 
the brain (Ethell and Yamaguchi, 1999). 
Syndecan-3 has also been demonstrated to be 
expressed by oligodendrocyte progenitors but not 
by terminally differentiated oligodendrocytes or by 
astrocytes (Winkler et al., 2002). 
 
In all brain regions syndecan-2 is predominantly 
localized at the synaptic structures. Its spatial and 
temporal expression pattern matches the one of 
synaptic marker synaptophysin. Immunoelectron 
microscopy studies revealed both pre- and 
postsynaptic  localization  of  syndecan-2.  Though 
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Figure 5. Syndecan family of transmembrane proteoglycans in mammalian tissues. Schematic representation of core 
proteins with GAG side chains (wavy lines). Inset shows the structure of HS GAG. Conserved  cytoplasmic domains C1 
and C2 as well as variable region (V) are marked at the intracellular side.  
 
 
the staining was mostly associated with the 
synaptic membranes, some signal was also 
detected outside of the synapses. In synapses 
syndecan-2 binds to the postsynaptic density-
95/disc large/zona occludens (PDZ) domain of 
calcium, calmodulin-associated serine/threonine 
kinase (CASK) (rat homolog of abnormal cell 
LINeage-2 [LIN-2]) via its COOH terminus (Hsueh 
et al., 1998). 
 
Unlike syndecan-2, syndecan-3 staining in the 
brain is mainly associated with fiber tracts and 
axon pathways suggesting that this HSPG is 
concentrated in the axons (Hsueh and Sheng, 
1999; Kinnunen et al., 1998a). However, 
immunoelectron microscopy also revealed 
perisynaptic localisation of syndecan-3 in the area 
CA1 of hippocampus following tetanic stimulation 
of Schaffer collaterals (Lauri et al., 1999). The 
expression level of syndecan-3 is more 
pronounced during the early stage of postnatal 
development than in the adult brain (Carey et al., 

1997; Nolo et al., 1995). Syndecan-3 expression 
starts at the late stages of embryonic development 
and increases during early postnatal period 
reaching the maximum around postnatal day 7, 
after which it declines (Carey, 1997). Low levels of 
expression are maintained in some areas of the 
nervous system in adults. In addition, syndecan-3 
expression is enhanced in hippocampus-derived 
neural stem cells following differentiation induced 
by retinoic acid (Inatani et al., 2001). Syndecan-3 
expression has been recently demonstrated to be 
associated with the migrating neurons in 
developing nervous system, particularly in the 
migratory stream from the rat olfactory placode 
(Toba et al., 2002).  
 
 
Structure of syndecan-3 
 
Syndecan-3 is a 120 kDa HSPG originally found in 
rat Schwann cell membranes (Carey et al., 1992). 
The core protein of syndecan-3 consists of 442 
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amino acids and six structural domains. The 
extracellular part of syndecan-3 core protein 
contains an N-terminal signal peptide, two regions 
for GAG attachment separated by mucin homology 
domain enriched in proline and threonine. The 
GAG attachment domains consist of ser-gly 
dipeptides preceded and followed by acidic 
residues. The GAG attachment site near the N-
terminus in all syndecans bears HS chains, 
whereas the other one, near the plasma 
membrane, in case of syndecan-1 and -4 may also 
carry chondroitin sulfate chains. The membrane 
proximal region of the cytoplasmic domain (C1) is 
similar in all four members of the syndecan family 
and displays a close sequence homology to some 
other transmembrane proteins containing PDZ-
binding sites (e.g. neurexin I/III and glycophorin C) 
(fig. 5). The tetrapeptide EFYA (glutamic acid-
phenylalanine-tyrosine-alanine), C2, at the end of 
the C-terminus is also conserved in all syndecans, 
suggesting that certain common mechanisms of 
protein-protein interactions are important for 
syndecan functions. Between the conserved C1 
and C2 parts of the intracellular domain syndecans 
have a variable part (V). This region is conserved 
between species, but differs in syndecans 1-4. The 
transmembrane domain and the ectodomains play 
a role in oligomerization of syndecans (Asundi and 
Carey, 1995). Oligomerization of syndecans 
enhance their interaction and lateral association 
with other cell surface molecules (e.g. integrins, 
thus modulating cell adhesion) (Couchman and 
Woods, 1999). 
 
In addition to the membrane-anchored form of 
syndecans they may be present in the ECM as the 
released molecules shed from the plasma 
membrane (Kim et al., 1994). Soluble fragments of 
syndecan-3 have been suggested to contribute to 
the structure of ECM (Akita et al., 2001). The 
ectodomains shed from the plasma membrane 
retain GAG chains and the ability to bind 
extracellular ligands. The binding activity of the 
shed syndecans is indistinguishable from that of 
the membrane-associated forms. Soluble 
syndecans are important in the storage and 
appropriate representation of the heparin-binding 
growth factors (e.g. FGF-2). Syndecans may also 
increase effective concentration of the growth 
factors at the plasma membrane and modulate 
their binding to the membrane receptors. Shedding 
of the syndecan extracellular domains is tightly 
regulated and requires the activity of the MMPs 
(Asundi et al., 2003; Fitzgerald et al., 2000). 
Certain other proteases and growth factors can 
also modulate shedding of syndecan ectodomains 
(Subramanian et al., 1997). 
 
Extracellular ligands for syndecan-3 
 

Syndecans bind to a number of extracellular 
adhesive molecules and growth factors, but the 
binding ability varies between the family members. 
In contrast to other syndecans, syndecan-3 does 
not bind to most insoluble ECM components (e.g. 
fibronectin, laminin, collagens) (Woods et al., 
2000; Salmivirta et al., 1994; Suzuki et al., 2003), 
but it does bind to the FGF and heparin-binding 
growth/differentiation factors HB-GAM and MK 
(Chernousov and Carey, 1993; Nakanishi et al., 
1997; Raulo et al., 1994).  
 
In the developing central nervous system 
syndecan-3 is colocalised with HB-GAM on the cell 
membrane of growing axons (Kinnunen et al., 
1998a). Syndecan-3 mediates HB-GAM-induced 
neurite outgrowth acting as the receptor molecule 
for HB-GAM (Kinnunen et al., 1996; Kinnunen et 
al., 1998b; Raulo et al., 1994).  
 
Syndecans may also function as co-receptors for 
extracellular growth factors. For example, binding 
to syndecans and other HSPGs can significantly 
modify the ability of FGF to interact with its 
transmembrane tyrosine kinase receptor (FGFR) 
(Ornitz, 2000; Schlessinger et al., 2000). Biological 
activity of FGF is dependent on its binding to 
HSPGs. In particular, it is important whether it is 
bound to the membrane-anchored of released 
(shed) form of syndecan (Carey, 1997). 
 
Possible interaction of syndecan-3 and NCAM has 
been recently suggested; however no direct 
evidence exists supporting this idea (Toba et al., 
2002). In the peripheral nervous system syndecan-
3 binding to the particular collagen type V protein 
mediates Schwann cell adhesion to the ECM and 
activates the Erk1/Erk2 protein kinases  
(Chernousov et al., 1996; Erdman et al., 2002). 
 
Intracellular signalling mediated by 
syndecan-3 
 
Syndecans are important for transduction of 
extracellular signals into the cells. Through their 
cytoplasmic domains syndecans are involved in 
regulation of cytoskeleton organization and thus 
regulate cell shape and motility (reviewed 
elsewhere Yoneda and Couchman, 2003). The C-
terminal EFYA sequence highly conserved in all 
syndecans interacts with several PDZ domain-
containing proteins: syntenin, CASK/LIN and 
synectin (Gao et al., 2000; Grootjans et al., 1997; 
Hsueh et al., 1998). In addition, one more binding 
partner, synbindin, has a region with limited 
homology to the PDZ domain (Ethell et al., 2000). 
The C1 domain in syndecan-3 interacts with c-src, 
c-fyn, cortactin and tubulin (Kinnunen et al., 
1998a). 
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Since the C1 and C2 domains are highly 
homologous in syndecans it is likely that the same 
C1- and C2-dependent interactions are 
characteristic for all syndecans. Indeed, for 
example syntenin and CASK bind to all four 
syndecans. However, while syntenin interacts 
equally well with all syndecans, CASK binds more 
easily to syndecan-2 and -4 than to syndecan-1 
and -3 (Grootjans et al., 2000). It is possible that 
the V domain can modulate the interactions of the 
C1 and C2 domains with intracellular partners of 
syndecans. Thus some signalling pathways may 
be unique for individual syndecans, e.g., little is 
known regarding the involvement of src-mediated 
molecular cascade in the signal transduction 
mechanisms employed by syndecans other than 
syndecan-3.  
 

