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Abstract

Steady progress over 4 decades towards understanding the pathogenesis and clinical consequences 

of hepatic fibrosis has led to the expectation of effective anti-fibrotic drugs, yet none has been 

approved.  Thus, an assessment of the field is timely to clarify priorities and accelerate progress.  

Here we highlight the successes to date, but more importantly identify gaps and unmet needs, both 

experimentally and clinically.   These include the need  to better define cell-cell interactions and 

etiology-specific elements of fibrogenesis and their link to disease-specific drivers of portal 

hypertension.  Success in treating viral hepatitis has revealed the remarkably capacity of the liver to 

degrade scar in reversing fibrosis, yet we know little of the mechanisms underlying this response. 

Thus, there is an exigent need to clarify the cellular and molecular mechanisms of fibrosis regression 

in order for therapeutics to mimic the liver’s endogenous capacity.  Better refined and more 

predictive in vitro and animal models will hasten drug development.  From a clinical perspective, 

current diagnostics are improving but not always biologically plausible or sufficiently accurate to 

supplant biopsy.   More urgently, digital pathology methods that leverage machine learning and 

artificial intelligence must be validated in order to capture more prognostic information from liver 

biopsies and better quantify the response to therapies.  For more refined treatment of NASH, 

orthogonal approaches that integrate genetic, clinical and pathological datasets may yield 

treatments for specific sub-phenotypes of the disease.  Collectively, these and other advances will 

strengthen and streamline clinical trials, and better link histologic responses to clinical outcomes.    

 

1. Introduction 

The field of fibrosis is ripe for success.   After ~40 years of steady progress in basic, 

translational and clinical research, there is a rich appreciation of its pathogenesis and contribution to 

end-stage liver disease.   Yet, success in treating fibrosis has been harder won than anyone A
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anticipated, and early optimism was premature as there are still no approved antifibrotic therapies 

for liver disease.  At this juncture, it is timely to assess where we are in the path towards success, 

what we have learned and what are the current unmet needs – both clinical and investigational - 

that will finally translate into effective therapies.   In this review, we seek to frame our 

understanding of hepatic fibrosis in the context of current concepts and unmet needs, highlighting 

areas that require further investigation in hopes of accelerating success in treating fibrosis that delay 

or prevent the complications of end-stage liver disease and improve outcomes.

Progressive fibrosis typically follows long-standing liver damage due to infectious  (hepatitis 

B–HBV- and C–HCV-viruses), toxic/drug-induced (mainly alcohol-induced), metabolic (non-alcoholic 

fatty liver disease, or NAFLD), cholestatic or autoimmune insult. Eventually, fibrosis may lead to 

clinically evident cirrhosis and hepatic failure. Cirrhosis is defined as an advanced stage of fibrosis, 

characterized by the formation of regenerative nodules of liver parenchyma that are separated by, 

and encapsulated in, fibrotic septa (1).

Historically, hepatic fibrosis was long considered a passive and irreversible process resulting 

from the collapse of hepatic parenchyma and its gradual replacement with  collagen-rich tissue (2), 

but countless studies have underscored the importance of active fibrogenesis that leads to 

accumulation of extracellular matrix (scar).  Remarkably, the pathogenesis of hepatic fibrosis 

received little attention until the 1980s, when hepatic stellate cells (HSC), formerly known as Ito 

cells, lipocytes or fat-storing cells, were identified as the dominant cellular source of extracellular 

matrix (ECM), or scar (3).  The development of reproducible methods to isolate these cells from 

rodents and humans with a high purity facilitated their investigation,  initially in isolated HSCs 

following their ‘activation’ in culture, and subsequently through analysis in vivo (4).

Fibrogenesis, or the generation of scar, is a dynamic process in chronic injury characterized 

by continuous accumulation of fibrillar extracellular matrix (ECM) associated with concurrent matrix 

degradation and remodeling. Like fibrogenic disorders in other organs and tissues, fibrosis is a well-

orchestrated wound-healing response. The response to chronic injury differs substantially from an 

acute tissue insult, in which there is no progressive scarring.  From an evolutionary perspective, A
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fibrogenesis is a logical response to tissue damage by encapsulating injury and maintaining tissue 

integrity for a sufficient enough time to enable the propagation of the species.  However over time, 

the fibrotic response impairs hepatic regeneration and shortens life expectancy, albeit in a time-

frame that no longer jeopardizes reproduction.  In clinical terms, moderate tissue fibrosis is typically 

not associated with significant clinical signs or decreased organ function but is nonetheless an 

important determinant of prognosis over decades, and sometimes in shorter intervals.

2. Basic principles

Activated HSCs are the key effectors of fibrogenesis through increased deposition of fibrillar 

ECM and by releasing cytokines, chemokines and other mediators establishing, together with 

inflammatory cells, a pro-fibrogenic environment that negatively affects the regeneration of the liver 

parenchyma (5-7).  

Although HSCs are the main source of myofibroblasts in the liver (8, 9), other cell types 

contribute to the pool of fibrogenic myofibroblasts in chronic liver disease.  In particular, portal 

myofibroblasts are located around bile ducts and generate biliary fibrosis (10).   Bone marrow 

derived myofibroblasts have been implicated to a very minor extent in fibrosis as well (11).

Activation of HSC is stimulated by damaged and apoptotic hepatocytes through several 

converging pathways. These include:  i) disruption of the normal ECM of the space of Disse as a 

consequence of hepatocyte damage and inflammatory infiltration (12, 13); ii)  release of reactive 

oxygen species (ROS) and other fibrogenic/pro-inflammatory mediators (14, 15);  iii) recruitment of 

immune cells, which in turn sustain HSC activation (6, 16). 

Attention has focused on the pro-fibrotic microenvironment of the liver, with increasing 

interest in the role of immune cells and specific subsets of macrophages regulating the progression 

or the regression of fibrosis (see below)(17) and the role of intestinal microbiota (18).   Other 

fibrogenic stimuli include tissue hypoxia with the establishment of an anaerobic pro-inflammatory 
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environment (19) and the influence of epigenetic modifications (20) in conditioning the progression 

of fibrosis.