RPTPβ/ζ 
RPTPβ/ζ is a receptor-like protein tyrosine 
phosphatase expressed specifically in the nervous 
system (Levy et al., 1993).  Three isoforms of 
RPTPβ/ζ have been identified as the products of 
alternative RNA splicing: the short and long 
receptor forms, and the secreted form (also known 
as phosphacan) (fig. 6). The extracellular region of 
all three isoforms contains a carbonic anhydrase 
domain, fibronectin type III domain and a large 
cysteine-rich spacer domain. Phosphacan consists 
of the entire extracellular part of the molecule. The 
receptor forms of RPTPβ/ζ have also a single 
membrane-spanning domain and two cytoplasmic 
phosphatase domains. In addition, the secreted 
form and the long receptor form carry chondroitin 
sulfate side chains attached to the 860-residue 
insert in the cystein-rich region. Thus the long 
receptor form and phosphacan are chondroitin 
sulfate proteoglycans. RPTPβ/ζ bears structural 
and functional similarity to the cell adhesion 
molecules (reviewed by Peles et al., 1998). All 
three forms of RPTPβ/ζ are found in the 
developing and adult nervous system. RPTPβ/ζ is 
mainly expressed on the surface of the radial glia 
and astrocytes. However, its mRNA can also be 
detected in some neuronal populations (e.g. in 
hippocampal pyramidal cell, dentate granule cells, 
cerebellar Purkinje cells, neurons in striatum, 
neocortex, etc.) (Snyder et al., 1996). The receptor 
forms of RPTPβ/ζ and phosphacan display a 
different developmental profile of expression. The 
amount of the secreted form of RPTPβ/ζ increases 
progressively during development while the 
expression of the transmembrane forms does not 
change very much (Sakurai et al., 1996). 
 

 
 
Figure 6. Schematic representation of the structure of 
three RPTPβ/ζ isoforms: short receptor form(A), long 
receptor form (B), and phosphacan (C). CAH, carbonic 
anhydrase domain; FN, fibronectin type III domain; S, 
cysteine-rich spacer domain (S); CS, chondroitin sulfate 
chains. 
 
RPTPβ/ζ binds to a number of cell adhesion 
molecules and ECM components and thus is 
involved in a variety of functions mediated by the 
cell-cell and cell-matrix contacts. 
RPTPβ/ζ interacts with the cell surface proteins 
contactin (Peles et al., 1995), NCAM, neuron-glia 
cell adhesion molecule (Ng-CAM) (Milev et al., 
1994), tenascins in the extracellular matrix (Barnea 
et al., 1994; Milev et al., 1998), and heparin-
binding secreted proteins such as amphoterin 
(Milev et al., 1998), MK (Maeda et al., 1999) and 
HB-GAM (Maeda et al., 1996). During 
development RPTPβ/ζ is implicated in the neuronal 
migration, axon outgrowth and guidance by 
coupling extracellular cues to the signal 
transduction pathways in the cells (see Holland et 
al., 1998). The extracellular variant of RPTPβ/ζ, 
phosphacan, displays an overlapping localization 
pattern with HB-GAM during embryonic 
development and in postnatal period (Milev et al., 
1998). High affinity binding of phosphacan to HB-
GAM is mediated mainly by chondroitin sulfate 
chains and can be significantly diminished by 
chondroitinase treatment. Interestingly, binding to 
tenascin-R is dependent on the core protein of 
phosphacan but not its GAGs (Milev et al., 1998). 
Functional data that RPTPβ/ζ and its secreted form 
suppress HB-GAM-induced neuronal migration 
and neurite outgrowth of cortical neurons (Maeda 
et al., 1996; Maeda and Noda, 1998) also suggest 
that RPTPβ/ζ and HB-GAM comprise a ligand-
receptor pair. Similarly to HB-GAM, the expression 
of RPTPβ/ζ is enhanced following CNS injury in 
the areas of axonal sprouting as well as in the 
regions of glial scarring (Snyder et al., 1996).  
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Anaplastic lymphoma kinase  
ALK is a member of the insulin receptor subfamily 
of receptor tyrosine kinases with closest homology 
to leukocyte tyrosine kinase (LTK). It is a 
transmembrane protein (fig. 7) with the molecular 
mass of 200-220 kDa, and it has recently been 
shown to specifically bind HB-GAM in intact cells 
and in cell-free binding assays (Stoica et al., 
2001). ALK was originally discovered in a 
chromosomal rearrangement associated with 
anaplastic large cells lymphomas (Morris et al., 
1994). The receptor tyrosine kinase ALK is 
specifically expressed in both central and 
peripheral nervous system. In situ hybridization 
studies revealed that ALK expression begins late 
in embryonic development (not detected until 
embryonic day 11 in mice) and peaks during the 
neonatal period. Similarly to HB-GAM, ALK is 
downregulated in older animals. The level of 
expression reaches its minimum around three 
weeks after birth and persists in adults only in 
some cell populations (e.g. in thalamus, 
hypothalamic area, cerebellum, cerebral cortex). 
HB-GAM signalling through ALK has been 
demonstrated to be important in the growth of 
glioblastoma multiforme (Powers et al., 2002). HB-
GAM interaction with the extracellular domain of 
ALK induces ALK phosphorylation and subsecuent 
intracellular signal transduction via the adaptor Src 
homology 2 domain-containing protein (Shc), 
insulin receptor substrate-1 (IRS-1), extracellular 
signal-regulated kinase (ERK) and 
phosphatidylinositol 3 (PI-3) kinase (Stoica et al., 
2001). In addition, HB-GAM leads to 
phosphorylation of phospholipase C gamma (PLC-
γ), which is typically activated by BDNF, basic FGF 
(bFGF) and other growth factors (Schlessinger, 
2000). However, no expression of ALK was found 
in the hippocampus and dentate gyrus (Iwahara et 
al., 1997; Morris et al., 1997). Thus, though HB-
GAM/ALK interactions may be important for some 
of the HB-GAM biological effects it is unlikely that 
they play a role in the regulation of synaptic 
plasticity or hippocampus-dependent learning.  
 
 
 
 

 
 
 
 
Figure 7. Schematic representation of anaplastic 
lymphoma kinase.  LBS, ligand-binding sequence; MAM, 
meprin/A5/PTPmu domain; TM, transmembrane domain; 
TK, tyrosine kinase domain. 

Summary 
Previous studies demonstrated that in addition to 
its role in the regulation of neurite outgrowth and 
axonal guidance during development ECM-
associated molecule HB-GAM is involved in the 
regulation of hippocampal LTP. HB-GAM binds 
with high affinity to syndecan-3. This cell-surface 
HSPG displays similar pattern of expression to that 
of HB-GAM during development and in response 
to LTP-inducing HFS. It also blocks LTP, which 
makes it a good candidate for the role of functional 
receptor mediating effects of HB-GAM on synaptic 
plasticity. The involvement of HB-GAM and 
syndecan-3 in the regulation of hippocampal LTP 
also suggests that these molecules may be 
implicated in the hippocampus-dependent learning 
and memory. However, the data on the role of 
endogenous HB-GAM as well as syndecan-3 in 
hippocampal functions and regulation of learning 
behavior is missing.  
 
HB-GAM belongs to the diverse family of TSR 
domain containing proteins sharing a common 
property of binding to heparin-type glycans. TSR 
proteins are ECM-associated and cell-surface 
molecules mediating cell-cell and cell-matrix 
interactions and involved in the various biological 
functions. It is though unknown whether individual 
TSR domains may act as independent signalling 
units or higher order organization is required for 
their effects in the nervous system.  
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Aims of the study 
Mutant mice were used to study the in vivo function of HB-GAM and its receptor syndecan-3 in hippocampal 
synaptic plasticity and hippocampus-related forms of behavior. The specific aims of this work were as 
follows: 
 
 
 
1. To study whether genetic manipulations leading to either lack or overexpression of HB-GAM in mutant 

mice affect synaptic plasticity and/or learning and memory (I). 
 
2. To determine whether the effects of HB-GAM on hippocampal functions are mediated by syndecan-3 

using mice lacking this heparan sulfate proteoglycan (II). 
 
3. To study cellular mechanisms underlying altered synaptic plasticity in the HB-GAM mutant mice (III, 

unpublished data).  
 
4. To characterise structure/function relations of the HB-GAM protein (IV). 
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Materials and methods 
Here only a brief outline of the materials and 
methods used in the current study is given. More 
detailed descriptions of the experimental 
procedures are provided in the corresponding 
sections of the original publications (see Table 3 
for the references). 
 