Fibrogenesis during chronic injury increases the amount, composition and distribution of 

different ECM components. In the healthy liver, the ECM in the space of Disse, the space between 

endothelial cells and hepatocytes, mainly consists of collagen IV and laminin. During progressive 

fibrosis, fibrillar collagens, especially collagens I and III, replace these low-density basal membrane-

like structures.  Recent successes in decellularizing normal and fibrotic human  liver tissue has 

yielded insights into the healthy and disease-specific hepatic “matrisome”, (i.e. the biochemical and 

biomechanical properties of the ECM),  and has clarified our  understanding of how cells interact 

with, and respond to either a healthy or pathologic tissue microenvironment (21).   In particular, the 

unique disease-specific ECM environment affects both hepatocyte differentiation and function and 

helps explain the processes that promote the progression to cirrhosis and the development of 

hepatocellular carcinoma (HCC) (22).

Liver sinusoidal cells (LSEC) have unique features including the presence of pores, or 

fenestra, which are typically lost as subendothelial ECM accumulates, in a process termed  

‘capillarization’ (23).   LSECs are implicated in maintenance of HSC quiescence, cellular cross-talk and 

support of liver regeneration (24-26).  Although some studies have begun to define LSEC responses 

using single cell methods (27-28), few have characterized the phenotypic features of LSECs in normal 

liver function, and how they contribute to hepatic injury as well as to fibrosis progression and 

regression. 

Major technical advances in capturing single-cell transcriptomes both in tissues and in situ 

are already yielding unprecedented clarity about the function of individual cells, their heterogeneity, 

and evolution during disease progression in both animal models and human liver [see Section 7, 

below and  (29, 30)

Unmet needs 

Based on the progress of the past 40 years, new opportunities can provide a deeper and 

more accurate understanding of fibrogenesis in human liver disease. 
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A. Despite the expansive knowledge about the cellular mechanisms of liver fibrosis, this 

knowledge is mainly hepatic stellate cell-centric.  Transcriptomic analyses of individual 

cells can provide unprecedented insights into interactions between all the cell types that 

comprise fibrogenic response and evolving microenvironment in progressive disease.  The 

“holy grail” is to leverage these new tools to better understand the intimate relationships 

between tissue damage, regeneration, fibrogenesis and cancer.

B. Many principles of fibrogenesis are drawn from two dimensional models in which HSC are 

activated and cultured on plastic, which may lead to erroneous conclusions about their 

behavior in vivo.   Greater refinement and standardization of 3D in vitro models that 

faithfully recapitulate the microenvironment of human liver diseases will accelerate 

progress. 

C. The cellular and molecular biology of liver fibrogenesis should distinguished between 

“core” mechanisms, (i.e. common to fibrogenic diseases affecting different organs and 

characterized by an evolutionary role), and “regulatory” mechanisms, which are more 

tissue and disease specific (31).

D. Tools are now available for in-depth molecular and functional characterization of both 

macrophage and LSEC subsets in liver injury, fibrosis and liver cancer.   Efforts to link 

these cell types to specific tissue responses will likely uncover important new pathways 

and therapeutic targets.

3. Etiology-specific features of hepatic fibrosis and cirrhosis

There are distinct patterns of fibrosis leading to cirrhosis linked to the underlying etiology (4) 

(Figure 1).  For example, biliary fibrosis, resulting from the dual proliferation of reactive bile ductules 

and periductular myofibroblast-like cells at the portal-parenchymal interface, leads to fibrosis 

developing in a portal-to-portal direction that generates  portal-portal septa surrounding liver 

nodules, where the central vein and its connections with the portal tract are preserved until late 

stages. In contrast, in chronic viral hepatitis, the pattern of fibrosis (termed “post-necrotic”) results A
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from portal-central (vein) bridging necrosis, thus creating portal-central septa characterized by 

evident neo-angiogenesis, which leads to a derangement of the connection between the portal 

system and the hepatic vein. This vascular disconnection underlies early portal hypertension 

observed in this type of fibrogenic evolution. The so-called central-to-central (vein) fibrogenic 

evolution is typically seen in venous outflow obstruction (e.g. chronic heart failure) and is 

characterized by the development of central-to-central septa and “reverse lobulation”. Finally, 

pericellular and perisinusoidal fibrosis are typical of alcoholic and non-alcoholic fatty liver diseases, 

in which the deposition of fibrillar matrix is concentrated around the sinusoids (capillarization) and 

around groups of hepatocytes (chicken-wire pattern).  These different patterns of fibrogenic 

evolution are related to: 1) the topographic localization of tissue damage; 2)  the relative 

concentration of pro-fibrogenic factors, and;  3) the prevalent pro-fibrogenic mechanism(s). In 

addition, these different patterns may indicate the participation of different cellular effectors of 

fibrogenesis, or at least different subtypes of fibrogenic  cells as suggested by a recent animal 

models using single cell RNA sequencing (32-34). The different zonal patterns of fibrosis and 

etiologies may also dictate the rate of progression of liver disease, the dynamics of the necro-

inflammatory infiltrate and the onset and progression of portal hypertension.   

The progression from hepatic fibrosis to cirrhosis is characterized by major structural changes 

including the capillarization of sinusoids, the formation of fibrous septa encircling regions of the liver 

parenchyma, and extensive neo-angiogenesis with the formation of intrahepatic vascular shunts 

between the portal and the hepatic vein systems.  In addition, the extent of neo-angiogenesis is 

dependent on the different patterns of fibrogenic evolution, with the highest expression in the post-

necrotic form following chronic HCV infection. 

Altogether, these observations suggest that the type of cirrhosis based on etiology and 

pattern may influence clinical management and potential antifibrotic targets.  Indeed, the term 

“cirrhosis” traditionally implies an adverse prognosis related to the complications of portal 

hypertension, liver cancer and organ failure.  In broad clinical terms, cirrhosis is defined as 

“compensated” and “decompensated” based on the degree of portal pressure and the occurrence of 

clinical complications.  However, this dichotomous classification is an oversimplification that A
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overlooks critical biological events including the presence and vigor of regeneration.  In addition,  it 

does not reflect  the continuum of fibrosis progression, with   a range of stage-specific therapeutic 

options (35).   In this context, the definition of favorable or unfavorable endpoints, and the need for 

an integrated clinical-pathological assessment.  Such an assessment should include etiology, grade of 

activity, co-morbidity, risk factors for malignancy and features potentially suggestive of progressive 

disease (36).

Regardless, the current stratification of cirrhosis, irrespective of the etiology, is still based on 

the detection and monitoring of portal hypertension. The gold standard for the assessment of portal 

hypertension is the Hepatic Venous Pressure Gradient (HVPG), i.e., the difference between the 

wedged (WHVP) and the free hepatic venous pressures. HVPG is the gradient between pressures in 

the portal vein and the intra-abdominal portion of inferior vena cava while WHVP actually reflects 

hepatic sinusoidal pressure and not the portal pressure itself.  Whereas normal HVPG is 1 -  5 mm 

Hg, higher values connote the presence of portal hypertension, and HVPG > 10 mm Hg (termed 

‘clinically significant portal hypertension’) is predictive of the development of complications of 

cirrhosis, including death. HVPG above 12 mm Hg represents the threshold level of portal 

hypertension that could lead to variceal hemorrhage. 

Unmet needs

A. Based on the divergent patterns of fibrosis across etiologies, it is possible that the 

development of portal hypertension and its clinical features are also etiology-

dependent. Since HVPG is the only direct standard measurement on which clinical 

decisions and non-invasive parameters are based, it may be necessary to  “reset” HVPG 

thresholds according the etiology of cirrhosis. Indeed, recent data indicate that the 

classic HVPG thresholds, developed mostly in HCV cirrhosis,  do not reflect the risk of 

clinical manifestations in NASH cirrhosis in which severe complications may develop 

when HVPG is still below 10 mm Hg (37).

B. The analysis of the ECM composition (matrisome) in cirrhosis may be different across 

etiologies and thus, clarification of etiology-specific protein signatures should be 

pursued (22).  Using this approach, it may become possible to identify specific ECM A
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shedding fragments in plasma or urine to be employed as staging and/or prognostic 

disease-specific biomarkers. 

4. Reversibility of Hepatic Fibrosis and Cirrhosis

The severity of hepatic fibrosis is among the strongest predictors of clinical outcomes in 

chronic liver diseases, especially NASH (38), and therefore current research is focused on 

determining when fibrosis improvement is still possible, and what are its underlying mechanisms.  

Compared to chronic injuries in other organs, fibrosis progression in liver is generally slow, evolving 

over decades.   This slower progression likely reflects the remarkable regenerative capacity of the 

liver, and may also account for the dramatic improvement in fibrosis seen when the underlying 

cause is removed.   Nonetheless, underlying mechanisms linking fibrosis and regeneration are scant.  

From a practical perspective, documenting the regression of fibrosis - defined as a reduction in 

extracellular matrix content - is most critical in patients with cirrhosis, with the expectation that 

clinical outcomes may improve.  In a combined analysis of patients with NASH cirrhosis from two 

negative clinical trials, those whose cirrhosis regressed had significantly fewer clinical events  (39).   

For patients without cirrhosis, a reasonable endpoint is simply attenuation of further progression, 

such that cirrhosis never develops. Indeed, prevention of progression to cirrhosis is viewed as a 

‘hard’ clinical endpoint by regulatory agencies, since the diagnosis of cirrhosis confers a rising risk of 

complications (40).

Fibrosis regression in patients with chronic liver disease has been recognized for decades in 

patients where the underlying disease is attenuated, for example in those cured of HCV, following 

antiviral HBV suppression or after surgical biliary decompression in secondary biliary fibrosis, among 

others [reviewed in (41) and (42)]. Based on these clinical observations, combined with advances in 

the 1980’s and ‘90s in isolating and characterizing individual cell types in liver, there were a flurry of 

studies at that time that sought potential mechanisms to explain these remarkable clinical 

observations. Indeed, a growing list of candidate proteases that degrade scar constituents and their 

cellular sources were described, leading to models of matrix degradation in liver in which both 

hepatic stellate cells and liver macrophages were implicated as sources of matrix A
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metalloproteinases.  Activity of these enzymes is further regulated by relative concentrations of 

inhibitory molecules known as ‘tissue inhibitors of metalloproteinases’ or TIMPs.  In liver injury, 

elevated production of TIMPs by stellate cells has been implicated as an important functional 

rheostat that constrains the activity of these MMPs (43, 44).    A key study more recently established 

macrophages as a source of matrix proteases, by demonstrating that their depletion in mouse 

models affected the level of fibrosis regression (45).  Additional work further defined specific subsets 

of macrophages critical for matrix degradation in mouse models, especially Ly6Clo macrophages  (46) 

and others [reviewed in (47, 48)].  Altogether, there is evidence for protease production by multiple 

cell types in the liver, including macrophages, neutrophils, dendritic cells, sinusoidal endothelium, 

biliary epithelium and progenitor cells (47, 49).  Tantalizing evidence in early mouse models has 

reinforced that therapeutic promise of understanding protease regulation in liver based on evidence 

that either augmentation or attenuation of matrix protease activity could further influence net 

fibrosis accumulation (50, 51).

Despite this promise, a coherent understanding of which proteases, cells and inhibitors 

regulate fibrosis regression in human liver and experimental models remains elusive, and the field 

has largely moved on to other challenges in understanding liver biology.  This sea change may have 

reflected the growing availability of knockout mouse models to study other, more tractable 

pathways, combined with failures of clinical trials using MMP inhibitors to attenuate other diseases 

like arthritis, which suggested that the biology of matrix degradation was more complex than 

originally thought (52).   Indeed, the initial clinical studies of protease inhibitors or activators in other 

tissues – none of which succeeded - were probably quite naïve by assuming that there was sufficient 

knowledge about both the pleiotropic activities of MMPs and their inhibitors, and the native 

substrates of these enzymes in vivo (53).

Fast forward to 2021, and now the depth of knowledge about matrix degradation biology has 

expanded tremendously, which demands a re-engagement of liver investigators.  We now know that 

MMPs are part of a large metzincin superfamily that is comprised of four subfamilies, matrixins, 

astracins, bacterial serralysins and adamalysins [see (48, 54) for excellent reviews].  Among human 

MMPs, there are six distinct groups including collagenases, stromelysins, gelatinases, matrilysins, A
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membrane bound metalloproteinases and others (48, 54).   Moreover, the functions of these 

enzymes have expanded well beyond matrix degradation to include cleavage of cell surface 

molecules, activation of latent growth factors, and regulation of cell signaling, in addition to serving 

as markers of disease activity and prognosis (48, 55, 56).   Among many examples, MMP-7 was 

uncovered in an unbiased proteomic screen as a prognostic marker of biliary atresia, hinting at novel 

biology of this molecule whose further elucidation could yield mechanistic insight into the disease 

(57).