Genetically modified mice were studied in the 
present work to characterise the role of HB-GAM 
and syndecan-3 in the synaptic plasticity and 
learning and memory. Three different mutants 
were generated: HB-GAM knockouts, HB-GAM 
overexpressing mice and syndecan-3 deficient 
mice. Previously described  (Amet et al., 2001) 
chimeric male HB-GAM knockouts on the 
C57BL/6J × 129 hybrid background were mated to 
129S2/SvHsd females in order to generate inbred 
strain of HB-GAM deficient mice. Transgenic mice 
overexpressing HB-GAM used in the studies were 
hemizygous animals on inbred FVB/NHsd or in F1 
FVB/NHsd × 129S2/SvHsd hybrid backgrounds. 
Syndecan-3 deficient animals were 129SV × 
C57BL/6J hybrids. 
 
In vitro electrophysiological experiments were 
done using transverse hippocampal slices. 
Recordings were made from the CA1 area of 
hippocampus. Field excitatory postsynaptic 
potentials (fEPSPs) from stratum radiatum were 
elicited by stimulation of Schaffer collaterals. The 
relationships between the presynaptic fiber volley 
amplitude and the slope of fEPSP at different 
stimulation intensities were used to evaluate basal 
synaptic transmission. Possible changes in short-
term plasticity and presynaptic functions were 
checked by measuring paired-pulse facilitation 
ratio. High-frequency and low-frequency 
stimulation trains were applied to elicit long-term 
changes in the efficacy of synaptic transmission. 
Recordings from stratum pyramidale were 

conducted to measure population spike responses. 
Visualized whole-cell patch-clamp recordings from 
CA1 pyramidal cells were made using infrared 
microscopy. Recordings were made in voltage-
clamp mode. To study the basic properties of 
GABAA receptor-mediated transmission 
GABAergic currents were pharmacologically 
isolated and miniature and spontaneous inhibitory 
postsynaptic currents (IPSC) were recorded. 
Paired-pulse depression of evoked IPSCs was 
used to assess functional properties of GABAergic 
neurotransmission. 
 
Behavioral testing included evaluation of basic 
neurological functions, sensory and motor abilities 
(postural, righting and visual placing reflexes, pain 
sensitivity, rotarod, open field test), and tests 
assessing anxiety-like behavior and learning and 
memory. Morris water maze test was used to 
assess hippocampus-dependent spatial learning. 
Elevated plus maze test and light-dark exploration 
tests were conducted to measure general level on 
anxiety. In addition, contextual fear conditioning 
and cue learning tests were carried out to evaluate 
associative learning.  
 
Histological methods included hematoxylin/eosin 
for general evaluation of gross morphology and 
estimation of cell densities; and Bielschowsky 
silver impregnation to visualize axonal projections. 
Golgi staining was used to visualize dendritic 
spines on the hippocampal pyramidal cells. 
Immunofluorescence of synaptophysin staining 
was measured using confocal microscopy to 
evaluate the density of presynaptic butons. Cell 
cultures were used for neurite outgrowth assays, 
transfilter migration assays and to study 
distribution of AMPA and NMDA glutamate 
receptors and syndecan-3 in hippocampal neurons 
by means of immunostaining.  
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Table 3. 
 

Method Publication 
In vitro electrophysiology using hippocampal slices from rats and 
transgenic mice 

• Field potential recordings 
• Whole-cell patch-clamp recordings 

 

 
 

I-IV 
III 

Production of genetically modified mice 
 

I, II 

Behavioral testing of transgenic mice 
 

I, II 

Morphological analysis 
• Histological methods 
• Immunofluorescence and confocal microscopy 

 

 
I, II 
II 

In vitro cell cultures 
 

II, IV 
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Results 
Morphology of the HB-GAM and syndecan-3 
mutant mice (I,II) 
Three different mutant mice lines were used in 
electrophysiological and behavioral studies: HB-
GAM overexpressing transgenic mice, HB-GAM 
knockouts (Amet et al., 2001) and syndecan-3 
deficient mice. In the HB-GAM transgenic mice the 
coding region of HB-GAM was under the control of 
the human PDGF β-chain promoter, which 
produces preferential expression in neurons 
(Sasahara et al., 1991). Transgene-positive mice 
showed about two-fold overexpression of the HB-
GAM protein in the hippocampus compared to the 
endogenously occurring HB-GAM. The mutant 
mice lacking HB-GAM and syndecan-3, as well as 
the mice overexpressing HB-GAM, were all born in 
expected Mendelian ratios, displayed normal life 
span, and were apparently healthy and fertile. 
None of the genetically manipulated mice lines 
have obvious anatomical or histological brain 
abnormalities.  
 
Detailed morphological analysis of hippocampus 
and motor cortex of the HB-GAM transgenic mice 
using hematoxylin-eosin and Bielschowsky-silver 
impregnation method did not reveal any changes 
in the layer structure, cell density and major axonal 
projections in the mutant mice as compared to the 
wild-type controls. Similarly, the syndecan-3 
knockout mice did not display any gross 
morphological changes in brain histology (I: fig. 1c; 
II: fig. 2a). Hippocampal neurons cultured in vitro 
from the syndecan-3 knockouts appeared normal 
in morphology (II: fig.1d).  
 

Syndecans are involved in regulation of cell shape 
and motility during development through their 
interactions with cytoskeleton. In particular, 
syndecan-2 has been shown to induce maturation 
of dendritic spines in hippocampal neurons through 
signalling mechanism of EphB, the member of Eph 
receptor tyrosine kinase family (Ethell and 
Yamaguchi, 1999; Ethell et al., 2001). Syndecan-3 
is also phosphorylated by EphB1 in vitro (Asundi 
and Carey, 1997). Thus, we used Golgi 
impregnation and DiI staining to visualize dendritic 
spines in the hippocampal neurons in order to see 
whether their morphology is affected by syndecan-
3 deletion. No differences in overall appearance of 
the pyramidal neurons were detected between the 
syndecan-3 knockout mice and the wild-type 
controls. The shape of the dendritic spines, their 
length and density were similar in both genotypes 
(II: fig. 2b, c). To estimate synaptic density in the 
area CA1 of hippocampus we also used 
immunostaining with antibodies against the 
presynaptic marker synaptophysin. No differences 
between the syndecan-3 knockout mice and their 
wild-type controls were found in the level of 
synaptophysin immunofluorescence (II: fig 2b; fig. 
8). 
 
Synaptic distribution of AMPA and NMDA 
receptors in cultured hippocampal neurons as well 
as the AMPA/NMDA ratio, assessed by 
immunostaining, was indistinguishable in the 
syndecan-3 deficient and the wild-type mice. 
 
 

 
 
 

 
 

 
 
 
Figure 8. Synaptophysin immunofluorescence in the area CA1 of hippocampus is indistinguishable in wild-type (A) and 
syndecan-3 deficient (B) mice.  
 
 

A                           B  
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Synaptic plasticity in the HB-GAM knockout 
mice (I, unpublished) 
Mice lacking HB-GAM were originally produced in 
the C57BL/6Jx129/Ola hybrid background (Amet et 
al., 2001). In that first report of the HB-GAM 
knockout mice the enhanced hippocampal 
plasticity in the mutants was only revealed when 
using sub-threshold protocol for LTP induction. 
Here in the follow-up study we used HB-GAM 
knockout mice after several back-crossings to 
129S2/SvHsd strain in order to generate an inbred 
line and thus to reduce the possible variation of the 
phenotype caused by genetic background. The 
input-output curves of single-pulse evoked 
synaptic responses, which reflect the relationship 
between the presynaptic fiber volley amplitude and 
the fEPSP slope, were similar in the hippocampal 
slices from the knockout mice and wild-type 
controls (I: fig. 4a). Paired-pulse facilitation (PPF), 
a form of short-term synaptic plasticity, was also 
unaffected by the mutation in the interpulse interval 
range from 20 to 200 ms (I: fig. 4b). 
 
LTP induced by high-frequency stimulation in the 
area CA1 of hippocampus, however, was 
substantially enhanced in the mice lacking 
endogenous HB-GAM compared to the control 
animals (fig. 9 a). We did not find any difference in 
synaptic responses evoked by high-frequency train 
stimulation between the knockout and wild-type 
mice. Slow NMDA receptor-mediated components 
of field recordings after tetanic stimulation were 

also indistinguishable in both experimental groups 
(I: fig. 4d, e). No differences between the 
genotypes were found in LTP induced by lower 
stimulation frequency trains (10Hz/1s) (fig. 9 b). 
PPF measured one hour after LTP induction was 
not affected either in the mutants or the wild-type 
mice (I: fig. 4f).  
 