There is also an emerging biology of specialized pro-resolving mediators (SPMs) that are 

implicated in resolution of hepatic inflammation, injury and fibrosis, especially in NASH (58, 59). 

These are a family of lipid molecules derived from omega-3 poly unsaturated acids with well-

characterized receptors, which can significantly affect inflammatory cell infiltration and progression 

of liver disease.  Just as there are ‘lipotoxic species’ whose evanescence makes them hard to detect 

in NASH, there are also salutary lipid species whose further characterization are fertile areas to 

explore as potential therapies.  For example, a recent study identified one SPM, maresin-1, as 

preventing inflammation and NASH progression through its agonism of the nuclear receptor ROR in 

a murine model  (60).   It is unclear if SPMs contribute equally to antagonizing liver disease from 

other causes besides NASH, or if they directly impact activated stellate cells/myofibroblasts to 

reduce fibrogenesis or inactivate these cells; thus these are exciting questions to pursue.

In parallel to these advances, the development and application of single cell analytic 

technologies for liver have exploded in the past 2 years.  A rapidly expanding number of datasets 

that reveal the complete cell-specific transcriptomes and proteomes of human liver disease and 

rodent models have created new opportunities to characterize ligand-receptor interactions and 

define therapeutic targets, among other applications (28-30, 61-64). Combined with techniques that 

include spatial transcriptomics and spatial proteomics, these technologies promise to revolutionize 

our understanding of disease mechanisms and drug development (65-68).

Unmet needs
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Together, these exciting biological and technical advances compel us to revisit matrix 

degradation mechanisms in liver fibrosis regression.  There is now the knowledge and know-how to 

address several key questions:

A. What are the cellular sites of expression of all known mammalian protease mRNAs and 

proteins in normal and injured liver?    Surprises are sure to emerge.  For example, 

interrogation of a human cirrhosis single cell transcriptomic dataset (61) reveals multiple 

cellular sources of TIMP-1 (data not shown), even though hepatic stellate cells had been 

defined as the only recognized source in earlier studies.

B. Does mRNA expression correlate with protein expression for proteases and their inhibitors?

C. What are additional functions or pathways regulating matrix protease and inhibitor 

expression, and which new therapeutic targets do they uncover?

D. Are pathways regulating matrix degradation conserved across tissues or are they unique to 

liver?  Are these pathways the same in all liver diseases and stages of fibrosis?

E. What are the endogenous substrates and biologic outcomes of protease actions in normal 

and injured liver, and during progression or regression of fibrosis? 

F. Where are proteases active within the normal and injured liver, and what are the cells and 

substrates most likely to be regulated by them?

G. Do proteases underlie the link between fibrosis regression and regeneration?  The liver is 

remarkable in that healthy regeneration does not induce fibrosis, whereas advanced fibrosis 

prevents regeneration.   Thus, what are the elements of fibrosis regression associated with 

cure of underlying liver disease that also lead to improved liver function, for example in 

patients effectively treated for hepatitis B or C? 

These questions highlight the enormous unmet need and opportunity to advance our 

understanding of matrix degradation and its link to liver regeneration in human liver disease.  

Continued technological advances are certain to further facilitate the study of these 

important and under-explored questions.

5. Assessment of hepatic fibrosisA
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Histopathology has been a foundational tool in the diagnosis and management of liver 

disorders.  Nonetheless, the assessment of liver fibrosis in chronic liver disease was merely 

descriptive until the early 1990s when the discovery of HCV and the launch of therapeutic trials for 

viral hepatitis led to the development of semi-quantitative scoring systems allowing the definition of 

different stages of disease progression (69, 70).  These efforts concluded that fibrosis stage is the 

single most important predictor of significant morbidity and mortality. However, in clinical practice, 

quantification of fibrosis is still semi-quantitative and subjective. The introduction of computer-

assisted morphometry, which allows quantitative and objective assessment of liver fibrosis, is an 

attempt to move beyond semi-quantitative systems. As emphasized above,  the collagen 

proportionate area (CPA) (71) can accurately sub-classify cirrhosis and is the only validated predictor 

of clinical decompensation compared to all other histological sub-classification systems described to 

date (36).   Despite this, semi-quantitative systems are still broadly used in clinical practice and 

clinical trials even though they are less appropriate than CPA.  The advent of digital pathology that 

can now rely on scanning techniques for whole slide imaging will exponentially increase the speed 

and flexibility in evaluating digital histopathological images, and will finally facilitate the application 

of artificial intelligence (AI) with the creation of machine learning (ML) diagnostic algorithms (72).  

Recently, a ML-model based on trichrome-stained liver biopsy slides has been shown to predict 

CSPH in NASH patients with cirrhosis, for example (73). 

Currently, elastography, ultrasound, computed tomography and MRI are the main diagnostic 

imaging modalities used in hepatology. In particular, the utility of MR-based biomarkers for the 

detection of features of NAFLD and its potential use in clinic or clinical research in NAFLD is 

advancing most rapidly. In this context, functional liver imaging may also accelerate the 

development of new treatments for NASH, especially when the mode of action of these drugs can be 

better reflected by changes in liver function. One of these modalities, the Gd-EOB-DTPA-enhanced 

MRI, is based on the use of the liver-specific MRI contrast agent gadoxetate disodium, which, when 

injected intravenously is taken up in hepatocytes via the organic anion-transporting polypeptide 1 

(OATP1) transporter and excreted into the bile via the multidrug resistance-associated protein 2 
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(MRP2) transporter. In particular, Gd-EOB-DTPA-enhanced MRI has an excellent correlation with the 

histopathological assessment of liver fibrosis and its staging (74, 75).

Unmet needs 

A. Validation of AI in analyzing data from digital imaging and pathology, coupled with 

electronic health records (EHR) will open a new era of precision medicine in 

hepatology that will progressively transform clinical practice. Ongoing efforts must 

overcome the inertia to resist change, and instead promote validation and adoption 

of these emerging technologies.

B. The roles of the hepatologist, the pathologist, and the radiologist must evolve as AI-

based precision medicine is integrated into clinical care.  How much these specialists 

should rely on these methods, and how can they be effectively leveraged to improve 

outcomes will be ongoing challenges.

C. The stratification of cirrhosis, currently largely based on surrogates, needs to based 

instead on precise biomarkers that more accurately quantify subtle changes in liver 

function, hemodynamics, immunity and inflammation, and regeneration.   Such a 

multidimensional classification may incorporate molecular and cellular features in 

both liver and blood, coupled with imaging and functional readouts.

6. Non-invasive assessment of hepatic fibrosis

There is an acute need for methodologies to non-invasively assess hepatic structure and 

function with precision and reproducibility.     Currently, regulatory agencies require liver biopsies to 

show evidence of benefit in phase 2B or phase 3 studies prior to potential approval of novel 

antifibrotic therapies.  Yet, it is axiomatic that the liver biopsy must be replaced as a method to 

assess fibrosis, owing to its invasiveness, sampling variability, and the static nature of the 

information it yields. Moreover, a shrinking number of gastroenterologists and hepatologists 

perform biopsies, and therefore expertise among them is waning while biopsies are conducted 

instead by radiologists, at least in the United States.   
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Clinical trials in fibrotic diseases of other organs, for example lung, do not rely on tissue 

analysis, but rather on clinical, imaging, and functional readouts instead, and yet no organ has a 

richer functional repertoire than liver, one that is not sufficiently leveraged by the most widely used 

technologies.   Furthermore, even approval of anti-fibrotic drugs based on biopsy improvement will 

be conditional, and require long-term evidence of improved clinical outcomes for full approval 

because biopsy is viewed as a ‘surrogate’ for the ‘hard’ endpoints of improving how a patient feels, 

functions or survives (i.e., clinical improvement)(76).   Regardless, for as long as biopsies are 

required, efforts to validate highly quantitative digital methods to assess all elements of the biopsy 

(77, 78), combined with machine learning approaches (79), should be explored as quickly as 

possible, as emphasized in the preceding section. 

Noninvasive fibrous diagnosis are evolving rapidly (80-83).  The broad classes of non-invasive 

assessment tools include:  1)  Serum assays, either using standard laboratory tests (e.g. FIB-4 ), 

proprietary assays for matrix components (e.g., ELF (84), ProC3/ProC5 ), proteomics (85), lipidomics 

(86), microRNAs (87, 88) and components of the microbiome (89);  2) Imaging tests (CT, MRI or PET) 

that can quantify liver fat, inflammation and fibrosis, as well as liver stiffness as a surrogate for 

matrix content (reviewed in (90, 91).   Techniques for image collagen content directly using collagen-

specific probes are also under development (92); 3)  Microbiome assessment, since the pattern and 

diversity of the microbiome evolves with disease progression, for bacteria, viruses and fungi (93) 

(94-96); 4)  Functional tests, which measure either intrahepatic shunting (97), microsomal activity 

(98, 99), or proteolytic activity either in liver or circulation (100).

Despite the substantial progress and significant investment in developing noninvasive 

markers of hepatic fibrosis, none has yet been able to supplant biopsy.  There is a growing trend to 

combine existing tests or those under development, but it is too early to determine whether such 

efforts will reach the high standards of accuracy and predictive value required by regulatory 

agencies before biopsy can be abandoned as a measure of fibrosis content and response to therapy.   

Moreover, efforts like these are hamstrung by the requirement to correlate the results with biopsy, 

and thus their success is more likely to result from evidence that these noninvasive tests predict 
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clinical events, which will necessitate either long-term studies, or validation in patients who are at 

more imminent risk of complications (i.e., with more advanced fibrosis).

Unmet needs

In addition to the clear unmet need to replace biopsy, there are critical questions that must 

be addressed as non-invasive tests are further developed. These include:  

A. What biological activities should we measure?

i. Fibrogenesis vs. fibrosis content?  Because there is a lag of unknown duration 

between changes in fibrogenic activity by myofibroblasts and their impact on fibrosis 

content in liver, greater effort should be invested in characterizing fibrogenic activity 

in hopes of providing a more sensitive and responsive readout of anti-fibrotic drug 

activity.   Efforts of this type could include measures of binding activity by cell 

receptors expressed on fibrogenic cells (e.g., receptors for  -PDGF (101) or type VI 

collagen (102) , among others).   While several of the widely used serum marker 

panels include assays for matrix molecules or their fragments, the mechanisms 

underlying their release into the blood and circulating levels are not well 

characterized, and thus their biologic plausibility is not fully established.  On the 

other hand, specific imaging of hepatic collagen or other ECM constituents (103) may 

enable a more direct assessment of their content in liver.

ii. Functional reserve and regeneration?  As noted above,  the liver is a functionally rich 

organ regulating myriad metabolic and homeostatic functions, with an unmatched 

secretome, and thus continued efforts to capture functional readouts of liver health 

and disease demand further investment.  In cirrhosis, measures such as the MELD 

score, which clearly reflect function, robustly predict outcomes, yet it is unclear if 

subtle, overlooked features of hepatic function might be detectable at earlier stages 

– initial data using the HepQuant test hint that this may be possible  (104).  Efforts to 

catalog the proteome and lipidome in liver disease are promising, but candidate 

analytes typically lack biologic plausibility (ie., how do they contribute to liver 

disease and why do they change), which undermines interest in their development.  A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

On the other hand, regression of fibrosis in patients cured of HCV or treated for HBV 

leads to improved liver function associated with regeneration, yet there has been 

almost no effort to capture regenerative signals, either by assessment of secreted 

molecules or by imaging. 

iii. Angiogenesis?  Angiogenesis is a vital part of liver repair, but also is a requirement 

for tumorigenesis, and the mechanistic distinctions between these two contexts are 

not clarified (105, 106).  Still, quantitative assessment of angiogenic activity as a 

readout of hepatic healing or response to therapy has been overlooked.