To check whether deficiency of HB-GAM in the 
mutant mice affects the properties of AMPA and 
NMDA receptor-mediated responses we performed 
whole-cell patch-clamp recordings from the 
pyramidal neurons of the CA1 area of 
hippocampus. The current-voltage relations of the 
pharmacologically isolated AMPA component of 
synaptic currents, obtained at the holding 
potentials between -80 and +20 mV, revealed 
normal responses in the mutant mice (Pavlov, 
Segerstråle, Rauvala and Taira, unpublished 
results; fig. 10 a). Both the wild-type and knockout 
mice exhibit similar I-V relationships of the NMDA 
receptor-mediated current (fig. 10 b). To estimate 
whether the AMPA and NMDA components are 
present in similar proportions in the mutant mice 
and the control animals, we plotted the current-
voltage curves of the NMDA receptor-mediated 
component normalized to the AMPA component at 
-80 mV recorded from the same cells. Again no 
difference between the genotypes was detected, 
suggesting that the AMPA/NMDA ratio is not 
changed in the mutants (fig. 10 c). 

 
 
 
 

 
 
 
Figure 9. (A) LTP in the area CA1 of hippocampus induced by the 100 Hz high-frequency stimulation protocol is 
significantly higher in the HB-GAM knockout mice (n=6) that in the wild-type controls (n=6). (B) LTP induced by the 10 Hz 
stimulation protocol. The mutant mice (n=3) exhibit a similar level of potentiation as compared to the wild-type control 
animals (n=4). Data represent mean+SEM. 
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Figure 10. Similar current-voltage curves for isolated AMPA and NMDA EPSCs in the CA1 region of hippocampus of the 
HB-GAM knockouts and the wild-type mice (Pavlov, Segerstråle, Rauvala and Taira, unpublished results). Voltage 
dependence of the EPSC amplitude normalized to the maximal inward current for the AMPAR- (A) and NMDAR-
mediated (B) responses. (C) Averaged amplitudes of NMDA receptor-mediated responses expressed as the percentage 
of the AMPA receptor-mediated current at -80 mV recorded from the same cells.  
 
 
Behavioral phenotype of the HB-GAM knockout 
mice (I) 
Mutant mice were examined in a number of 
behavioral tests and did not display any 
abnormalities in general health, neurological 
reflexes, motor functions or sensory abilities. 
Morris water maze test for spatial learning 
revealed that though the escape time decreased 
rapidly both in the wild-type and the knockout 
mice, the mice lacking HB-GAM show a slightly 
delayed escape time during the training period. 
The mutant mice also performed poorly in the first 
transfer test as compared to the control animals. 
However, in the second transfer test, after nine 
training blocks, both genotypes already had a 
similar preference to the trained quadrant and 
spent an equal time in the circle around the 
platform. The third transfer test was made after the 
mice had learned to find the platform moved to the 
opposite quadrant. In this task the knockout mice 
spent significantly less time in the previous target 
zone. In addition, the HB-GAM deficient mice 
spent a longer time in near the pool wall in the first 
and third transfer tests than the wild-types (I: fig. 
5). Fear conditioning experiments revealed a lower 
context-dependent freezing in the knockout mice 
compared to the control group, while no changes 
were observed in the cued fear conditioning (I: fig. 
6d). The HB-GAM knockout mice showed a higher 
anxiety-like behavior than control animals in the 
elevated plus maze test (I: fig. 6c). 
 
 
Synaptic plasticity in the HB-GAM 
overexpressing mice (I) 

Similarly to the HB-GAM knockout mice, animals 
with an enhanced level of HB-GAM expression did 
not have any changes in the basal properties of 
synaptic transmission in the area CA1 of 
hippocampus. Input-output curves and PPF ratios 
before and one hour after LTP induction were 
indistinguishable in the mice overexpressing HB-
GAM and wild-type littermate controls. 
Nevertheless, in contrast to the mice lacking HB-
GAM, the overexpressing mice displayed 
attenuated LTP induced by tetanic stimulation. 
Thus the effect of the enhanced expression of 
endogenous HB-GAM is in agreement with the 
previously reported suppressory action of 
recombinant HB-GAM on LTP induction (Lauri et 
al., 1998). Synaptic fatigue and the shape of 
consecutive responses during the HFS stimulation 
of Schaffer collaterals were similar in the HB-GAM 
transgenic and wild-type mice. 
 
HB-GAM and GABAergic inhibition in 
hippocampus (III) 
GABAergic inhibition plays an important role in the 
control of glutamatergic synaptic plasticity in the 
hippocampus. Blockade of GABAergic 
transmission is known to facilitate LTP while GABA 
agonists favour induction of LTD instead of LTP in 
a range of induction protocols (Steele and Mauk, 
1999; Wigstrom and Gustafsson, 1983). Further 
experiments were designed to test the hypothesis 
that augmentation in GABAergic transmission 
underlies attenuated LTP in the HB-GAM 
transgenic mice. In support of that, the level of LTP 
induced after application of GABAA receptor 
blocker, picrotoxin, was similar in the HB-GAM 
overexpressing mice and the wild-type controls. 
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Field recordings from the CA1 stratum pyramidale 
demonstrated that picrotoxin wash-in was 
accompanied by a significantly increased 
facilitation of the population spike responses in the 
transgenic mice compared to the wild-type control 
animals, suggesting that a more powerful inhibitory 
control exists in the hippocampus of the mutants 
under normal conditions (III: fig. 2).  
 
Whole-cell patch-clamp recordings from the 
pyramidal cells in the area CA1 of hippocampus 
were performed to investigate the basic properties 
of GABAergic transmission. While the kinetics and 
the mean amplitude of the spontaneous IPSCs 
(sIPSCs) were similar in both genotypes, the 
transgenic mice demonstrated an enhanced 
frequency of sIPSCs compared to wild-type 
littermate controls (III: fig. 3). These data provide 
further evidence for the enhanced GABAergic 
transmission in the hippocampus of the transgenic 
mice. GABA receptor-mediated synaptic currents 
are known   to  decrease  in  response to repetitive 
stimulation, thus functional inhibitory control 
diminishes during high-frequency stimulation 
(Davies et al., 1990). Paired-pulse depression of 
evoked IPSCs was studied in the range of 
interpulse intervals from 50 to 800 ms. In contrast 
to the wild-type mice, which displayed marked 
depression of the second IPSCs in the paired-
pulse stimulation, the HB-GAM overexpressing 
mice demonstrated significantly reduced level of 
paired-pulse depression (III: fig. 5). The frequency 
of miniature IPSCs (mIPSCs), however, was 
similar in the HB-GAM overexpressing mice and in 
the control group. No effect of the mutation on the 
properties of single events was found.  
 
Behavioral analysis of the mice overexpressing 
HB-GAM (I) 
The expression of the HB-GAM transgene did not 
lead to any sensory or motor disabilities in the 
mutant mice. Though the escape latencies did not 
differ between the wild-type and the transgenic 
mice during the training period in the water maze 
task, significant differences were found between 
the genotypes in the first and the second transfer 
tests (I: fig. 3a, b, c). In both transfer tests the 
transgenic mice spent more time swimming in the 
platform quadrant than the wild-type mice. 
Subsequent training to learn the position of the 
platform moved to the opposite quadrant of the 
water maze and the following, third, transfer test 
showed similar results for the transgenic and 
control animals (I: fig. 3 d). Wild-type mice 
expressed more thigmotaxis during the first two 
transfer tests. However, the difference reached the 
level of significance only in the second transfer test 
(I: fig. 3 e). In the fear conditioning test, the mice 
overexpressing HB-GAM displayed less freezing to 
the CS tone than control mice, but the context 

dependent freezing was not different (I: fig. 6 b). In 
the elevated plus maze test the transgenic mice 
displayed reduced anxiety-like behavior. They 
made more entries into the open arms and stayed 
there longer than the wild-type animals. The 
number of closed arm entries was 
indistinguishable between the genotypes (I: fig. 6 
a). 
 