B. Will different non-invasive markers be required for different stages of liver disease, or 

in different underlying diseases?  It is quite likely that different stages of disease have 

distinct pathogenic drivers, especially in NASH where fat content declines with 

progression towards cirrhosis (107).  Similarly, some features of fibrosis pathogenesis 

are distinct across different diseases (see above), and thus disease-specific markers 

are likely.   A striking recent example is the immune micro-environment, which is 

distinct in NASH compared to other etiologies of liver disease, such that NASH 

patients with HCC are less likely to respond to checkpoint inhibitors (108).  Similarly, 

subtle differences – not detectable by conventional histopathology or disease 

markers – may well underlie differences in fibrosis progression or regression.  Indeed, 

early evidence indicates that among cirrhotics, fibrosis regression in NASH may be 

less likely than in other liver diseases (109), at least following bariatric surgery.

C. Should markers be used alone or in combination?  The approach to combining 

different diagnostic modalities has been entirely empiric, seeking different 

combinations of blood, imaging, and functional tests to define the stage of liver 

disease and predict clinical outcomes. Yet, big data approaches using machine 

learning and artificial intelligence provide unparalleled opportunities to more 

rationally select therapeutic targets, define disease stage, and predict response to 

therapies (77, 110, 111).    Of course, new algorithms using these approaches are only 

as good as the quality of data inputted, especially histologic features. Therefore, A
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validation of novel noninvasive algorithms should be based on highly quantified liver 

biopsy specimens using digital pathology strategies described above.

7. Target Discovery and Validation 

Discovery of antifibrotic targets is a very vibrant field, as the evidence mounts for fibrosis 

regression and attenuated progression in response to disease-specific therapies in human liver 

disease (e.g., antivirals).   The conventional and most widely used approach requires identification of 

molecules whose antagonism or agonism could influence fibrogenesis or matrix turnover based on 

their known biologic functions.   Then, specific therapeutic candidates can be developed that are 

first tested in culture, then animals, and finally in humans if the drug has continued promise through 

these development stages.  To identify potential targets, there is a rich and expanding variety of 

data available characterizing gene and protein expression both in public domain and proprietary 

data sets derived from rodent and human tissues and isolated cells, as described in the preceding 

section.   In particular, single cell analysis has enabled the construction of comprehensive and 

detailed maps of fibrogenic cell heterogeneity not only liver, but other tissues as well (112-114).  

These remarkable tools not only illuminate the subtypes of myofibroblasts in different liver diseases, 

but also enable us to determine if candidate therapies targeting cells in liver might also affect other 

tissues, thereby reducing the possibility of unexpected off-target effects for liver-directed therapies.  

These massive and complex data sets also require the assimilation of new informatics skills to 

extract relevant information but can rapidly define potential targets based on their preferred cellular 

and tissue site(s) of expression, localization (cell surface, intracellular or circulating) and their 

association with specific biologic processes (e.g., secretion, stress responses, apoptosis, 

proliferation, and others).  

In addition to these ‘hypothesis-driven’ approaches to identify targets based on the known 

functions of molecules in fibrosis, there are emerging computational and screening approaches that 

are unbiased and make no assumptions about what molecules might do in fibrotic diseases.   

Comprehensive approaches of this type can apply specific perturbations such as siRNA or CRISPR 

screens to define critical pathways or mediators whose inhibition reduces fibrogenic activity in A
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myofibroblasts.   While widely utilized in uncovering novel cancer targets (115, 116), this approach 

can also be applied for fibrosis-related targets both in isolated cells and in vivo (117-119).   

Orthogonal approaches that integrate spatial gene expression, proteomics data, and assays that 

identify those gene targets that have open chromatin using ATAC-Seq can further leverage these 

unbiased approaches to target discovery.  These technologies can be further strengthened by 

machine-learning approaches to refine target identification and validation and enhance the 

likelihood of clinical success (120).

Another unbiased approach, computationally based drug repurposing, has been validated in 

a number of diseases (121, 122), wherein large numbers of existing drugs are screened for their 

ability to reverse a disease gene signature in cultured cells, thereby identifying candidates with 

potential activity whose initial indication was unrelated to fibrosis (110).   One of us (SLF) has used 

this approach to identify two candidate antifibrotic drugs despite no previous link to stellate cell 

biology or hepatic fibrosis (123, 124).  

Complementing these approaches, potential targets may emerge from unbiased genome-

wide association studies that link specific gene variants to disease outcomes.  For example, a 

polymorphism in PNPLA3 is associated with risk of NASH not only through its effect on fat 

metabolism in hepatocytes, but also through a direct effect that enhances fibrogenic activity of 

hepatic stellate cells (125, 126).  Because genomic variants are often discovered within previously 

unknown genes, these approaches can reveal novel biologic pathways, as was the case with the 

discovery of PNPLA3.  Therapies may evolve directly from genomic information of this type by 

replicating the effect of protective variants or antagonizing disease-causing variants.  One 

compelling example has been the identification of a variant in the PCSK9 gene that was protective 

against coronary artery disease, which immediately led to successful efforts to antagonize PCSK9 

therapeutically (127). Similarly, there are now ongoing efforts to alter the function of PNPLA3 as a 

therapeutic strategy in NASH based on the biology of the disease-associated variant.

While there is no single ideal profile of an antifibrotic target expressed by activated stellate 

cells/myofibroblasts, some important features should include:  1) The target is easily accessible.  Cell 

surface receptors are most straightforward to engage, but methods are evolving to deliver A
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intracellular payloads to the stellate cell, for example using a liposomal delivery system containing 

vitamin A that delivers an shRNA within the cell (128); 2) Inhibition or alteration of the target does 

not interfere with normal stellate cell and liver function.   An appealing strategy is to target 

molecules that are only expressed by activated stellate cells/myofibroblasts, thereby minimizing any 

impact on homeostatic functions of stellate cells including vitamin A metabolism and support of 

hepatic regeneration.  An early example is -PDGF receptor, which is markedly induced during injury 

(129), but there are many others;  3) The target is most strongly or selectively expressed in injured 

liver.   While there is no single molecule that is absolutely stellate cell-specific, off target effects in 

other organs may be minimized by interrogating gene expression datasets to determine levels of 

expression of a candidate target in both normal liver and in other tissues.  Also, drug delivery 

methods could contribute to identification of novel biomarkers to assess employ a dual targeting 

approach that requires engagement of two molecules that together may have far greater specificity.  

For example, stellate cells express a heterodimer comprised of angiotensin II Type 1 receptor 

combined and the type 1 cannabinoid receptor (130) whose expression may be more restricted to 

liver.  

The pharmacology of potential therapeutics will influence their appeal as a treatment for 

liver fibrosis.  These features include the route of administration, frequency, tolerability, drug-drug 

interactions and safety.  While small molecules are most attractive because they can be 

administered orally, some larger biologic agents including antibodies and nucleic acid formulations 

can be administered infrequently – sometimes monthly or even less often, narrowing the advantage 

of small molecule therapies.

Testing of candidate antifibrotic therapies may progress from simple to more complex 

systems, and from small animals to non-human primates prior to human clinical testing. The more 

representative a testing platform is of its in vivo behavior in human liver disease, the higher the level 

of confidence in its potential efficacy as a drug.  For direct acting molecules intended to attenuate 

stellate cell fibrogenesis, both primary and immortalized mouse and human stellate cells are a 

robust initial validation tool, provided that they express the relevant target molecules similar to their 

expression in vivo. More recently, generation of hepatic stellate cells from induced pluripotent stem A
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cells offers the prospect of replicating specific genetic backgrounds within the cells that may 

contribute to disease risk, pathogenesis and/or fibrogenic activity (131).

Culture models for testing for antifibrotic agents are increasingly sophisticated in an effort to 

better mimic the physical, chemical and intercellular properties of the human fibrotic liver.  These 

approaches include single cell or multi-cellular organoids (132), precision cut liver slices from normal 

or diseased rodent and human liver (133, 134), or using substrata of varying stiffness (135).   In 

addition, artificial liver devices (“Liver on a Chip”) seek to systematically replicate all cellular, 

mechanical and soluble elements of the human liver using defined components in highly 

reproducible platforms (136, 137); these technologies are further optimized through use of 3D 

printing (138).  A related technology, as noted above, is the use of extracellular matrix 3D scaffolds 

to more faithfully test the impact of materials derived directly from human liver on drug responses 

(22).

A detailed discussion of animal models to test antifibrotic drugs is beyond the scope of this 

article and has been the subject of recent reviews, focused especially on NASH (139, 140).  

Nonetheless, key elements of any model testing antifibrotic drugs  should include the following:  1)  

The disease pathogenesis and behavior of fibrogenic cells should mimic human disease;  2) Specific 

candidate therapeutic targets should be expressed by the same cells and at levels comparable to 

human disease;  3)  Efficacy should be validated in more than one model that are mechanistically 

distinct; 4) Drugs should be efficacious when administered after disease is already established, 

similar to the clinical setting, rather than solely preventive; 5) The drug’s pharmacology should be 

similar between rodents and humans;  6) There should be evidence of target engagement, that is, 

that the effect of a drug should be directly attributed to interaction with its intended target and not 

through an off-target activity. 

While rodent models of hepatic fibrosis have been a mainstay of drug testing for decades, 

there is increasing frustration with their relevance and translation to human drug efficacy, especially 

since no drug has yet been approved for hepatic fibrosis despite many promising prospects  based 

on animal studies.  This issue has been addressed in recent reviews (141, 142), and here we 

emphasize three key points:  1) The potential contribution of the microbiome.  Recent elegant A
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studies demonstrate that the composition of the microbiome can influence the efficacy of drugs in 

animal models, such that use of animals with a more complex wild mouse microbiome more 

faithfully predict subsequent outcomes in human trials, although this finding has not yet been 

extended to studies testing antifibrotic drugs;  2)  Short duration of disease in animals.   Human liver 

disease evolved over decades, allowing for progressive cross-linking of collagen that makes it more 

insoluble, and distortion of the hepatic architecture.  These critical features may not be fully 

replicated in the relatively short interval used for rodent models that test anti-fibrotic drugs;  3) 

Because multiple pathways drive NASH therapies targeting only a single pathway or molecule may 

not be sufficiently active.   A recent study has defined networks of gene expression that together 

stimulate fibrosis in NASH (143), implying that disruption of multiple pathways may be required to 

achieve a therapeutic benefit; 4) NASH may be comprised of different subtypes that have distinct 

disease drivers, and therefore different therapeutic targets.   Disease subtypes, also called 

endophenotypes (144), have been described in both diabetes (145) and NASH (146), but have not 

yet been exploited to enrich clinical trials with specific patient subgroups.

Unmet needs

A. Harness powerful new technologies to identify and optimize therapeutic targets and 

identify novel biomarkers.   The time is right to leverage single cell technologies and drug 

repurposing algorithms, powered by artificial intelligence, to refine candidate therapeutic 

targets.  These efforts should be complemented by deeper analysis of human liver 

samples from patients in clinical trials - both of those who respond as well as non-

responders - to identify what markers correspond with a therapeutic benefit.  Such 

efforts well not only uncover unexpected molecular drivers of efficacy, but also identify 

candidate biomarkers of fibrotic content or activity that could yield new non-invasive 

diagnostics.

B. Streamline and validate robust pipelines for pre-clinical drug testing.   Current 

approaches are time-consuming, and overly optimistic in predicting drug efficacy using 

rodent models of disease.  Refinements in these animal models, possibly by manipulating 

the microbiome, can be complemented by more sophisticated organoid and other A
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complex ex vivo models, translating predictors of efficacy derived from human tissues 

into these higher throughput pipelines.

C. For studies that rely on biopsy, validate digital pathology methods (see above).   The rich 

dataset generated by these methods establishes a strong rationale to assess their utility 

in quantifying response to therapies and predicting clinical events.  These efforts will 

require access to large numbers of liver biopsies from longitudinal cohorts.

D. Develop data-driven rationales for combination therapies.    Clinical trials to date using 

single drugs in NASH fibrosis have shown disappointing efficacy, which has provoked 

efforts to try combination therapies that attack different targets underlying disease 

pathogenesis.  However, the choice of combinations has been entirely empiric, and often 

driven by which drugs are available to a commercial sponsor.  Efforts should be 

accelerated to leverage pre-clinical or high throughput systems (e.g, organoids) in 

assessing global transcriptomic or proteomic responses to large numbers of 

combinations.   Those combinations that are synergistic can be further evaluated using in 

vivo models of disease.