Synaptic plasticity in the syndecan-3 deficient 
mice (II) 
The electrophysiological phenotype of the mice 
lacking syndecan-3 very much resembled that of 
the HB-GAM knockout mice. Deletion of the 
syndecan-3 gene had no effect on the baseline 
synaptic transmission or PPF (II: fig. 3). LTP in the 
area CA1 of hippocampus was strongly enhanced 
in the mice lacking syndecan-3 (II: fig. 4 a). A 
similar increase of LTP level was demonstrated for 
homo- and heterozygous mutants. Saturation of 
the LTP was reached following the 3rd train 
stimulus both in the wild-type and syndecan-3 
deficient mice. However, the level of maximal 
potentiation was higher in the knockouts (II: fig. 4 
c). No differences between the genotypes were 
revealed in response to the low-frequency 
stimulation (II: fig. 4 d). Since syndecan-3 is 
important for mediating neurite outgrowth effects of 
HB-GAM during development (Kinnunen et al., 
1996) we tested whether it is also involved in 
modulation of LTP by HB-GAM. Indeed, whereas 
pressure injection of HB-GAM into the CA1 
dendritic area attenuated LTP in the wild-type 
mice, it had no effect on the level of potentiation in 
the mice lacking syndecan-3 (II: fig. 5). 
 
Behavioral analysis of the mice lacking 
syndecan-3 (II) 
Like the HB-GAM mutant mice, the syndecan-3 
knockouts were indistinguishable from the wild-
type control animals in the tests for the basic 
neurological reflexes, sensory and motor functions. 
During the training period in the Morris water maze 
the escape latency was slightly higher in the 
knockout mice compared to the control group, 
though the effect was significant only in one 
training block (II: fig. 6 a). However, in contrast to 
the wild-type mice, the knockout animals did not 
show any spatial preference to the platform 
quadrant in the first transfer test. A better 
performance in the wild-type group was also 
retained in the second transfer test, when the mice 
deficient of syndecan-3 spent significantly more 
time swimming in the opposite quadrant (II: fig. 6 
b-e). No differences were revealed in thigmotaxis 
between genotypes. Fear conditioning experiments 
also revealed spatial learning deficits in the 
syndecan-3 knockout mice. The mutants displayed 
reduced freezing in the context discrimination task 
as compared to the wild type mice (II: fig. 7 a). In 
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addition, no genotype-dependent changes were 
detected in the taste aversion test (II: fig. 7 c). 
Anxiety-like behavior of the syndecan-3 knockout 
mice in the elevated plus-maze and light-dark 
exploration tests was similar to that of wild-type 
mice.  
 
Structure/function dissection of HB-GAM (IV, 
unpublished data) 
Binding studies using plasmon resonance 
indicated that the lysine-rich tails had no effect on 
heparin binding properties of HB-GAM since the 
intact protein displayed the same affinity values as 
the di-TSR domain of HB-GAM. However, the 
individual N- and C-terminal domains of HB-GAM 
bound heparin considerably weaker than the di-
TSR domain. Thus, though each TSR domain can 
interact with heparin, both domains are clearly 
required for high affinity binding. We next tested 
whether the binding properties of the purified TSR 
domains of HB-GAM correlate with their functional 
activity. Injection of the di-TSR fragment effectively 
inhibited LTP in the area CA1 of hippocampus, 
while the single N- and C-terminal domains 
displayed milder effects and did not abolish LTP 
(IV: fig. 7). Intriguingly, despite striking structural 
similarity with HB-GAM and similar heparin binding 
affinity (Kilpelainen et al., 2000; Tumova, personal 
communication) midkine (MK) application did not 
abolish hippocampal LTP induced by high-
frequency stimulation, nor did the di-TSR domain 
of MK (fig. 11). Neurite outgrowth assays 
demonstrated that native HB-GAM as well as its di-
TSR domain induced neurites from the primary 
cultured hippocampal neurons in matrix bound 

form. Both N- and C-terminal single TSR domains 
failed to induce neurites at coating concentrations 
tested. In addition, single TSR domains failed to 
inhibit neurite outgrowth induced by intact coated 
HB-GAM when applied to the assay medium, while 
the di-domain polypeptide inhibited neurite 
outgrowth at values close to the value of intact 
protein (IV: fig. 6). Consistently with heparin-
binding experiments and neurite outgrowth assays 
the di-domain polypeptide of HB-GAM produced 
similar but slightly weaker inhibitory effect on 
neuronal migration as compared to native HB-
GAM. 
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Figure 11. Effect of MK and its di-TSR domain 
polypeptide on LTP in the area CA1 of hippocampus 
(Pavlov, Taira and Rauvala, unpublished results). 
Pressure injection of the polypeptides into the stratum 
radiatum was made 10 minutes before HFS stimulation. 
Time of injection is marked by the arrow. Data represent 
mean+SEM. N numbers refer to the number of slices; 
the numbers of animals are given in parentheses.  
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Discussion and Conclusions 

HB-GAM as a negative regulator 
of synaptic plasticity in 
hippocampus 
The role of HB-GAM in hippocampal LTP and 
spatial learning and memory was examined by 
using two groups of mice in which the expression 
of the molecule is either enhanced or abolished. 
Opposite genetic manipulations in our study led to 
opposite electrophysiological and behavioral 
consequences: overexpression of HB-GAM 
resulted in attenuated LTP and better learning 
performance while loss of expression led to 
enhanced LTP and impaired learning and memory. 
Finding of opposite changes in LTP and spatial 
learning in the HB-GAM knockout and 
overexpressing mice speaks for a gene-specific 
effect rather than a general background gene 
effect. Due to the technical reasons transgenic and 
knockout mice were produced in different genetic 
backgrounds. This precluded the direct 
comparison of the mutant mice in our study. 
Instead, both mutant groups had their own 
controls, respective wild-type littermates, which 
allowed us to evaluate the direction of the changes 
in plasticity or behavior caused by the mutation.  

HB-GAM and LTP 
The first report implicating HB-GAM in the 
regulation of synaptic plasticity in the hippocampus 
demonstrated that its expression is enhanced 
following tetanic stimulation (Lauri et al., 1996). 
Application of recombinant HB-GAM into 
hippocampal slices was later shown to inhibit HFS-
induced LTP in the area CA1 without affecting 
single-pulse evoked synaptic responses (Lauri et 
al., 1998). However, it was impossible to exclude 
the possibility that the suppressor effect on LTP 
was due to the inhibition of the endogenous HB-
GAM by the injected protein (see also discussion 
in I). The use of mutant mice demonstrated that 
the HB-GAM transgenic mice that display a 
modest overexpression of the transgene in the 
brain have a clearly attenuated LTP whereas 
disruption of the HB-GAM gene enhances LTP in 
the area CA1 of hippocampus. Thus our data 
strongly support the idea that HB-GAM acts as an 
inducible inhibitor of synaptic plasticity in the 
hippocampus. The importance of negative 
regulatory mechanisms of long-term plasticity and 
memory storage is discussed elsewhere (Abel et 
al., 1998). Such mechanisms might be of particular 
importance in the course of maturation when LTP-
like processes occur during synaptic development. 
The fact that LTP of the AMPA component of 
fEPSP induced in young animals tend to decay at 

the rate depending on the test stimulation 
evidences in favour of an activity-dependent 
mechanism compensating overall changes in 
synaptic efficacy during development (Xiao et al., 
1996). In this respect an important question about 
the role of HB-GAM in the neonatal plasticity still 
remains open.  
 
An important question in relation to the LTP 
phenotype of the mutant mice is whether HB-GAM 
suppresses NMDA receptor function (e.g. through 
syndecan-3/tyrosine kinase signalling), and 
deletion of HB-GAM facilitates NMDA receptor 
activation. It is also possible that HB-GAM directly 
affects AMPA receptor-mediated transmission or 
shifts the AMPA/NMDA current ratio. However, we 
did not find any supporting evidence for these 
suggestions. The slow NMDA receptor-mediated 
component of HFS trains in field recordings (c.f. 
Davies et al., 1991) was not affected either by HB-
GAM deletion (see also Amet et al., 2001) or by 
HB-GAM overexpression. Further, distribution of 
AMPA and NMDA receptors in cultured 
hippocampal neurons from the syndecan-3 
knockout mice was also unaffected by the 
mutation. Finally, there were no changes in either 
NMDA or AMPA receptor-mediated 
neurotransmission in the HB-GAM knockout mice 
compared to the wild-type control animals. Thus, 
our data together with previous results, 
demonstrating that local application of recombinant 
HB-GAM in the CA1 area of rat hippocampal slices 
does not alter pharmacologically isolated AMPA 
and NMDA receptor-mediated responses (Lauri et 
al., 1998), suggest that HB-GAM is not directly 
involved in the regulation of these glutamate 
receptors.  
 
Interestingly, along with a rather slow effect of HB-
GAM on LTP expression as demonstrated by the 
injection studies [(Lauri et al., 1998) II, IV], there 
may exist an additional mechanism involved in the 
immediate effect of the protein on the LTP 
induction, which would explain the difference in the 
post-tetanic potentiation in all mutants described 
here. It is possible that in addition to syndecan-3 
(see discussion below) HB-GAM also interacts with 
other syndecans expressed in the nervous system 
in a developmentally regulated and region specific 
manner (e.g. Mitsiadis et al., 1995). Members of 
the syndecan family seem to substitute each other 
to some extend. For example, syndecan-1 
overexpression in hypothalamus mimics a 
physiological effect of syndecan-3 on feeding 
behavior (Reizes et al., 2001). Another HSPG, 
syndecan-2, is concentrated in the synaptic 
junctions at the pre- and postsynaptic sites (Hsueh 
et al., 1998). Its expression pattern increases in 
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parallel with the synaptophysin suggesting its role 
in synaptogenesis, in particular at the late stages 
of synaptic development (Hsueh and Sheng, 
1999). Indeed, syndecan-2 was demonstrated to 
play a critical role in spine development being 
phosphorylated by the EphB receptor tyrosine 
kinase (Ethell and Yamaguchi, 1999; Ethell et al., 
2001). Further studies are warranted to 
envestigate whether there are any changes in the 
expression of other syndecans in the syndecan-3 
defficient mice. 
 
Another receptor that could mediate HB-GAM 
signalling is RPTPβ/ζ (Maeda and Noda, 1996). 
The interaction between HB-GAM and RPTPβ/ζ is 
important for HB-GAM-induced neuronal migration 
(Maeda and Noda, 1998) and morphogenesis of 
cell dendrites (Tanaka et al., 2003). RPTPβ/ζ is 
expressed by subsets of neurons and astrocytes in 
some brain areas including hippocampus (Shintani 
et al., 1998). It is worth to note that 
RPTPβ/ζ associates with sodium channels and 
affects sodium currents (Ratcliffe et al., 2000). 
Remarkably, the electrophysiological phenotype of 
the mice deficient in PTPδ, which belongs to the 
same receptor family as RPTPβ/ζ,  resembles the 
phenotype of the HB-GAM and syndecan-3 
knockouts in that these mutants display enhanced 
hippocampal LTP (Uetani et al., 2000). The RPTPζ  
knockout mice have been generated recently and 
were shown to have age-dependent enhancement 
of hippocampal LTP and deficient learning in 
Morris water maze. The effects of mutation are 
believed to be due to the changes in Rho-
associated kinase pathway (Niisato et al., 2005). 
Modulation of phosphatase activity by HB-GAM 
may thus regulate excitability of the neurons and 
contribute to the expression on plasticity. 
Interaction of HB-GAM with RPTPβ/ζ has been 
suggested to inhibit its catalytic activity, which may 
lead to an increased level of phosphorylation of β-
catenin (Meng et al., 2000). Depolarization 
upregulates association of β-catenin with E-
cadherin and causes β-catenin redistribution into 
the spines (Murase et al., 2002). On the contrary, 
HB-GAM through β-catenin phosphorylation may 
disrupt β-catenin/E-cadherin association and 
weaken cell-cell adhesion, which in turn would 
affect activity-induced morphological changes and 
attenuate LTP. 

TSR family proteins in brain 
development and plasticity 
Apparently the native protein structure is required 
for the biological effects of HB-GAM. Heparin 
binding properties of the single HB-GAM TSR 
domains are significantly diminished as compared 
to the intact molecule. In line with these results 

functional data from the electrophysiological 
experiments and neurite outgrowth assays 
indicated that single TSR domains fail to induce 
neurite outgrowth and show much less inhibitory 
effect on LTP induction. Presumably some co-
operative process which involves both TSR-
domains of the molecule is essential for HB-GAM 
activity. However, several other biological effects 
of HB-GAM seem to rely on the different structural 
determinants of its functions. For instance, 
angiogenesis activity of HB-GAM functions 
independently of its transforming activity. Both 
effects rely on the specific amino-acid sequences 
and do not require the intact molecule (Deuel et 
al., 2002; Zhang et al., 1999). Thus, only certain 
functions of HB-GAM are determined by the higher 
order organization of its domains. 
 
TSR containing proteins are important for neuronal 
development participating in cell migration, neurite 
outgrowth and axon pathfinding (Adams and 
Tucker, 2000). They also play a role in 
synaptogenesis and contribute to synaptic 
plasticity. TSP1 and TSP2 released from 
astrocytes induce synapse formation and are 
necessary for aligning and maintaining adhesion 
between pre- and postsynaptic sites (Washbourne 
et al., 2004). Modulation of cell-cell and cell-
extracellular matrix interaction is also important for 
synaptic plasticity and regulation of synapse 
morphology in the adult brain. 
 
TSR domains of the proteins belonging to the TSR 
superfamily are known to mediate functional 
interactions with ECM components through binding 
to GAG chains of proteoglycans. Thus HSPGs and 
CSPGs can modulate the biological effect of these 
proteins through binding to their TSR domains. 
Such mechanism has been demonstrated for 
semaphorin Sema5A. TSR domains of Sema5A 
are critical for regulatory interactions with sulfated 
proteoglycans that determine whether the protein 
would exert attractive or inhibitory effect on the 
developing axons (Kantor et al., 2004). 
Interestingly, Sema5A not only affects neurite 
outgrowth in the developing CNS but also 
contributes to axon inhibition after injury in the 
adult suggesting that similar mechanisms remain 
functional throughout the life span (Goldberg et al., 
2004). 
 
Plasmin-mediated cleavage of the TSR domains 
from F-spondin, another member of the TSR 
superfamily, has been recently shown to be 
important for the modulation of F-spondin 
attachment to the ECM (Tzarfaty et al., 2001). It is 
tempting to speculate that a similar mechanism 
involving proteolytic cleavage may regulate the 
activity of HB-GAM. However, it remains to be 
determined whether individual TSR fragments of 
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the TSR domain proteins have the signalling 
functions of their own. Given such complexity of 
structure/function relationship, it is not very 
surprising that although MK is highly homologous 
to HB-GAM it produces much weaker effects on 
LTP.  

Implications for behavior 
Modifications in the hippocampal synaptic plasticity 
in the mutant mice reported here were 
accompanied by alterations in the hippocampus-
dependent learning. Though, changes in the 
behavioral phenotype of the HB-GAM mutants, as 
well as of the syndecan-3 knockout mice, were 
relatively mild compared to the wild-type control 
animals. Abnormalities in spatial learning and 
memory in the mutants were not severe and could 
be revealed only as deficits in some particular 
tasks. For example, the Morris water maze test 
showed normal acquisition of the hidden platform 
task and normal swimming and thigmotaxis in the 
pool, but a deficit in the probe trial during the 
transfer test in the syndecan-3 null mice. Thus, 
only some components of the spatial navigation 
seem to be affected by the mutation. Obviously, 
many parallel learning processes take place in the 
Morris water maze task. However, the transfer test 
for spatial search is considered to be the most 
specific for the hippocampus-dependent spatial 
memory (Wolfer et. al., 1992). 
 
It is also possible that behavioral phenotypes could 
be partially masked by the genetic background. 
Synaptic plasticity and learning vary in different 
mouse strains routinely used for genetic 
manipulations (Bampton et al., 1999; Nguyen et 
al., 2000b; Nguyen et al., 2000a; Voikar et al., 
2001; Wolfer et al., 2002). Previous studies, which 
utilized hybrid genetic background, revealed 
enhanced plasticity in the HB-GAM knockout mice 
using a sub-threshold protocol for LTP induction 
(Amet et al., 2001). However, as demonstrated 
here back-crossing of HB-GAM knockouts into the 
129S2/SvHsd strain to generate an inbred line did 
show enhanced LTP induced by the conventional 
100Hz/1s high-frequency protocol. The differences 
in the genetic background in which the mutation is 
studied may account not only for the slight 
variations in electrophysiological (e.g. the level of 
LTP) and behavioral phenotype of the control 
animals, but also qualitatively alter the 
manifestation of the mutation. Accordingly, in this 
study it was hard to differentiate whether 
manipulations with the level of HB-GAM 
expression have specific effects on the two forms 
of fear conditioning, or whether this was due to an 
effect of the genetic background. HB-GAM 
deficient mice reported here displayed decreased 
performance in both spatial learning tasks: Morris 
water maze and context-dependent conditioning 

test. However, in the transgenic mice, where 
overexpression of HB-GAM enhanced spatial 
learning in the water maze, the mutation had no 
effect on context fear conditioning, but affected 
cued fear conditioning. Similar to the HB-GAM 
knockouts, syndecan-3 deficient mice displayed 
compromised learning in water maze test and 
reduced contextual freezing with no apparent 
abnormalities found in a number of hippocampus-
independent behavioral tests. However, the 
question whether HB-GAM/syndecan-3 actions are 
also important in brain structures other than 
hippocampus still remains opens. For example, it 
is currently unknown whether HB-GAM expression 
in amygdala undergoes activity-induced changes 
in expression as it does in the hippocampus. 
 