E. Seek characterization of subtypes of disease that may more responsive to antifibrotics.  

Currently only the fibrosis stage is used to select patient subgroups for treatment trials, 

yet there may be specific targets that define subgroups based on both genetics and gene 

expression data.  Accurate identification of such patients could greatly enrich clinical 

trials and improve treatment responses.

8. Clinical Trials of Antifibrotics 

Almost all current and planned clinical trials targeting fibrosis are focused on NASH, which 

has been the subject of several reviews (40, 147-149).  Among the antifibrotic targets in NASH, 

several specifically target stellate cell activation and/or fibrogenesis, however none is yet 

approved, and thus are not reviewed in detail here.  The general approaches to antifibrotic 

therapies can be subdivided among the following:  1)  agents directly targeting hepatic stellate 

cells or their components, including fibrogenic, proliferative, apoptotic and/or contractile A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

molecules, as well as cell based strategies to ablate senescent stellate cells:  2)  drugs that 

modify inflammation or injury to reduce fibrogenic signals that activate stellate cells;  3)  

molecules that target extracellular matrix structure and cross-linking to reduce its stability and 

accumulation;  4)  agents that provoke matrix degradation, either by amplifying cells driving 

proteolysis, and/or unmasking proteolytic activity, for example by inhibiting tissue inhibitors of 

metalloproteinases (TIMPs).   Among these, the most advanced efforts have been direct stellate 

cell therapies, modifiers of inflammation and injury, and inhibitors of collagen cross-linking, but 

none have yet shown efficacy in human trials.  Approaches outlined in the preceding section will 

continue to refine these targets and seek their efficacy in pre-clinical models and early clinical 

trials. 

From a clinical trial perspective, three key issues in assessing antifibrotic therapies are: what 

to measure, how to measure it and how long should trials be conducted?   As detailed above, the 

field is held back by the lack of robust non-invasive markers of fibrosis and fibrogenesis that can 

assess efficacy at progressive intervals without biopsy.  For NASH, most trials are 6 – 18 months, 

but this interval is largely empiric.  Natural history studies in hepatitis B and C, as well as NASH 

suggest that some fibrosis reduction is possible in a year or less, but is greater at 5 years (109, 

150, 151).  Moreover, whereas reversal of cirrhosis has been documented in HBV and HCV, this 

has not been consistently observed in NASH cirrhosis.   Unfortunately, animal models are not 

very informative in this regard, as the entire disease process that takes decades in humans is 

telescoped into weeks to months in rodents.

The goals and targets of antifibrotic therapy in liver will also need to account for the stage of 

disease.  Patients with intermediate stages of fibrosis may benefit clinically from simply 

attenuating progression, whereas those with cirrhosis will more likely benefit if a therapy 

induces matrix degradation and provokes hepatic regeneration with improved synthetic 

function.  Currently, trials divide patients between cirrhosis and non-cirrhosis, but this is a blunt 

distinction and will benefit from greater clarity about the point at which fibrosis or cirrhosis is no 

longer reversible, i.e., ‘the point of no return’.
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Progress in the broader field of antifibrotic therapies has also been disappointingly slow.  

Given the liver’s unique regenerative capacity, most chronic diseases, including NASH, require 

decades to accumulate sufficient scar in order compromise organ function, whereas in lung, for 

example, the disease carries significant mortality within 3-5 years. Thus, there may be greater 

prospects for antifibrotics’ success in liver than other tissues.  Yet only pulmonary fibrosis has 

two approved drugs, pirfenidone and nintedanib, but these only delay the rate of deterioration 

and are difficult to tolerate due to adverse effects (152), and there are no approved antifibrotic 

therapies for any other organ or condition.  Nonetheless, the pace of progress in understanding 

disease pathogenesis and regulation of fibrosis has been accelerating, and there is little doubt 

that the next few years will translate these advances into effective therapies. 

Unmet needs

A. Clarify the rates of fibrosis regression in different liver diseases at different stages to 

refine trial durations and endpoints.    Trials in patients with more advanced fibrosis or 

cirrhosis may be less ‘regressible’ and require more time to achieve clinically meaningful 

benefit.

B. Explore the prospects for antifibrotic trial enrichment by better defining subgroups of 

patients using genetic, molecular and non-invasive markers.  While reaching this goal is 

not imminent, clarification of disease drivers and targets in different groups of patients 

will enhance the prospects for more conclusive clinical trials, even if this means drugs 

may be approved for smaller, better-defined patient cohorts.

C. Design clinical trials that include hard endpoints, where possible.   Because an 

improvement in fibrosis is a surrogate endpoint that may not translate into clinical 

benefit, either longer trials and/or those using markers that directly predict clinical 

outcomes with have greater appeal to regulatory agencies, providers and patients.

The ongoing exploration of hepatic fibrosis has borne tremendous fruit in defining key 

cellular and molecular determinants of chronic liver disease.   These advances have led to sustained 

optimism that fibrosis will yield to effective antifibrotic therapies that improve the lives of patients A
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with chronic liver disease. Success will surely come, but there is more work to be done to address 

unmet needs (Figure 2).   We hope this article will help streamline progress and fertilize the field in 

the coming years.
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Figure Legends

Figure 1. Different patterns of fibrotic evolution in different chronic liver diseases. The three major 

patterns of fibrotic evolution are illustrated. The “post-necrotic” pattern is typical of chronic viral 

hepatitis and is mainly characterized by porto-central evolution with early involvement of the 

centrilobular vein (CLV). Sinusoidal arterialization and neo-angiogenesis are also typical of this 

pattern. Fibrogenesis originating in lobular zone 3 (“pericentral fibrosis”) is a main feature of chronic 

alcoholic hepatitis and non-alcoholic steatohepatitis (NASH). Here the main feature is the 

capillarization of sinusoids in zone 3 that progressively becomes panlobular. “Biliary fibrosis”, a key 

feature of primary biliary cholangitis and primary sclerosing cholangitis, evolves mainly portal to 

portal with progressive worsening of cholestasis. 

Figure 2. Current unmet needs in hepatic fibrosis from basic to translational to clinical 

perspectives.  Shown are the unmet needs and current gaps in hepatic fibrosis outlined in this 

review, surrounding an image of a cirrhotic liver within which are the cellular changes on the left, 

and the appearance of fibrosis on the right.   These unmet needs are displayed along the continuum 

from basic, through translational, to clinical research.
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