Interestingly, anxiety-like behavior in the elevated 
plus maze task was affected in the HB-GAM 
mutants, but not in the syndecan-3 deficient mice. 
Decreased anxiety and improved performance in 
spatial learning tests in mice overexpressing HB-
GAM is an intriguing finding, since the use of 
anxiolytic drugs usually severely impairs memory 
(e.g. Korneyev, 1997). Notably, similar to the HB-
GAM knockouts, MK deficient mice also 
demonstrated memory impairments and increased 
anxiety (Nakamura et al., 1998). 
 

Altered GABAergic transmission 
in the HB-GAM transgenic mice 
In the present work (III) we demonstrated that 
enhanced expression of HB-GAM in transgenic 
mice is accompanied by alterations in GABAergic 
neurotransmission. Blockade of GABAA receptors 
by picrotoxin resulted in a more prominent 
increase of the CA1 population spike amplitude in 
the transgenics compared to the wild-type animals. 
This suggests that under normal conditions a more 
powerful inhibitory control exists in the 
hippocampus of the mutant mice. In line with field 
recordings whole-cell patch-clamp experiments 
showed that sIPSCs frequency is enhanced in the 
mice overexpressing HB-GAM, indicating that 
spontaneous GABAergic drive is accentuated in 
the mutants. We suggest that increased 
hippocampal GABAA receptor-mediated inhibition 
in the transgenic mice contributes to suppressed 
LTP in these animals. Indeed, under GABAA 
receptor blockade the magnitude of LTP was 
similar in the HB-GAM overexpressing mice and 
their wild-type controls. In addition, transgenic 
mice display decreased anxiety-like behavior 
which could also be the result of the increase in 
GABAergic inhibition in the hippocampus.  
 
 



 34

A potential link between HB-GAM and the 
GABAergic inhibition is bFGF. Recent results 
suggested that HB-GAM inhibits the activity of 
bFGF by competing for the binding the specific 
GAG epitopes at the cell surface (Hienola et al., 
2004). It has been demonstrated that bFGF 
modulates GABAergic neurotransmission (Tanaka 
et al., 1996) and promotes hippocampal LTP 
induced by high-frequency stimulation (Terlau and 
Seifert, 1990). Thus, it may explain opposite 
effects of HB-GAM and bFGF on LTP induction 
(Ishiyama et al., 1991; Lauri et al., 1998). Activity 
of bFGF has been shown to be regulated upon 
binding to syndecan family of HSPGs. Notably 
both bFGF and HB-GAM have similar affinity to 
syndecan-3 and compete for binding with it in vitro 
(Kinnunen et al., 1996; Raulo et al., 1994), 
suggesting that interplay between bFGF and HB-
GAM could be mediated by syndecan-3. Further, 
molecular mechanism underlying the effects of HB-
GAM on GABAergic system may also involve 
HSPG agrin, the activity of which depend on its 
interaction with HB-GAM (Daggett et al., 1996). 
Agrin takes part in the maturation of pre- and 
postsynaptic elements in hippocampal neurons 
and recently has been shown to be critically 
involved in the clustering of GABA receptors 
(Ferreira, 1999), but see also (Li et al., 1999).  
 
It is possible that changes in GABAA receptor-
mediated signalling are also involved in the neurite 
outgrowth promoting effects of HB-GAM during 
perinatal development. Apart from being a primary 
inhibitory neurotransmitter in the CNS GABA is 
implicated in the neural migration and development 
stimulating neurite extension and maturation. 
Further studies are warranted to explore whether 
the GABAergic system is implicated in the HB-
GAM mediated cell motility.  
 
It is unknown whether the number of GABAergic 
neurons is changed in the hippocampus of the HB-
GAM and syndecan-3 mutant mice compared to 
their wild-type controls. Such developmental 
alterations may be one of the possible cauces of 
the current findings. Unfortunately, one could not 
distinguish between developmental changes and 
regulation of GABAergic neurons in the adult using 
conventional knockout mice. Inducible knockout 
mice would be of a great advantage to clearly 
differentiate between the two possibilities.  
 

Role of syndecan-3 in HB-GAM 
signalling 
Biological effects of HB-GAM during development, 
such as HB-GAM-induced neurite outgrowth, are 
mediated by its interaction with the heparan sulfate 
chains of syndecan-3 (Raulo et al., 1994). 

Antibodies to syndecan-3 inhibit the neurite growth 
of embryonal forebrain neurons on HB-GAM 
coated matrix (Raulo et al., 1994). Syndecan-3 is a 
transmembrane proteoglycan strongly expressed 
in the developing nervous system, but it is also 
present in the adult brain (Carey, 1996).  The 
expression pattern of syndecan-3 correlates 
spatially and temporally very well with the 
expression of HB-GAM in the nervous system 
(Nolo et al., 1995). Like HB-GAM, syndecan-3 is 
expressed in an activity-dependent manner in 
hippocampal pyramidal neurons so that the 
expression level of its mRNA is enhanced after 
induction of LTP by HFS (Lauri et al., 1999).  
 
To study syndecan-3 function in vivo we produced 
mice lacking this HSPG. Knockout animals were 
viable and apparently healthy. No evident 
developmental or morphological abnormalities 
were detected. Nevertheless, the mutant mice 
displayed specific alterations in hippocampal 
synaptic plasticity and hippocampus-dependent 
learning and memory. The enhanced level of HFS-
induced LTP in the area CA1 of hippocampus in 
the syndecan-3 null mutant mice resembled the 
one in the HB-GAM knockout mice. The similarity 
of the biological effects of syndecan-3 and HB-
GAM is stressed by the fact that application of 
soluble syndecan-3 blocks HFS-induced LTP 
(Lauri et al., 1999) in the same way as HB-GAM 
does (Lauri et al., 1998). Thus, exogenous 
application of syndecan-3 and its lack in the 
mutant mice produce opposite effects on LTP. To 
confirm that syndecan-3 is involved in the HB-GAM 
regulation of hippocampal LTP we evaluated the 
effect of recombinant HB-GAM in the syndecan-3 
mutant mice. HB-GAM administration did not affect 
post-tetanic potentiation in slices from the wild-type 
mice, but caused a rapid decay of LTP. However, 
this phenomenon was not observed in slices from 
the knockout mice, suggesting that syndecan-3 
acts as a functional receptor for HB-GAM in the 
regulation of LTP. The relevant issue, however, not 
studied in the present work would be to examine 
the expression profiles of syndecan-3 and another 
HB-GAM receptor molecule RPTPβ/ζ in the HB-
GAM transgenic mice. 
 
Binding of HB-GAM to syndecan-3 results in the 
phosphorylation of a kinase-active protein complex 
containing src-family kinases c-Src and Fyn and 
the Src-substrate cortactin in neuronal cultures 
(Kinnunen et al., 1998b). Interestingly, assembly of 
this molecular complex is strongly upregulated 
following induction of LTP in the hippocampus, 
thus speaking for involvement of syndecan-3 
mediated transmembrane signalling in LTP (Lauri 
et al., 1999). Cortactin in turn regulates actin 
polymerization, which may lead to the structural 
changes of the synaptic contact (Uruno et al., 
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2001). On the other hand, there are several PDZ 
domain containing molecules (e.g. syntenin, 
CASK/Lin-2, synbindin and synectin) which interact 
with the intracellular domain of syndecan-3 and 
other syndecans (Ethell et al., 2000; Gao et al., 
2000; Grootjans et al., 1997; Grootjans et al., 
2000; Hsueh et al., 1998). All these molecules bind 
to the C-terminal EFYA sequence, fully conserved 
among syndecans. Notably, syntenin was recently 
shown to interact with glutamate receptor subunits 
GluR1-4 and mGluR7b (Hirbec et al., 2002), 
raising the possibility that syndecans are involved 
in the glutamate receptor targeting, trafficking or 
recycling.  
 
Somewhat similar to the role in hippocampal 
plasticity and behavior, syndecan-3 was found to 
be an important modulator of hypothalamic feeding 
signaling pathways. Activity-induced oscillations in 
the level of syndecan-3 occur in hypothalamus and 
are regulated by feeding state. Food deprivation 
and refeeding entails several-fold changes in 
syndecan-3 level, suggesting that these 
fluctuations are involved in the regulation of 
feeding behavior (Reizes et al., 2001). Loss of 
syndecan-3 in the knockout mice results in 
reduced hyperphagia after food deprivation 
(Reizes et al., 2001). Additionally, altered feeding 
behavior and energy metabolism make syndecan-
3 null mice resistant to the high-fat diet-induced 
obesity due to lowered food intake in male mice 
and an increase in energy expenditure in females 
(Strader et al., 2004). However, it remains to be 
determined if HB-GAM is involved in the regulation 
of feeding behavior by syndecan-3. Another 
intriguing question that warrants further studies is 
whether the same plasticity mechanisms involving 
syndecan-3 are utilized to provide sensitivity to 
external stimuli in the hypothalamus and 
hippocampus.   

LTP and memory  
Since the discovery of LTP in the hippocampus, 
the brain region known to be associated with 
learning and memory (Bliss and Lomo, 1973), this 
phenomenon is generally considered as a putative 
cellular mechanism of memory formation. LTP 
exhibits several features making it an attractive 
candidate for the cellular mechanism of learning 
and memory. Similar to the memory formation, LTP 
is triggered within seconds, and persists over a 
period of time. The induction of LTP follows the 
Hebbian rule (i.e. conjunctive pre- and 
postsynaptic activation is required for a change in 
the strength of a synaptic connection to occure), 
which is believed to be necessary for the 
mechanism of information storage as well. And 
finally, LTP is characterized by the properties of 
cooperativity, associativity, and input-specificity 

(Bliss and Collingridge, 1993). Many studies, 
indeed, clearly showed that pharmacological or 
genetic manipulations leading to the ablation of 
hippocampal LTP suppress hippocampus-
dependent learning and memory (Roman et al., 
1999). Moreover, several elegant experimental 
designs allowed to demonstrate an occlusion of 
memory formation by saturation of LTP, indicating 
that LTP-like changes are necessary for learning 
and memory in vivo (Moser et al., 1998; Castro et 
al., 1989; McNaughton et al., 1986). Molecular 
mechanisms involved seem to be rather similar in 
the case of LTP and certain forms of learning. 
Such signaling molecules as CaMKII, PKC and 
ERK. are implicated in both LTP and spatial 
learning. Further, expression of many molecules 
crucial for memory formation is modulated by the 
LTP-inducing stimuli (Lynch, 2004).  
 
However, several controversies still exist. During 
the past several years it became evident that there 
is no straightforward relationship between LTP and 
memory (for critical reviews see Gerlai, 2002; 
Martin et al., 2000; Morris et al., 2003; Roman et 
al., 1999; Stevens, 1998). Although many studies 
using genetically modified mice showed that LTP 
and hippocampus-dependent learning and memory 
are correlated, there are an ever increasing 
number of examples in which these two 
phenomena dissociate. Several mutant mice lines 
were characterized in which enhanced LTP was 
accompanied by no changes in learning and 
memory (Jun et al., 1998; Manabe et al., 2000) or 
even impaired hippocampus-dependent learning 
(Cox et al., 2003; Gu et al., 2002; Migaud et al., 
1998; Pineda et al., 2004). Additional examples 
include mice with normal LTP but improved 
learning (Collinson et al., 2002), impaired LTP and 
unaffected (Nosten-Bertrand et al., 1996; 
Zamanillo et al., 1999) or improved (Koponen et 
al., 2004) spatial learning and memory.  
 
Changes in LTP induction and maintenance are 
not necessarily linked to changes in learning and 
memory. There may be several explanations why 
LTP and memory are not co-varying. The findings 
may imply the existence of multiple forms of LTP 
with specific relevance to certain forms of learning 
and memory. Also, even though in the current 
study the syndecan-3 deficient mice along with 
enhanced LTP displayed higher LTP saturation 
level following repetitive HFS trains the possibility 
that impaired learning in those mice as well as in 
the HB-GAM knockouts was due to the constant 
potentiation of synapses in the CA1 during the 
lifetime may not be excluded. In this case 
enhanced plasticity would preclude naturally 
occurring LTP-like changes and thus perturb 
memory formation (Moser et al., 1998; Brun et al., 
2001). Finally, it is often the case that one form of 
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synaptic plasticity in a limited population of 
synaptic contacts from a particular brain structure 
(e.g. CA3-CA1 connections in the hippocampus) is 
compared to the learning of a special task that 
depends on a multitude of brain processes and 
neural networks. So it is not strange at all, that the 
correlation between measured LTP and learning at 
the behavioral level is often weak. Whatever the 
particular reason for the dissociation between LTP 
and memory is, we interpret our results to mean 
that manipulations, which interfere with the 
mechanism of synaptic plasticity in the 
hippocampus, would also affect spatial learning 
and memory. 

ECM molecules in regulation of 
synaptic plasticity: possible 
mechanisms 
The functions attributed to the extracellular matrix 
in the nervous system range from regulation of 
early development and differentiation of neuronal 
cells to modulation of activity-dependent plasticity 
in the adult. Currently, the TSR domain containing 
proteins, and in particular HB-GAM, are among the 
best characterized examples of ECM factors 
affecting both the development of neuron-target 
contacts in the developing system, and activity-
dependent synaptic plasticity in the adult brain. 
 
Three types of actions for the ECM components in 
the synaptic plasticity can be proposed (fig. 12). 
First (A), by regulating cellular motility and 
morphology, the ECM may contribute to structural 
alterations that are associated with the expression 
of synaptic plasticity. Their role might be ‘passive’ 
and restrict morphological alterations in synaptic 
plasticity; thus reorganization of ECM and cell-
ECM interactions is required to allow expression of 
plasticity. Second (B), ECM components could 
coordinate transsynaptic signalling during 
plasticity. According to this scheme, ECM ligands 
would mediate signals related to expression of 
synaptic plasticity via their cell surface receptors. 
Third (C), the ECM defines the physical 
parameters of the extracellular space, which 
regulates diffusion of soluble signalling molecules 
in the extracellular space. These mechanisms, 
overlapping and acting in concert, provide powerful 
means for structural and functional regulation of 
the nervous system.  

Conclusions 
The results of this study indicate an important role 
of HB-GAM in brain function in adults. Genetic 
manipulations leading to either deletion or 
overexpression of HB-GAM in mutant mice 
specifically affected the expression of LTP in the 
area CA1 of hippocampus without changing the 
properties of basal synaptic transmission. These in 
vitro effects of mutations were paralleled by altered 
performance in hippocampus-dependent learning 
tasks in vivo. Remarkably, contrasting phenotypes 
were observed as the result of opposite genetic 
manipulations. Together with previous results our 
findings suggest that HB-GAM acts as an inducible 
factor restricting synaptic plasticity in the 
hippocampus. Further characterisation of the HB-
GAM overexpressing mice revealed accentuated 
hippocampal GABAA receptor-mediated inhibition. 
The finding that may explain decreased level of 
LTP in these mice as the result of lower 
predisposition of glutamatergic synapses for LTP 
induction. It is however unclear whether acute 
effects of HB-GAM relay on the alteration of 
GABAergic transmission. 
 
Present data also support the suggestion that 
syndecan-3 is involved in regulation of LTP by HB-
GAM. Mice lacking syndecan-3 displayed 
electrophysiological and behavioral phenotype 
similar to that of HB-GAM knockout mice, namely 
enhanced level of LTP and impaired spatial 
learning and memory. Further, application of 
recombinant HB-GAM which suppresses LTP in 
wild-type animals had no effect in the syndecan-3 
deficient mice. 
 
HB-GAM consists of two β-sheet domains 
homologous to thrombospondin type I repeat and 
hens is a member of a larger superfamily of ECM-
associated and cell surface molecules, TSR 
domain-containing proteins. Our results indicate 
that though individual domains of HB-GAM can 
bind heparan sulfate this binding is much weaker 
than binding of the di-TSR fragment. Accordingly 
only di-domain polypeptide produced biological 
effects similar to that of the native HB-GAM. The 
linker region between two TSR domains had no 
effect on protein function. Thus a co-operative 
process involving both domains is implicated in the 
biologically relevant interaction with cell surface 
heparan sulfates. 
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Figure 12. Proposed mechanisms by which activity-dependent changes in the extracellular matrix could affect neuronal 
activity and synaptic plasticity (see text for details). 
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